
Continuous Emotion Recognition using a Particle
Swarm Optimized NARX Neural Network
Ntombikayise Banda
Computer Laboratory

University of Cambridge
Email: nb395@cam.ac.uk

Andries Engelbrecht
Department of Computer Science

University of Pretoria
Email: engel@cs.up.ac.za

Peter Robinson
Computer Laboratory

University of Cambridge
Email: pr10@cam.ac.uk

Abstract—The recognition of continuous dimensional emotion
remains a challenging task due to large variations in the
expression of emotion, and the difficulty of modeling emotion as
temporal processes. This work proposes the use of a Nonlinear
AutoRegressive with eXogenous inputs recurrent neural network
(NARX-RNN) to learn emotional patterns in a given a dataset.
The application of particle swarm optimisation in training the
NARX-RNN is considered and compared to a gradient descent
algorithm. We show that the NARX-RNN outperforms other
methods in its emotion recognition ability, and can be easily
trained with both gradient-free and gradient-based optimization
methods.

I. INTRODUCTION

The emergence of affective computing and subsequent
incorporation of emotion recognition systems in computer
interfaces has led to powerful systems such as tele-home health
care systems that monitor patient health and emotional states
and provide empathetic feedback in response to a detected
negative emotional state [1].

The emotion recognition problem can be approached as a
classification or regression task depending on which of the
dominant emotion theories - categorical or dimensional - is
followed. The categorical theory views emotions as discrete
classes (for example, anger, frustration and happiness) while
the dimensional approach conceptualizes emotion as occurring
along two primary dimensions, valence and arousal which
measure the level of pleasantness and emotional intensity
respectively [2]. This work addresses the emotion recognition
problem as a regression task based on the valence-arousal
dimensions.

It is generally accepted that emotions are processes that
unfold over time [3]. This view therefore highlights the need
for models to capture the unfolding temporal dynamics of
emotion for accurate recognition. Recurrent neural networks
have been widely applied in the task of emotion recognition as
they have shown great success in representing context through
their recurrent connections [4]. The recurrent connections
enable the model to retain information about past inputs and to
discover temporal correlations between events that are possibly
far away from each other in the data [5]. However, basic
recurrent neural networks often struggle with the task of
learning long term dependencies as they suffer from a problem
of vanishing gradients [5]. This term refers to a large decrease

in the norm of the gradients during training as a result of long-
term contributions exponentially decreasing to gradient norm
zero when errors are backpropagated, making it impossible
for the model to learn correlations between temporally distant
events [5]. As a result, numerous variations of the recurrent
neural network have been developed to overcome the vanishing
gradient problem. These include the Bidirectional Long Short-
Term Memory (BLSTM) recurrent neural networks [6] and
Echo State Networks [7].

This paper focuses on another class of recurrent neural
networks which is based on a discrete nonlinear system called
Nonlinear AutoRegressive with eXogenous inputs (NARX)
model, and is thus termed the NARX recurrent neural network
(NARX-RNN). In their work, Lin et al [8] showed that
although the NARX-RNN does not circumvent the vanishing
gradient problem, it is easier for the NARX-RNN to discover
long-term dependencies with gradient-descent. Furthermore,
when benchmarked against nine other recurrent neural network
architectures, the NARX network was found to converge much
faster and generalize better than the other nine networks
for grammatical inference and nonlinear system identification
problems [9]. The NARX-RNN network has been applied in
facial expression analysis to distinguish between seven basic
emotions [10] but never applied in the more challenging task
of recognizing continuous dimensional emotions.

This paper further looks at a gradient-free optimization
technique called Particle Swarm Optimization (PSO) as a way
of overcoming the possible vanishing gradient challenges ob-
served in classical recurrent neural networks, and to determine
whether gradient descent is truly effective in optimizing the
NARX-RNN model. PSO is a population based stochastic op-
timization technique first introduced by Kennedy and Eberhart
[11] based on the movement and intelligence of swarms (e.g.
bird flocking). The PSO, in either its original form or variants
of it, has been used across a wide range of applications such as
neural network training [12], and applied to various affective
computing problems as a feature selection mechanism in the
recognition of basic emotions from physiological signals [13]–
[15], and as a pattern search mechanism that maps facial action
units to three of the six basic emotions [16].

The paper therefore provides the following contributions:
• the use of the NARX recurrent neural network for recog-

nition of continuous dimensional emotion (section II),



• optimization of the NARX-RNN using particle swarm
theory, which according to the authors’ best knowledge
has not been investigated yet (section III-B), and

• a comparative analysis of the gradient-optimized and
particle swarm optimized NARX-RNN (section IV-E).

II. NARX RECURRENT NEURAL NETWORK

The NARX recurrent neural network (depicted in Figure 1)
is a dynamical neural architecture commonly used for input-
output modeling of nonlinear dynamical systems. The network
takes as input a window of past input and output values and
computes the current output.

Fig. 1. Architecture of the NARX recurrent neural network

The defining equation for the NARX model is

y(t) = f(u(t−Du), · · · ,u(t− 1),u(t),

y(t−Dy), · · · , y(t− 1))
(1)

where u(t) ∈ RN and y(t) ∈ R1 represent the inputs and
output of the network at time t respectively. Du and Dy are
the input and output time lags, and the function f is a nonlinear
function approximated by a Multilayer Perceptron (MLP). In
this paper we shall consider a NARX network with zero input
order (Du = 0) resulting in the network exploring long term
dependencies of the output signal only. The MLP consists of
three layers, namely, the input, hidden and output layers with
recurrent connections from the output to the hidden layer. The
architecture of the NARX-RNN can be flattened allowing for
the regressed outputs to be concatenated to the exogenous
input features and be processed simultaneously. The MLP
input at time t is therefore

x(t) = [u(t), y(t−Dy), · · · , y(t− 1)]. (2)

The hidden layer consists of neurons which compute a
nonlinear or linear transformation of the input depending
on the activation function used. The hidden states h(t) and
network predictions ŷ(t) at time t are computed as follows:

h(t) = Ψ(Whx · x(t) + bh) (3)
ŷ(t) = Γ(Wyh · h(t) + by) (4)

where Whx and Wyh are the input-to-hidden and hidden-to-
output weight matrices respectively, bh and by are the biases,
and Ψ and Γ are the activation functions which are both set
to hyperbolic tangent functions in this work. The hyperbolic
tangent was selected for the output activation function to scale
the output between -1 and 1 (similar to the external inputs)
prior to re-feeding it into the model as delayed output.

III. NARX-RNN TRAINING

During training, the NARX recurrent neural network aims
to learn optimal weight values θ = [Whx Wyh bh by] by min-
imizing a loss (objective) function defined as J(θ) = L(ŷ, y),
where L is a distance function that measures the deviation of
the predictions, ŷ, from the target outputs, y, for each training
case c. A typical loss function is the mean squared error (MSE)
defined as

J(θ) =
1

2m

∑
c

∑
t

(y(t)− ŷ(t))2 (5)

where m is the total number of time instances over all training
cases. A regularization term is added to the loss function to
prevent the neural network from overfitting the training data.
This is done by scaling the squared weights (excluding the
biases) with a user-supplied parameter λ as shown in equation
(6).

J(θ) = J(θ) +
λ

2m

∑
j

∑
k

(wjk)2 (6)

Learning of the NARX-RNN parameters can be achieved
through backpropagation in conjunction with gradient descent
(described in the following sub-section), or by gradient-free
methods such as particle swarm optimization described in
section III-B.

A. Backpropagation

Gradient descent traverses the error surface (defined by a
loss function) whose global minimum translates to optimum
weights. At each iteration, the algorithm attempts to move
towards this minimum through the following update equation:

θj := θj − α
∂

∂θj
J(θ) (7)

where α is the gradient descent learning rate. The weight
gradients provide the direction of the search and the learning
rate controls the step size of the search.

The partial derivatives of the loss function with respect to
the weights can be calculated through backpropagation. For
ease of notation and clarity purposes, the inputs to activation
functions in equations (3) and (4) are annotated as a1 and a2
respectively:



a1(t) = Whx · x(t) + bh (8)
a2(t) = Wyh · h(t) + by (9)

The partial derivative of the loss function with respect to
each layer of the MLP is next computed using the chain rule:

∂J(θ)

∂y
= y(t)− ŷ(t) (10)

∂J(θ)

∂h
=
∂J(θ)

∂y
· ∂y
∂h

=
∂J(θ)

∂y
· sech2(a2(t)) ·Wyh

(11)

From this, the partial derivative of the loss function with
respect to each weight matrix is obtained as follows:

∂J(θ)

∂Whx
=
∂J(θ)

∂h
· sech2(a1(t)) · x(t) (12)

∂J(θ)

∂bh
=
∂J(θ)

∂h
· sech2(a1(t)) (13)

∂J(θ)

∂Wyh
=
∂J(θ)

∂y
· sech2(a2(t)) · h(t) (14)

∂J(θ)

∂by
=
∂J(θ)

∂y
· sech2(a2(t)) (15)

The weight gradients are then summed over all training
instances and converted into a single vector for use in the
learning rule update (equation (7)) of the gradient descent
algorithm, that is

∂

∂θj
J(θ) =

[∂J(θ)

∂Whx

∂J(θ)

∂Wyh

∂J(θ)

∂bh

∂J(θ)

∂by

]
(16)

B. Particle Swarm Optimisation

PSO is used to explore a multidimensional search space of
a given problem to find the parameters required to minimize
a particular objective function. It does this by maintaining a
swarm of particles where each particle represents a potential
solution. At the beginning of the search, the system is initial-
ized with a swarm of random solutions (particles). A particle
moves through the search space toward an optimum solution
by adjusting its position and velocity according to its own
previous best performance, and the best performance of its
neighbours.

Given a swarm of np particles, each particle i consists
of a position vector, xi ∈ Rnx , representing parameters of
dimension nx that need to be optimized (e.g. neural network
weights) and a velocity vector, vi ∈ Rnx which governs the
direction of travel and step size. The swarm is initialized by
setting the positions to xij ∼ U [−xmax,j , xmax,j ], where U
is a uniform distribution, and the velocities, vij , to zero for
j = 1, ..., nx.

At each iteration, a particle moves towards the optimum
solution using the following velocity and position update
equations:

vij(t+ 1) = wvij(t) + c1r1j [pij(t)− xij(t)]
+ c2r2j [gj(t)− xij(t)]

(17)

xij(t+ 1) = xij(t) + vij(t+ 1) (18)

where
w is the inertia weight,
c1, c2 are positive acceleration constants,
r1j , r2j are random values sampled from a uniform

distribution in the range (0, 1),
pij is the personal best position (that is, the best

position that particle i in dimension j has
visited since the first iteration

gj is the global best position (that is, the best
position found by the swarm so far) in di-
mension j.

In its search for the best solution, the swarm varies between
exploratory behaviour, that is, searching a broad region of
space, and exploitative behaviour, that is, a local search that
promotes convergence of the particles towards the best de-
tected solution. The performance of an algorithm is character-
ized by its exploration-exploitation balance which is achieved
by the careful selection of the parameters w, c1 and c2.

The PSO algorithm determines the personal best position
(pi) of each particle and global best position of the swarm by
evaluating the objective function using the candidate solutions
at iteration t. The objective function, f , measures how close a
candidate solution is from the optimum solution (as in the case
of the mean square error function defined in equation (5)). The
result is called the fitness value. Therefore, the personal best
position at time t+ 1, assuming minimisation, is

pi(t+ 1) =

{
pi(t) iff(xi(t+ 1) ≥ f(pi(t))

xi(t+ 1) iff(xi(t+ 1) < f(pi(t))
(19)

The global best position is obtained from the particle that
yields the lowest fitness value amongst all particles, for all
previous time steps as shown in equations (20) and (21).

g′i(t+ 1) = arg min
p(t+1)

f(p(t+ 1)) (20)

where p(t+ 1) ∈ {p0(t+ 1), · · · ,pi(t+ 1), · · · ,pnx
(t+ 1)}.

gi(t+ 1) =

{
gi(t) iff(g′i(t+ 1) ≥ f(gi(t))

g′i(t+ 1) iff(g′i(t+ 1) < f(gi(t))
(21)

Since the particle velocities are stochastic variables, it is
possible for the velocities to grow unbounded, causing the
particles to move too far beyond the search space [17].
Velocity clamping was introduced to curb this behaviour by
limiting the velocity of each particle in each dimension to
±vmax,j , where vmax,j = µ × xmax,j and µ is a scaling



Algorithm 1 : Global Best PSO
Initialize swarm size to np
Initialize swarm positions to U [−xmax,j , xmax,j ]
Initialize swarm velocities to zero
Initialize personal best positions to swarm positions
repeat

for each particle i = 1, · · · , np do
//Set personal best position
if f(xi) < f(pi) then
pi = xi

end if

//Set global best position
if f(pi) < f(g) then
g = pi

end if
end for

for each particle i = 1, · · · , np do
update particle velocity, vi, using equation (17)
apply velocity clamping
update particle position, xi, using equation (18)
apply position boundary constraints

end for
until maximum iterations exceeded or minimum error cri-
teria is met

factor which lies in the range 0.1 ≤ µ ≤ 1.0. In the same
light, a position constraint rule can be applied to ensure the
particle positions stay within the search space. The random
initialization is applied in this work which re-initializes the
position for each dimension j which violates the boundary
condition to U [−xmax,j , xmax,j ].

The implementation of PSO is summarized in Algorithm 1.
The basic PSO has two general types of neighbourhoods:

the star and the ring neighbourhood, resulting respectively in
the global best and local best PSO. The particles in the star
neighbourhood are interconnected such that each particle has
the entire swarm as its neighbourhood and therefore considers
information from the entire swarm when making decisions on
its search trajectory. The swarm behaviour described in the
paragraphs above assumes this topology.

For the ring neighbourhood, the trajectory of each particle
is influenced by a small group of particles (a sub-swarm) with
different neighbourhoods overlapping. This structure allows
for parallel search for an optimum solution, with the sub-
swarms slowly converging towards the sub-swarm with the
lowest fitness value while thoroughly searching the regions
they are currently in. This behaviour reduces the chances of the
swarm being trapped into a local minimum [18]. A common
configuration of the ring topology is that where each particle
is connected to its two adjacent neighbours.

The local best position (li) is computed as the best solution
found in the neighbourhood Ni of particle i:

li(t+ 1) ∈ {Ni|f(l(t+ 1)) = min{f(x)}, ∀x ∈ Ni} (22)

and the resulting velocity update equation is:

vij(t+ 1) = wvij(t) + c1r1j [pij(t)− xij(t)]
+ c2r2j [lij(t)− xij(t)]

(23)

Another neighbourhood configuration that is considered
in this study is the toroidal topology where particles are
distributed on a grid lattice with each particle connected to its
north, east, south and west neighbouring particles as shown
in Figure 2(c). The neighbourhood topologies are determined
using particle indices and are not based on any spatial infor-
mation.

Fig. 2. PSO Neighbourhood Topologies: (a) star topology, (b) ring topology
and (c) toroidal topology [19]

IV. EMPIRICAL ANALYSIS

The main purpose of the study was to analyse the per-
formance of the gradient descent algorithm on the NARX
recurrent neural network, and to compare it to the gradient-free
particle swarm optimization algorithm. This section describes
the dataset and emotion features used in the empirical analysis,
and also details the setup and chosen parameters of the NARX-
RNN and of the various optimization algorithms. The results
are presented and discussed in subsection IV-E.

A. Emotion Database

The database used in this study was obtained from the
AVEC 2012 emotion challenge competition [20]. It contains
audiovisual recordings of naturalistic dialogues between two
human participants, with one of the participants simulating an
artificial listener agent. The emotional content of these videos
was annotated by at least two raters along the dimensions
arousal, valence, power and expectancy. This study only
presents results for the arousal and valence dimensions. It
should be noted that this study partitioned the training and
test datasets differently to the AVEC 2012 challenge, but in
the same manner as the work presented in [21] for comparison.

B. Emotion Features

The emotion recognition task is accomplished by analysing
the facial and vocal expressions of the recorded participants.



1) Visual Features: The visual features are obtained by
firstly locating and extracting frontal faces in each video frame
using the facial feature point from the GAVAM-CLM tracker
[22]. The extracted faces are normalized and passed onto a
temporal local binary pattern algorithm for feature extraction.

The temporal local binary algorithm used in this work is an
extension of the original local binary pattern (LBP) operator
[23] which captures the motion and appearance of an image
sequence and produces a 1593-dimensional feature descriptor
that describes the dynamic textures. The reader is referred to
[21] for detailed information on the extraction of the visual
features.

Subsequent to the visual feature extraction, principal com-
ponent analysis (PCA) was applied for dimensionality reduc-
tion. Through cross-validation, it was found that reducing the
1593-dimensional feature vector to 20 principal components
(which account for approximately 55% of the variance in the
data) yielded the best results.

2) Audio Features: Emotion can be detected from speech
by analysing the characteristics of speech utterance wave-
forms. Voice cues such as the pitch and loudness (perceived
energy) indicate the nature of the emotion behind an utterance.
Additional features adopted in this work are the articulation
rate which identifies the number of syllables per second,
peak slope which identifies the quality of voice (breathy to
tense), and spectral stationarity which captures fluctuations
and changes in the voice signal. The extraction details of these
features can be found in [24].

C. NARX-RNN Setup

The NARX-RNN model described in section II contains
free parameters which were obtained through a grid-search
with Pearson’s correlation as the evaluation metric (via a 5-
fold cross validation exercise). Gradient descent was used as
the optimization algorithm.

The parameters and their chosen values are listed in Table
I.

TABLE I
SELECTED PARAMETERS FOR NARX-RNN MODELS

PARAMETER DESCRIPTION AROUSAL VALENCE

Dx Input time lag 0 0
Dy Output time lag 10 5
nh Hidden layer size 50 80
λ Regularization parameter 16 16

These parameters were used to optimize the weights (θ) of
the NARX model.

D. Optimization Algorithms

1) Gradient-based methods: The batch gradient descent
algorithm used in the back-propagation training of the NARX-
RNN requires the learning rate to be set with care as a very
high learning rate could make the algorithm oscillate and
become unstable while a small learning rate could lead to
slow convergence. The use of an adaptive learning rate has

been reported to yield better performance when compared to
a constant rate [25]. The learning rate was therefore annealed
(gradually lowered) from 0.4 to 0.1 during training.

2) PSO Variants: Three PSO algorithms were implemented
using the neighbourhood topologies mentioned in section
III-B. These are the star PSO (starPSO), the ring topology
PSO (ringPSO), and the toroidal topology PSO (torPSO).

Each PSO was initialized with a swarm of 30 particles and
their position boundaries ([−xmax,xmax]) were placed at -1
and 1. The inertia weight w in the velocity update equation
(17) was set to 0.72 while the acceleration constants (c1, c2)
were both set to 1.49. These velocity control parameters were
shown to lead to convergence of the algorithm [26]. The veloc-
ity clamping rule was applied to limit the swarm velocities to
0.2 and 0.3 for the arousal and valence PSO implementations
respectively. The velocity limits were determined empirically
on the basis of their ability to allow for sufficient exploration
of the search space while curbing the unbounded growth of
the velocities.

E. Results

The performance of the optimization algorithms is measured
using Pearson’s correlation coefficient following the evaluation
strategy used in the AVEC 2012 challenge. This measurement
is obtained by computing the correlation between the emotion
predictions and ground truth for each video in the dataset, and
then averaging over all videos in a specific dimension. Thirty
independent runs were performed for each algorithm, and each
run consisted of 1000 iterations. The following correlation
results and plots are an average of the thirty independent runs.

1) PSO Convergence Analysis: Figure 3 illustrates the
convergence profiles of the different neighbourhood topologies
for the valence and arousal dimensions. The ring topology
is known to have a slower convergence rate (as observed
in the figures), as the best solution found has to propagate
through several neighborhoods before affecting all particles in
the swarm [27]. The toroidal topology is expected to converge
faster than the ring topology due to an increased neigh-
bourhood size but slower than the star topology. However,
for the valence dimension, the toroidal topology exhibits a
profile similar to the star PSO. As noted in section III-B, the
advantage of slower convergence is to avoid being trapped in
a local minimum.

2) PSO Diversity Profiles: Additionally, a diversity analysis
of the swarms was conducted. Swarm diversity is defined as
the degree of dispersion of the particles in the swarm, which
is computed as the average distance of the particles from the
spatial center of the swarm [28]. This measure quantifies the
exploration or exploitation of the swarm. Intuitively, a large
diversity value should imply that a large area of the search
space is being explored, while a small swarm diversity implies
that the particles are exploiting a small area of the search space
[28].

In Figure 4, the PSOs begin their searches with high swarm
diversities with the star PSO rapidly transitioning to exploita-
tion mode, as opposed to the toroidal and ring PSOs which



Fig. 3. Loss profiles of the star, ring and toroidal PSOs

maintain a high swarm diversity for longer. The high, relatively
unchanging diversity of the ring PSO indicates stagnation
which is likely caused by the swarm being trapped in a local
minimum. In contrast, the continued downward trend of the
star PSO swarm diversity shows that it could still yield better
results if the algorithm is run for more than 1000 iterations.

Fig. 4. Diversity profiles of the star, ring and toroidal PSOs

3) Algorithm Comparison: The evaluation results of the
three PSOs and the gradient descent algorithm are summarized
in Table II. A Mann-Whitney U test (p < 0.05) was conducted
and indicates that there is no significant difference between
the star PSO and gradient descent algorithms for the arousal
emotion, and that the star PSO, toroidal PSO and gradient
descent significantly outperform the ring PSO. The valence
results portray a different picture with the gradient descent
significantly outperforming all three PSO algorithms. The star
PSO was found to be significantly better than the ring PSO
while no significant difference was found between the toroidal
and ring PSOs. Engelbrecht [29] argues that the performance
of a PSO neighbourhood topology is problem specific, and
recommends that a neighbourhood topology be included as
one of the tunable parameters.

The correlation results confirm that the gradient descent al-
gorithm is able to successfully train the NARX recurrent neural
network without suffering from the explosion or attenuation
of weight gradients during training.

TABLE II
CORRELATION RESULTS FOR THE AROUSAL AND VALENCE NARX-RNN

MODELS

OPTIMIZER AROUSAL VALENCE MEAN

starPSO 0.418± 0.020 0.420± 0.020 0.419± 0.020

ringPSO 0.379± 0.021 0.389± 0.046 0.384± 0.036

torPSO 0.407± 0.023 0.415± 0.025 0.411± 0.024

Gradient Descent 0.420± 0.011 0.435± 0.014 0.428± 0.014

TABLE III
MODEL COMPARISON BASED ON CORRELATION RESULTS

AROUSAL VALENCE MEAN

SVR 0.241 0.170 0.206

CCRF 0.341 0.326 0.334

CA-CCRF 0.333 0.343 0.338

NARX-RNN 0.420 0.435 0.428

4) Model Comparison: The performance of the NARX-
RNN is compared to that of the support vector regression
(SVR) model, which serves as the benchmark for the analysis
of this emotion dataset, the Continuous Conditional Random
Field (CCRF) and Correlation Aware CCRF (CA-CCRF) pro-
posed in [21]. The correlation results are provided in Table
III.

The NARX-RNN model yielded a significant increase in the
emotion recognition performance when compared to the CCRF
and SVR models. The nonlinear mapping of the features to
the emotion indicator and the ability of the model to capture
temporal dynamics makes the NARX-RNN model a strong
predictor of continuous dimensional emotion.

V. CONCLUSION

This paper investigated the use of a NARX-RNN to ac-
curately recognize continuous emotion along the arousal and
valence dimensions. Furthermore, the paper set out to test
the ability of the gradient descent optimization algorithm to
train the NARX recurrent neural network amidst challenges
of vanishing gradients that prevent the model from learning
long range dependencies. The gradient descent algorithm was
compared to the gradient-free particle swarm optimization
algorithms of various topologies, namely star, ring and toroidal
topologies. The star topology PSO was found to be comparable
to the gradient descent algorithm for the arousal dimension,
while the ring topology PSO lagged in performance in both
emotion dimensions.

The NARX-RNN model overall showed significant im-
provement in its performance when compared to the CCRF
and CA-CCRF models presented in [21], thus demonstrating
its strong capability in the capturing and modeling of temporal
data.

Future work includes exploring advanced PSO algorithms
and differential evolution which can possibly perform better
than gradient-based algorithms.



REFERENCES

[1] H. Prendinger and M. Ishizuka, “What affective computing and life-
like character technology can do for tele-home health care,” in Proc.
Workshop HCI and Homecare. Citeseer, 2004.

[2] J. A. Russell and L. F. Barrett, “Core affect, prototypical emotional
episodes, and other things called emotion: dissecting the elephant.”
Journal of personality and social psychology, vol. 76, no. 5, p. 805,
1999.

[3] J. Gratch, S. Marsella, and P. Petta, “Modeling the cognitive antecedents
and consequences of emotion,” Cognitive Systems Research, vol. 10,
no. 1, pp. 1–5, 2009.

[4] Y. Bengio, “Artificial neural networks and their application to sequence
recognition,” 1991.

[5] R. Pascanu, T. Mikolov, and Y. Bengio, “On the difficulty of training
recurrent neural networks,” arXiv preprint arXiv:1211.5063, 2012.

[6] M. Wöllmer, A. Metallinou, F. Eyben, B. Schuller, and S. S. Narayanan,
“Context-sensitive multimodal emotion recognition from speech and
facial expression using bidirectional lstm modeling.” in INTERSPEECH,
2010, pp. 2362–2365.

[7] S. Scherer, M. Oubbati, F. Schwenker, and G. Palm, “Real-time emotion
recognition from speech using echo state networks,” in Artificial neural
networks in pattern recognition. Springer, 2008, pp. 205–216.

[8] T. Lin, B. G. Horne, P. Tino, and C. L. Giles, “Learning long-term
dependencies in narx recurrent neural networks,” Neural Networks, IEEE
Transactions on, vol. 7, no. 6, pp. 1329–1338, 1996.

[9] B. G. Horne and C. L. Giles, “An experimental comparison of recurrent
neural networks,” Advances in neural information processing systems,
pp. 697–704, 1995.

[10] R. Alazrai and C. G. Lee, “An narx-based approach for human emotion
identification,” in Intelligent Robots and Systems (IROS), 2012 IEEE/RSJ
International Conference on. IEEE, 2012, pp. 4571–4576.

[11] R. C. Eberhart and J. Kennedy, “A new optimizer using particle swarm
theory,” in Proceedings of the sixth international symposium on micro
machine and human science, vol. 1. New York, NY, 1995, pp. 39–43.

[12] R. C. Eberhart and Y. Shi, “Particle swarm optimization: developments,
applications and resources,” in Evolutionary Computation, 2001. Pro-
ceedings of the 2001 Congress on, vol. 1. IEEE, 2001, pp. 81–86.

[13] G. Wu, G. Liu, and M. Hao, “The analysis of emotion recognition from
gsr based on pso,” in Intelligence Information Processing and Trusted
Computing (IPTC), 2010 International Symposium on. IEEE, 2010,
pp. 360–363.

[14] C. Defu, L. Guangyuan, and Q. Yuhui, “Applications of particle swarm
optimization and k-nearest neighbors to emotion recognition from phys-
iological signals,” in Computational Intelligence and Security, 2008.
CIS’08. International Conference on, vol. 2. IEEE, 2008, pp. 52–56.

[15] Y. Xu, G. Liu, M. Hao, W. Wen, and X. Huang, “Analysis of affective
ecg signals toward emotion recognition,” Journal of Electronics (China),
vol. 27, no. 1, pp. 8–14, 2010.

[16] B. M. Ghandi, R. Nagarajan, and H. Desa, “Particle swarm optimization
algorithm for facial emotion detection,” in Industrial Electronics &
Applications, 2009. ISIEA 2009. IEEE Symposium on, vol. 2. IEEE,
2009, pp. 595–599.

[17] A. P. Engelbrecht, Fundamentals of computational swarm intelligence.
Wiley Chichester, 2005, vol. 1.

[18] R. Poli, J. Kennedy, and T. Blackwell, “Particle swarm optimization,”
Swarm intelligence, vol. 1, no. 1, pp. 33–57, 2007.

[19] A. J. R. Medina, G. T. Pulido, and J. G. Ramı́rez-Torres, “A comparative
study of neighborhood topologies for particle swarm optimizers.” in
IJCCI, 2009, pp. 152–159.

[20] B. Schuller, M. Valster, F. Eyben, R. Cowie, and M. Pantic, “Avec 2012:
the continuous audio/visual emotion challenge,” in Proceedings of the
14th ACM international conference on Multimodal interaction. ACM,
2012, pp. 449–456.

[21] T. Baltrusaitis, N. Banda, and P. Robinson, “Dimensional affect recogni-
tion using continuous conditional random fields,” in Automatic Face and
Gesture Recognition (FG), 2013 10th IEEE International Conference
and Workshops on. IEEE, 2013, pp. 1–8.

[22] T. Baltrusaitis, P. Robinson, and L. Morency, “3d constrained local
model for rigid and non-rigid facial tracking,” in Computer Vision and
Pattern Recognition (CVPR), 2012 IEEE Conference on. IEEE, 2012,
pp. 2610–2617.

[23] T. Ojala, M. Pietikäinen, and D. Harwood, “A comparative study of
texture measures with classification based on featured distributions,”
Pattern recognition, vol. 29, no. 1, pp. 51–59, 1996.

[24] D. Ozkan, S. Scherer, and L.-P. Morency, “Step-wise emotion recog-
nition using concatenated-hmm,” in Proceedings of the 14th ACM
international conference on Multimodal interaction. ACM, 2012, pp.
477–484.

[25] M. Moreira and E. Fiesler, “Neural networks with adaptive learning rate
and momentum terms,” Technique Report 95, vol. 4, 1995.

[26] R. C. Eberhart and Y. Shi, “Comparing inertia weights and constriction
factors in particle swarm optimization,” in Evolutionary Computation,
2000. Proceedings of the 2000 Congress on, vol. 1. IEEE, 2000, pp.
84–88.

[27] S. Hamdan, “Hybrid particle swarm optimiser using multi-neighborhood
topologies,” INFOCOMP Journal of Computer Science, vol. 7, no. 1,
pp. 36–44, 2008.

[28] O. Olorunda and A. P. Engelbrecht, “Measuring exploration/exploitation
in particle swarms using swarm diversity,” in Evolutionary Computation,
2008. CEC 2008.(IEEE World Congress on Computational Intelligence).
IEEE Congress on. IEEE, 2008, pp. 1128–1134.

[29] A. Engelbrecht, “Particle swarm optimization: Global best or local best?”
in Computational Intelligence and 11th Brazilian Congress on Compu-
tational Intelligence (BRICS-CCI & CBIC), 2013 BRICS Congress on.
IEEE, 2013, pp. 124–135.


