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Abstract—Continuous emotion prediction in the arousal-
valence space is now being used in various modalities: music,
facial expressions, gestures, text, etc. In order to be able to
compare the work of different research groups effectively, we
believe it is necessary to set certain guidelines for how to
conduct research—the choice of evaluation metrics of emotion
recognition algorithms in particular. In this paper we focus on
the field of musical emotion recognition and describe a study
designed to discover people’s instinctive preference among the
most commonly used evaluation techniques. We gather strong
evidence that root mean squared error or Kullback-Leibler
divergence should be used for regression based approaches. The
raw study data we collected is made publicly available.

I. INTRODUCTION

Continuous emotion representation in the arousal-valence
space is widely used in affective computing. Unfortunately, as
is often the case with new disciplines, so far there is a notice-
able lack of agreed guidelines for conducting experiments and
evaluating algorithms.

Moreover, many datasets are used, which have been col-
lected in distinct ways and for various purposes. As researchers
make different choices, comparing their work is difficult.

Even though the same problem exists in most if not all sub-
fields of affective computing dealing with continuous emotion
representation, in this paper we focus on music. We describe
a study we conducted in order to find out how people perceive
the ”goodness” of different evaluation metrics, and which of
them most closely match people’s own instincts. The results
allow us to suggest several guidelines with confidence—most
importantly, which evaluation metric to choose for optimizing
emotion prediction algorithms.

II. BACKGROUND

A. Emotion in music

Even though the majority of work in the field of emotion
recognition in music is done on emotion classification, there
is already a significant body of research done on continuous
emotion prediction in the dimensional space (using regression).

By far the most common choice for axes for the di-
mensional representation of musical emotion is arousal (de-
scribing how active/passive emotion is) and valence (how

positive/negative emotion is). It has been repeatedly shown
that adding a third axis (e.g. dominance, tension, etc.) gives
little or no benefit to a model [1], it has also been reported
that the participants find the addition of a third axis confusing
or difficult to deal with [2].

Within the research on dimensional musical emotion pre-
diction, there is a wide range of evaluation metrics used.
Starting with standard metrics such as root mean squared
error and correlation [3], but also including Kullback-Leibler
divergence [4], [5], average Euclidian distance [6], [7], Earth
mover’s distance [7].

B. Other areas

1) Emotion recognition from audio/visual clues: The idea
to model emotion in terms of several latent dimensions is not
exclusive to music. Such representation of affect is used when
modeling external expressions of emotions such as emotional
speech, facial expressions, head gestures, and body posture.

When the problem is formed in continuous space (such
as Audio/Visual Emotion Challenge 2012 [8] and 20131)
metrics such as average RMSE [9], [10], correlation [10] and
sign-agreement [10] per sequence are used. The metrics are
usually reported per dimension (separate scores for valence,
arousal etc.). Unfortunately, many authors fail to make it clear
whether the evaluation metrics they report are averaged across
sequences or computed from a single concatenated sequence
(as is more common in music community), making it more
difficult to compare different work.

2) Emotion recognition from physiological clues: Emotion
recognition based on the analysis of physiological measure-
ments could provide a way of evaluating the felt emotion, as
opposed to the expressed emotion (or the mixture of both).
There is a variety of measurements that such a system could
be based on: EKG, skin conductivity, heart-rate variability,
EEG, etc. Classifiers instead of regressors are often used, with
accuracy as the evaluation metric [11]. Even when regressors
are used initially, the final outcome is commonly converted to
a class by using a set of bins for the labels and accuracy as
the evaluation metric [12].

1http://sspnet.eu/avec2013/
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3) Sentiment analysis in text: In the field of sentiment
analysis in text, the majority of work tends to focus on the
valence axis only [13]. Even though the task of inferring
how positive a piece of text is would lend itself naturally
to regression, it is often approached as or converted to a
classification problem (binary or ordinal) [14] [15]. In the case
of classification, accuracy is used as the evaluation metric,
sometimes with the addition of root mean squared error [16].
For tasks defined as regression, correlation is used [17][18].

III. METHOD

Sections III-A to III-E explain the different evaluation
metrics considered and the reasons for choosing a particular
set of them. Section III-G describes the design of our study.

A. Metrics considered

1) One dimensional case: The simplest approach is to
consider each affective attribute as a separate dimension. As
seen in the previous work section (Section II) there are a
multitude of metrics used to evaluate the machine learning
algorithms for the task of dimensional emotion prediction. If
we consider a sequence of length n with a ground truth g(x)
and prediction p(x) per time-step x, we can define the most
common metrics used in the field.

Average Euclidean distance:

EEucl(g, p) =
1

n

n∑
i=1

||g(i)− p(i)|| (1)

Root mean square error (RMSE), here defined for both
single and multi-dimensional cases:

ERMSE(g, p) =

√√√√ 1

n

n∑
i=1

dims∑
d=1

(gd(i)− pd(i))2 (2)

Pearson correlation coefficient:

ECorr(g, p) =

∑n
i=1[(g(i)− g)(p(i)− p)]√∑n

i=1(g(i)− g)2
√∑n

i=1(p(i)− p)2
, (3)

where g and p are the mean ground truth and predictor
values for the sequence of interest. Some authors use squared
correlation coefficients instead of non-squared ones, we choose
not to do so. Squaring the correlation coefficient, can hide the
fact that the predictions are inversely correlated with ground
truth, which is not a desired behaviour of a predictor.

We use the definition of the average sign agreement
(SAGR) from Gunes et al. [10]:

ESAGR(g, p) =
1

n

n∑
i=1

s(g(i), p(i)), (4)

s(x, y) =

{
1, sign(x) = sign(y)
0, sign(y) �= sign(y)

(5)

The Kullback-Leibler divergence (KL) is defined in the
following section in Equation (7). In one dimensional case we
would use scalars instead of vectors, and the covariance matrix
just becomes the variance.

2) Two dimensional case: A stronger approach to two-
dimensional models is to consider two affective attributes
(typically valence and arousal) simultaneously. We have two
predictors p1 and p2 (or a single non-correlated predictor for
both dimensions p), we also have the ground truth for both
dimensions as well g1 and g2.

Average Euclidean distance is defined in Equation (1) and
RMSE in Equation (2).

Average correlation across dimensions:

ECorr(g, p) =
1

2
(ECorr(g1, p1) + ECorr(g2, p2)) (6)

Average KL-divergence for Normal distributions is a metric
that measures the difference between two probability distribu-
tions, and is often suitable for the task at hand.

EMean−KL(g,p) =
1

n

n∑
i=1

EKL(p(i),g(i),Σp(i),Σg(i)) (7)

The predictor could provide an estimate together with
uncertainty (Σp) and our ground truth can be modeled as
a Normal distribution as well (centered on mean with Σg

calculated from the labels from multiple people).

EKL(g,p,Σp,Σg) =
1

2
(Σ−1

g Σp+(p−g)Σ−1
g (p−g)−d−ln(Σ−1

g Σp))

(8)

Above Σp is a diagonal matrix as we assume our predictor
is uncorrelated, Σg is a per time step covariance derived from
labels given for that timestep by multiple people; d is the
number of dimensions considered.

Finally we define a combined version of sign agreement:

ESign agr = ESign agr(p1, g1) + ESign agr(p2, g2) (9)

B. Defining a sequence

All of the above metrics except for the correlation coef-
ficient are performed on a per time-step basis, and are then
averaged across the whole sequence. Correlation coefficient
relies on the mean value of the sequence as well (in calculating
p and g), so it becomes important how such a sequence is
defined. In the Audio/Visual emotion recognition community
the sequence is defined as a recording (or a part of a recording).
A correlation score is then calculated for each of the recordings
(short correlation). This is averaged across all of the sequences
to provide a final evaluation metric. In the music community,
however, it is more common to concatenate all of the individual
songs into one long sequence and then compute the correlation
(long correlation).

At first glance, whether short correlation or long correlation
is used does not seem to have much of an impact. However,
computing long correlation score might hide bad per sequence
predictions. For example, a predictor that is good at predicting
the average position in valence space for a song can still get a
high correlation score, even though it is very bad at predicting
change within a sequence (which is particularly interests us).

It is very important that research workers in the field
make clear which of the averaging methods are being used,
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especially if they are using correlation coefficients. But we
advise against using overall correlation in general because of
its tendency to hide information, especially if researchers are
interested in capturing changes within a sequence.

C. Generating predictions

In order to evaluate how well a certain metric represents
people’s perception of emotion in music, we needed to be able
to present the participants of our study with several different
emotional traces that optimise a particular metric. We chose
to use a hypothetical predictor that always predicts the trace
as centered around the ground truth but with added Gaussian
noise (the standard deviation matching that of human labelers
of this dataset). We justify this amount of noise as we expect a
statistical approach to perform within the boundaries of human
variation. An example of such noisy trace can be seen in
Figures 1, 3, and 5.

Fig. 1: Sample synthetic traces. Blue is ground truth, Red has
a great correlation score, and green has a low RMSE and vice
versa

D. Optimising one metric over another

Once we generate a sufficient number of noisy predictions
using our hypothetical predictor (we used 105 predictions) we
can choose a prediction for a sequence that has the best score
in a metric of interest when compared to the ground truth. So
for example from the 105 generated noisy sequences pick one
that has the best correlation coefficient with the ground truth
and use that for the further experiment. We do this for every
metric we are interested in. This allows us to pick traces which
best represent a certain metric.

For the metrics we have chosen for our experiment (cor-
relation, RMSE (1D), sign agreement, and KL-divergence
(2D)) a sequence of predictions that optimised one metric
never happened to be the one with the best score in another,
hence just by generating noisy data we were able to pick
predictions that have very different scores for different metrics.
For example: in Figure 1 both of the predicted traces have been
generated by adding the same type of noise, however resulting
in two very different traces with very different metric scores.

E. Choosing evaluation metrics for our experiment

Ideally, we would use all of the five previously defined
metrics for our experiment. We chose not to do this for two rea-
sons. Firstly, this would have made the task more difficult for
our participants (apparent from the pilot study, Section III-G1).
Secondly, some of the metrics are redundant in the presence of
others. This is particularly true for average Euclidean distance,
RMSE, and average KL-divergence which are very similar

(that is a prediction with a small average Euclidean distance
will have small RMSE and small average KL-divergence)—
see Figure 2. Thus, an approach which optimises any of these
metrics would produce very similar results.

(a) Euclidean vs KL (b) Euclidean vs RMSE (c) KL vs RMSE

(d) Corr vs RMSE (e) Corr vs sagr (f) RMSE vs sagr

Fig. 2: Scatter plots of relationships between metrics when
comparing a noisy synthetic prediction with ground truth.
Notice how Euclidean, KL-divergence and RMSE are related.

Correlation and sign agreement metrics differ markedly
from the other three and each other. Correlation is particularly
distinct, and does not seem to be related to the RMSE and
sign agreement metrics at all (this is partly because of several
songs being somewhat stable over periods of 15 seconds,
and correlation is not suited for evaluating stable sequences).
Hence, we include the most widely differing and the most
popular metrics in our further analysis.

F. Dataset

The dataset that we have based our emotion traces on
is, to our knowledge, the only publicly available emotion
tracking dataset of music extracts labeled on the arousal-
valence dimensional space. The data [19] has been collected
using Mechanical Turk (MTurk)2, asking paid participants to
label 15-second long excerpts with continuous emotion ratings
on the AV space, with another 15 seconds given as a practice
for each song. The songs in the dataset cover a wide range
of genres—pop, various types of rock, hip-hop/rap, etc, and
are drawn from the “uspop2002”3 database containing Western
popular songs. The dataset consists of 240 15-second clips
(without the practice run) with 16.9 ± 2.7 ratings for each
clip, where each clip has been randomly chosen within a song
with no particular focus on a change in emotion.

G. Experimental design

There were several different questions that we wanted
to answer. First of all, we wanted to see whether people
differentiate between or have preference for a particular way
of optimizing (or evaluating) emotion traces. If so, we were
interested to see if the preferred evaluation technique depended
on a choice of a song. We were also interested to see if the

2http://mturk.com
3http://labrosa.ee.columbia.edu/projects/musicsim/ uspop2002.html
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Fig. 3: Screenshot of the study page. Instruction at the top,
followed by a video and the static emotion traces.

preferred evaluation metric depended on the axis (arousal or
valence) or the number of dimensions (one or two).

To achieve this goal, we designed the following study. Each
participant was presented with 56 15-second extracts from a
subset of songs used in MTurk dataset (see Section III-F).
For each song we had a video that displayed several emotion
traces at the same time, synchronised with the audio extract
(Figure 3). The participants were allowed to re-watch the video
as many times as they wanted. Underneath the video, all the
traces were presented in the static form (as they appear at the
very end of the video) with a drop-down selection for ordering
them. The participants were forced to give a unique ordering
for the traces, i.e. they were not allowed to say that any two
or all three traces were equally good.

Each trace for a song was based on a different evaluation
metric - one optimized for correlation (best correlation, but
higher RMSE, and lower sign agreement), one for sign agree-
ment, RMSE and KL-divergence (see Section III-D for more
details). The order in which those traces were presented was
randomized for each song.

The songs were split into three groups, and therefore each
participant was presented with three different tasks. In the first
part of the experiment, we had 18 songs with a focus on the
arousal axis. The songs were chosen with as much change in
the arousal values and little change in the valence values, based
on the labels in MTurk dataset. The participants had to order
the arousal traces only (see Figure 5). The second group of 12
songs had the exact opposite properties—some change in the
valence and little chance in the arousal values. The participants
were presented with traces of affect on the valence axis. The
third task was focused on the change in emotion on both axes.
The 26 traces used in the last part were shown in 2D and were
colour-coded to represent time (Figure 3).

The songs within each task were presented in a random or-
der for each participant, but the order of the tasks remained the
same. We hypothesized that one-dimensional emotion traces
are easier to understand and deal with than two-dimensional
ones and that arousal is easier to judge than valence. This way
the participants would have time to practice on an easier task
before moving on to a more difficult one.

1) Pilot study: To evaluate the suitability of our experi-
mental design, we first ran a pilot study. We recruited two
participants from our research group. They were not aware of
the design of the study and its purpose.

As explained in the Section III-E, we first used 4 different
evaluation metrics—correlation, RMSE, sign agreement and
KL-divergence. The design of the experiment followed the
description above.

Both participants did the study individually. They were
provided with a pair of headphones each and did the study in
their own time. The instructions were given on the screen. The
experiment lasted approximately 30 mins for each participant.

The comments we received after the study confirmed that
the task of evaluating 2D emotion traces was more difficult
than 1D. The results also confirmed the appropriateness of our
experimental design—there was a clear difference between the
average rank for each of the evaluation metric.

2) Changes in the final study: After the success of our
pilot study, we conducted the actual experiment with several
changes—all based on the comments we received.

In the pilot study we found that even with only two
participants, it was already clear that KL-divergence and
RMSE achieve the same average rank—both per participant
and overall. This, together with the theory described in Section
III-E and the comments from the participants that it was
often difficult to order 4 different traces, led us to decide to
remove one of them. As RMSE is generally used for models
dealing with one axis at a time, we kept RMSE as the third
evaluation metric for the first two (one-dimensional) tasks.
Similar reasoning led us to remove RMSE and keep KL-
divergence for the third, two-dimensional, task.

We also made several changes to the instructions provided
at the beginning of the study, making them a bit more informa-
tive and clear. In addition, we provided the participants with a
sheet explaining the meaning of arousal and valence axes, as
a reference throughout the experiment.

We had 20 participants (13 female and 7 male), recruited
through a local ad-website and the graduate-student newslet-
ters. Each participant was required to come to our lab for the
study and received a £10 Amazon voucher for their time. We
had up to 5 participants doing the study at the same time, all
in the same room, each provided with a pair of headphones
and doing the study in their own time. All of the instructions
were given on the screen, and apart from 2 participants, none
of them required extra explanations.

IV. RESULTS

For the purpose of this study, we use the rankings for each
song and each metric as numerical values ranging from one to
three—1 being the most and 3 being the least preferred choice.
This allows us to compute average ranking for each metric for
each song, participant, or task. It also allows us to compare the
means and check if any differences are statistically significant.

We split the analysis into two parts—one dimensional
tasks, and the two dimensional task. There are two reasons
for this. Firstly, since we have used slightly different metrics
for the two types of tasks, it was impossible to combine all of
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Fig. 4: Box-and-whiskers diagrams for the three tasks.
RMSE Correlation Sign-agreement KL-divergence

the data we had into one analysis. Secondly, we expected sim-
ilar results/conclusions from the two one-dimensional tasks,
while we expected the results to possibly differ between one-
dimensional and two-dimensional tasks.

A. One-dimensional tasks

There are several questions we wanted to answer when
looking at the data from the one-dimensional tasks. First of
all, we wanted to check if there is any effect of the dimension
on the average rank. Then within each dimension we want to
check if the ranks are significantly different from each other,
and if so, which one of them is preferred.

1) Normality: In order to answer these questions, we
needed to check that our data is normally distributed, as
many statistical tests require this. We calculated the average
rank for each metric and each dimension per participant, i.e.
we computed a 20x6 table (20 participants, 2 dimensions, 3
metrics) of mean ranks.

All but one (sign-agreement for arousal) of the distributions
are approximately normally distributed. This is confirmed by
Kolmogorov-Smirnov test—there is a statistically significant
difference between the sign-agreement data for arousal and
the normal distribution (D(20) = 0.21, p = 0.023). On the
other hand, there is no statistical difference between the normal
distribution and any other datasets (D(20) = 0.19, p > 0.05
for RMSE for arousal and D(20) = 0.12, p > 0.05 for
valence axes, D(20) = 0.15, p > 0.05 for correlation for
arousal and D(20) = 0.12, p > 0.05 for valence axes, and
D(20) = 0.14, p > 0.05 for sign-agreement for valence axis).

When the data is aggregated over the two dimensions (giv-
ing 20x3 values), all three distributions show no statistically
significant difference from the normal distribution.

2) ANOVA: A repeated measures within-subject factorial
ANOVA with dimensions (2 levels) and metrics (3 levels)
as factors show a small significant effect of dimension on
the average rank (F (1, 19) = 5.5, p = 0.030). The effect
of metrics, on the other hand, is much stronger (F (2, 38) =
16.39, p < 0.001), with no interaction between the two
(F (2, 38) = 1.785, p > 0.05).

The pairwise comparison (with Bonferroni adjustment for
multiple comparisons) reveals that there is a statistically sig-
nificant difference between the average ranks for RMSE and
correlation (t(19) = −5.39, p < 0.001), and RMSE and sign-
agreement (t(19) = −5.68, p < 0.001), but no significant

difference between correlation and sign-agreement (t(19) =
0.75, p > 0.05). The same conclusion can be observed in the
box-and-whisker plot showing all 6 distributions (Figure 4).

B. Two-dimensional task

The questions we want to answer when looking at the
two-dimensional task are the same as the ones from one-
dimensional tasks. Mainly we are interested in seeing if there is
a statistically significant difference between the average ranks
of the different metrics. And if so, which is the preferred one.

1) Normality: Again, we first check if our data is nor-
mally distributed. We aggregate data in the same way as
for the one-dimensional tasks—average the rank for each
metric for each participant. This time all three datasets are
normally distributed—the Kolmogorov-Smirinov test showed
no statistically significant difference between the three sets
and the Normal distribution (D(20) = 0.09, p > 0.05 for
correlation, D(20) = 0.13, p > 0.05 for sign-agreement and
D(20) = 0.12, p > 0.05 for KL-divergence).

2) ANOVA: One-way repeated-measures ANOVA with
metrics (3 levels) as factors show that there is a strong
statistically significant effect of metrics on the average rank
(F (2, 38) = 28.55, p < 0.001). Pairwise comparison between
the three metrics (with Bonferroni adjustment for multiple
comparisons) reveal that the average rank for sign-agreement
is statistically significantly different from correlation (t(19) =
4.89, p < 0.001) and KL-divergence (t(19) = 6.60, p <
0.001). However, there is no statistically significant difference
between the average ranks of KL-divergence and correlation
(t(19) = 1.29, p > 0.05). This can also be observed in a visual
inspection of the box-and-whisker plot (Figure 4).

C. Further analysis

As explained in Section III-B, there is a notable difference
between short and long correlation. As a post-hoc analysis,
we looked at the long correlation of the traces from people’s
top choices for each song, comparing it to the long correlation
of the traces from each evaluation metric. For arousal, the
correlation of the top choice reached 0.87, while RMSE
optimized traces had correlation of 0.93. The lowest one was
from short correlation optimized traces (0.77), with even sign-
agreement scoring higher (0.82). Similar results are seen for
valence (top choice–0.80, short correlation–0.72, RMSE–0.89
and sign-agreement–0.89).

We also wanted to consider whether or not the preferred
choice of evaluation metric might depend on a song in ques-
tion. To investigate this question, we take the average rank for
each metric over each song, rather than over the participants.
We then inspect the results to see if there are any exceptions.

Even though the majority of songs seem to follow the
trends described in Sections IV-A and IV-B, there are some
examples of songs with a different preference for evalua-
tion metric. Occasionally, participants were choosing sign-
agreement over the other two metrics. As can be seen from
an example in Figure 5, these songs tend show less variation
in the expressed emotion.
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(a) RMSE (b) Correlation (c) Sign-agreement

Fig. 5: Example valence trace of a song used in the experiment

V. DISCUSSION

The conclusions of this paper can be split into two parts.
The results from the study allow us to propose which metrics
to use when evaluating music emotion prediction algorithms
(Section V-A). The analysis of literature and minor observa-
tions from the study also encourage us to suggest some further
guidelines for future work (Section V-B).

A. Choice of evaluation metrics

Our study indicates that RMSE should be used for optimiz-
ing algorithms to estimate one-dimensional models (Section
IV-A), and that it is also the most appropriate metric for
reporting results.

For two-dimensional models the situation is less straight-
forward. The analysis of the results from the third task (Section
IV-B) indicate that both correlation and KL-divergence were
equally preferred by our participants. As a choice between
the two still needs to be made, we would suggest using KL-
divergence, as it is more similar to the preferred choice for
one-dimensional models.

All of the data we collected in this study is made available
at http://www.cl.cam.ac.uk/ vi206/evaluation/

B. Other considerations

There are several other issues that might be worth consid-
ering when approaching the problem of emotion prediction.

First of all, the fact that RMSE was the preferred choice as
an optimization metric identifies two things participants cared
about. It seems that when judging the emotional content of a
song, participants expect to see not only the relative change of
emotion within a song (as correlation would suggest), but also
the absolute position in the arousal-valence space. This has
implications not only on the choice of evaluation metrics to
use, but also on the kind of models that should be investigated
in future work.

Another observation is that there was a (small) number
of songs where sign-agreement was preferred over the other
metrics (Section IV-C). It only seems to occur when there is
little change in the expressed emotion of a song—in which
case sign-agreement displays a flat line, while other metrics
fluctuate around it. This suggests that a level of smoothing
might be preferable when predicting emotion or when display-
ing the results. We also urge against using long correlation as
an evaluation metric, as it hides important information about
the performance of an algorithm (Section III-B) and does not
seem to relate well to people’s preferences (Section IV-C).

As it is possible to achieve good results in one metric while
bad results in other metrics, we advise reporting the results
using several metrics. This would give a better understanding
of the general behaviour of an algorithm. In addition to that, we
urge researchers to give the formulas of the metrics used in the
evaluation. It is often not clear which exact evaluation metrics
are used to describe the results (short versus long correlation,
etc.), making it more difficult to compare different algorithms.

The conclusions we have reached and suggestions we have
made can obviously only be directly applied to the field of
emotion prediction in music. We believe that similar studies
could and should be used to check if the same trends occur
in other fields of affective computing. We expect that similar
conclusions will be drawn, but the comparison across different
fields will provide results that are interesting either way.
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