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Abstract. Our work stems from the consideration that the spreading
of a disease is modulated by the individual’s perception of the infected
neighborhood and his/her strategy to avoid being infected as well. We
introduced a general “cellular agent” model that accounts for a heteroge-
neous and variable network of connections. The probability of infection
is assumed to depend on the perception that an individual has about the
spreading of the disease in her local neighborhood and on broadcasting
media. In the one-dimensional homogeneous case the model reduces to
the DK one, while for long-range coupling the dynamics exhibits large
fluctuations that may lead to the complete extinction of the disease.

1 Introduction

In “Les rois thaumaturges: étude sur le caractère surnaturel attribué à la puis-
sance royale particulièrement en France et en Angleterre” the historian Marc
Bloch [1] wrote that until about 1700, sick people in England and France tried
to be touched by the king who they believed was a miraculous physician whose
mere touch would cure physical illness. Since then, much time has passed, we
do no more touch the king but we still have to face with illness and different
pathologies. Now that we know viruses and bacteria, we are addressing the issue
of studying the mutual influences between collective behaviour, disease spread-
ing and viral evolution. In fact, HIV epidemics has changed many of our sexual
and social behaviors [2] and selection on viral strains has been in act by social
groups [3, 4]. Zanotto and collaborators [5] have shown that viral evolution de-
pends on differences in modes of dispersal, propagation, and changes in the size
of host populations. They also suggest a link between the growing and fluidity
of the human population and its exposure to an expanding range of increasingly
diverse viral strains.

Understanding the role of social behaviour has potentiality of giving better
answers to the pressing public health questions about whether and how we can
contain or slow the spread of an emerging epidemics to give time for vaccine
� Also CSDC and INFN, sez. Firenze.

S. El Yacoubi, B. Chopard, and S. Bandini (Eds.): ACRI 2006, LNCS 4173, pp. 321–329, 2006.
c© Springer-Verlag Berlin Heidelberg 2006



322 L. Sguanci, P. Liò, and F. Bagnoli

development. Moreover, the understanding of key properties of contact networks
may allow to reduce disease transmission, avoid both costly and time consuming
universal vaccination or leaving hidden pockets of poor coverage that will seed
again the epidemics.

Previous epidemiological models have investigated the effect of a wide variety
of parameters, such as use of antiviral agents, super spreaders and individual
variation [6], quarantine and pre-vaccination to contain the spread of disease at
source. However, an outmost important factor that has been ignored so far is
how the perception of the epidemics, as perceived from a neighborhood (short
range information contacts) or from the media (long range), will change the
diffusion parameters.

Here we concentrate on the study of the risk perception on disease spreading
in the case of a homogeneous population. Although spatial variables can play
a major role, it is important to study average statistical properties (mean field
analysis) before taking into consideration more complex geometries. In general,
populations do not experience full-mixing condition. However, well-stirred con-
ditions are recovered whenever conditions of people crowdedness are considered
or if it is possible to focus on a given scale of observation. Noteworthy the for-
mer conditions occur very frequently in urban contexts, for example in tubes
and buses at peak times and aerial spreading of cold-related virus particles from
coughing and sneezing disregards the casual contact. Other examples are chil-
dren in a nursery who have large number of contacts during the day. On the other
hand, we can concentrate on a homogeneous scale of observation if we study dis-
ease spreading in the hubs constituted by airports and train stations. Similarly,
if we are interested in the interplay between cities and the countryside in dis-
ease evolution, we may address the problem considering the interaction between
those two distinct entities, each characterized by homogeneous properties.

Different models for spreading of epidemics have been proposed, either con-
sidering homogeneous populations [7, 8], or in the framework of complex net-
works [9]. This kind of approach allows assessing the relative importance of local
and long-range contacts not only in spreading the infection but also in spreading
information on the infection risk and thus potentially stand as a very useful tool
for public health managing and decision making processes.

The paper is organized as follows. In the next section we present a general
cellular agent model for the study of the perceptive dynamics of a disease spread-
ing. In section III we present the mean field approximation of the model, then
we present the results of the performed simulations and finally we draw our
conclusions.

2 The Model: Partying with Your Neighbors or Stay
Home, Spy Them and Read the News?

We shall develop a quite general agent-based model, allowing age classes
(progression of the illness) and different types of communication networks. We
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propose to use the term cellular agent for it, since it reduces to cellular automata
for a regular lattice of connections, but connections may also change in time.

The single agent i (representing an individual or a group of strongly connected
individuals like a family) is implemented as a set of (directional) incoming con-
nections, an internal state and an output state. Let us denote as Mij the con-
nection from site j to site i. In our model a connection represents the propensity
of being infected, which is proportional to the fraction of time spent together by
the two individuals i and j, but also depends on the type of contact. For this
last reason, the connection needs not to be symmetric: while it may be true for
friendly contacts, the risk of being infected is quite asymmetrical for profession-
als (nurses, physicians, etc.) and also for parents vs. children, and so on. In the
simplest case of unweighted connection, Mij ∈ {0, 1}, ki =

∑
j Mij is the num-

ber of neighbors and si =
∑

j Mij [σj �= 0] is the number of infected neighbors1.
In the case of weighted connections, s and k are no more integers. The network
of connections may be fixed, or evolving in time. The degree (or connectivity)
of a node is defined as the number of the incoming/outcoming links, while the
degree distributions of a network, P (k), represents the fraction of nodes with
degree k. Many social networks have a scale-free structure [10], and this kind
of networks can only be grown using a connection rule. So, it is natural to as-
sume that new connections may be established, and old one removed, following
a dynamical rule. Actually, one could work with a fully-connected network, and
implement the evolution of connection as a rule for the intensities Mij (possibly
introducing a threshold value for the efficacy of a connection), but this would be
quite expensive in computer terms. We limit the present investigations to fixed
connection all of the same intensity.

We represent the internal state (progression of illness) of the individual i as a
bitstring σi. Each bit in σ (represented as a base-2 number) indicates the pres-
ence of a given strain. In this way we can account for the geographic distribution
of different strains (important for immunization strategies), multiple infections
(co-infection or delayed re-infection) and recombination among strains. To each
possible value of σ is associated an infection probability (infectivity) τ(σ), with
τ(0) = 0. The internal state contains also a time counter, for timing the progres-
sion of the illness. In the present model, we simply assume that the individual
becomes healthy after a certain interval from the last infection. We do not con-
sider here immunization, nor the internal dynamics between infective pathogens
and the immune system [11].

The output state indicate if an individual is infective, and if it is visibly ill. In
this way we can represent incubation periods. In this first study, we assume that
the illness become visible the unit of time (day) after infection, thus obtaining
a parallel evolution.

We assume that the probability of infection is proportional to the frequency
of contacts Mij , but that it is also modulated by the individual’s perception of
the percentage of infected people in her neighborhood as well as by the strategy

1 We use the notation [statement ] to indicate the truth function, which gives 1 if
statement is true and 0 otherwise.
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for avoiding being infected. If an individual realizes that a large fraction of her
neighbors is infected, or is alerted by broadcasting media, then she may change
her habits. She may rise the level of precautions (thus lowering the effective infec-
tivity of the illness) or alter her connection patterns. Since this last choice implies
a large rearrangement of individual lifestyle, this dramatic change is assumed to
take place only in extreme cases. However, even without changing lifestyle it is pos-
sible to lower the infection probability by simply taking elementary precautions.
We assume this to be the most common reaction. Therefore we keep Mij constant
during the simulation, but make the infection probability of a single contact to vary
according with the fraction of infected people among the neighbors (weighted with
the connection strengths) and with the influence by media information. We also
assume that the recovering is immediate, and that the individual becomes imme-
diately susceptible.

The perception (information) about the disease is written ass I(s, k) = exp
[−(H + Js/k)]. The parameter J modulates individual’s response to the the
local infection load. The role of the intensity of the external fields, like public
healths alerts and media influences, is accounted for by the H parameter. In the
following we assume H = 0, but it’s worth noting that this parameter can play
a major role in scenarios of low perception of the risk of infection. This could
be the case of infections characterized by a long-asymptomatic phase, in which
many contacts occurs without the perception of any risk of being infected. In
such scenarios, H turns out to be the only mean to downregulate the spreading
of the disease.

The microscopic infection process is the following: for all the contacts of the
individual i, the bitstring σi is OR-ed with σj , the bitstring representing the
neighboring individual j, if the contact is effective in propagating the infection.
This happens with a probability MijI(si, ki)τ(σj).

The total infection probability pi(si, ki) of an individual i facing si infected
neighbors among the ki, is therefore

pi(si, ki) = 1 −
∏

j

[1 − MijI(si, ki)τ(σj)] . (1)

In the unweighted case, with single-valued connectivity, P (k′) = δk,k′ , and
assuming the same infectivity τ for all strains, equation (1) becomes:

pi(si) = 1 − [1 − I(si, k)τ ]si , (2)

In summary, the algorithm for the microscopic dynamics is as follows. Given
the status of the network at time t, all the nodes of the network are sequentially
considered. According to the infected neighbors and to the influence of long-
rance interactions the probability of infection of each node is calculated and
thus the evolution rule is applied in order to get the status of the network at
time t+1. At the same time a check is made whether infected individuals recover
from disease and become susceptible again.
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3 Results

3.1 One Dimensional Case

Here we consider the simplest case where Mij defines a 1D regular lattice with
k = 2 (nearest neighbors), and where all the contacts have the same strength.
The status of node i is represented by a single bit, σi = {0, 1} and the infectivity
parameter, τ , is single valued.

This case can be mapped on the Domany-Kinzel model [12]. This latter is
defined as a one-dimensional totalistic cellular automaton with k = 2, and its
evolution rule depends on two parameters: p1, the probability becoming infected
if only one of the neighbors is infected, and p2, the probability of being infected
if both neighbors are infected. The correspondence with our model is therefore
p1 = p(1, 2) and p2 = p(2, 2).

0

0.5

1

1.5

2

0 0.2 0.4 0.6 0.8 1

J

τ

Fig. 1. Percentage of asymptotic infected population for the one-dimensional, k = 2
case (1000 sites). White: no individual is infected, black: all individuals are infected.

We have obtained the phase space (H = 0) using the (τ ,J) parameters.
The results are shown in Fig. 1. The model exhibits a continuous transition
(second-order) from a healthy state to the complete infection, as the infectivity
increases. As far as J is subsequently increased over a threshold value, the in-
fection can no longer subsist and the population recovers completely from the
disease.

3.2 Long-Range Case

Mean-Field Approximation. The average asymptotic behavior of networks
can be investigated by means of mean field approach. Given N the number of
nodes, let us call Nk = NP (k) the number of nodes with connectivity k; Ωk,k′ ,
the probability of a node with connectivity k being connected to a node with
connectivity k′; Nkck, the number of nodes with connectivity k being infected;
m, the average frequency of contact between two individuals. We refer to the
probability of being infected of a node with connectivity k at time t with ck.



326 L. Sguanci, P. Liò, and F. Bagnoli

Now, if only one infective strain is considered, i.e. τ(σj) = τ , the probability of
being infected at time t + 1, c′k, is given by:
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If a non assortative network is considered, i.e. Ωk,k′ = Nk′/N = P (k′):

c′k =
k∑

s=1

(
k

s

) (
∑

k′

P (k′)ck′

)s (
∑

k′

P (k′)(1 − ck′)

)k−s

[1 − (1 − m I(s, k)τ)s]

(4)
and, if k is fixed, i.e. P (k′) = δk′,k,

c′ =
k∑

s=1

(
k

s

)

cs(1 − c)k−s [1 − (1 − m I(s, k)τ)s] (5)

Estimation of the infection reproductive rate. A meaningful epidemiolog-
ical parameter is the basic reproductive rate, R0, which is defined as the mean
number of infections caused by an infected individual in a susceptible popu-
lation [13, 6]. This parameter can be considered an epidemiological threshold.
When R0 < 1 , each person who contracts the disease will infect fewer than one
person before dying or recovering, so the outbreak will cease. When R0 > 1, each
person who gets the disease will infect more than one person, so the epidemic
will spread.

A more careful investigation of this parameter can lead to a better insight in
the dynamics of the epidemics, at the same time allowing to assess the efficacy
of different strategies of containment on the spreading of the disease. For exam-
ple Lloyd-Smith and colleagues have shown that the distribution of individual
infectiousness around R0 is often highly skewed [6]. Longini and collaborators
have investigated bird flu pandemia scenarios. They found that if R0 was below
1.60, a prepared response with targeted antivirals would have a high probabil-
ity of containing the disease. If pre-vaccination occurred, then targeted antiviral
prophylaxis could be effective for containing strains with an R0 as high as 2.1.
Combinations of targeted antiviral prophylaxis, pre-vaccination, and quarantine
could contain strains with an R0 as high as 2.4 [13].

With reference to the model we propose, we can derive the expression of the
basic reproductive ratio, by considering the variation of c′ with respect to c,
when a small fraction of infected population is considered, i.e.

R0 = lim
c→0

∂c′

∂c
= k[I(1, k)τ ] (6)



The Influence of Risk Perception in Epidemics: A Cellular Agent Model 327

In this way we recover the expression of the basic reproductive ratio, when
a unitary mean time of infectivity per individual is considered. From this we
derive the critical value of J, below which the fraction of infected individuals is
different from zero, i.e. R0 > 1,

Jc = k ln(kτ) (7)

Numerical Simulations. To better characterize the role of the mean connec-
tivity of individuals k (randomly chosen), we plot the value of the fraction of
infected individuals, c, as a function of J , for different values of k. In Fig.2 we
report the results of the numerical simulations for the mean field approximation
of the model, plot (a), and for the microscopic dynamics, plot(b). We can first
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Fig. 2. The value of the fraction of infected individuals c, is plotted as a function of J .
The results of the numerical simulations are shown for the mean field model (a) and
for the microscopic dynamics (b, 100 sites).

notice that, for a growing number of neighbors, the fraction of infected indi-
viduals increases. This suggest that if we consider bounded the strength of the
individual perception of the disease, an ever growing influence of the external
field is necessary to keep low the number of infected individuals. By compar-
ing the mean field model with the microscopic dynamics a good agreement is
shown for small values of J (depending on k). For larger values of J , the infected
population exhibits large coherent oscillations, that may lead to a complete re-
cover from the infection and to the disappearing of the epidemics. In the mean
field approximation, for increasing values of k, the model begins to show a high
variation in the fraction of infected individuals, without reaching extinction.

By keeping fixed the value of the mean connectivity and setting H = 0, we
analyzed the mean-field phase space. In Fig.3, the case for k = 50 is reported.
The results of the numerical simulations display either stable solutions and oscil-
latory behaviours. Moreover chaotic dynamics arise for particular values of the
parameters. It is worth noticing that the huge variety of social behaviours is well
reflected by the model outcomes.
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Fig. 3. Mean field asymptotic value of the fraction of infected sites (left) and bifurcation
diagram for k = 50, N = 100. Pluses: fixed points, empty squares: period-2, crosses:
period-3, empty circles: period-4, empty triangles: period-5, empty pentagons: period-6,
empty diamonds: period-8, filled diamonds: chaotic orbits.

4 Conclusions

Our model represents a general framework that enables us to make predictions
and to compare different scenarios of disease spreading management.

The model can be also useful to investigate the effect that the lack of infor-
mation from neighbors and media can have on the disease spreading. Indeed this
can be comparable to the disease incubation period i.e. the lack of symptoms
when the virus is not demonstrable. Similarly we can analyze how a chronic
disease, which represent a latent but infectious state, may reduce the level of
surveillance as well as continuous media and neighborhood alarm.

Viral diseases have different intrinsic biological characteristics which become
coupled with different social and psychological behaviors of the neighborhood,
generating a vast combinatorial of dynamics, as shown by the results of the
phase-space analysis reported in the previous section.

The probability of contacts leading to infection can be calibrated against
seasonal or environmental effects and total and age-specific illness attack rates
of data in past pandemics. In fact, by including age dependent distributions
we can take into account whether an infected person becomes ill or remains
asymptomatic and, if symptomatic, when (if ever) the person withdraws to
household-only contacts [14]. Glass and collaborators [15] found that hetero-
geneity in measles vaccination coverage can lead to an increased rate of infection
among non-vaccinated individuals, with a simultaneous drop in the average age
at infection.

A major factor is the correct identification of target age groups. Recent works
show that pre-scholar children aged 3 to 4 drive influenza epidemics and are
most strongly linked with mortality in the vulnerable groups (elderly) and gen-
eral population than other children [16]. In fact they present flu-like respiratory
illness as early as late September, while children aged 0-2 began arriving a week
or two later and older children first arrived in October and adults began arriv-
ing only in November. This example points to the difference between high-risk
individuals, for example babies under 24 months or the elderly, and those who
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are transmitting the disease to everyone else . The former should be vaccinated
first [17].

The above examples show that the field is at the early stage and will benefit
from an interdisciplinary approach and from a methodic and careful analysis of
the contribution of each parameter.
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