List objects with algebraic structure provide a unifying framework for many diverse examples
Notions of natural number in \(\text{Cpo} \)

Flat natural numbers, \(\mu A.(1 + A) \):

\[
\begin{array}{cccc}
0 & 1 & 2 & 3 \\
\downarrow & \downarrow & \downarrow & \downarrow \\
\bot & \bot & \bot & \bot
\end{array}
\]

Lazy natural numbers, \(\mu A.(1 + A) \downarrow \):

\[
\begin{array}{cccc}
& 1 & s^2(\bot) \\
1 & & \\
\downarrow & \downarrow & \downarrow \\
0 & s(\bot) & \\
\downarrow & \downarrow & \downarrow \\
\bot & \bot & \bot
\end{array}
\]

Strict natural numbers, \(\mu A.A \downarrow \):

\[
\begin{array}{cccc}
\cdots & \cdots & \\
\downarrow & \downarrow & \\
1 & & \\
\downarrow & \downarrow & \\
0 & & \\
\downarrow & \downarrow & \\
\bot & \bot & \bot
\end{array}
\]

Unifying idea: natural numbers objects with algebraic structure.
Notions of natural number in Cpo

Flat natural numbers, $\mu A.(1 + A)$:

```
 0 1 2 3 ···
```

Lazy natural numbers, $\mu A.(1 + A)\bot$:

```
0 1 \(s^2(\bot)\)
```

Strict natural numbers, $\mu A.A_\bot$:

```
\ldots
```

Unifying idea: natural numbers objects with algebraic structure.
The monadic list transformer

Jaskelioff’s *list transformer* takes a monad T to the monad

$L_t(T)X := \mu A. T(1 + X \times A)$.
The monadic list transformer

Jaskelioff’s *list transformer* takes a monad T to the monad
$$\text{Lt}(T)X := \mu A. T(1 + X \times A).$$

Universal property: as a list object with algebraic structure.
Abstract syntax with variable binding (Fiore et al.)

To build the abstract syntax of a type system...
Abstract syntax with variable binding (Fiore et al.)

To build the abstract syntax of a type system...

- presheaves $X : \mathbb{F} \to \text{Set}$ where $X(n)$ the set of terms with n free variables,
Abstract syntax with variable binding (Fiore et al.)

To build the abstract syntax of a type system...

- presheaves $X : \mathbb{F} \to \text{Set}$ where $X(n)$ the set of terms with n free variables,

- with an algebra structure $\Sigma X \to X$ giving constructors (e.g. $\text{app} : X \times X \to X$),
Abstract syntax with variable binding (Fiore et al.)

To build the abstract syntax of a type system...

▶ presheaves $X : \mathbb{F} \rightarrow \text{Set}$ where $X(n)$ the set of terms with n free variables,

▶ with an algebra structure $\Sigma X \rightarrow X$ giving constructors (e.g. $\text{app} : X \times X \rightarrow X$),

▶ and binding given by $X \bullet X$, consisting of sequences of form $(n, \sigma \in X(n), (\tau_1, \ldots, \tau_n) \in X(m)^n)$,
Abstract syntax with variable binding (Fiore et al.)

To build the abstract syntax of a type system...

- presheaves $X : \mathbb{F} \to \text{Set}$ where $X(n)$ the set of terms with n free variables,

- with an algebra structure $\Sigma X \to X$ giving constructors (e.g. $\text{app} : X \times X \to X$),

- and binding given by $X \bullet X$, consisting of sequences of form $(n, \sigma \in X(n), (\tau_1, \ldots, \tau_n) \in X(m)^n)$,

- giving a monoid structure $V \to X \leftarrow X \bullet X$,

Abstract syntax with variable binding (Fiore et al.)

To build the abstract syntax of a type system...

- presheaves $X : \mathbb{F} \to \text{Set}$ where $X(n)$ the set of terms with n free variables,

- with an algebra structure $\Sigma X \to X$ giving constructors (e.g. $\text{app} : X \times X \to X$),

- and binding given by $X \bullet X$, consisting of sequences of form $(n, \sigma \in X(n), (\tau_1, \ldots, \tau_n) \in X(m)^n)$,

- giving a monoid structure $V \to X \leftarrow X \bullet X$,

- subject to a compatibility law stating that e.g. $\text{app}(\sigma, \tau)[x \mapsto \omega] = \text{app}(\sigma[x \mapsto \omega], \tau[x \mapsto \omega])$.
Abstract syntax with variable binding (Fiore et al.)

To build the abstract syntax of a type system...

▶ presheaves \(X : \mathbb{F} \to \text{Set} \) where \(X(n) \) the set of terms with \(n \) free variables,

▶ with an algebra structure \(\Sigma X \to X \) giving constructors (e.g. \(\text{app} : X \times X \to X \)),

▶ and binding given by \(X \bullet X \), consisting of sequences of form \((n, \sigma \in X(n), (\tau_1, \ldots, \tau_n) \in X(m)^n) \),

▶ giving a monoid structure \(V \to X \leftarrow X \bullet X \),

▶ subject to a compatibility law stating that e.g. \(\text{app}(\sigma, \tau)[x \mapsto \omega] = \text{app}(\sigma[x \mapsto \omega], \tau[x \mapsto \omega]) \).

Abstract syntax = free such structure

= a list object with algebraic structure.
This talk

list objects ▶ well-understood datatype ▶ are free monoids ▶ described by \(\mu_A \). (\(I + X \otimes A \)).

c\(\Rightarrow \) T-list objects ▶ extends datatype of lists ▶ are free \(T \)-monoids ▶ described by \(\mu_A \). T(I + X \otimes A).

Gives a concrete way to reason about free \(T \)-monoids.
Gives an algebraic structure for \(T \)-list objects.
This talk

list objects $\leadsto T$-list objects
This talk

- **list objects**
 - well-understood datatype

- \(\sim \)

- **\(T \)-list objects**
 - extends datatype of lists

Gives a concrete way to reason about free \(T \)-monoids.
Gives an algebraic structure for \(T \)-list objects.
This talk

<table>
<thead>
<tr>
<th>list objects</th>
<th>$\sim\rightarrow$</th>
<th>T-list objects</th>
</tr>
</thead>
<tbody>
<tr>
<td>- well-understood datatype</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- are free monoids</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Gives a concrete way to reason about free T-monoids.
Gives an algebraic structure for T-list objects.
This talk

list objects

- well-understood datatype
- are free monoids
- described by $\mu A. (I + X \otimes A)$.

\leadsto

T-list objects

- extends datatype of lists
- are free T-monoids
- described by $\mu A. T(I + X \otimes A)$.

Gives a concrete way to reason about free T-monoids.

Gives an algebraic structure for T-list objects.
This talk

list objects $\leadsto T$-list objects

- well-understood datatype
- are free monoids
- described by $\mu A. (I + X \otimes A)$.

- extends datatype of lists
- are free T-monoids
- described by $\mu A. T(I + X \otimes A)$.

Gives a concrete way to reason about free T-monoids.
This talk

list objects ▶ well-understood datatype
▶ are free monoids
▶ described by

\[\mu A. (I + X \otimes A). \]

T-list objects ▶ extends datatype of lists
▶ are free T-monoids
▶ described by

\[\mu A. T(I + X \otimes A). \]

Gives a *concrete* way to reason about free T-monoids.

Gives an algebraic structure for T-list objects.
Past work: list objects in $(\times, 1)$ (Cockett [Coc90])
Past work: list objects in $(\times, 1)$ (Cockett [Coc90])

A list object $L(X)$ on X consists of
Past work: list objects in $(\times, 1)$ (Cockett [Coc90])

A *list object* $L(X)$ on X consists of

$$1 \xrightarrow{\text{nil}} L(X)$$
Past work: list objects in $\times, 1$ (Cockett [Coc90])

A list object $L(X)$ on X consists of

$$1 \xrightarrow{\text{nil}} L(X) \leftrightarrow_{\text{cons}} X \times L(X)$$
Past work: list objects in $(\times, 1)$ (Cockett [Coc90])

A list object $L(X)$ on X consists of

$$1 \xrightarrow{nil} L(X) \xleftarrow{\text{cons}} X \times L(X)$$

that is initial:
A list object \(L(X) \) on \(X \) consists of

\[
1 \xrightarrow{\text{nil}} L(X) \xleftarrow{\text{cons}} X \times L(X)
\]

that is initial: given any \((1 \xrightarrow{n} A \xleftarrow{c} X \times A) \), there exists a unique iterator

\[
1 \xrightarrow{\text{nil}} L(X) \xleftarrow{\text{cons}} X \times L(X)
\]

\[
\downarrow\quad \downarrow\quad \downarrow
\]

\[
\text{it}(n,c) \quad X \times \text{it}(n,c)
\]

\[
1 \xrightarrow{n} A \xleftarrow{c} X \times A
\]
List objects in a monoidal category \((\mathcal{C}, \otimes, I)\)
List objects in a monoidal category \((\mathcal{C}, \otimes, I)\)

A list object \(L(X)\) on \(X\) consists of

\[
I \xrightarrow{nil} L(X) \xleftarrow{cons} X \otimes L(X)
\]
List objects in a monoidal category \((\mathcal{C}, \otimes, I)\)

A \textit{list object} \(L(X)\) on \(X\) consists of

\[
I \xrightarrow{\text{nil}} L(X) \xleftarrow{\text{cons}} X \otimes L(X)
\]

that is \textit{parametrised initial}:
List objects in a monoidal category \((\mathcal{C}, \otimes, I)\)

A list object \(L(X)\) on \(X\) consists of

\[
I \xrightarrow{\text{nil}} L(X) \xleftarrow{\text{cons}} X \otimes L(X)
\]

that is **parametrised initial**: given any \((P \xrightarrow{n} A \xleftarrow{c} X \otimes A)\), there exists a unique iterator

\[
I \otimes P \xrightarrow{\text{nil} \otimes P} L(X) \otimes P \xleftarrow{\text{cons} \otimes P} X \otimes L(X) \otimes P
\]

\[
P \xrightarrow{n} A \xleftarrow{c} X \otimes A
\]
List objects in a monoidal category \((\mathcal{C}, \otimes, I)\)

Remark

- If each \((-) \otimes P\) has a right adjoint (e.g. in the cartesian closed case), parametrised initiality is equivalent to the non-parametrised version:

\[
\begin{array}{ccc}
 I & \xrightarrow{\text{nil}} & L(X) & \xleftarrow{\text{cons}} & X \otimes L(X) \\
 & & \downarrow \text{it}(n,c) & & \downarrow X \otimes \text{it}(n,c) \\
 I & \xrightarrow{n} & A^P & \xleftarrow{c} & X \otimes A^P
\end{array}
\]
List objects in a monoidal category \((\mathcal{C}, \otimes, I)\)

Remark

- If each \((-) \otimes P\) has a right adjoint (e.g. in the cartesian closed case), parametrised initiality is equivalent to the non-parametrised version:

 \[
 \begin{array}{c}
 \begin{array}{ccc}
 I & \xrightarrow{\text{nil}} & L(X) & \xleftarrow{\text{cons}} & X \otimes L(X) \\
 & & \downarrow \text{it}(n,c) & & \downarrow X \otimes \text{it}(n,c) \\
 I & \xrightarrow{n} & A^P & \xleftarrow{c} & X \otimes A^P
 \end{array}
 \end{array}
 \]

- The list object \(L(I)\) is precisely a natural numbers object: e.g. the flat natural numbers \(\mu A. (1 + A)\) in \(\mathbf{Cpo}\).
List objects are free monoids
List objects are free monoids

Definition

A *monoid* in a monoidal category \((\mathcal{C}, \otimes, I)\) is an object \((I \xrightarrow{e} M \xleftarrow{m} M \otimes M)\) such that the multiplication \(m\) is associative and \(e\) is a neutral element for this multiplication.
List objects are free monoids

Lemma

1. Every list object \(L(X) \) is a monoid.
List objects are free monoids

Lemma

1. Every list object \(L(X) \) is a monoid.

2. This monoid is the free monoid on \(X \), with universal map

\[
X \cong X \otimes I \xrightarrow{X \otimes \text{nil}} X \otimes L(X) \xrightarrow{\text{cons}} L(X)
\]

Taking \(x \mapsto (x, \ast) \mapsto (x, []) \mapsto x :: [] = [x] \).
List objects are free monoids

Lemma

1. Every list object $L(X)$ is a monoid.

2. This monoid is the free monoid on X, with universal map

$$X \cong X \otimes I \xrightarrow{X \otimes \text{nil}} X \otimes L(X) \xrightarrow{\text{cons}} L(X)$$

taking $x \mapsto (x, \ast) \mapsto (x, []) \mapsto x :: [] = [x]$.

We can reason concretely about free monoids by reasoning about lists.
List objects are initial algebras
Definition

An algebra for a functor $F : C \to C$ is a pair $(A, \alpha : FA \to A)$.

Remark
This result relies on a general theory of parametrised initial algebras.
List objects are initial algebras

Definition

An algebra for a functor $F : C \rightarrow C$ is a pair $(A, \alpha : FA \rightarrow A)$.

Lemma

If (C, \otimes, I) is a monoidal category with finite coproducts $(0, +)$ and ω-colimits, both preserved by all $(-) \otimes P$ for $P \in C$, then the initial algebra of the functor $(I + X \otimes (-))$ is a list object on X.
List objects are initial algebras

Definition

An algebra for a functor $F : C \to C$ is a pair $(A, \alpha : FA \to A)$.

Lemma

If (C, \otimes, I) is a monoidal category with finite coproducts $(0, +)$ and ω-colimits, both preserved by all $(-) \otimes P$ for $P \in C$, then the initial algebra of the functor $(I + X \otimes (-))$ is a list object on X.

Remark

This result relies on a general theory of parametrised initial algebras.
The story so far
The story so far

list objects
The story so far

list objects

- well-understood datatype
The story so far

list objects

- well-understood datatype
- are free monoids
The story so far

list objects

- well-understood datatype
- are free monoids
- described by
 \[\mu A. (I + X \otimes A). \]
Rest of this talk

list objects

- well-understood datatype
- are free monoids
- described by $\mu A. (I + X \otimes A)$.

\leadsto

T-list objects (new work)

- extends datatype of lists
- are free T-monoids
- described by $\mu A. T(I + X \otimes A)$.
Rest of this talk

list objects

- well-understood datatype
- are free monoids
- described by $\mu A.(I + X \otimes A)$.

\Rightarrow

T-list objects (new work)

- extends datatype of lists
- are free T-monoids
- described by $\mu A. T(I + X \otimes A)$.

...and instantiate this for applications
Compatible algebraic structure

Definition
A monad on a category C is a functor $T : C \to C$ equipped with a multiplication $\mu : T \times T \to T$ and a unit $\eta : Id_C \to T$ satisfying associativity and unit laws.

Definition
An algebra for a monad (T, μ, η) is a pair $(A, \alpha : TA \to A)$ satisfying unit and associativity laws.

Definition
A strong monad T is a monad on a monoidal category (\otimes, I) that is equipped with a natural transformation $st_{A, B} : T(A \otimes B) \to T(A) \otimes T(B)$ satisfying coherence laws.
Compatible algebraic structure

Definition

A *monad* on a category C is a functor $T : C \to C$ equipped with a multiplication $\mu : T^2 \to T$ and a unit $\eta : \text{Id}_C \to T$ satisfying associativity and unit laws.
Compatible algebraic structure

Definition

A *monad* on a category C is a functor $T : C \to C$ equipped with a multiplication $\mu : T^2 \to T$ and a unit $\eta : \text{Id}_C \to T$ satisfying associativity and unit laws.

Definition

An *algebra* for a monad (T, μ, η) is a pair $(A, \alpha : TA \to A)$ satisfying unit and associativity laws.
Compatible algebraic structure

Definition

A *monad* on a category \mathcal{C} is a functor $T : \mathcal{C} \rightarrow \mathcal{C}$ equipped with a multiplication $\mu : T^2 \rightarrow T$ and a unit $\eta : \text{Id}_\mathcal{C} \rightarrow T$ satisfying associativity and unit laws.

Definition

An *algebra* for a monad (T, μ, η) is a pair $(A, \alpha : TA \rightarrow A)$ satisfying unit and associativity laws.

Definition

A *strong monad* T is a monad on a monoidal category (\otimes, I) that is equipped with a natural transformation $st_{A,B} : T(A) \otimes B \rightarrow T(A \otimes B)$ satisfying coherence laws.
List objects with algebraic structure
T-list objects
Let \((T, st)\) be a strong monad on a monoidal category \((\otimes, I)\). A \(T\)-list object \(M(X)\) on \(X\) consists of

\[
\begin{align*}
I & \xrightarrow{\text{nil}} M(X) & X \otimes M(X) & \xleftarrow{\text{cons}} M(X)
\end{align*}
\]
T-list objects

Let \((T, \text{st})\) be a strong monad on a monoidal category \((\otimes, I)\). A \textit{T-list object} \(M(X)\) on \(X\) consists of

\[
\begin{align*}
T(M(X)) \\
\downarrow^\tau \\
I \xrightarrow{\text{nil}} M(X) \xleftarrow{\text{cons}} X \otimes M(X)
\end{align*}
\]
T-list objects

Let \((T, st)\) be a strong monad on a monoidal category \((\otimes, I)\). A **T-list object** \(M(X)\) on \(X\) consists of

\[
\begin{align*}
T(M(X)) & \quad \downarrow \tau \\
I & \xrightarrow{\text{nil}} M(X) & \xleftarrow{\text{cons}} X \otimes M(X)
\end{align*}
\]

such that for every structure

\[
\begin{align*}
TA & \quad \downarrow \alpha \\
P & \xrightarrow{n} A & \xleftarrow{c} X \otimes A
\end{align*}
\]
T-list objects

Let (T, st) be a strong monad on a monoidal category (\otimes, I). A T-list object $M(X)$ on X consists of

\[
\begin{array}{c}
T(M(X)) \\
\downarrow \tau \\
I \xrightarrow{\text{nil}} M(X) \xleftarrow{\text{cons}} X \otimes M(X)
\end{array}
\]

such that for every structure

\[
\begin{array}{c}
TA \\
\downarrow \alpha \\
P \xrightarrow{n} A \xleftarrow{c} X \otimes A
\end{array}
\]

there exists a unique mediating map $\text{it}(n, c, \alpha) : M(X) \otimes P \rightarrow A$
\(T \)-list objects

such that

\[
I \otimes P \xrightarrow{\text{nil} \otimes P} M(X) \otimes P \xleftarrow{\text{cons} \otimes P} X \otimes M(X) \otimes P
\]

\[
P \xrightarrow{n} A \xleftarrow{c} X \otimes A
\]
such that

\[
\begin{array}{c}
I \otimes P \xrightarrow{\text{nil} \otimes P} M(X) \otimes P \xleftarrow{\text{cons} \otimes P} X \otimes M(X) \otimes P \\
\downarrow \quad \downarrow \text{it}(n,c,\alpha) \quad \downarrow \text{it}(n,c,\alpha) \\
P \quad n \quad A \quad c \quad X \otimes A
\end{array}
\]

and

\[
\begin{array}{c}
T(M(X)) \otimes P \xrightarrow{\text{st}_{M(X),P}} T(M(X) \otimes P) \xrightarrow{T(\text{it}(n,c,\alpha))} TA \\
\downarrow \quad \downarrow \alpha \\
M(X) \otimes P \xrightarrow{\text{it}(n,c,\alpha)} A
\end{array}
\]
\(T \)-list objects

Remark

\(T \)-list objects extend list objects.

If the tensor \(\otimes \) is closed, the iterator \(\text{it}(n, c, \alpha) \) is a \(T \)-algebra homomorphism.
Natural numbers in \textbf{Cpo}, revisited

\textit{Flat natural numbers}, \(\mu A.(1 + A)\):

\[0, 1, 2, 3, \ldots\]

\textit{Lazy natural numbers}, \(\mu A.(1 + A)\)\(_\bot\):

\[\ldots \quad \ldots\]

\[1 \quad s^2(\bot)\]

\[0 \quad s(\bot)\]

\[\downarrow \quad \downarrow\]

\[\bot \quad \bot\]

\textit{Strict natural numbers}, \(\mu A.A\)\(_\bot\):

\[\ldots\]

\[1\]

\[0\]

\[\bot\]
Natural numbers in \textbf{Cpo} as T-list objects on the unit

\textit{Flat natural numbers, $\mu A.(1 + A)$:}

\begin{align*}
0 & \quad 1 & \quad 2 & \quad 3 & \quad \ldots \\
\downarrow & & & & \\
& \ldots & \ldots & \ldots & \ldots
\end{align*}

\textit{Lazy natural numbers, $\mu A.(1 + A)\perp$:}

\begin{align*}
1 & \quad s^2(\perp) & \\
\downarrow & & \\
0 & \quad s(\perp) & \\
\downarrow & & \\
\downarrow & & \\
\downarrow & & \\
\downarrow & & \\
& \ldots & \ldots & \ldots & \ldots
\end{align*}

\textit{Strict natural numbers, $\mu A.A\perp$:}

\begin{align*}
\cdots & \quad \cdots & \\
\downarrow & & \\
0 & \quad 1 & \\
\downarrow & & \\
\downarrow & & \\
\downarrow & & \\
\downarrow & & \\
& \perp & \perp & \perp & \perp
\end{align*}
Natural numbers in \(\textbf{Cpo} \) as \(T \)-list objects on the unit

Flat natural numbers, \(\mu A. (1 + A) \):

\[
\begin{array}{ccccccc}
0 & 1 & 2 & 3 & \cdots \\
\end{array}
\]

\(T \)-list object with \((\times, 1)\) structure and monad \(T = \text{Id} \)

Lazy natural numbers, \(\mu A. (1 + A)_\bot \):

\[
\begin{array}{cccc}
1 & s^2(\bot) \\
\end{array}
\]

Strict natural numbers, \(\mu A. A_\bot \):

\[
\begin{array}{cccc}
1 \\
0 \\
\end{array}
\]
Natural numbers in \(\mathbf{Cpo} \) as \(T \)-list objects on the unit

Flat natural numbers,
\[\mu A. (1 + A): \]
\[\begin{array}{cccc}
0 & 1 & 2 & 3 \\
\downarrow & & & \\
\end{array} \]

\(T \)-list object with \((\times, 1)\) structure and monad \(T = \text{Id} \)

Lazy natural numbers,
\[\mu A. (1 + A)_\perp: \]
\[\begin{array}{cc}
1 & s^2(\perp) \\
\downarrow & \downarrow \\
0 & s(\perp) \\
\downarrow & \downarrow \\
\end{array} \]

\(T \)-list object with \((\times, 1)\) structure and \(T \) the lifting monad

Strict natural numbers,
\[\mu A. A_\perp: \]
\[\begin{array}{c}
\ldots \\
\downarrow \\
1 \\
\downarrow \\
0 \\
\downarrow \\
\downarrow \\
\downarrow \\
\end{array} \]

\(T \)-list object with \((\times, 1)\) structure and monad \(T = \text{Id} \)
Natural numbers in \textbf{Cpo} as T-list objects on the unit

\textit{Flat natural numbers,} $\mu A. (1 + A)$:

\begin{center}
\begin{tikzpicture}
\node (0) at (0,0) {0};
\node (1) at (1,0) {1};
\node (2) at (2,0) {2};
\node (3) at (3,0) {3};
\node (down) at (3,-1) {\bot};
\node (4) at (4,0) {\cdots};
\path (0) edge (1);
\path (1) edge (2);
\path (2) edge (3);
\path (3) edge (down);
\end{tikzpicture}
\end{center}

T-list object with $(\times, 1)$ structure and monad $T = \text{Id}$

\textit{Lazy natural numbers,} $\mu A. (1 + A)_\bot$:

\begin{center}
\begin{tikzpicture}
\node (0) at (0,0) {0};
\node (1) at (1,0) {1};
\node (2) at (2,0) {$s(\bot)$};
\node (down) at (2,-1) {\bot};
\node (3) at (3,0) {$s^2(\bot)$};
\node (4) at (4,0) {\cdots};
\path (0) edge (1);
\path (1) edge (2);
\path (2) edge (down);
\path (3) edge (0);
\end{tikzpicture}
\end{center}

T-list object with $(\times, 1)$ structure and T the lifting monad

\textit{Strict natural numbers,} $\mu A.A_\bot$:

\begin{center}
\begin{tikzpicture}
\node (0) at (0,0) {0};
\node (1) at (1,0) {1};
\node (down) at (1,-1) {\bot};
\node (4) at (2,0) {\cdots};
\path (0) edge (1);
\path (1) edge (down);
\end{tikzpicture}
\end{center}

T-list object with $(+, 0)$ structure and T the lifting monad
Monoids with compatible algebraic structure
T-monoids

Let (T, τ) be a strong monad on a monoidal category (\otimes, I). A T-monoid (also called EM-monoid [Pir16]) is a monoid equipped with a T-algebra $I : M \to TM \otimes M$ compatible in the sense that $T(C) \otimes C \cong TC \otimes C$.

Remark: T-monoids extend both monoids and T-algebras.
T-monoids

Let (T, st) be a strong monad on a monoidal category (\otimes, I). A T-monoid (EM-monoid [Pir16]) is a monoid

$$
I \longrightarrow M \leftarrow M \otimes M
$$
T-monoids

Let (T, st) be a strong monad on a monoidal category (\otimes, I). A T-monoid (EM-monoid [Pir16]) is a monoid equipped with a T-algebra

\[
\begin{array}{c}
TM \\
\downarrow \tau \\
I & \longrightarrow & M & \longleftarrow & M \otimes M
\end{array}
\]
T-monoids

Let \((T, \text{st})\) be a strong monad on a monoidal category \((\otimes, I)\). A \textit{T-monoid} (\textit{EM-monoid} [Pir16]) is a monoid equipped with a \textit{T-algebra}

\[
\begin{array}{c}
T \times \text{M} \\
\downarrow \tau \\
M \\
\end{array}
\]

\[I \rightarrow M \leftarrow M \otimes M\]

compatible in the sense that

\[
\begin{array}{c}
T(C) \otimes C \xrightarrow{\text{st}_{C,C}} T(C \otimes C) \xrightarrow{Tm} TC \\
C \otimes C \xrightarrow{m} C
\end{array}
\]

\[c \otimes c \downarrow \]

\[c \]

Remark \text{ T-monoids extend both monoids and T-algebras.}
T-monoids

Let (T, st) be a strong monad on on a monoidal category (\otimes, I). A T-monoid (EM-monoid [Pir16]) is a monoid equipped with a T-algebra

\[
\begin{array}{ccc}
TM & \Downarrow\tau \\
I & \rightarrow & M \\
& & \leftarrow M \otimes M
\end{array}
\]

compatible in the sense that

\[
\begin{array}{ccc}
T(C) \otimes C & \xrightarrow{st_{C,C}} & T(C \otimes C) \\
C \otimes C & \xrightarrow{m} & C
\end{array}
\]

\[
\begin{array}{ccc}
T(C) \otimes C & \xrightarrow{Tm} & TC
\end{array}
\]

Remark

T-monoids extend both monoids and T-algebras.
Remark

In the context of abstract syntax, T is freely generated from some theory, and T-monoids are models of this theory.
Remark

In the context of abstract syntax, T is freely generated from some theory, and T-monoids are models of this theory.

Lemma

For every monoid M the endofunctor $M \otimes (_)$ is a monad, and $\left(M \otimes (_)\right)\text{-Mon} (C) \simeq \left(M / \text{Mon}(C)\right)$.
Remark

In the context of abstract syntax, T is freely generated from some theory, and T-monoids are models of this theory.

Lemma

For every monoid M the endofunctor $M \otimes (_)$ is a monad, and $(M \otimes (_))\text{-Mon}(C) \simeq (M/\text{Mon}(C))$.

Example

In particular, for S a signature on a monoid M in the sense of [Jas09], an $(S \otimes _)$-monoid for the endofunctor $S \otimes (_)$ is precisely an algebraic operation with signature S can be identified with a map $S \xrightarrow{\eta} L(S) \rightarrow M$ interpreting S inside M.
T-list objects are free T-monoids
T-list objects are free T-monoids

For a strong monad (T, st) on a monoidal category (\otimes, I),
T-list objects are free T-monoids

For a strong monad (T, st) on a monoidal category (\otimes, I),

Lemma

1. *Every T-list object $M(X)$ is a T-monoid.*

\textbf{Lemma}

1. Every \(T \)-\textit{list object} \(M(X) \) is a \(T \)-\textit{monoid}.

2. This \(T \)-\textit{monoid} is the free \(T \)-\textit{monoid} on \(X \), with universal map

\[
\begin{align*}
X & \xrightarrow{\rho} X \otimes I \\
& \xrightarrow{X \otimes \text{nil}} X \otimes M(X) \\
& \xrightarrow{\text{cons}} M(X)
\end{align*}
\]
T-list objects are free T-monoids

For a strong monad \((T, st)\) on a monoidal category \((\otimes, I)\),

Lemma

1. *Every T-list object* \(M(X)\) *is a T-monoid.*

2. *This T-monoid is the free T-monoid on* \(X\), *with universal map*

\[
\begin{align*}
X & \xrightarrow{\eta} X \otimes I \\
& \xrightarrow{X \otimes \text{nil}} X \otimes M(X) \\
& \xrightarrow{\text{cons}} M(X)
\end{align*}
\]

We can reason concretely about free \(T\)-monoids by reasoning about \(T\)-lists.
T-list objects are initial algebras
T-list objects are initial algebras

For a strong monad (T, st) on a monoidal category (\otimes, I),

Lemma

If every $(_ \otimes P$ preserves binary coproducts, and the initial algebra exists, then $\mu A. T(I + X \otimes A)$ is a T-list object on X.
Theorem

Let T be a strong monad on a monoidal category (C, I, \otimes) with binary coproducts $(+)$. If

1. for every $P \in C$, the endofunctor $(-) \otimes P$ preserves binary coproducts, and

2. for every $X \in C$, the initial algebra of $T(I + X \otimes -)$ exists

Then C has all T-list objects and, thereby, the free T-monoid monad M_T.

Remark

Thinking in terms of T-list objects makes the proof straightforward!
Theorem

Let T be a strong monad on a monoidal category $(\mathcal{C}, I, \otimes)$ with binary coproducts $(+)$. If

1. for every $P \in \mathcal{C}$, the endofunctor $(-) \otimes P$ preserves binary coproducts, and

2. for every $X \in \mathcal{C}$, the initial algebra of $T(I + X \otimes -)$ exists

Then \mathcal{C} has all T-list objects and, thereby, the free T-monoid monad M_T.

Remark

Thinking in terms of T-list objects makes the proof straightforward!
Technical contribution

Remark: A natural extension: algebraic structure encapsulated by Lawvere theories or operads. This gives rise to a notion of near-semiring category, which underlies many of the applications.
Technical contribution

\[\mu A. (I + X \otimes A) \rightsquigarrow \text{list object} \rightsquigarrow \text{free monoid} \]
Technical contribution

\[\mu A. (I + X \otimes A) \leadsto \text{list object} \leadsto \text{free monoid} \]

\[T\text{-list object} \]
Technical contribution

\[\mu A.(I + X \otimes A) \rightsquigarrow \text{list object} \rightsquigarrow \text{free monoid} \]

\[T\text{-list object} \rightsquigarrow \text{free } T\text{-monoid} \]
Technical contribution

\[\mu A. (I + X \otimes A) \rightsquigarrow \text{list object} \rightsquigarrow \text{free monoid} \]

\[\mu A. T(I + X \otimes A) \rightsquigarrow T\text{-list object} \rightsquigarrow \text{free } T\text{-monoid} \]
Technical contribution

$$\mu A. (I + X \otimes A) \leadsto \text{list object } \leadsto \text{free monoid}$$

$$\mu A. T(I + X \otimes A) \leadsto T\text{-list object } \leadsto \text{free } T\text{-monoid}$$

Remark

A natural extension: algebraic structure encapsulated by Lawvere theories or operads. This gives rise to a notion of near-semiring category, which underlies many of the applications.
Applications
Applications

\(T \)-NNOs

In a monoidal category \((\otimes, I)\):

\[
NNO = \text{list object on } I
\]
\[
T\text{-NNO} = T\text{-list object on } I
\]

In \textbf{Cpo}: gives rise to the \textit{flat-}, \textit{lazy-} and \textit{strict} natural numbers.
Applications

Functional programming

- In the bicartesian closed setting: Jaskelioff’s monadic list transformer $\text{Lt}(T)X := \mu A. T(1 + X \times A)$ is just the free T-monoid monad.
Functional programming

- In the bicartesian closed setting: Jaskelioff’s monadic list transformer $\text{Lt}(T)X := \mu A. T(1 + X \times A)$ is just the free T-monoid monad.

- In the category of endofunctors over a cartesian category: the MonadPlus type class $\text{Mp}(F)X := \mu A. \text{List}(X + FA)$ of Rivas et al. is a List-list object.
Applications

Functional programming

- In the bicartesian closed setting: Jaskelioff’s monadic list transformer \(Lt(T)X := \mu A. T(1 + X \times A) \) is just the free \(T \)-monoid monad.

- In the category of endofunctors over a cartesian category: the MonadPlus type class \(Mp(F)X := \mu A.\text{List}(X + FA) \) of Rivas et al. is a List-list object.

- In the category of endofunctors over a cartesian category: Spivey’s Bunch type class

 \[
 \text{Bun}(F)X := \mu A.(1 + X \times A + F(A) \times A + A \times A)
 \]

 is a \(T \)-list object for \(T \) an extension of the theory of monoids.
Applications

Functional programming

- In the bicartesian closed setting: Jaskelioff’s monadic list transformer $\text{Lt}(T)X := \mu A. T(1 + X \times A)$ is just the free T-monoid monad.

- In an nsr-category: the MonadPlus type class $\text{Mp}(F)X := \mu A. \text{List}_*(X + F \otimes A)$ is a List$_*$-list object.

- In an nsr-category:

\[
\text{Bun}(F)X := \mu A. (J + (I + X \otimes A + A) \ast A)
\]

is a T-list object for T an extension of the theory of monoids.
Applications

Abstract syntax and variable binding (Fiore et al.)

In the category of presheaves \mathbf{Set}^F with substitution tensor product

$$(P \bullet Q)(n) = \int_{m \in F} (Pn) \times (Qm)^n$$
Applications

Abstract syntax and variable binding (Fiore et al.)

In the category of presheaves Set^F with substitution tensor product

$$(P \bullet Q)(n) = \int_{m \in F} (Pn) \times (Qm)^n$$

we get

abstract syntax = free T-monoid on variables

$= \mu A. T(V + X \bullet A)$
Abstract syntax and variable binding (Fiore et al.)

In the category of presheaves \mathbf{Set}^F with substitution tensor product

$$(P \bullet Q)(n) = \int_{m \in F} (Pn) \times (Qm)^n$$

we get

abstract syntax = free T-monoid on variables

$= \mu A. T(V + X \bullet A)$

abstract syntax is a list object with algebraic structure
Abstract syntax and variable binding (Fiore et al.)

In the category of presheaves $\text{Set}^\mathbb{F}$ with substitution tensor product

$$(P \bullet Q)(n) = \int_{m \in \mathbb{F}} (Pn) \times (Qm)^n$$

we get

abstract syntax = free T-monoid on variables

$$\mu A. T(V + X \bullet A)$$

Remark

This relies on a slightly more general theory, in which the strength $st_{X,l \to P} : T(X) \otimes P \to T(X \otimes P)$ only acts on pointed objects.
Applications

Higher-dimensional algebra

The *web monoid* in Szawiel and Zawadowski’s construction of opetopes is a T-list object in an nsr-category.
Summary: *List objects with algebraic structure*
Summary: *List objects with algebraic structure*

\[\mu A. (I + X \otimes A) \leadsto \text{list object} \leadsto \text{free monoid} \]
\[\mu A. T(I + X \otimes A) \leadsto T\text{-list object} \leadsto \text{free } T\text{-monoid} \]
Summary: *List objects with algebraic structure*

\[\mu A. (I + X \otimes A) \leadsto \text{list object} \leadsto \text{free monoid} \]
\[
\mu A. T(I + X \otimes A) \leadsto T\text{-list object} \leadsto \text{free } T\text{-monoid}
\]

Framework unifying a wide range of examples.
Summary: *List objects with algebraic structure*

\[\mu A. (I + X \otimes A) \rightsquigarrow \text{list object} \rightsquigarrow \text{free monoid} \]
\[\mu A. T(I + X \otimes A) \rightsquigarrow T\text{-list object} \rightsquigarrow \text{free } T\text{-monoid} \]

Framework unifying a wide range of examples.

Algebraic structure \(\rightsquigarrow\) list-style datatype. Simpler proofs!
(e.g. abstract syntax, opetopes?)
Summary: *List objects with algebraic structure*

\[
\mu A. (I + X \otimes A) \rightsquigarrow \text{list object} \rightsquigarrow \text{free monoid}
\]

\[
\mu A. T(I + X \otimes A) \rightsquigarrow T\text{-list object} \rightsquigarrow \text{free } T\text{-monoid}
\]

Framework unifying a wide range of examples.

Algebraic structure \(\rightsquigarrow\) list-style datatype. Simpler proofs!
(*e.g. abstract syntax, opetopes?*)

Initial algebra definition \(\rightsquigarrow\) universal property.
(*e.g. monadic list transformer, MonadPlus*)
Summary: *List objects with algebraic structure*

\[\mu A. (I + X \otimes A) \leadsto \text{list object} \leadsto \text{free monoid} \]

\[\mu A. T(I + X \otimes A) \leadsto T\text{-list object} \leadsto \text{free } T\text{-monoid} \]

Framework unifying a wide range of examples.

Algebraic structure \(\leadsto \) list-style datatype. Simpler proofs! (e.g. abstract syntax, opetopes?)

Initial algebra definition \(\leadsto \) universal property. (e.g. monadic list transformer, MonadPlus)

A journal-length version is in preparation.