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Abstrat

We onsider the problem of assembling onurrent software systems from un-

trusted or partially trusted o�-the-shelf omponents, using wrapper programs to en-

apsulate omponents and enfore seurity poliies. In previous work we introdued

the box-� proess alulus with onstrained interation to express wrappers and dis-

ussed the rigorous formulation of their seurity properties. This paper addresses

the veri�ation of wrapper information ow properties. We present a novel ausal

type system that statially aptures the allowed ows between wrapped possibly-

badly-typed omponents; we use it to prove that a unidiretional-ow wrapper

enfores a ausal ow property.
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1 Introdution

A typial desktop software environment nowadays ontains omponents { whole pro-

grams, plug-ins, or smaller ode fragments { obtained from di�erent untrusted or partially-

trusted soures; they interat in intriate ways. Components may be faulty or maliious,

or designed with a weaker seurity poliy that the user requires { what is legitimate

marketing data to a vendor may be onsidered sensitive by a user. It is diÆult for a

user to gain assurane that the omposed system is seure, partiularly beause many

o�-the-shelf omponents are only available as objet ode. Furthermore urrent operat-

ing systems fail to provide support for the kind of �ne-grained poliies that ould ontrol

the exeution of suh omponents [12, 9℄.

Reent pratial work advoates interposing seurity ode at the operating system

boundary to observe and modify the data passing through [36, 15, 10, 12, 9℄. Interposition

tehniques e�etively enapsulate untrusted omponents in wrapper programs that have

full ontrol over the interations between enapsulated omponents and the OS and

over the interations among omponents. The ode of a wrapper an, for instane,

perform aess ontrol heks, audit, attempt to detet intruders, and even monitor

overt hannels. In [9℄ Fraser, Badger and Feldman presented a system that splits the

task of writing a wrapper into two parts. The wrapper's body is written in a variant of

C alled the Wrapper De�nition Language. The dynami aspets of reating wrappers

and instantiating onurrently exeuting omponents are spei�ed in the Wrapper Life

Cyle framework. While quite expressive, their approah does not provide guarantees

that the wrappers atually enfore the desired seurity poliies. The powerful wrapper

language, the fat that all wrappers exeute in kernel mode, and the fat that omponents

are onurrent ombine to make it diÆult to understand preisely what properties a

wrapper enfores.

Our work is exploring seure omposition using wrappers, foussing on the rigor-

ous statement and proof of their seurity properties. To this end, we have abstrated

the essential harateristis of the problem in a proess alulus { powerful enough to

express the ode of non-trivial wrappers and to express the onurrent omposition of

omponents, but small enough to be amenable to formal proof. In this paper we study

information ow properties of wrappers. To express lear statements of suh properties

we equip our alulus with an annotated operational semantis, regarding a wrapper and

eah wrapped omponent as a di�erent prinipal and olouring proesses with the sets

of prinipals that have ausally a�eted them. This allows a diret statement of the

property that one omponent annot ausally a�et another. Verifying suh a ausal

ow property diretly an be laborious, requiring a haraterisation of the state spae of

a wrapper ontaining arbitrary omponents. We therefore introdue a type system that

statially aptures ausal ows. Sine omponents are often provided as objet ode,

whih is impratial for the user to typehek, our type system must admit programs

with badly-typed subomponents.

Expressing wrappers requires a language for omposing onurrently-exeuting om-

ponents, inluding primitives for enapsulating omponents and ontrolling their inter-

ations. We use the box-� alulus of [28℄, reapitulated in Setions 2 and 3. Box-� is

a minimal extension of the �-alulus with enapsulation; it is suÆiently expressive for

omponents and wrappers while retaining the simpliity and tratable semantis needed

for proving properties. Moreover Pit [22℄ demonstrates how to build a real programming

language above a �-alulus ore, a similar approah ould be used for box-�.

Our main example, in Setion 4, is a unidiretional-ow wrapper that enapsulates

two omponents, allowing messages to be sent only in one diretion between them and

both omponents to interat with the environment. The following box-� program is a
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simpli�ed version of this example.

(� a; b)

�

a[P ℄ j ! 

a

x:

b

x j b[Q ℄

�

Proesses P and Q are arbitrary, possibly maliious, omponents. They are enapsulated

in named boxes, with private names a and b, and plaed in parallel with a forwarder

proess on hannel  from box a to box b. The term 

b

x is an output to hannel  in

box b of value x. The term 

a

x:

b

x pre�xes this with an input on hannel  from box a;

here the �rst x is a formal parameter that binds the seond. The ! operator indiates a

repliated input, so the forwarder persists after use. The boxes restrit ommuniation

of the enapsulated proesses and ensure that P and Q annot interat with eah other

diretly; the private names ensure that they annot interat with their environment in

any other way. This simpli�ed forwarder sends only unordered asynhronous messages;

our main example provides FIFO ommuniation (this is related to the NRL pump [16℄,

as disussed in Setion 4).

Intuitively the system enfores an information ow poliy that prevents Q from leak-

ing serets to P . When one attempts to make suh properties preise, however, there

are many hoies. A body of model-theoreti work on non-interferene uses deliate

extensional properties of the trae sets of systems. In our programming language setting

a more intensional approah allows what we believe to be learer statements. We start

with a labelled transition semantis that spei�es the input/output behaviour of pro-

grams and extend it to represent and propagate ausal dependenies expliitly. In terms

of this, one an state the desired property as `no visible ation of P is ausally dependent

on any ation of Q'. The ausal semantis and property are de�ned in Setion 5.

The ausal type system, given in Setion 6, allows us to prove information ow prop-

erties of box-� programs. For the example above, to statially allow the ow from a to

b but disallow the onverse we an assoiate the omponents with prinipals p and q,

then take a to be a box name whose ontents may be a�eted by p, written a :box

fpg

,

b to be a box name whose ontents may be a�eted by p or q, written b :box

fp;qg

, and

 to be a hannel, arrying values of a top type >, whih an be a�eted only by p,

so  : han

fpg

>. The fragment is then typable, whereas the onverse forwarder 

b

x:

a

x

is not. The type system also deals with traking auses through omputation within

a wrapper, inluding ommuniation of hannel names, and with interation between a

wrapper and badly-typed omponents. All boxes are assumed to ontain untyped pro-

esses; wrapper ode is statially typed; run-time type heking is required only when

reeiving from a omponent.

Further disussion of related work is given in Setion 7; Setion 8 onludes with

future work. Proofs are deferred to an Appendix.

2 A Boxed � Calulus

The language { known as the box-� alulus { that we use for studying enapsulation

properties must allow interating omponents to be omposed. The omponents will

typially be exeuting onurrently, introduing nondeterminism. It is therefore natural

to base the language on a proess alulus. The box-� alulus lies in a large design

spae of distributed aluli that build on the �-alulus of Milner, Parrow and Walker

[19℄, inluding among others the related aluli [2, 6, 8, 23, 26, 30, 32℄. A brief overview

of the design spae an be found in [27℄; here we highlight the main design hoies for

box-�.

The alulus is based on asynhronous message passing, with omponents interating

only by the exhange of unordered asynhronous messages. Box-� has an asynhronous �-

alulus as a subalulus { we build on a large body of work studying suh aluli, notably

3



[14, 4℄. They are known to be very expressive, supporting many programming idioms

inluding funtions and objets, and are Turing-omplete; a box-� proess may therefore

perform arbitrary internal omputation. The hoie of asynhronous ommuniation is

important as it allows two omponents to interat without reating ausal onnetions

in both diretions between them.

Box-� requires failities for onstraining ommuniation { in standard �-aluli, if one

proess an send a message to another then the only way to prevent information owing

in the reverse diretion is to impose a type system on omponents, whih (as observed

above) is not appropriate here. We therefore add a boxing primitive { boxes may be

nested, giving hierarhial protetion domains; ommuniation aross box boundaries is

stritly limited. Underlying the alulus design is the priniple that eah box should be

able to ontrol all interations of its hildren, both with the outside world and with eah

other. Boxes an be viewed as protetion domains, akin to operating system-enfored

address spaes. Diret ommuniation is therefore allowed only between a box and its

parent, or within the proess running in a partiular box. All other ommuniation,

in partiular that between two sibling boxes, must be mediated by ode running in the

parent. This ode an enfore an arbitrary seurity poliy, even supporting dynamially-

hanging poliies and interfaes (in ontrast to stati restrition or bloking operators

[5, 33℄).

Turning to the values that may be ommuniated, it is onvenient to allow arbitrary

tuples of names (or other tuples). Note that we do not allow ommuniation of proess

terms. Moreover, no primitives for movement of boxes are provided, in ontrast to most

work ited above. The alulus is therefore entirely �rst order, whih is important for

the tratable theory of behaviour (the labelled transition semantis) that we require to

state and prove seurity properties. The alulus is also untyped { we wish to onsider

the wrapping of ill-understood, probably buggy and possibly maliious programs.

2.1 Syntax

The syntax of the alulus is as follows:

NamesWe take an in�nite setN of names, ranged over by a; b;  et. (exept i; j; k; o; p; u; v).

Both boxes and ommuniation hannels are named; names also play the role of variables,

as in the �-alulus.

Values and Patterns Proesses will interat by ommuniating values whih are de-

onstruted by pattern-mathing by the reeiver. Values u; v an be names or tuples,

with patterns p orrespondingly tuple-strutured.

u; v ::= x name

h

v

1

:: v

k

i

tuple (k � 0)

p ::= wildard

x name pattern

(

p

1

:: p

k

)

tuple pattern (k � 0, no repeated names)

Proesses The main syntati ategory is that of proesses, ranged over by P;Q. We

introdue the primitives in three groups.

Boxes A box n[P ℄ has a name n, it an ontain an arbitrary proess P . Box names are

not neessarily unique { the proess n[0℄ j n[0℄ onsists of two distint boxes named n,
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both ontaining an empty proess, in parallel.

P ::= n[P ℄ box named n ontaining P

P j P

0

P and P

0

in parallel

0 the nil proess

: : :

Communiation The standard asynhronous �-alulus ommuniation primitives are

xv, indiating an output of value v on the hannel named x, and xp:P , a proess that

will reeive a value output on hannel x, binding it to p in P . Here we re�ne these with

a tag indiating the diretion of the ommuniation in the box hierarhy. An input tag

� an be either ?, for input within a box, ", for input from the parent box, or a name

n, for input from a sub-box named n. An output tag o an be any of these, similarly.

For tehnial reasons we must also allow an output tag to be ", indiating an output

reeived from the parent that has not yet interated with an input, or n, indiating an

output reeived from hild n that has not yet interated. The ommuniation primitives

are then

P ::= : : :

x

o

v output v on hannel x to o

x

�

p:P input on hannel x from �

!x

�

p:P repliated input

: : :

The repliated input !x

�

p:P behaves essentially as in�nitely many opies of x

�

p:P in

parallel. This gives omputational power, allowing e.g. reursion to be enoded simply,

while keeping the theory simple. In x

�

p:P and !x

�

p:P the names ourring in the pattern

p bind in P . Empty patterns and tuples will often be elided.

New name reation Both box and hannel names an be reated fresh, with the standard

�-alulus (� x)P operator. This delares any free instanes of x within P to be instanes

of a globally fresh name.

P ::= : : :

(� x)P new name reation

In (� x)P the x binds in P . We work up to alpha onversion of bound names throughout,

writing the free name funtion, de�ned in the obvious way for values, tags and proesses,

as fn( ).

2.2 Semantis

This subsetion de�nes the operational semantis of Box-�. The reader unfamiliar with

proess aluli may wish to skim to the start of Setion 3 on a �rst reading.

2.2.1 Redution Semantis

The simplest semanti de�nition of the alulus is a redution semantis, a one-step re-

dution relation P �! P

0

indiating that P an perform one step of internal omputation

to beome P

0

. We �rst de�ne the omplement � of a tag � in the obvious way, with ? = ?

and � = �. We de�ne a partial funtion f = g, taking a pattern and a value and giving,
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where it is de�ned, a partial funtion from names to values.

f

v

= g = fg

f

v

=

x

g = fx 7! vg

f

h

v

1

:: v

k

0

i

=

(

p

1

:: p

k

)

g = f

v

1

=

p

1

g [ : : : [ f

v

k

=

p

k

g if k = k

0

unde�ned, otherwise

The natural de�nition of the appliation of a substitution � (from names to values) to

a proess term P , written �P , is also a partial operation, as the syntax does not allow

arbitrary values in all the plaes where free names an our. We write f

v

=

p

gP for the

result of applying the substitution f

v

=

p

g to P . This may be unde�ned either beause f

v

=

p

g

is unde�ned, or beause f

v

=

p

g is a substitution but the appliation of that substitution

to P is unde�ned. For example, f

h

z z

i

=

x

gx

?

hi

is not de�ned as

h

z z

i

?

hi

is not in the syntax.

Note that the result f

y

=

x

gP of applying a name-for-name substitution is always de�ned.

This de�nition of substitution leads to a lightweight notion of runtime error

1

.

The de�nition of redution involves an auxiliary strutural ongruene �, de�ned as

the least ongruene relation suh that the axioms below hold. This allows the parts of

a redex to be brought syntatially adjaent.

P j 0 � P (� x)(� y)P � (� y)(� x)P

P j Q � Q j P (� x)(P j Q) � P j (� x)Q x 62 fn(P )

(P j Q) j R � P j (Q j R) (� x)n[P ℄ � n[(� x)P ℄ x 6= n

The redution relation is now the least relation over proesses satisfying the axioms and

rules below. The (Red Comm) and (Red Repl) axioms are subjet to the ondition that

f

v

=

p

gP is well-de�ned.

n[x

"

v j Q℄ �! x

n

v j n[Q℄ (Red Up)

x

n

v j n[Q℄ �! n[x

"

v j Q℄ (Red Down)

x

�

v j x

�

p:P �! f

v

=

p

gP (Red Comm)

x

�

v j !x

�

p:P �! !x

�

p:P j f

v

=

p

gP (Red Repl)

P �! Q ) P j R �! Q j R (Red Par)

P �! Q ) (� x)P �! (� x)Q (Red Res)

P �! Q ) n[P ℄ �! n[Q℄ (Red Box)

P � P

0

�! Q

0

� Q ) P �! Q (Red Strut)

The (Red Up) axiom allows an output to the parent of a box to ross the enlosing

box boundary. Similarly, the (Red Down) axiom allows an output to a hild box n to

ross the boundary of n. The (Red Comm) axiom then allows synhronisation between a

omplementary output and input within the same box. The (Red Repl) axiom is similar,

but preserves the repliated input in the resulting state.

Communiations aross box boundaries take two redution steps, as in the following

upwards and downwards ommuniations.

n[x

"

v℄ j x

n

p:P �! n[0℄ j x

n

v j x

n

p:P

�! n[0℄ j f

v

=

p

gP

x

n

v j n[x

"

p:P ℄ �! n[x

"

v j x

"

p:P ℄

�! n[f

v

=

p

gP ℄

1

A more onventional notion of runtime error would give errors only when a tuple is used as a name,

e.g. for output. The substitution-based notion is fored by our hoie of syntax, whih disallows values

in various plaes where names may appear. In general it will report errors sooner than the onventional

notion.
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This removes the need for 3-way synhronisations between a box, an output and an input

(as in [32℄), simplifying both the semantis and the implementation model.

2.2.2 Labelled Transitions

The redution semantis de�nes only the internal omputation of proesses. The state-

ments of our seurity properties must involve the interations of proesses with their

environments, requiring more struture: a labelled transition relation haraterising the

potential inputs and outputs of a proess. We give a labelled semantis for box-� in an

expliitly-indexed early style, de�ned indutively on proess struture by an SOS. The

labels are

` ::= � internal ation

x

o

v output ation

x



v input ation

where  ranges over tags ?, n, " and n. The labelled transitions an be divided into those

involved in moving messages aross box boundaries and those involved in ommuniations

between outputs and inputs. The movement labels are

x

n

v (sending to hild n) x

n

v (box n reeiving from its parent)

x

"

v (sending to the parent)

Say mv(o) is true if o is of the form n or ". The ommuniation labels are

x

?

v (loal output) x

?

v (loal input)

x

n

v (output reeived from hild n) x

n

v (input a message reeived from hild n)

x

"

v (output reeived from parent) x

"

v (input a message reeived from parent)

Labels synhronise in the pairs x



v and x



v. The labelled transition relation has the

form

A ` P

`

�! Q

where A is a �nite set of names and fn(P ) � A; it should be read as `in a state where

the names A may be known to P and its environment, proess P an do ` to beome Q'.

The relation is de�ned as the smallest relation satisfying the rules in Figure 2 omitting

all transition subsripts, ourrenes of C : and ourrenes of C �. We write A; x for

A [ fxg where x is assumed not to be in A, and A; p for the union of A and the names

ourring in the pattern p, where these are assumed disjoint.

The labelled semantis is explained further in [28℄. It is similar to a standard �

semantis but must also deal with boxes and with redutions suh as

((� x)x

n

z) j n[0℄ �! (� x)n[x

"

z℄

in whih a new-bound name enters a box boundary. The two semantis oinide in the

following sense.

Theorem 1 If fn(P ) � A then A ` P

�

�! Q i� P �! Q.

This give on�dene that the labelled semantis arries enough information. The proof

is somewhat deliate; it is skethed in [29℄ and given in detail in [28℄.
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3 A Filtering Example

To demonstrate the use of box-� we give the de�nition of a wrapper that restrits the

interfae for user programs. In most operating systems, programs installed and run by a

user enjoy the same aess rights as the user, so if the user is allowed to open a soket and

send data out on the network then so an any omponent. We idealize this senario with

the on�guration below { an idealized single-user OS in whih user Alie is exeuting

a program P . Here the box around P stands for the operating system enfored user

protetion domain.

alie[ P ℄ j

!

!

!:::in

alie

x::: j OS write on Alie's in port

! out

alie

x::: j OS read from Alie's out port

!net

alie

x::: OS read from Alie's net port

The OS provides three hannels in; out and net, to respetively allow the user's program

to read from and write to the terminal and to send data out on a network onnetion.

The program P is exeuting within a box and so interats with the OS using the " tag {

for example P = in

"

x:out

"

h

xx

i

reeives a value from the terminal and then sends a pair

of opies of the value bak to the terminal.

To exeute some untrusted ode fragment Q, Alie may run the ode in parallel with

her other appliations, perhaps as alie[P j Q℄. But, this grants too muh privilege to Q.

In partiular, if Q = ! in

"

x:net

"

x then any terminal input may be redireted to the net.

A wrapper is a box-� ontext whih an provide �ne-grain ontrol of the behaviour of Q.

For example, the �ltering wrapper W

1

of [28℄ prevents Q from aessing the network:

W

1

( )

def

= (� a)

�

a[ ℄ j ! in

"

x:in

a

x j ! out

a

x:out

"

x

�

The system beomes alie[P j W

1

(Q)℄. The untrusted ode is plaed in a box with a

fresh name a, so a 62 fn(Q). In parallel with the box are two forwarders for in and out

messages. The �rst, ! in

"

x:in

a

x, is a repliated input reeiving values from the OS and

sending them to a; the seond is dual. Only these two proesses an interat with a due

to the sope of the restrition, so even when put in parallel with other ode the wrapper

guarantees that Q will not be able to send on net.

We show a small redution sequene where P = 0 and Q = in

"

x:net

"

x. Here B is

the forwarders ! in

"

x:in

a

x j ! out

a

x:out

"

x.

in

alie

y j alie[P j W

1

(Q)℄ � in

alie

y j alie[(� a)( a[Q℄ j B )℄

�! alie[in

"

y j (� a)(a[Q℄ j B)℄ � alie[(� a)(in

"

y j a[Q℄ j B)℄

�! alie[(� a)(in

a

y j a[Q℄ j B)℄

�! alie[(� a)(a[in

"

y j Q℄ j B)℄

�! alie[(� a)(a[net

"

y℄ j B)℄

�! alie[(� a)(net

a

y j a[0℄ j B)℄

At the �nal step the output from Q is prevented from leaving the alie box diretly as

B does not ontain a forwarder for net. It is prevented from interation with any P

(although here P was empty) by the restrition on a.

4 The Unidiretional-ow Wrapper

There is a tension between the strength of ommuniation primitive supported by a

wrapper and the strength of the seurity property it an guarantee. The examples of
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the introdution and [28℄ provide only asynhronous unordered ommuniation between

omponents, whih would be awkward to use in most real systems. At the other extreme,

synhronous ommuniation introdues ausal ows in both diretions (the ausal ow

property we state in Setion 5 would not hold in a synhronous alulus, so a more del-

iate property would be required { perhaps stating that there are only data-less aks

from one omponent to another). There are two intermediate points { one an provide

asynhronous ordered ommuniation, as we do below, or use some form of weak a-

knowledgments, as in the NRL pump [16℄. The former still guarantees an absene of

information ow (albeit at the ost of maintaining an unbounded bu�er) while the latter

limits bandwidth of overt hannels. In both ases, it is essential to be able to guarantee

that the implementation of the ommuniation primitives does atually have the desired

ow property, this is what we set to do here.

In Figure 1 we give a wrapper F that takes two omponents and allows the �rst

to ommuniate with the seond by a �rst-in, �rst-out bu�er. The wrapper has been

written with are to avoid any information leak from the seond omponent to the �rst.

For simpliity both omponents have simple unordered input and output ports in

i

and

out

i

to the environment; it would be routine to make these FIFO also.

F(

1

;

2

) = (� a; b)

�

a[

1

℄ j b[

2

℄ j

(� bu� ; full)

�

(� front ; bak)

�

(reate FIFO bu�er) bu�

?

h

front bak

i

j

(onnet from

a

to bu�er) ! from

a

(

v r

)

:(� r

0

)(front

?

h

v r

0

i

j r

0

?

:r

a

) j

(onnet bu�er to to

b

) ! bak

?

(

v r

)

:(� r

0

)(to

b

h

v r

0

i

j r

0

b

:r

?

)

�

j

(bu�er ode) ! bu�

?

(

front bak

)

:front

?

(

v r

)

:(r

?

j (� bak

0

)(bu�

?

h

front bak

0

i

j full

?

h

bak

0

bak v

i

)) j

! full

?

(

bak

0

bak v

)

:(� r)(bak

?

h

v r

i

j r

?

:bak

0

?

(

v

0

r

0

)

:(r

0

?

j full

?

h

bak

0

; bak v

0

i

))

�

j

(I/O forwarders) ! in

1

"

x:in

1

a

x j ! out

1

a

x:out

1

"

x j

! in

2

"

x:in

2

b

x j ! out

2

b

x:out

2

b

x

�

Figure 1: FIFO Pipeline Wrapper F .

The interfae to the wrapper is as follows. To write to the bu�er a produer sends a value

together with an aknowledgment hannel to the wrapper (using a standard asynhronous

�-alulus idiom). The wrapper inserts the value in a queue and aknowledges reeption.

For value v the produer may ontain

(� ak)(from

"

h

v ak

i

j ak

"

:::);

sending the value and a new aknowledgement hannel ak to the wrapper and, in parallel,

waiting for a reply before proeeding with its omputation. On the reeiver side, we may

have a proess that waits for a pair of a value and an ak hannel:

to

"

(

z r

)

:( r

"

j :::)

The name of the reeiving hannel is to; hannel r is used to send the aknowledgement

bak to the wrapper. Thus a on�guration where B stands for the body of the wrapper

ould be:

(� a; b)

�

a[ (� ak)(from

"

h

v ak

i

j ak

"

:0) ℄ j b[ to

"

(

z r

)

:r

"

℄ j B

�
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The implementation of the wrapper is somewhat triky, as we have to be areful not

to introdue overt hannels between the omponents. Within the wrapper there is a

repliated input on bu� that reates a new empty FIFO bu�er and a repliated input

on full that reates a new bu�er ell ontaining a value. The key is to ensure that the

aknowledgment to the �rst omponent not be dependent on any ation performed by

the seond omponent. The glue proess that onnets the from

a

hannel to the bu�er

has a subproess, r

0

?

:r

a

, to send the ak to a. This small proess itself expets an ak

from the head of the bu�er saying that the message was inserted in the queue. The bu�er

ode front

?

(

v r

)

:(r

?

: : : aks on r immediately, in parallel with plaing the new message

in a full bu�er ell at the head of the queue. The asynhrony here is essential.

So far we have been vague about the statement of the properties that we expet

wrappers to enfore. For W

1

it may be lear from examination of the ode and the

semantis that the wrapper is satisfatory, but it is unlear exatly what properties are

guaranteed. For F the situation is worse { even this simple wrapper is omplex enough

that a rigorous statement and proof of its seurity properties is essential; the user should

not be required to examine the ode of a wrapper in order to understand the seurity

that it provides. We now turn to the task of formalizing these properties and developing

the tools needed to prove them.

5 Colouring and Causal Flow

The intuitive property of F that we wish to express is that the seond wrapped omponent

should not be able to a�et the �rst. In [28℄ we expressed the intuitive property that one

wrapped omponent does not ausally a�et another using a simple oloured redution

semantis for box-�. Output proesses were annotated with sets of olours that reord

their ausal histories { essentially the sets of prinipals that have a�eted them in the

past { and the redution semantis propagated this ausal history data. In this paper we

introdue also a oloured labelled transition semantis, allowing more diret statements

of seurity properties of wrappers that interat with their environment. The oloured

alulus is a trade-o� { it aptures less detailed ausality information than the non-

interleaving models studied in onurreny theory [37, 3, 7℄ but is muh simpler; it

aptures enough information to express interesting seurity properties.

In [28℄ we also expressed a number of other desirable properties of wrappers { that

they honestly forward messages between omponent and environment, and that they

mediate all ommuniation between omponents. The latter, related to intransitive non-

interferene [24℄, was expressed using the oloured semantis. Two further information

ow properties were expressed using the unoloured LTS: new name diretionality and

permutation. They illustrate the wide range of preise properties whih the intuitive

statement might be thought to mean.

5.1 Colouring the Box-� Calulus

We take a set ol of olours or prinipals (we use the terms interhangeably) disjoint

from N . Let k; p; q range over elements of ol and C;D;K range over subsets of ol. We

de�ne a oloured box-� alulus by annotating all outputs with sets of olours:

P ::= C :x

o

v

�

�

x

�

p:P

�

�

!x

�

p:P

�

�

n[P ℄

�

�

0

�

�

P j P

0

�

�

(� x)P

If P is a oloured term we write jP j for the term of the original syntax obtained by

erasing all annotations. Conversely, for a term P of the original syntax C ÆP denotes

the term with every partile oloured by C. For a oloured P we write C �P for the

10



oloured term whih is as P but with C unioned to every set of olours ourring in it.

We sometimes onfuse p and the set fpg. Let pn(P ) be the set of olours that our in

P . We write CD for the union C [ D.

In the oloured output C :x

o

v think of C as reording the ausal history of the output

partile { C is the set (possibly empty) of prinipals p 2 C that have a�eted the partile

in the past. In an initial state all outputs might typially be oloured by singleton sets

giving their atual prinipals, for example olouring the ode of wrapper F and two

wrapped omponents with di�erent olours w; p; q:

(w ÆF) (p ÆP j q ÆQ)

The oloured redution semantis is obtained by replaing the �rst four axioms of

the unoloured semantis by the rules

n[C :x

"

v j Q℄ �! C :x

n

v j n[Q℄ (C Red Up)

C :x

n

v j n[Q℄ �! n[C :x

"

v j Q℄ (C Red Down)

C :x

�

v j x

�

p:P �! C �(f

v

=

p

gP ) (C Red Comm)

C :x

�

v j !x

�

p:P �! !x

�

p:P j C �(f

v

=

p

gP ) (C Red Repl)

that propagate olour sets. The oloured alulus has essentially the same redution

behaviour as the original alulus:

Proposition 2 For any oloured P we have jP j �! Q i� 9P

0

: P �! P

0

^ jP

0

j = Q.

The oloured labelled transitions have labels ` exatly as before. The oloured

labelled transition relation has the form

A ` P

`

�!

C

Q

where A is a �nite set of names and fn(P ) � A; it should be read as `in a state where

the names A may be known to P and its environment, proess P an do `, oloured C, to

beome Q'. Again C reords ausal history, giving all the prinipals whih have diretly

or indiretly ontributed to this ation. The relation is de�ned as the smallest relation

satisfying the rules in Figure 2. It oinides with the previous LTS and with the oloured

redution semantis in the following senses.

Proposition 3 For any oloured P we have A ` jP j

`

�! Q i� 9C; P

0

: A ` P

`

�!

C

P

0

^

jP

0

j = Q.

Proposition 4 For oloured P and Q, if fn(P ) � A then A ` P

�

�!

;

Q i� P �! Q.

5.2 The Causal Flow Property

The property an now be stated. Say an instantiation of some binary wrapper W is an

unoloured proessW(P;Q) where P and Q are unoloured proesses not ontaining the

new-bound names soping the holes of W . Say W is a pure binary wrapper if for any

instantiation and any transition sequene

A ` W(P;Q)

`

1

�! : : :

`

k

�! R

the labels `

j

have the form � , in

i

"

v, or out

i

"

v, for i 2 f1; 2g. It is easy to see that F is

pure. Purity simply means that the wrapper has a �xed interfae and thus simpli�es the

statement of the ausal ow property.
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De�nition 1 (Causal ow property) A pure binary wrapper W has the ausal ow

property if for any instantiation W(P;Q) and any oloured trae

A ` ; ÆW(P;Q)

`

1

�!

C

1

: : :

`

k

�!

C

k

;

suh that all input transitions in

1

"

v and in

2

"

v in `

1

::`

k

are oloured with prinipal sets

fpg and fqg respetively, we have `

j

= out

1

"

v implies that q 62 C

j

.

This property forbids any ausal ow from an input on in

2

to an output on out

1

.

Di�erent variants of the ow property, with di�erent harateristis, an be stated

{ for example, to also prevent information in the initial state of Q a�eting outputs on

out

1

we ould onsider oloured traes

A `

�

; ÆW)(p ÆP; q ÆQ)

`

1

�!

C

1

: : :

`

k

�!

C

k

This seond de�nition still allows the Q to ommuniate with P but only on the on-

dition that P does not perform any further output dependent on the ommuniated

values. Forbidding Q a�eting P at all (even if there are no inputs or outputs of either

omponent) an be done with a slightly more intriate oloured semantis. There is no

lear ut `best' solution, yet the use of ausal semantis allows suint statement of the

alternatives and eases the omparison of these di�erent properties.

6 Causality Types

Verifying a ausal ow property diretly an be laborious, requiring a haraterisation of

the state spae of a wrapper ontaining arbitrary omponents. We therefore introdue a

type system that statially aptures ausal ows; a wrapper an be shown to satisfy the

ausal ow property simply by heking that it is well-typed. This setion introdues the

type system, gives its soundness theorems, and applies it to F .

A simple type system for Box-� would have types

T ::= han T

�

�

box

�

�

hT :: T i

for the types of hannel names arrying T , box names, and tuples. We annotate the �rst

two by sets K of prinipals and add a type name, of arbitrary names, and >, of arbitrary

values, giving the value types

T ::= han

K

T

�

�

box

K

�

�

hT :: T i

�

�

name

�

�

>

If x : han

K

T then x is the name of a hannel arrying T ; moreover, in an output proess

C : x

?

v on x the typing rules will require C � K { intuitively, suh an output may

have been ausally a�eted only by the prinipals k 2 K. In an input x

�

p:P on x the

ontinuation P must therefore be allowed to be a�eted by any k 2 K, so any output

within P must be on a hannel of type han

K

0

T with K � K

0

.

We are onerned with the enapsulation of possibly badly-typed omponents, so

must allow a box a[P ℄ in a well-typed term to ontain an untyped proess P . The type

system annot be sensitive to the ausal ows within suh a box; it an only enfore an

upper bound on the set of prinipals that an a�et any part of the ontents. If a :box

K

then a is a box name; the ontents may have been ausally a�eted only by k 2 K.

We take type environments � to be �nite partial funtions from names to value types.

The type system has two main judgments, � ` v :T for values and � ` P :pro

K

for

proesses. The typing for proesses reords just enough information to determine when
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pre�xing a proess with an input is legitimate { if P :pro

K

then P an be pre�xed

by an input on a hannel x : han

K

0

hi, to give x

?

:P , i� K

0

� K. Note, however, that a

P :pro

K

may have been a�eted by (and so syntatially ontain) k 62 K.

To type interations between well-typed wrapper ode and a badly-typed boxed om-

ponent some simple subtyping is useful. We take the subtype order T � T

0

as below,

and write

V

fT

i

j i 2 1::k g for the greatest lower bound of T

1

; ::; T

k

, where this exists.

>

name

hT

1

:: T

k

i

box

K

han

K

T

The omplete type system is given in Figure 3; we now explain the key aspets by giving

some admissible typing rules.

Basi Flow Typing Consider x : han

K

hi; y : han

L

hi and the redution

C :x

?

j x

?

:D :y

?

�! (C [ D) :y

?

During the redution the output y

?

on y is ausally a�eted by the output on x { the

right-hand proess term (C [ D) : y

?

reords that the output on y has been (indiretly)

a�eted by all the prinipals that had a�eted the output on x. For the left proess to

be well-typed we must learly require C � K and D � L; for the right proess to be

well-typed we need also C � K, to guarantee this the typing rules require K � L. The

relevant admissible rules are below.

� ` x : han

K

T

� ` v :T

C � K

� ` C :x

?

v : pro

K

� ` x : han

K

T

�; y :T ` P :pro

K

00

K � K

00

� ` x

?

y:P :pro

K

Now onsider also y : han

L

0

hi and the proess

C :x

?

j x

?

:

�

D :y

?

j D

0

:y

0

?

�

Here both the output on y and that on y

0

must be a�etable by C, so the typing rule for

parallel must take the intersetion of allowed-ause sets:

� ` P :pro

K

� ` Q :pro

K

0

� ` P j Q :pro

K\K

0

The examples above involve only ommuniation within a wrapper, with tag ?. Commu-

niation between a wrapper and its parent, with tag ", has the same typing rules, as the

parent is presumed well-typed.

Channel Passing Channel passing involves no additional ompliation. Consider the

type environment � = z : han

K

00

hi, x : han

K

han

K

00

hi, and the redution

C :x

?

z j x

?

y:D :y

?

�! (C [ D) :z

?

The left-hand proess is typable using the rules above if C � K for the x output, D � K

00

for the y output, and K � K

00

for the input, using �; y : han

K

00

hi ` D : y

?

:pro

K

00

.

Together these imply (C [ D) � K

00

, so the right-hand proess is well-typed.
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Interating with a box (at >) As disussed above, the ontents of a box may be

badly-typed, yet a wrapper must still be able to interat with them. The simplest ase is

that in whih a wrapper sends and reeives values that it onsiders to be of type >; we

onsider more general ommuniation in the next paragraph. The typing rule for boxes

requires only that the prinipals pn(P ) syntatially ourring within the ontents P of

a box are ontained in the permitted set and that P 's free names are all delared in the

type environment.

� ` a :box

K

pn(P ) � K

fn(P ) � dom(�)

� ` a[P ℄ :pro

K

Consider sending to and reeiving from a box a :box

K

.

C :x

a

v j a[P ℄ j z

a

y:Q

For the output to be well-typed we must insist only that C � K; for the input to be

well-typed Q must be allowed to be a�eted by any prinipal that might have a�eted

the ontents P .

� ` a :box

K

� ` x :name

� ` v :>

C � K

� ` C :x

a

v : pro

K

� ` a :box

K

� ` x : han

K

0

>

�; y :> ` P :pro

K

00

K � K

0

� K

00

� ` x

a

p:P :pro

K

0

Interating with a box (at any transmissible S) More generally, a wrapper may

reeive from a box tuples ontaining names whih are to be used for ommuniating with

the box as hannel names, for example

x

a

(

v r

)

:

�

C :r

a

j : : :

�

reeives a value v and name r from box a and uses r to send an ak bak into a. This

neessarily involves some run-time typeheking, as the box may send a tuple instead

of a name for r. There is a design hoie here: how strong should this typeheking

be? Requiring an implementation to maintain a run-time reord of the types of all

names would be ostly, so we hek only the struture of values reeived from boxes.

We suppose the run-time representations of values allow names (bit-patterns of some

�xed length) and tuples to be distinguished, and the number of items in a tuple to be

determined, but no more (so e.g. x : han

K

T and y :box

L

will both be represented as bit

patterns of the same length). We introdue the supertype name of han

K

T and box

L

,

and allow a wrapper to reeive only values of the transmissible types

S ::= > j name j hS :: Si

To send a value to a box by C :x

a

v it is neessary only for x to be of type name.

The operational semantis expresses this run-time typeheking by means of the on-

dition that f

v

=

p

gP is well-de�ned in the redution ommuniation rule and the labelled-

transition input rules { for example, f

h

z z

i

=

x

gC :x

?

is not well-de�ned, as the syntax does

not allow a tuple to our in hannel-name position of an output. We would like to
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ensure that run-time typeheking is only required when reeiving values from a box, i.e.

that for ommuniation within a wrapper or between a wrapper and its parent suh a

substitution is always well-de�ned. This is guaranteed by requiring a box input pre�x to

immediately test all parts of a reeived value that are assumed of type name { in typing

an input x

a

p:P the type environment � derived from the pattern p must ontain no

tuples, and all x :name in � must be used within P as a hannel or box. For example,

if a :box

K

and x : han

K

hnamenamei then

x

a

(

y z

)

:

�

K :y

a

j K :z

a

�

is well-typed as the pattern

(

y z

)

ompletely deomposes values of type hnamenamei

and both y and z are used as hannels in K :y

a

j K :z

a

. On the other hand

x

a

w:x

?

w

is not, as it may reeive (for example) a triple from the box, leading to a later run-time

error within the wrapper. The type system is onservative in also exluding x

a

(

y z

)

:

�

K :

y

a

�

. Say a type is atomi if it is of the form name, han

K

T or box

K

and at if it is of the

form >, name, han

K

T , or box

K

. Say � is atomi or at if all types in ran(�) are. The

atomi types are those whih an be dynamially extended using restrition. We onsider

dynamis (redutions and labelled transitions) only for proesses with respet to atomi

typing ontexts; the de�nitions ensure that an extruded name an always be taken to be

of an atomi type. The alulus has no basi data types, e.g. a type of integers, that are

not dynamially extensible. This makes the type system a little degenerate.

The rest The typing rules for nil and restrition are straightforward; there is also a

speialisation rule allowing some permitted a�etees of a proess to be forgotten.

� ` 0 :pro

K

�; x :T ` P :pro

K

T atomi

� ` (� x)P :pro

K

� ` P :pro

K

0

K � K

0

� ` P :pro

K

6.1 Soundness

We wish to infer properties of the oloured input/output behaviour of wrappers from the

soundness of the type system, and therefore need a subjet redution result whih refers

not only to redutions (equivalently, � transitions) but also to input/output transitions.

De�ne typed labelled transitions by

� `

K

P

`

�!

C

Q i�

�

� atomi ^ � ` P :pro

K

^ dom(�) ` P

`

�!

C

Q

�

The subjet redution theorem for ` an output x

o

v should state that x, o, v and Q have

suitable types; the theorem for ` an input should state that if ` an be typed then Q an.

The result is ompliated by the fat that box-� is a alulus with new name generation,

so new names an be extruded and intruded. Type environments for these names are

alulated as follows. For a type environment �, with � atomi, and a value v extruded

at type T de�ne the type environment t(�; v; T ) for new names in v as follows.

t(�; x; T ) = x :T if x 62 dom(�)

and T atomi

t(�; x;>) = x :name if x 62 dom(�)

t(�; x; T ) = ; if � ` x :T

t(�;

h

v

1

:: v

k

i

;>) =

V

1::n

t(�; v

i

;>)

t(�;

h

v

1

:: v

k

i

; hT

1

:: T

k

i) =

V

1::n

t(�; v

i

; T

i

)

t(�; v; T ) unde�ned elsewhere
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Here

V

i21::k

�

i

is the type environment that maps eah x in some dom(�

i

) to

V

fT j 9i :

x :T 2 �

i

g, where all of these are de�ned.

V

i21::k

�

i

is unde�ned otherwise. Note that

in the > ase the t(�; v

i

;>) will neessarily all be well-de�ned and will be onsistent.

To see the need for

V

, onsider � =  : han

K

hbox

K

namei and P = (� x)

?

h

xx

i

. P

has an extrusion transition with value

h

xx

i

; the type ontext t(�;

h

xx

i

; hbox

K

namei)

should be well-de�ned and equal to x :box

K

.

Further, the type system involves subtyping, so t(�; v; T ) an only be used as a

bound on the extruded/intruded type environments. Say � � �

0

i� dom(�) = dom(�

0

)

and 8x 2 dom(�) : �(x) � �

0

(x).

We an now state the subjet redution result. For output tags f?; "g and " the name

x is guaranteed to have a hannel type and v the type arried; for a and a they are only

guaranteed to be a name and a value of type >. f?; "g and a are ommuniation tags,

so x annot be extruded, whereas " and a are movement tags, so x may be extruded. By

onvention we elide a onjunt that t(:::) is de�ned wherever it is mentioned.

Theorem 5 (Subjet Redution) If � `

K

P

x

o

v

�!

C

Q then

ase o 2 f?; "g: for some K

0

; T we have C � K

0

, � ` x : han

K

0

T , and there exists � �

t(�; v; T ) suh that �;� ` Q :pro

K

.

ase o =": for some K

0

; T we have C � K

0

and there exists � � t(�;

h

x v

i

; hhan

K

0

T T i)

suh that �;� ` Q :pro

K

.

ase o = a: for some K

0

we have C � K

0

, � ` a :box

K

0

, and there exists a type environ-

ment � � t(�;

h

x v

i

; hname; >i) suh that �;� ` Q :pro

K

.

ase o = a: for some K

0

we have C � K

0

, � ` a :box

K

0

, � ` x :name, and there exists

� � t(�; v;>) suh that �;� ` Q :pro

K

.

If � `

K

P

x



v

�!

C

Q then

ase  2 f?; "g: for some K

0

, T we have � ` x : han

K

0

T . If moreover C � K

0

and

� � t(�; v; T ) then �;� ` Q :pro

K

.

ase  = a: for some K

0

� K

00

, and S we have � ` a :box

K

0

, � ` x : han

K

00

S, t(�; v; S)

well-de�ned, and ran(t(�; v; S)) � fnameg. If moreover C � K

00

and � �

t(�; v; S) then �;� ` Q :pro

K

.

ase  = a: for some K

0

we have � ` a :box

K

0

. If moreover C � K

0

and we have

� � t(�;

h

x v

i

; hname>i) then �;� ` Q :pro

K

.

If � `

K

P

�

�!

C

Q then C = ; and � ` Q :pro

K

.

A run-time error for box-� is a proess in whih a potential ommuniation fails

beause the assoiated substitution is not de�ned. More preisely, P ontains a run-time

error if it ontains subterms x



v and x



p:P in parallel (and not under an input pre�x)

and f

v

=

p

gP is not de�ned. In a well-typed proess run-time errors an only our within

boxes (whose ontents are untyped) or at ommuniations from a box to the wrapper.

Internal transitions of the wrapper and ommuniations between the wrapper and its

parent therefore do not require dynami typeheking.

Theorem 6 (Limited Runtime Errors) If � ` P :pro

K

, P � (� x

1

:: x

n

)

�

x



v j

x



p:P

0

j Q

�

, � atomi, P

0

does not ontain a box and  2 f?; "g then f

v

=

p

gP is well-

de�ned. Similarly for repliated input.
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6.2 Typing the Unidiretional-ow Wrapper

Finally, we an show that instantiations of F are well-typed and use the subjet redution

theorem to onlude that F has the ausal ow property.

Theorem 7 (F typing) If

� = in

1

: han

fpg

>; out

1

: han

fpg

>;

in

2

: han

fqg

>; out

2

: han

fp;qg

>;

from : han

fpg

h>namei;

to : han

fp;qg

h> han

fp;qg

hii;

�

1

and also fn(P;Q) � dom(�)� fa; bg then � ` ; ÆF(P;Q) :pro

p

.

The proof of this involves type assumptions for the new-bound names of F as follows.

a:box

fpg

b:box

fp;qg

bu� :han

fpg

h han

fpg

h> han

fpg

hi

i

han

fp;qg

h> han

fp;qg

hi

ii

full :han

fp;qg

hhan

fp;qg

h> han

fp;qg

hi

i

han

fp;qg

h> han

fp;qg

hi

i

>i

A straightforward indution on trae lengths using the Subjet Redution theorem then

proves the desired ausal ow result:

Theorem 8 Wrapper F has the ausal ow property.

7 Disussion

Poliy enforement mehanisms: Wrappers impose seurity poliies on omponents

for whih it is impratial to analyze the internal struture, e.g. where only untyped

objet ode is available.

Several alternative approahes are possible, di�ering in the level of trust required,

the exibility of the seurity poliy enfored, and their osts to omponent produers

and users. Code signing and Java-style sandboxing have low ost but annot enfore

exible poliies { signed omponents may behave in arbitrary ways whereas sandboxed

omponents should not be able to interat with eah other at all. Code signing requires

the user to have total trust in the omponent produers { not just in their intent, but also

in their ability to produe bug-free omponents. Sandboxing requires no trust, but the

lak of any interation is often too restritive. More deliate poliies an be enfored by

shipping ode together with data allowing the user to type-hek it in a seurity-sensitive

type system [34, 13℄, or to hek a proof of a seurity-relevant behavioural property [20℄.

In the long term these seem likely to be the best approahes, but they require omponent

produers to invest e�ort and to onform to a ommon standard for types or proofs { in

the short term this is prohibitive. Shifting the burden of proof to the user, by performing

type inferene or stati analysis of downloaded ode, seems impratial given only the

objet ode, whih may not have been written with seurity in mind and so not onform

to any reasonable type system. In ontrast, wrappers have been shown to have low-ost
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{ none to the produer and only a small run-time ost to the user [9℄. They allow more

exible interation than sandboxing, albeit oarser-grain poliies than proof-arrying

omponents or seurity-type-heked omponents.

Information ow properties: The ausal ow property is related to the property,

studied in many ontexts, that there is no information ow from a high to a low seurity

level (though most work addresses omponents, whih may have the property, rather than

wrappers, whih may enfore it on subomponents). The literature ontains a range of

de�nitions that aim to apture this intuition in some partiular setting; the formalisations

vary widely. A basi hoie is whether the property is stated purely extensionally, in

terms of a semantis that desribes only the input/output behaviour of a system, or

using a more intensional semantis. A line of work on Non-Interferene, summarised in

[18℄, takes an extensional approah, stating properties in terms of the traes of input

and output events of a system. Related de�nitions, adapted to a programming language

setting, are used in [34, 13℄. In the presene of nondeterminism, however, non-interferene

beomes problemati { as disussed in [35℄, the property may only be meaningful given

probabilisti sheduling, whih has a high run-time ost.

We believe that the basi diÆultly is that the intuitive property is an intensional one

{ the notion of one omponent a�eting another depends on some understanding of how

omponents interat; a preise statement requires a semantis that aptures some aspets

of internal exeution, not just input/output behaviours. This might be denotational or

operational. Intensional denotational semantis have been used in the proofs (and, in the

last, statements) of non-interferene properties in [13, 1, 25℄, whih use a logial relations

proof and PER-based models. [35℄ and [25℄ go on to onsider probabilisti properties.

For wrappers, it is important that the end-user be able to understand the seurity that

they provide as learly as possible. We therefore wish to use as lightweight a semantis

as possible, as this must be understood before any seurity property stated using it,

and so adopt an annotated operational semantis (developing a satisfatory denotational

semantis of box-�, dealing with name reation, boxes, and untyped omponents, would

be a hallenging researh problem in its own right). In a sequential setting annotated

operational semantis have been used by [38℄; see also [17℄. The de�nition of the oloured

semantis for box-� seems unproblemati, but in general one might validate an annotated

semantis by relating it to a lower-level exeution model (as mentioned below).

Information ow type systems: The type system di�ers from previous work [34,

35, 21℄ primarily in handling badly typed omponents. Neessarily, it does not provide

�ne-grain traking of information ow through these omponents. It also handles non-

determinism, new name reation and hannel passing. Preise omparisons with related

type systems are diÆult as the languages involved di�er widely. One an, however,

embed fragments of these languages into box-� (noting that this only exploits the fully-

typed part of our alulus). For example, in the work of Smith and Volpano [31℄ an

assignment to a low seurity variable an follow an assignment to a high variable { the

program h:=3;l:=1 is well-typed. The natural translation of this program in box-�

would be

h

?

0 j l

?

0 j h

?

y:(h

?

3 j l

?

y:l

?

1)

with an initial store assigning 0 to h and l. This would not be well-typed in the system

of this paper, taking h : han

fH;Lg

Int, l : han

fLg

Int and a new base type Int. Here the

low assignment is ausally dependent on the high, even though no high information an

leak. On the other hand a box-� enoding of branhes would not forbid high variable

guards.
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Causal ow is a robust and straightforward property; it an be enfored by a remark-

ably simple type system. But, as the example above shows, it is sometimes overon-

straining. We envisage that in a large system the bulk of the ode will be typeable in a

seure type system, a small portion will be in learly-identi�ed unsafe modules that are

subjet only to onventional typeheking, and a small portion (any untrusted ode) will

be enapsulated in wrappers. Automati type inferene would be required to relieve the

burden of adding seurity annotations to all delarations.

8 Conlusion

The issue of seurely omposing untrusted or partially trusted omponents has great

pratial relevane. In this paper we have studied tehniques for formally proving that

software wrappers { the glue between omponents { atually enfore user-spei�ed in-

formation ow onstraints. We have de�ned a oloured operational semantis for a

onurrent wrapper language. By keeping trak of all the prinipals that have a�eted

a proess in the semantis it beomes easy to formulate lear statements of information

ow properties. To prove that partiular wrappers are seure, we de�ned a ausal type

system and so only need show that the wrappers are well typed.

Throughout the paper we foussed on wrapper properties { the alulus, statement

of seurity properties and type system are all designed spei�ally for wrappers { but

we believe similar tehniques are appliable to other situations in whih interation must

be ontrolled but not ompletely exluded, for example in isolating a seurity-ritial

kernel of a single appliation, or in ontrolling interations between pakets in an ative

network. Allowing untyped ode fragments in otherwise typed programs gives a way to

loosen seurity restritions when neessary.

In future work we intend to integrate the ausal type system with a lower-level se-

mantis for objet ode, suh as the typed assembly language of [11℄. We also intend

to address the issue of type inferene of seurity levels and the statements of properties

involving dynami hanges in information ow poliy.

Aknowledgements We would like to thank J. Leifer and J. Palsberg for omments.

The �rst author was supported by a Royal Soiety University Researh Fellowship and

by EPSRC grant GR/L 62290 Caluli for Interative Systems: Theory and Experiment.

The seond author did part of this work in the Objet System Group at the University

of Geneva.

19



A Coloured LTS and Typing Rules

A ` C :x

o

v

x

o

v

�!

C

0

(Out)

A ` x

�

p:P

x

�

v

�!

C

C �f

v

=

p

gP

() (In)

A ` P

`

�!

C

P

0

A ` P j Q

`

�!

C

P

0

j Q

(Par)

A ` !x

�

p:P

x

�

v

�!

C

!x

�

p:P j C �f

v

=

p

gP

() (Repl)

A ` P

x



v

�!

C

P

0

A ` Q

x



v

�!

C

Q

0

A ` P j Q

�

�!

;

(� fn(x; v) �A)(P

0

j Q

0

)

(Comm)

A ` P

x

"

v

�!

C

P

0

A ` n[P ℄

�

�!

;

(� fn(x; v)�A)(C :x

n

v j n[P

0

℄)

(Box-1)

A ` n[P ℄

x

n

v

�!

C

n[C :x

"

v j P ℄

(Box-2)

A ` P

�

�!

C

P

0

A ` n[P ℄

�

�!

C

n[P

0

℄

(Box-3)

A; x ` P

`

�!

C

P

0

A ` (� x)P

`

�!

C

(� x)P

0

(a) (Res-1)

A; x ` P

y

o

v

�!

C

P

0

A ` (� x)P

y

o

v

�!

C

P

0

(b) (Res-2)

A ` P

`

�!

C

P

0

P

0

� P

00

A ` P

`

�!

C

P

00

(Strut)

(a) The (Res-1) rule is subjet to x 62 fn(`). (b) The (Res-2) rule is subjet to x 2

fn(v) � fn(y; o), if o is ?, " or n, and to x 2 fn(y; v) � fn(o) otherwise. () In the (In)

and (Repl) axioms there is a side ondition that f

v

=

p

gP is well-de�ned. In all rules with

onlusion of the form A ` P

`

�!

C

Q there is an impliit side ondition fn(P ) � A.

Symmetri versions of (Par) and (Comm) are elided.

Figure 2: Coloured Box-� Labelled Transition Semantis
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Patterns:

` :T B ; ` x :T B x :T

` p

1

:T

1

B �

1

:: ` p

k

:T

k

B �

k

`

(

p

1

:: p

k

)

: hT

1

:: T

k

i B �

1

; ::;�

k

Values:

�; x :T ` x :T

� ` v

1

:T

1

:: � ` v

k

:T

k

� `

h

v

1

:: v

k

i

:hT

1

:: T

k

i

fn(v) � dom(�)

� ` v :>

T atomi

�; x :T ` x :name

Proesses:

o 2 f?; "; "g

� ` x : han

K

T

� ` v :T

C � K

� ` C :x

o

v : pro

K

(Out-?; "; ")

� 2 f?; "g

� ` x : han

K

T

` p :T B �

�;� ` P :pro

K

� ` x

�

p:P :pro

K

(In-?; ")

o 2 fa; ag

� ` a :box

K

� ` x :name

� ` v :>

C � K

� ` C :x

o

v : pro

K

(Out-a; a)

� ` a :box

K

0

� ` x : han

K

S

` p :S B �

�;� ` P :pro

K

K

0

� K

� at

P tests all names of type name in �

p ontains no wildards

� ` x

a

p:P :pro

K

(In-a)

� ` P :pro

K

� ` Q :pro

K

0

� ` P j Q :pro

K\K

0

(Par)

� ` n :box

K

pn(P ) � K

fn(P ) � dom(�)

� ` n[P ℄ :pro

K

(Box)

� ` 0 :pro

K

(Nil)

�; x :T ` P :pro

K

T atomi

� ` (� x)P :pro

K

(Res)

� ` P :pro

K

0

K � K

0

� ` P :pro

K

(Spe)

The repliated input rules are similar to the input rules. The prediate

`P tests all names of type name in �' is de�ned to be true i� for all y :name in

�, y ours free in hannel or box position within P .

Figure 3: Coloured Box-� Typing
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B Proofs

This appendix gives the soundness proofs for the type system (of the Subjet Redution

and Limited Runtime Error theorems) and the proof that F has the ausal ow property.

B.1 Soundness

The proof of Subjet Redution is divided into three main parts. First we require lem-

mas giving onditions under whih a substitution is well-de�ned and well-typed (here

`good'). We then prove substitution lemmas for values and proesses by indution on

typing derivations, and �nally the Subjet Redution result by indution on pairs of tran-

sition and typing derivations. The Limited Runtime Error result is almost an immediate

onsequene of these lemmas.

Say �;� ` f

u

=

p

g good i� f

u

=

p

g is well-de�ned, dom(f

u

=

p

g) = dom(�), and 8x :T 2

� : � ` f

u

=

p

gx :T . We adopt the onvention below that wherever t(�; v; T ) is mentioned

it is also assumed well-de�ned.

Lemma 9 If � =

V

i21::n

�

i

and for some j 2 1::n �

j

` v :T then � ` v :T .

Proof Indution on derivation of �

j

` v :T .

(Var) v = x. We have �(x) � �

j

(x) = T so by examination of the value typing rules

� ` x :T .

(Tuple) By the indution hypothesis.

(Top) We have fn(v) � dom(�

j

) � dom(�) so � ` v :>.

(Name) v = x. We have �(x) � �

j

(x) so as the atomi types are down-losed � `

x :name.

2

Lemma 10 (t) If �

def

= t(�; v; T ) then � atomi and �;� ` v :T .

Proof The �rst part is by indution on v, noting that the set of atomi types is losed

under de�ned glbs. The seond part is also by indution on v.

Case x. Immediate from the de�nition of t(�; x; ).

Case

h

v

1

:: v

n

i

. For t(�; v; T ) to be de�ned one of the following two ases must hold.

Case T = >. We have that �

i

def

= t(�; v

i

;>) are well-de�ned and � =

V

i21::n

�

i

.

By the indution hypothesis �;�

i

` v

i

:>, so fn(v

i

) � dom(�;�

i

), so fn(

h

v

1

:: v

n

i

) �

dom(�;�), so �;� `

h

v

1

:: v

n

i

:>.

Case T = hT

1

:: T

n

i. We have that �

i

def

= t(�; v

i

; T

i

) are well-de�ned and � =

V

i21::n

�

i

. By the indution hypothesis �;�

i

` v

i

:T

i

. Now for eah i �

and �

i

have disjoint domains, so �;

V

i21::n

�

i

=

V

i21::n

�;�

i

. By Lemma 9

�;� ` v

i

:T

i

. By the (Tuple) rule �;� `

h

v

1

:: v

n

i

:hT

1

:: T

n

i.

2

Lemma 11 If � atomi then t(�; v;>) is well-de�ned and is equal to the type ontext

mapping eah x 2 fn(v)� dom(�) to name.
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Proof Indution on v. 2

Lemma 12 (Goodness - Standard - Preliminary) If

� atomi

� ` u :U

` p :U B �

then �;� ` f

u

=

p

g good.

Proof By indution on the two typing derivations. Consider the last rule of the pattern

judgement.

(Wild) ` :U B ;. Clearly f

u

= g = fg; the seond lause of the de�nition of good is

trivial; the third is vauous.

(Var) ` y :U B y :U . Clearly f

u

=

y

g = fy 7! ug, dom(fy 7! ug) = dom(y :U), and

� ` f

u

=

y

gy :U .

(Tuple) `

(

p

1

:: p

k

)

: hU

1

:: U

k

i B �

1

; ::;�

k

. As � atomi the last rule of the value judge-

ment must be the value (Tuple) rule, with onlusion � `

h

u

1

:: u

k

i

:hU

1

:: U

k

i. By

the indution hypothesis �;�

i

` f

u

i

=

p

i

g good for eah i. By the de�nition of

substitution f

h

u

1

:: u

k

i

=

(

p

1

:: p

k

)

g is de�ned and equal to

S

i21::k

f

u

i

=

p

i

g. As for eah

i dom(f

u

i

=

p

i

g) = dom(�

i

), we have dom(

S

i21::k

f

u

i

=

p

i

g) = dom(�

1

; ::;�

k

). To

hek �;�

1

; ::;�

k

` f

h

u

1

:: u

k

i

=

(

p

1

:: p

k

)

g good it remains only to observe that for

eah z :T 2 �

1

; ::;�

k

there is an i with z :T 2 �

i

, hene � ` f

u

i

=

p

i

gz :T , hene

� ` (

S

i21::k

f

u

i

=

p

i

g)z :T .

2

Note that this result requires that the range of � ontains no tuple types. Consider

u = x, U = hbox

K

box

K

i, � = x :U and p =

(

y z

)

. We have ` p :U B y :box

K

; z :box

K

but f

x

=

(

y z

)

g is not well-de�ned.

Lemma 13 (Goodness - Dynami) If

� atomi

` p :S B �

dom(�) and dom(�) disjoint

f

u

=

p

g well de�ned

� at (so ran(�) � f>;nameg)

8y :name 2 � : f

u

=

p

gy is a name

p ontains no wildards

then �

def

= t(�; u; S) is well-de�ned, ran(�) � fnameg, and �;�;� ` f

u

=

p

g good.

Proof By indution on the pattern p.

Case . Contradits the premises.

Case y. We have � = y :S. Trivially f

u

=

y

g has domain dom(�). As S transmissible

and � at either S = name or S = >.

Case S = name. We have f

u

=

y

gy = x for some name x and u = x.

If x 62 dom(�) then t(�; x;name) = x :name.

If x 2 dom(�) then by � atomi we have � ` x :name, so t(�; x;name) = ;.

In either ase we have �;� ` f

x

=

y

gy :S, so �;�;� ` f

x

=

y

g good.
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Case S = >. By Lemma 11 � is well-de�ned and maps eah x 2 fn(u)� dom(�)

to name, so �;� ` f

u

=

y

gy :>, so �;�;� ` f

u

=

y

g good.

Case

(

p

1

:: p

k

)

. We have S = hS

1

:: S

k

i, � = �

1

; ::;�

k

, and ` p

i

:S

i

B �

i

for i 2 1::k.

By f

u

=

(

p

1

:: p

k

)

g well-de�ned we know there exist u

1

; ::; u

k

suh that u =

h

u

1

:: u

k

i

,

eah f

u

i

=

p

i

g is well-de�ned and f

u

=

(

p

1

:: p

k

)

g =

S

i

f

u

i

=

p

i

g.

By the indution hypothesis eah �

i

def

= t(�; u

i

; S

i

) is well-de�ned, ran(�

i

) �

fnameg, and �;�

i

; �

i

` f

u

i

=

p

i

g good. �

def

=

V

i

�

i

is then well-de�ned, with

domain

S

i

dom(�

i

) and maps all names in its domain to name.

For �;�;� ` f

h

u

1

:: u

k

i

=

(

p

1

:: p

k

)

g good the well-de�nedness of the substitution is a

premise; the fat that it has domain dom(�) follows from �;�

i

; �

i

` f

u

i

=

p

i

g good.

Consider x : T 2 �. For some i 2 1::k we have x :T 2 �

i

, so �;�

i

` f

u

i

=

p

i

gx :T .

By Lemma 9 �;� ` f

u

i

=

p

i

gx :T . We have x 2 dom(f

u

i

=

p

i

g) so f

h

u

1

:: u

k

i

=

(

p

1

:: p

k

)

gx =

f

u

i

=

p

i

gx, hene �;� ` f

u

=

p

gx :T .

2

Lemma 14 (Substitution - values) If

�;� ` v :T

�;�;� ` f

u

=

p

g good

then f

u

=

p

gv is well-de�ned and �;� ` f

u

=

p

gv :T

Proof By �;�;� ` f

u

=

p

g good we have that f

u

=

p

g is well-de�ned, so f

u

=

p

gv is well-

de�ned. The seond part is proved by indution on the value typing derivation.

(Var) �;� ` x :T .

Case x :T 2 �. By goodness the domain of f

u

=

p

g oinides with that of � and

hene is disjoint from �, so f

u

=

p

gx = x, so �;� ` f

u

=

p

gx :T .

Case x :T 2 �. By goodness �;� ` f

u

=

p

gx :T .

(Tuple) �;� `

h

v

1

:: v

k

i

:hT

1

:: T

k

i. By the indution hypothesis for eah i we have �;� `

f

u

=

p

gv

i

:T

i

hene �;� ` f

u

=

p

g

h

v

1

:: v

k

i

:hT

1

:: T

k

i

(Top) �;� ` v :>. We have fn(v) � dom(�;�). By goodness dom(f

u

=

p

g) = dom(�)

and fn(ran(f

u

=

p

g)) � dom(�;�), so fn(f

u

=

p

gv) � dom(�;�), hene �;� ` f

u

=

p

gv :>.

(Name) �;� ` x :name. We have x :T 2 �;� for some T atomi.

Case x :T 2 �. By goodness the domain of f

u

=

p

g oinides with that of � and

hene is disjoint from �, so f

u

=

p

gx = x, so �;� ` f

u

=

p

gx :name.

Case x :T 2 �. By goodness �;� ` f

u

=

p

gx :T . As T atomi this must be derivable

using the (Var) or (Name) rules. In the (Var) ase f

u

=

p

gx = y for some name

y with y :T 2 �;�, so �;� ` y :name. In the (Name) ase T = name so we

are done.

2

Note that for this to hold the typing rules must ensure that names of tuple types do not

have type name. Note also that this lemma does not require any atomiity, and that

that is important in the �rst input lause of the proess substitution lemma.
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Lemma 15 (Substitution - proesses) If

�;� ` P :pro

K

�;�;� ` f

u

=

p

g good

then (1) if f

u

=

p

gP is well-de�ned then �;� ` f

u

=

p

gP :pro

K

and (2) if P ontains no

subterm n[Q℄ then f

u

=

p

gP is well-de�ned.

Proof We prove both parts simultaneously by indution on the size of type derivation

for P . For (1) we give two instanes of eah typing rule; in eah ase showing that the

premises of the right-hand instane follow from those of the left-hand instane.

(Out-?; "; ")

o 2 f?; "; "g

�;� ` x : han

K

T

�;� ` v :T

C � K

�;� ` C :x

o

v : pro

K

(Out-?; "; ")

o 2 f?; "; "g

�;� ` f

u

=

p

gx : han

K

T

�;� ` f

u

=

p

gv :T

C � K

�;� ` C :f

u

=

p

gx

o

f

u

=

p

gv : pro

K

(Out-?; "; ")

For (1) we use Lemma 14 for x and v, so all the premises of the right-hand in-

stane hold. For (2) by �;� ` f

u

=

p

gx : han

K

T we have that f

u

=

p

gx is a name, so

f

u

=

p

gC :x

o

v is de�ned and is equal to the onlusion of the right-hand instane.

(Out-a; a)

o 2 fa; ag

�;� ` a :box

K

�;� ` x :name

�;� ` v :>

C � K

�;� ` C :x

o

v : pro

K

(Out-a; a)

f

u

=

p

go 2 ff

u

=

p

ga; f

u

=

p

gag

�;� ` f

u

=

p

ga :box

K

�;� ` f

u

=

p

gx :name

�;� ` f

u

=

p

gv :>

C � K

�;� ` C :f

u

=

p

gx

f

u

=

p

go

f

u

=

p

gv : pro

K

(Out-a; a)

For (1) we use Lemma 14 for a, x and v, so the middle 3 premises of the right-

hand instane hold. By �;� ` f

u

=

p

ga :box

K

we have that f

u

=

p

ga is a name, so the

�rst premise holds. For (2) note also that by �;� ` f

u

=

p

gx : han

K

T we have that

f

u

=

p

gx is a name, so f

u

=

p

gC :x

o

v is de�ned and is equal to the onlusion of the

right-hand instane.

(In-?; ")

� 2 f?; "g

�;� ` x : han

K

T

` q :T B �

�;�;� ` P :pro

K

�;� ` x

�

q:P :pro

K

(In-?; ")

� 2 f?; "g

�;� ` (f

u

=

p

gx) : han

K

T

` q :T B �

�;�;� ` f

u

=

p

gP :pro

K

�;� ` (f

u

=

p

gx)

�

q:f

u

=

p

gP :pro

K

(In-?; ")

We assume without loss of generality that dom(�) and dom(�) are disjoint (but

elide the result on renaming of typing derivations that justi�es this).

For (1) we use Lemma 14 for x, so the seond premises of the right-hand instane

holds, and further f

u

=

p

gx is a name. By the de�nition of Good we have �;�;�;� `
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f

u

=

p

g good, so by the indution hypothesis the fourth premise of the right-hand

instane holds.

For (2) we noted above that f

u

=

p

gx is a name, and by the indution hypothesis

f

u

=

p

gP is well-de�ned, so f

u

=

p

g(x

�

q:P ) is well-de�ned. By the disjointness assump-

tion it is equal to the onlusion of the right-hand side.

(In-a)

�;� ` a :box

K

0

�;� ` x : han

K

S

` q :S B �

�;�;� ` P :pro

K

K

0

� K

� at

P tests all y : name in �

p ontains no wildards

�;� ` x

a

q:P :pro

K

(In-a)

�;� ` f

u

=

p

ga :box

K

0

�;� ` f

u

=

p

gx : han

K

S

` q :S B �

�;�;� ` f

u

=

p

gP :pro

K

K

0

� K

� at

f

u

=

p

gP tests all y : name in �

p ontains no wildards

�;� ` f

u

=

p

gx

f

u

=

p

ga

q:f

u

=

p

gP :pro

K

(In-a)

For (1), as in the previous ase we have the right-hand side requirements on a, x,

and P . The last right-hand premise follows from the disjointness of dom(�) and

dom(f

u

=

p

g).

For (2), by the typing of f

u

=

p

ga and f

u

=

p

gx both must be names; it remains only

to use the indution hypothesis.

(Par)

�;� ` P :pro

K

�;� ` Q :pro

K

0

�;� ` P j Q :pro

K\K

0

(Par)

�;� ` f

u

=

p

gP :pro

K

�;� ` f

u

=

p

gQ :pro

K

0

�;� ` f

u

=

p

gP j f

u

=

p

gQ :pro

K\K

0

(Par)

Straightforward use of the indution hypothesis.

(Box)

�;� ` n :box

K

pn(P ) � K

fn(P ) � dom(�;�)

�;� ` n[P ℄ :pro

K

(Box)

�;� ` (f

u

=

p

gn) :box

K

pn(f

u

=

p

gP ) � K

fn(f

u

=

p

gP ) � dom(�;�)

�;� ` (f

u

=

p

gn)[f

u

=

p

gP ℄ :pro

K

(Box)

For (1) we use Lemma 14 for n, so the �rst premise of the right-hand instane holds.

The seond is immediate as value-for-pattern substitutions do not a�et prinipal

sets. The third follows from the de�nition of goodness. Clause (2) is vauously

true.

(Nil)

�;� ` 0 :pro

K

(Nil)

�;� ` 0 :pro

K

(Nil)

Immediate.

(Res)

�;�; x :T ` P :pro

K

T atomi

�;� ` (� x)P :pro

K

(Res)

�;�; x :T ` f

u

=

p

gP :pro

K

T atomi

�;� ` (� x)f

u

=

p

gP :pro

K

(Res)
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We assume without loss of generality that x 62 dom(�). By the de�nition of Good

we have �; x :T;�;� ` f

u

=

p

g good, so by the indution hypothesis the �rst premise

of the right-hand instane holds.

(Spe)

�;� ` P :pro

K

0

K � K

0

�;� ` P :pro

K

(Spe)

�;� ` f

u

=

p

gP :pro

K

0

K � K

0

�;� ` f

u

=

p

gP :pro

K

(Spe)

Straightforward use of the indution hypothesis.

2

To see the need for the ondition that P is box-free, onsider � = ;, � = x :hnamenamei,

� = z :name, P = (� n)n[x

?

hi

℄, and f

u

=

p

g = f

h

z z

i

=

x

g. The premises of the Lemma hold,

but f

u

=

p

gP is not well-de�ned.

Lemma 16 (Painting { Jakson Pollak style)) If

� ` P :pro

K

C � K

then � ` C ÆP :pro

K

Proof Routine indution on typing derivations. 2

Lemma 17 If � ` v :T then t(�; v; T ) = ;.

Proof Indution on v. 2

Lemma 18 If dom(�) is disjoint from dom(�), fn(v) and fn(P ) then

1. � ` v :T () �;� ` v :T .

2. t(�; v; T ) = t((�;�); v; T ).

3. � ` P :pro

K

() �;� ` P :pro

K

Proof Routine indutions. 2

Lemma 19 If t((�; y :U); v; T ) well-de�ned and y 2 fn(v) then there exists some V

with U � V and t(�; v; T ) = t((�; y :U); v; T ); y :V .

Proof Indution on v.

Case x. We must have x = y. From the t de�nition t((�; y :U); y; T ) = ; and �; y :U `

y :T , hene U � T . From the t de�nition t(�; y; T ) = y :T , so take V = T .

Case

h

v

1

:: v

n

i

.
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Case T = hT

1

; :: T

n

i. We have t((�; y :U); v; T ) =

V

i

t((�; y :U); v

i

; T

i

).

Let J = f j j y 2 fn(v

j

) g.

For all j 2 J by the indution hypothesis we have V

j

with U � V

j

and

t(�; v

j

; T

j

) = t((�; y :U); v

j

; T

j

); y :V

j

.

For all i 62 J by Lemma 18.2 we have t(�; v

i

; T

i

) = t((�; y :U); v

i

; T

i

).

The types fV

j

j j 2 J g have a lower bound U so a glb V

def

=

V

j2J

V

j

exists

and U � V .

It follows that

V

i

t(�; v

i

; T

i

) exists and moreover is equal to

�

V

i

t((�; y :U); v

i

; T

i

)

�

; y :V ,

so t(�;

h

v

1

:: v

n

i

; hT

1

:: T

n

i) = t((�; y :U);

h

v

1

:: v

n

i

; hT

1

:: T

n

i); y :V .

Case T = >. This is similar to the previous ase. We have t((�; y :U); v;>) =

V

i

t((�; y :U); v

i

;>).

Let J = f j j y 2 fn(v

j

) g.

For all j 2 J by the indution hypothesis we have V

j

with U � V

j

and

t(�; v

j

;>) = t((�; y :U); v

j

;>); y :V

j

.

For all i 62 J by Lemma 18.2 we have t(�; v

i

;>) = t((�; y :U); v

i

;>).

The types fV

j

j j 2 J g have a lower bound U so a glb V

def

=

V

j2J

V

j

exists

and U � V .

It follows that

V

i

t(�; v

i

;>) exists and moreover is equal to

�

V

i

t((�; y :U); v

i

;>)

�

; y :V ,

so t(�;

h

v

1

:: v

n

i

;>) = t((�; y :U);

h

v

1

:: v

n

i

;>); y :V .

2

Lemma 20 If �; y :U atomi, � � t((�; y :U); v; T ) and y 2 fn(v) then �; y :U �

t(�; v; T ).

Proof An immediate orollary of Lemma 19, whih gives that there exists some V with

U � V and t(�; v; T ) = t((�; y :U); v; T ); y :V . 2

Lemma 21 (Strutural Congruene) If � ` P :pro

K

and P � Q then � ` Q :pro

K

.

Proof Indution on derivations of P � Q. 2

Say � � �

0

i� dom(�) = dom(�

0

) and 8x 2 dom(�) : �(x) � �

0

(x).

Lemma 22 If � � �

0

and �

0

` v :T then � ` v :T .

Proof Indution on typing derivation of v. 2

Lemma 23 If � � �

0

and �

0

; � ` f

u

=

p

g good then �;� ` f

u

=

p

g good.

Proof By the de�nition of Good and Lemma 22. 2

Lemma 24 If A ` P

x

o

v

�!

C

Q then C � pn(P ) and pn(Q) � pn(P ).

Proof Routine indution on transition derivations. 2

We an now restate and prove Theorem 5.

Theorem 25 (subjet redution)
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1. If � `

K

P

x

o

v

�!

C

Q and o 2 f?; "g then for some K

0

; T

� ` x : han

K

0

T

there exists � � t(�; v; T ) suh that �;� ` Q :pro

K

C � K

0

2. If � `

K

P

x

"

v

�!

C

Q then for some K

0

; T

there exists � � t(�;

h

x v

i

; hhan

K

0

T T i) suh that �;� ` Q :pro

K

C � K

0

3. If � `

K

P

x

a

v

�!

C

Q then for some K

0

� ` a :box

K

0

there exists � � t(�;

h

x v

i

; hname; >i) suh that �;� ` Q :pro

K

C � K

0

4. If � `

K

P

x

a

v

�!

C

Q then for some K

0

� ` a :box

K

0

� ` x :name

there exists � � t(�; v;>) suh that �;� ` Q :pro

K

C � K

0

5. If � `

K

P

x



v

�!

C

Q and  2 f?; "g then for some K

0

, T � ` x : han

K

0

T . If moreover

� � t(�; v; T )

C � K

0

then �;� ` Q :pro

K

.

6. If � `

K

P

x

a

v

�!

C

Q then for some K

0

� K

00

, and S we have � ` a :box

K

0

, � `

x : han

K

00

S, t(�; v; S) well-de�ned, and ran(t(�; v; S)) � fnameg. If moreover

� � t(�; v; S)

C � K

00

then �;� ` Q :pro

K

.

7. If � `

K

P

x

a

v

�!

C

Q then for some K

0

we have � ` a :box

K

0

. If moreover

� � t(�;

h

x v

i

; hname>i)

C � K

0

then �;� ` Q :pro

K

.

8. If � `

K

P

�

�!

C

Q then C = ; and � ` Q :pro

K

.

Proof We give �rst the output part, for lauses 1{4, then the input part, for 5{7, then

the tau part, for 8. Eah is by indution on pairs of transition and typing derivations.

Output Consider the last pair of rules used:
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(Out),(Out-?; "; ") Take K

0

= K and onsider ases of o:

1: ?; " By Lemma 17 we an take � = t(�; v; T ) = ;.

2: " By Lemma 17 we an take � = t(�;

h

x v

i

; hhan

K

0

T T i) = ;:

(Out),(Out-a; a) Take K

0

= K and onsider ases of o:

3: a By Lemma 17 we an take � = t(�;

h

x v

i

; hname; >i) = ;.

4: a By Lemma 17 we an take � = t(�; v;>) = ;:

(Strut),(*) 1{4 follow from the same lauses of the indution hypothesis and Lemma 21.

(*),(Spe) 1{4 follow from the same lauses of the indution hypothesis and a use of

(Spe) for Q.

(Par),(Par) Consider � `

K

P j P

0

`

�!

C

Q j P

0

with � `

K

P

`

�!

C

Q. 1{4 follow from

the same lauses of the indution hypothesis and a use of Lemma 18.3 for P

0

.

(Res-1),(Res) Consider � `

K

(� y)P

`

�!

C

(� y)Q with �; y :U `

K

P

`

�!

C

Q, ` an

output x

o

v and y 62 fn(`). Suppose o 2 f?; "g. By lause 1 of the indution

hypothesis for some K

0

; T

�; y :U ` x : han

K

0

T

there exists � � t((�; y :U); v; T ) suh that �; y :U;� ` Q :pro

K

C � K

0

By Lemma 18.1 � ` x : han

K

0

T . By Lemma 18.2 t((�; y :U); v; T ) = t(�; v; T ),

so taking the same � and using the (Res) typing rule we have �;� ` (� y)Q :pro

K

as required. The other ases of o are similar.

(Res-2),(Res) Consider � `

K

(� y)P

`

�!

C

Q with �; y :U `

K

P

`

�!

C

Q, ` an output

x

o

v and y 2 fn(`).

Case :mv(o). We have o 2 f?; "; ag and y 2 fn(v)� fn(x; o).

Suppose o 2 f?; "g. By lause 1 of the indution hypothesis for some K

0

; T

�; y :U ` x : han

K

0

T

there exists � � t((�; y :U); v; T ) suh that �; y :U;� ` Q :pro

K

C � K

0

By Lemma 18.1 � ` x : han

K

0

T . By Lemma 20 �; y :U � t(�; v; T ). The

ase o = a, for lause 4, is similar.

Case mv(o). We have o 2 f"; ag and y 2 fn(x; v)� fn(o).

Suppose o =". By lause 2 of the indution hypothesis for some K

0

; T

there exists � � t((�; y :U);

h

x v

i

; hhan

K

0

T T i) suh that �; y :U;� ` Q :pro

K

C � K

0

By Lemma 20 �; y :U � t(�;

h

x v

i

; hhan

K

0

T T i). The ase o = a, for lause

3, is similar.

Input Consider the last pair of rules used:
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(In)(In-?; ") Clause 5. Take K

0

= K. By t(�; v; T ) de�ned and Lemma 10 we have

t(�; v; T ) atomi and �; t(�; v; T ) ` v :T . It follows that � atomi and by Lemma

22 �;� ` v :T . By Lemma 12 �;�;� ` f

v

=

p

g good. By the de�nition of la-

belled transitions f

v

=

p

gP is well-de�ned so by Lemma 15 �;� ` f

v

=

p

gP :pro

K

. By

Lemma 16 �;� ` C Æf

v

=

p

gP :pro

K

.

(In)(In-a) Clause 6. Take K

00

= K. By the de�nition of labelled transitions f

v

=

p

gP is

well-de�ned so f

v

=

p

g is well-de�ned. As P tests all y :name 2 � and f

v

=

p

gP is

de�ned 8y :name 2 � : f

v

=

p

gy is a name. By Lemma 13 t(�; v; S) is well-de�ned,

ran(t(�; v; S)) � fnameg, and �; t(�; v; S);� ` f

v

=

p

g good. By Lemma 23

�;�;� ` f

v

=

p

g good. By Lemma 15 �;� ` f

v

=

p

gP :pro

K

. By Lemma 16

�;� ` C Æf

v

=

p

gP :pro

K

.

(Repl)(Repl-?; ") and (Repl)(Repl-a) Similar to the two ases above.

(Box-2)(Box) Clause 7. Take K

0

= K. To hek �;� ` n[C :x

"

v j P ℄ :pro

K

observe

that �;� ` n :box

K

by weakening, pn(C : x

"

v j P ) � C [ pn(P ) � K, and fn(C :

x

"

v j P ) � fn(x; v) [ fn(P ) � dom(�;�).

(Strut),(*) 5{7 follow from the same lauses of the indution hypothesis and Lemma 21.

(*),(Spe) 5{7 follow from the same lauses of the indution hypothesis and a use of

(Spe) for Q.

(Par),(Par) Consider � `

K

P j P

0

`

�!

C

Q j P

0

with � `

K

P

`

�!

C

Q. 5{7 follow from

the same lauses of the indution hypothesis and a use of Lemma 18.3 for P

0

.

(Res-1)(Res) Consider � `

K

(� y)P

`

�!

C

(� y)Q with �; y :U `

K

P

`

�!

C

Q, ` an input

x



v and y 62 fn(`). Suppose  2 f?; "g. By lause 5 of the indution hypothesis for

some K

0

, T �; y :U ` x : han

K

0

T and

� � t((�; y :U); v; T )

C � K

0

implies �; y :U;� ` Q :pro

K

. By y 62 fn(`) we have � ` x : han

K

0

T . Now suppose

� � t(�; v; T )

C � K

0

By Lemma 18.2 t(�; v; T ) = t((�; y :U); v; T ) so by the impliation in the indu-

tion hypothesis �; y :U;� ` Q :pro

K

, hene �;� ` (� y)Q :pro

K

. The ase of

 = a, for 7, is similar.

Now suppose  = a. By lause 6 of the indution hypothesis for some K

0

� K

00

,

and S we have �; y :U ` a :box

K

0

, �; y :U ` x : han

K

00

S, t((�; y :U); v; S) well-

de�ned, and ran(t((�; y :U); v; S)) � fnameg. Moreover

� � t((�; y :U); v; S)

C � K

00

implies �; y :U;� ` Q :pro

K

.

As y 62 fn(`) the various strengthening results suÆe to show lause 6.

Tau Consider the last pair of rules used:
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(Comm)(Par) We have

� `

K

1

P

1

x



v

�!

C

P

0

1

� `

K

2

P

2

x



v

�!

C

P

0

2

� `

K

1

\K

2

P

1

j P

2

�

�!

;

(� fn(x; v) � dom(�))(P

0

1

j P

0

2

)

(Comm)

Consider ases of  and the orresponding output and input lauses:

Case ?; " 1,5. By the indution hypotheses there exists � � t(�; v; T ) suh that

�;� ` P

0

1

:pro

K

1

and �;� ` P

0

2

:pro

K

2

. By the (Par) and (Res) typing

rules � ` (� fn(x; v) � dom(�))(P

0

1

j P

0

2

) :pro

K

1

\K

2

.

Case a 4,6 By lause 4 of the indution hypothesis there exists � � t(�; v;>)

suh that �;� ` P

0

1

:pro

K

1

. By Lemma 11 t(�; v;>) is the type ontext

mapping eah x 2 fn(v)� dom(�) to name.

By lause 4 C � K

0

and by lause 6 K

0

� K

00

so C � K

00

.

By lause 6 of the indution hypothesis t(�; v; S) is well-de�ned and has

range ontained in fnameg, so t(�; v; S) = t(�; v;>), so � � t(�; v; S), so

�;� ` P

0

2

:pro

K

2

.

By the (Par) and (Res) typing rules � ` (� fn(x; v)�dom(�))(P

0

1

j P

0

2

) :pro

K

1

\K

2

.

Case a 3,7 Similar to ase ?; " above.

(Par)(Par) By the indution hypothesis.

(Box-1)(Box) We have

dom(�) ` P

x

"

v

�!

C

Q

dom(�) ` n[P ℄

�

�!

;

(� fn(x; v)� dom(�))(C :x

n

v j n[Q℄)

(Box-1)

and

� ` n :box

K

pn(P ) � K

fn(P ) � dom(�)

� ` n[P ℄ :pro

K

(Box)

Note that we do not have � ` P :pro

K

, so the indution hypothesis is not appli-

able.

Take � = t(�;

h

x v

i

;>).

By weakening �;� ` n :box

K

. By Lemma 24 pn(Q) � K. In addition we have

fn(Q) � dom(�;�), so �;� ` n[Q℄ :pro

K

.

We have also �;� ` x :name, �;� ` v :> and (again by Lemma 24) C � K, so

�;� ` C :x

n

v :pro

K

.

By the (Par) and (Res) typing rules � ` (� fn(x; v)�dom(�))(C :x

n

v j n[Q℄) :pro

K

.

(Box-3)(Box) As a � transitions annot inrease the prinipal set or free name set of

a proess.

(Res-1)(Res) By the indution hypothesis.

(Strut)(*) Follows from the indution hypothesis and Lemma 21.

(*)(Spe) Follows from the indution hypothesis and a use of (Spe) for Q.
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2

Proof (of Theorem 6) By � ` P :pro

K

and for some T and K, we get x : han

K

T 2 �.

Furthermore, we have � ` v :T and sine  2 f?; "g we also have � ` p :T . By Lemma

12 and the fats that � atomi, � ` v :T and ` p :T B �, we have �;� ` f

v

=

p

g good.

By Lemma 15 and the fats that P does not ontain a box, �;� ` P

0

:pro

0

K

and

�;� ` f

v

=

p

g good, we have f

v

=

p

gP is well-de�ned. 2

B.2 Proving Causal Flow for F

The proof that F has the ausal ow property is a straightforward indution on the

traes of F(P;Q) using the Subjet Redution theorem.

Proof (of Theorem 8) Consider an instantiation F(P;Q) and oloured trae

A ` ; ÆF(P;Q)

`

1

�!

C

1

R

1

: : :

`

k

�!

C

k

R

k

;

suh that all inputs on in

1

in `

1

::`

k

are oloured with p and all inputs on in

2

are oloured

with q.

By the de�nition of transitions (if k � 1) we have fn(F(P;Q)) � A.

Let �

0

be the type environment � above with �

1

removed.

Let �

1

be the type environment mapping fn(P;Q)�dom(�

0

) to name and � = �

0

;�

1

.

Clearly � atomi.

By the de�nition of instantiation we have fn(P;Q) � dom(�)� fa; bg.

By Theorem 7 � ` ; ÆF(P;Q) :pro

p

.

By F pure we know the `

j

have the form � , in

i

"

v, or out

i

"

v, for i 2 f1; 2g.

Take R

0

= ; ÆF(P;Q) and �

0

= ;. We now show by indution on k that for all

j 2 1::k `

j

= out

1

"

v =) q 62 C

j

and there exists �

j

atomi suh that �;�

j

` R

j

:pro

p

.

Consider the transitionR

k�1

`

k

�!

C

k

R

k

. We have �;�

k�1

atomi, �;�

k�1

` R

k�1

:pro

p

,

and dom(�;�

k�1

) ` R

k�1

`

k

�!

C

k

R

k

, so

�;�

k�1

`

p

R

k�1

`

k

�!

C

k

R

k

Consider ases of `

j

.

Case out

1

"

v. By Theorem 5 for some K

0

; T we have C

k

� K

0

and there exists � �

t(�;�

k�1

;

h

out

1

v

i

; hhan

K

0

T T i) suh that �;�

k�1

;� ` R

k

:pro

p

.

As t(:::) is de�ned and out

1

: han

p

> 2 � we have K

0

= fpg and T = >, so

C

k

� fpg, so q 62 C

k

.

Take �

k

= �

k�1

;�; it is learly atomi.

Case in

1

"

v. By Theorem 5 for some K

0

, T we have �;�

k�1

` in

1

: han

K

0

T . If moreover

C

k

� K

0

and � � t(�;�

k�1

; v; T ) then �;�

k�1

;� ` R

k

:pro

p

.

As in

1

: han

p

> 2 � we have K

0

= fpg and T = >. By the premises C

k

� fpg.

As T = > we have t(�;�

k�1

; v; T ) de�ned and atomi; take � equal to this and

�

k

= �

k�1

;�.

The other ases are similar. 2
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