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Abstract

We consider the problem of assembling concurrent software systems from un-
trusted or partially trusted off-the-shelf components, using wrapper programs to en-
capsulate components and enforce security policies. In previous work we introduced
the boz-m process calculus with constrained interaction to express wrappers and dis-
cussed the rigorous formulation of their security properties. This paper addresses
the verification of wrapper information flow properties. We present a novel causal
type system that statically captures the allowed flows between wrapped possibly-
badly-typed components; we use it to prove that a unidirectional-flow wrapper
enforces a causal flow property.
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1 Introduction

A typical desktop software environment nowadays contains components — whole pro-
grams, plug-ins, or smaller code fragments — obtained from different untrusted or partially-
trusted sources; they interact in intricate ways. Components may be faulty or malicious,
or designed with a weaker security policy that the user requires — what is legitimate
marketing data to a vendor may be considered sensitive by a user. It is difficult for a
user to gain assurance that the composed system is secure, particularly because many
off-the-shelf components are only available as object code. Furthermore current operat-
ing systems fail to provide support for the kind of fine-grained policies that could control
the execution of such components [12, 9].

Recent practical work advocates interposing security code at the operating system
boundary to observe and modify the data passing through [36, 15, 10, 12, 9]. Interposition
techniques effectively encapsulate untrusted components in wrapper programs that have
full control over the interactions between encapsulated components and the OS and
over the interactions among components. The code of a wrapper can, for instance,
perform access control checks, audit, attempt to detect intruders, and even monitor
covert channels. In [9] Fraser, Badger and Feldman presented a system that splits the
task of writing a wrapper into two parts. The wrapper’s body is written in a variant of
C called the Wrapper Definition Language. The dynamic aspects of creating wrappers
and instantiating concurrently executing components are specified in the Wrapper Life
Cycle framework. While quite expressive, their approach does not provide guarantees
that the wrappers actually enforce the desired security policies. The powerful wrapper
language, the fact that all wrappers execute in kernel mode, and the fact that components
are concurrent combine to make it difficult to understand precisely what properties a
wrapper enforces.

Our work is exploring secure composition using wrappers, focussing on the rigor-
ous statement and proof of their security properties. To this end, we have abstracted
the essential characteristics of the problem in a process calculus — powerful enough to
express the code of non-trivial wrappers and to express the concurrent composition of
components, but small enough to be amenable to formal proof. In this paper we study
information flow properties of wrappers. To express clear statements of such properties
we equip our calculus with an annotated operational semantics, regarding a wrapper and
each wrapped component as a different principal and colouring processes with the sets
of principals that have causally affected them. This allows a direct statement of the
property that one component cannot causally affect another. Verifying such a causal
flow property directly can be laborious, requiring a characterisation of the state space of
a wrapper containing arbitrary components. We therefore introduce a type system that
statically captures causal flows. Since components are often provided as object code,
which is impractical for the user to typecheck, our type system must admit programs
with badly-typed subcomponents.

Expressing wrappers requires a language for composing concurrently-executing com-
ponents, including primitives for encapsulating components and controlling their inter-
actions. We use the box-m calculus of [28], recapitulated in Sections 2 and 3. Box-r is
a minimal extension of the w-calculus with encapsulation; it is sufficiently expressive for
components and wrappers while retaining the simplicity and tractable semantics needed
for proving properties. Moreover Pict [22] demonstrates how to build a real programming
language above a m-calculus core, a similar approach could be used for box-.

Our main example, in Section 4, is a unidirectional-flow wrapper that encapsulates
two components, allowing messages to be sent only in one direction between them and
both components to interact with the environment. The following box-m program is a



simplified version of this example.
(va,b)( a[P] | !c"zz | Q] )

Processes P and () are arbitrary, possibly malicious, components. They are encapsulated
in named boxes, with private names a and b, and placed in parallel with a forwarder
process on channel ¢ from box a to box b. The term @z is an output to channel ¢ in
box b of value z. The term c®z.¢%z prefixes this with an input on channel ¢ from box a;
here the first x is a formal parameter that binds the second. The ! operator indicates a
replicated input, so the forwarder persists after use. The boxes restrict communication
of the encapsulated processes and ensure that P and @ cannot interact with each other
directly; the private names ensure that they cannot interact with their environment in
any other way. This simplified forwarder sends only unordered asynchronous messages;
our main example provides FIFO communication (this is related to the NRL pump [16],
as discussed in Section 4).

Intuitively the system enforces an information flow policy that prevents @ from leak-
ing secrets to P. When one attempts to make such properties precise, however, there
are many choices. A body of model-theoretic work on non-interference uses delicate
extensional properties of the trace sets of systems. In our programming language setting
a more intensional approach allows what we believe to be clearer statements. We start
with a labelled transition semantics that specifies the input/output behaviour of pro-
grams and extend it to represent and propagate causal dependencies explicitly. In terms
of this, one can state the desired property as ‘no visible action of P is causally dependent
on any action of ()’. The causal semantics and property are defined in Section 5.

The causal type system, given in Section 6, allows us to prove information flow prop-
erties of box-m programs. For the example above, to statically allow the flow from a to
b but disallow the converse we can associate the components with principals p and q,
then take a to be a box name whose contents may be affected by p, written a:boxy,
b to be a box name whose contents may be affected by p or q, written b:boxy, 41, and
¢ to be a channel, carrying values of a top type T, which can be affected only by p,
so c:chang,, T. The fragment is then typable, whereas the converse forwarder cbrex
is not. The type system also deals with tracking causes through computation within
a wrapper, including communication of channel names, and with interaction between a
wrapper and badly-typed components. All boxes are assumed to contain untyped pro-
cesses; wrapper code is statically typed; run-time type checking is required only when
receiving from a component.

Further discussion of related work is given in Section 7; Section 8 concludes with
future work. Proofs are deferred to an Appendix.

2 A Boxed 7 Calculus

The language — known as the boz-m calculus — that we use for studying encapsulation
properties must allow interacting components to be composed. The components will
typically be executing concurrently, introducing nondeterminism. It is therefore natural
to base the language on a process calculus. The box-m calculus lies in a large design
space of distributed calculi that build on the m-calculus of Milner, Parrow and Walker
[19], including among others the related calculi [2, 6, 8, 23, 26, 30, 32]. A brief overview
of the design space can be found in [27]; here we highlight the main design choices for
box-.

The calculus is based on asynchronous message passing, with components interacting
only by the exchange of unordered asynchronous messages. Box-7 has an asynchronous 7-
calculus as a subcalculus — we build on a large body of work studying such calculi, notably



[14, 4]. They are known to be very expressive, supporting many programming idioms
including functions and objects, and are Turing-complete; a box-7 process may therefore
perform arbitrary internal computation. The choice of asynchronous communication is
important as it allows two components to interact without creating causal connections
in both directions between them.

Box-7 requires facilities for constraining communication —in standard m-calculi, if one
process can send a message to another then the only way to prevent information flowing
in the reverse direction is to impose a type system on components, which (as observed
above) is not appropriate here. We therefore add a boxing primitive — boxes may be
nested, giving hierarchical protection domains; communication across box boundaries is
strictly limited. Underlying the calculus design is the principle that each box should be
able to control all interactions of its children, both with the outside world and with each
other. Boxes can be viewed as protection domains, akin to operating system-enforced
address spaces. Direct communication is therefore allowed only between a box and its
parent, or within the process running in a particular box. All other communication,
in particular that between two sibling boxes, must be mediated by code running in the
parent. This code can enforce an arbitrary security policy, even supporting dynamically-
changing policies and interfaces (in contrast to static restriction or blocking operators
[5, 33]).

Turning to the values that may be communicated, it is convenient to allow arbitrary
tuples of names (or other tuples). Note that we do not allow communication of process
terms. Moreover, no primitives for movement of boxes are provided, in contrast to most
work cited above. The calculus is therefore entirely first order, which is important for
the tractable theory of behaviour (the labelled transition semantics) that we require to
state and prove security properties. The calculus is also untyped — we wish to consider
the wrapping of ill-understood, probably buggy and possibly malicious programs.

2.1 Syntax

The syntax of the calculus is as follows:

Names We take an infinite set A" of names, ranged over by a, b, cetc. (except i, 4, k, 0,p,u,v).
Both boxes and communication channels are named; names also play the role of variables,
as in the m-calculus.

Values and Patterns Processes will interact by communicating values which are de-
constructed by pattern-matching by the receiver. Values u,v can be names or tuples,
with patterns p correspondingly tuple-structured.

u,v = T name
(V1 .. V) tuple (k > 0)
p ou= wildcard
T name pattern
(p1 .. Pk) tuple pattern (k > 0, no repeated names)

Processes The main syntactic category is that of processes, ranged over by P, Q. We
introduce the primitives in three groups.

Bozes A box n[P] has a name n, it can contain an arbitrary process P. Box names are
not necessarily unique — the process n[0] | n[0] consists of two distinct boxes named n,



both containing an empty process, in parallel.

P = n[P] box named n containing P
P|P P and P’ in parallel
0 the nil process

Communication The standard asynchronous w-calculus communication primitives are
Tv, indicating an output of value v on the channel named z, and zp.P, a process that
will receive a value output on channel x, binding it to p in P. Here we refine these with
a tag indicating the direction of the communication in the box hierarchy. An input tag
¢t can be either x, for input within a box, 1, for input from the parent box, or a name
n, for input from a sub-box named n. An output tag o can be any of these, similarly.
For technical reasons we must also allow an output tag to be f, indicating an output
received from the parent that has not yet interacted with an input, or 7, indicating an
output received from child n that has not yet interacted. The communication primitives
are then

P == ...
T output v on channel z to o
z'p.P input on channel z from ¢
Vx'p.P replicated input

The replicated input !z‘p.P behaves essentially as infinitely many copies of z‘p.P in
parallel. This gives computational power, allowing e.g. recursion to be encoded simply,
while keeping the theory simple. In z‘p.P and ! z‘p.P the names occurring in the pattern
p bind in P. Empty patterns and tuples will often be elided.

New name creation Both box and channel names can be created fresh, with the standard
m-calculus (v z) P operator. This declares any free instances of z within P to be instances
of a globally fresh name.

P == .
(vz)P new name creation

In (v )P the z binds in P. We work up to alpha conversion of bound names throughout,
writing the free name function, defined in the obvious way for values, tags and processes,
as fn(.).

2.2 Semantics
This subsection defines the operational semantics of Box-7. The reader unfamiliar with
process calculi may wish to skim to the start of Section 3 on a first reading.

2.2.1 Reduction Semantics

The simplest semantic definition of the calculus is a reduction semantics, a one-step re-
duction relation P — P’ indicating that P can perform one step of internal computation
to become P’. We first define the complement 7 of a tag ¢ in the obvious way, with * =
and 7 = 1. We define a partial function {/ }, taking a pattern and a value and giving,



where it is defined, a partial function from names to values.

{7y = {
{%ht = {z—v}
{<v1”vkl>/(z>1--pk)} = {vl/m}u "'U{Uk/Pk} if k=F
undefined, otherwise

The natural definition of the application of a substitution ¢ (from names to values) to
a process term P, written o P, is also a partial operation, as the syntax does not allow
arbitrary values in all the places where free names can occur. We write {V/,} P for the
result of applying the substitution {V/,} to P. This may be undefined either because {*/,}
is undefined, or because {V/,} is a substitution but the application of that substitution
to P is undefined. For example, {©**"/,}Z*() is not defined as (z z)" () is not in the syntax.
Note that the result {¥/,} P of applying a name-for-name substitution is always defined.
This definition of substitution leads to a lightweight notion of runtime error®.

The definition of reduction involves an auxiliary structural congruence =, defined as
the least congruence relation such that the axioms below hold. This allows the parts of
a redex to be brought syntactically adjacent.

P|0 = P vo)vy)P = (vy)(vz)P
PlQ = @|P wa)P1Q) = Plwn)@ o¢h(P)
PIQIR = PI@QIR)  (wonlP] = nlws)P] z#n

The reduction relation is now the least relation over processes satisfying the axioms and
rules below. The (Red Comm) and (Red Repl) axioms are subject to the condition that
{*/p}P is well-defined.

n[ztv | Q] — v | n[Q)] (Red Up)
" | n[Q] — n[ztv | Q] (Red Down)
v | 2'p.P — {Y/,} P (Red Comm)
zv | 'z'p.P — ta'p.P | {¥Y/,} P (Red Repl)
P—@ = P|R—Q|R (Red Par)
P—Q = (wz)P— (wz)Q  (Red Res)
P—Q = n[P] — n[Q] (Red Box)
P=P — Q=@ = P— @ (Red Struct)

The (Red Up) axiom allows an output to the parent of a box to cross the enclosing
box boundary. Similarly, the (Red Down) axiom allows an output to a child box n to
cross the boundary of n. The (Red Comm) axiom then allows synchronisation between a
complementary output and input within the same box. The (Red Repl) axiom is similar,
but preserves the replicated input in the resulting state.

Communications across box boundaries take two reduction steps, as in the following
upwards and downwards communications.

n[z'v] | 2"p.P — n[0] | Z | 2"p.P
— [0 [{"/p}P

— n[fﬂ) | 2Tp.P]
— n[{"p}F]

LA more conventional notion of runtime error would give errors only when a tuple is used as a name,
e.g. for output. The substitution-based notion is forced by our choice of syntax, which disallows values
in various places where names may appear. In general it will report errors sooner than the conventional
notion.

7" | n[z"p.P)




This removes the need for 3-way synchronisations between a box, an output and an input
(as in [32]), simplifying both the semantics and the implementation model.

2.2.2 Labelled Transitions

The reduction semantics defines only the internal computation of processes. The state-
ments of our security properties must involve the interactions of processes with their
environments, requiring more structure: a labelled transition relation characterising the
potential inputs and outputs of a process. We give a labelled semantics for box-7 in an
explicitly-indexed early style, defined inductively on process structure by an SOS. The
labels are

{ == T internal action
T°v output action
z7v input action

where v ranges over tags x, n, T and n. The labelled transitions can be divided into those
involved in moving messages across box boundaries and those involved in communications

between outputs and inputs. The movement labels are

T™v (sending to child n) 2™ (box n receiving from its parent)
Z'v (sending to the parent)

Say mv(o0) is true if o is of the form n or 1. The communication labels are

T*v (local output) z*v (local input)
" (output received from child n) xz™v (input a message received from child n)
Z'v (output received from parent) 2Tv (input a message received from parent)

Labels synchronise in the pairs Z'v and z7v. The labelled transition relation has the
form

ArrP-50

where A is a finite set of names and fn(P) C A; it should be read as ‘in a state where
the names A may be known to P and its environment, process P can do £ to become Q’.
The relation is defined as the smallest relation satisfying the rules in Figure 2 omitting
all transition subscripts, occurrences of C : and occurrences of Ce. We write A,z for
AU {z} where z is assumed not to be in A, and A,p for the union of A and the names
occurring in the pattern p, where these are assumed disjoint.

The labelled semantics is explained further in [28]. It is similar to a standard =
semantics but must also deal with boxes and with reductions such as

(vx)T"2) | n[0] — (vaz)n[z'7]

in which a new-bound name enters a box boundary. The two semantics coincide in the
following sense.

Theorem 1 If fn(P) C A then AF P - Q iff P — Q.

This give confidence that the labelled semantics carries enough information. The proof
is somewhat delicate; it is sketched in [29] and given in detail in [28].



3 A Filtering Example

To demonstrate the use of box-m we give the definition of a wrapper that restricts the
interface for user programs. In most operating systems, programs installed and run by a
user enjoy the same access rights as the user, so if the user is allowed to open a socket and
send data out on the network then so can any component. We idealize this scenario with
the configuration below — an idealized single-user OS in which user Alice is executing
a program P. Here the box around P stands for the operating system enforced user
protection domain.

alice[ P |

L™, | OS write on Alice’s in port
Loutlicey. .. | OS read from Alice’s out port
! netalicey 0S read from Alice’s net port

The OS provides three channels in, out and net, to respectively allow the user’s program
to read from and write to the terminal and to send data out on a network connection.
The program P is executing within a box and so interacts with the OS using the 1 tag —
for example P = inTac.ﬁT(ac x) receives a value from the terminal and then sends a pair
of copies of the value back to the terminal.

To execute some untrusted code fragment @), Alice may run the code in parallel with
her other applications, perhaps as alice[P | Q]. But, this grants too much privilege to Q.
In particular, if Q = tin'z.net' « then any terminal input may be redirected to the net.
A wrapper is a box-7 context which can provide fine-grain control of the behaviour of Q.
For example, the filtering wrapper Wi of [28] prevents @) from accessing the network:

Wi(2) aef (va)( a[-] | Vin'zin"z | Lout®z.out x )

The system becomes alice[P | W (Q)]. The untrusted code is placed in a box with a
fresh name a, so a € fn(Q). In parallel with the box are two forwarders for in and out
messages. The first, Vintz.in"z, is a replicated input receiving values from the OS and
sending them to a; the second is dual. Only these two processes can interact with a due
to the scope of the restriction, so even when put in parallel with other code the wrapper
guarantees that @@ will not be able to send on net.

We show a small reduction sequence where P = 0 and ) = intznet z. Here B is
the forwarders !in'z.in"z | ! out®z.out =.

—ualice

iny | alice[(va)( a[Q] | B)]
alice[(v a)(in'y | a[Q] | B)]

%alicey | alice[P | Wl(Q)]
alicelin'y | (v a)(alQ] | B)]
alice[(v a)(in" y | a[@] | B)]

(
(va)(afin' y | Q1] B)]
(
(

alice Va)(a[net y] | B)]
alice[(v a)(net’y | a[0] | B)]

A

[in
[
alice|
[
[

At the final step the output from @ is prevented from leaving the alice box directly as
B does not contain a forwarder for net. It is prevented from interaction with any P
(although here P was empty) by the restriction on a.

4 The Unidirectional-flow Wrapper

There is a tension between the strength of communication primitive supported by a
wrapper and the strength of the security property it can guarantee. The examples of



the introduction and [28] provide only asynchronous unordered communication between
components, which would be awkward to use in most real systems. At the other extreme,
synchronous communication introduces causal flows in both directions (the causal flow
property we state in Section 5 would not hold in a synchronous calculus, so a more del-
icate property would be required — perhaps stating that there are only data-less acks
from one component to another). There are two intermediate points — one can provide
asynchronous ordered communication, as we do below, or use some form of weak ac-
knowledgments, as in the NRL pump [16]. The former still guarantees an absence of
information flow (albeit at the cost of maintaining an unbounded buffer) while the latter
limits bandwidth of covert channels. In both cases, it is essential to be able to guarantee
that the implementation of the communication primitives does actually have the desired
flow property, this is what we set to do here.

In Figure 1 we give a wrapper F that takes two components and allows the first
to communicate with the second by a first-in, first-out buffer. The wrapper has been
written with care to avoid any information leak from the second component to the first.
For simplicity both components have simple unordered input and output ports in; and
out; to the environment; it would be routine to make these FIFO also.

]:(—17—2) = (Vaab)( a[—l] | b[—2] |
(v buff, full)
(v front, back)

(create FIFO buffer) buff " (front back) |

(connect from® to buffer) from®wr).(vr')(front” wr'y | 7 |

(connect buffer to to®) back* wr).(vr')(F wr'y | r'b.F*)) |

(buffer code) Y buff * (front back).front* w r).(7* | (v back’)(buff~ (front back'y

| full” back back vy)) |
! full* (back’ back v).(vr) (back* @ry | r*.back’ @ r'y.(r""
| full” (back’ back v')))) |

(I/O forwarders) Vina " zina @ | Yout: “z.outs @ |
T

: —b —b
VinsTz.iny o | L outs"z.outs z)

Figure 1: FIFO Pipeline Wrapper F.

The interface to the wrapper is as follows. To write to the buffer a producer sends a value
together with an acknowledgment channel to the wrapper (using a standard asynchronous
m-calculus idiom). The wrapper inserts the value in a queue and acknowledges reception.
For value v the producer may contain

(Vack)(fromT(vack) | ack'...),

sending the value and a new acknowledgement channel ack to the wrapper and, in parallel,
waiting for a reply before proceeding with its computation. On the receiver side, we may
have a process that waits for a pair of a value and an ack channel:

tot(z 7“).(?T | ...)

The name of the receiving channel is to; channel r is used to send the acknowledgement
back to the wrapper. Thus a configuration where B stands for the body of the wrapper
could be:

(va, b)( al (v ack)(WT(v ack) | ackT.O) 11 9] tol(zr).7" ] | B )



The implementation of the wrapper is somewhat tricky, as we have to be careful not
to introduce covert channels between the components. Within the wrapper there is a
replicated input on buff that creates a new empty FIFO buffer and a replicated input
on full that creates a new buffer cell containing a value. The key is to ensure that the
acknowledgment to the first component not be dependent on any action performed by
the second component. The glue process that connects the from® channel to the buffer
has a subprocess, '*.7%, to send the ack to a. This small process itself expects an ack
from the head of the buffer saying that the message was inserted in the queue. The buffer
code front*(vr).(F* ... acks on r immediately, in parallel with placing the new message
in a full buffer cell at the head of the queue. The asynchrony here is essential.

So far we have been vague about the statement of the properties that we expect
wrappers to enforce. For W, it may be clear from examination of the code and the
semantics that the wrapper is satisfactory, but it is unclear exactly what properties are
guaranteed. For F the situation is worse — even this simple wrapper is complex enough
that a rigorous statement and proof of its security properties is essential; the user should
not be required to examine the code of a wrapper in order to understand the security
that it provides. We now turn to the task of formalizing these properties and developing
the tools needed to prove them.

5 Colouring and Causal Flow

The intuitive property of F that we wish to express is that the second wrapped component
should not be able to affect the first. In [28] we expressed the intuitive property that one
wrapped component does not causally affect another using a simple coloured reduction
semantics for box-m. Output processes were annotated with sets of colours that record
their causal histories — essentially the sets of principals that have affected them in the
past — and the reduction semantics propagated this causal history data. In this paper we
introduce also a coloured labelled transition semantics, allowing more direct statements
of security properties of wrappers that interact with their environment. The coloured
calculus is a trade-off — it captures less detailed causality information than the non-
interleaving models studied in concurrency theory [37, 3, 7] but is much simpler; it
captures enough information to express interesting security properties.

In [28] we also expressed a number of other desirable properties of wrappers — that
they honestly forward messages between component and environment, and that they
mediate all communication between components. The latter, related to intransitive non-
interference [24], was expressed using the coloured semantics. Two further information
flow properties were expressed using the uncoloured LTS: new name directionality and
permutation. They illustrate the wide range of precise properties which the intuitive
statement might be thought to mean.

5.1 Colouring the Box-7 Calculus

We take a set col of colours or principals (we use the terms interchangeably) disjoint
from N. Let k, p,q range over elements of col and C, D, K range over subsets of col. We
define a coloured box-m calculus by annotating all outputs with sets of colours:

P == C:z% | z'p.P | Yztp.P | n[P] | 0 | P|P | (vz)P

If P is a coloured term we write |P| for the term of the original syntax obtained by
erasing all annotations. Conversely, for a term P of the original syntax Co P denotes
the term with every particle coloured by C. For a coloured P we write Ce P for the

10



coloured term which is as P but with C unioned to every set of colours occurring in it.
We sometimes confuse p and the set {p}. Let pn(P) be the set of colours that occur in
P. We write CD for the union CU D.

In the coloured output C:Z°v think of C as recording the causal history of the output
particle — C is the set (possibly empty) of principals p € C that have affected the particle
in the past. In an initial state all outputs might typically be coloured by singleton sets
giving their actual principals, for example colouring the code of wrapper F and two
wrapped components with different colours w, p, q:

(woF)(poP|qoQ)

The coloured reduction semantics is obtained by replacing the first four axioms of
the uncoloured semantics by the rules

n[C:zTw | Q] — C:7™ | n[Q)] (C Red Up)
C:7" | n[Q] — n[C:ZTv | Q] (C Red Down)
C:z'v | z'p.P — Ceo({¥/,}P) (C Red Comm)
C:zv | 'z'p.P — 'z'p.P | Co({¥/,} P) (C Red Repl)

that propagate colour sets. The coloured calculus has essentially the same reduction
behaviour as the original calculus:

Proposition 2 For any coloured P we have |P| — Q iff 3P’ . P — P’ A |P'| = Q.

The coloured labelled transitions have labels ¢ exactly as before. The coloured
labelled transition relation has the form

Arr-5%c0

where A is a finite set of names and fn(P) C A; it should be read as ‘in a state where
the names A may be known to P and its environment, process P can do ¢, coloured C, to
become @Q’. Again C records causal history, giving all the principals which have directly
or indirectly contributed to this action. The relation is defined as the smallest relation
satisfying the rules in Figure 2. It coincides with the previous LTS and with the coloured
reduction semantics in the following senses.

Proposition 3 For any coloured P we have A\ |P)| LN QifAC, P . AR P —£>c P’ A
|P'| = Q.

Proposition 4 For coloured P and Q, if fn(P) C A then AF P 54 Q iff P — Q.

5.2 The Causal Flow Property

The property can now be stated. Say an instantiation of some binary wrapper W is an
uncoloured process W(P, @) where P and ) are uncoloured processes not containing the
new-bound names scoping the holes of W. Say W is a pure binary wrapper if for any
instantiation and any transition sequence

AFWPQ) L ... R

the labels ¢; have the form T, in;Tv, or outiTv, for i € {1,2}. It is easy to see that F is
pure. Purity simply means that the wrapper has a fixed interface and thus simplifies the
statement of the causal flow property.
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Definition 1 (Causal flow property) A pure binary wrapper W has the causal flow
property if for any instantiation W(P, Q) and any coloured trace

AFDoW(P,Q) e, ... Be,,

such that all input transitions iniTv and inyTv in 0.4 are coloured with principal sets
{p} and {q} respectively, we have {; = outlTU implies that q & C;.

This property forbids any causal flow from an input on ins to an output on out;.

Different variants of the flow property, with different characteristics, can be stated
— for example, to also prevent information in the initial state of @) affecting outputs on
out; we could consider coloured traces

AR (BoW)(poP,qoQ) ¢, ... e,

This second definition still allows the ) to communicate with P but only on the con-
dition that P does not perform any further output dependent on the communicated
values. Forbidding @ affecting P at all (even if there are no inputs or outputs of either
component) can be done with a slightly more intricate coloured semantics. There is no
clear cut ‘best’ solution, yet the use of causal semantics allows succinct statement of the
alternatives and eases the comparison of these different properties.

6 Causality Types

Verifying a causal flow property directly can be laborious, requiring a characterisation of
the state space of a wrapper containing arbitrary components. We therefore introduce a
type system that statically captures causal flows; a wrapper can be shown to satisfy the
causal flow property simply by checking that it is well-typed. This section introduces the
type system, gives its soundness theorems, and applies it to F.

A simple type system for Box-7 would have types

T :=chanT | box | (T..T)

for the types of channel names carrying 7', box names, and tuples. We annotate the first
two by sets K of principals and add a type name, of arbitrary names, and T, of arbitrary
values, giving the value types

T :=changT | boxk | (T..T) | name | T

If 2 : changT then z is the name of a channel carrying T'; moreover, in an output process
C:Z*v on z the typing rules will require C C K — intuitively, such an output may
have been causally affected only by the principals k € K. In an input z‘p.P on z the
continuation P must therefore be allowed to be affected by any k € K, so any output
within P must be on a channel of type chan,, T with K C K'.

We are concerned with the encapsulation of possibly badly-typed components, so
must allow a box a[P] in a well-typed term to contain an untyped process P. The type
system cannot be sensitive to the causal flows within such a box; it can only enforce an
upper bound on the set of principals that can affect any part of the contents. If a : boxk
then a is a box name; the contents may have been causally affected only by k € K.

We take type environments T" to be finite partial functions from names to value types.
The type system has two main judgments, I' - v:T for values and I' F P:procy for
processes. The typing for processes records just enough information to determine when
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prefixing a process with an input is legitimate — if P:prock then P can be prefixed
by an input on a channel z:chany. (), to give z*.P, iff K’ C K. Note, however, that a
P :procy may have been affected by (and so syntactically contain) k & K.

To type interactions between well-typed wrapper code and a badly-typed boxed com-
ponent some simple subtyping is useful. We take the subtype order T' < T” as below,
and write A{7; | i € 1..k } for the greatest lower bound of T1, .., T}, where this exists.

T
/ \
name (T .. Ty,)
/ \
boxg chan,T

The complete type system is given in Figure 3; we now explain the key aspects by giving
some admissible typing rules.

Basic Flow Typing Consider z:chany(), y:chan, () and the reduction
C:z* | z*.D:y* — (CUD):gy*

During the reduction the output * on y is causally affected by the output on x — the
right-hand process term (CU D) :5* records that the output on y has been (indirectly)
affected by all the principals that had affected the output on z. For the left process to
be well-typed we must clearly require C C K and D C L; for the right process to be
well-typed we need also C C K, to guarantee this the typing rules require K C L. The
relevant admissible rules are below.

' 2:chan,T I' - z:chan,T
'tv:T Iy:T+F P:procg.
CCK K C K"

'+ C:T*v : procg I' - 2*y.P :procg

Now consider also y:chan,,() and the process
C:z* | z*.(D:y" | D':?*)
Here both the output on y and that on ¢’ must be affectable by C, so the typing rule for

parallel must take the intersection of allowed-cause sets:

'k P:prock T'F Q:procy
'k P|Q:procg

The examples above involve only communication within a wrapper, with tag x. Commu-
nication between a wrapper and its parent, with tag 1, has the same typing rules, as the
parent is presumed well-typed.

Channel Passing Channel passing involves no additional complication. Consider the
type environment I' = z: chany. (), = : chanygchang. (), and the reduction
C:7*z | 2*y.D:y* — (CUD):Z*

The left-hand process is typable using the rules above if C C K for the x output, D C K"
for the y output, and K C K" for the input, using T',y:chany.() - D : 7*:prock,.
Together these imply (CU D) C K", so the right-hand process is well-typed.
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Interacting with a box (at T) As discussed above, the contents of a box may be
badly-typed, yet a wrapper must still be able to interact with them. The simplest case is
that in which a wrapper sends and receives values that it considers to be of type T; we
consider more general communication in the next paragraph. The typing rule for boxes
requires only that the principals pn(P) syntactically occurring within the contents P of
a box are contained in the permitted set and that P’s free names are all declared in the
type environment.

't a:boxg
pn(P) CK
fn(P) C dom(T")
Tk a[P]: procyk

Consider sending to and receiving from a box a: boxk.
C:z% | a[P] | 2%y.Q

For the output to be well-typed we must insist only that C C K; for the input to be
well-typed @ must be allowed to be affected by any principal that might have affected
the contents P.

' a:boxk ' a:boxk

'+ z:name I'-z:chan,, T
F'kFo:T Iy: TF P:procg:
CCK K CK' C K"

'+ C:Z% : procg ' 2%p.P:procy,

Interacting with a box (at any transmissible S) More generally, a wrapper may
receive from a box tuples containing names which are to be used for communicating with
the box as channel names, for example

x“(vr).(C:F“ | )

receives a value v and name r from box a and uses r to send an ack back into a. This
necessarily involves some run-time typechecking, as the box may send a tuple instead
of a name for r. There is a design choice here: how strong should this typechecking
be? Requiring an implementation to maintain a run-time record of the types of all
names would be costly, so we check only the structure of values received from boxes.
We suppose the run-time representations of values allow names (bit-patterns of some
fixed length) and tuples to be distinguished, and the number of items in a tuple to be
determined, but no more (so e.g. :chanyT and y:box; will both be represented as bit
patterns of the same length). We introduce the supertype name of chan T and box,
and allow a wrapper to receive only values of the transmissible types

S =T |name| (S..S)

To send a value to a box by C:Z%v it is necessary only for x to be of type name.

The operational semantics expresses this run-time typechecking by means of the con-
dition that {/,} P is well-defined in the reduction communication rule and the labelled-
transition input rules — for example, {*#’/,}C:T* is not well-defined, as the syntax does
not allow a tuple to occur in channel-name position of an output. We would like to
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ensure that run-time typechecking is only required when receiving values from a box, i.e.
that for communication within a wrapper or between a wrapper and its parent such a
substitution is always well-defined. This is guaranteed by requiring a box input prefix to
immediately test all parts of a received value that are assumed of type name — in typing
an input z%p.P the type environment A derived from the pattern p must contain no
tuples, and all z:name in A must be used within P as a channel or box. For example,
if a:boxk and z:chany (name name) then

%y z).(K:y“ | K:E“)

is well-typed as the pattern (yz) completely decomposes values of type (namename)
and both y and z are used as channels in K:gy* | K:Z*. On the other hand

4w T w

is not, as it may receive (for example) a triple from the box, leading to a later run-time
error within the wrapper. The type system is conservative in also excluding z°(y z).(K:
y“). Say a type is atomic if it is of the form name, chanyT or boxk and flat if it is of the
form T, name, chan, T, or boxk. Say I is atomic or flat if all types in ran(T") are. The
atomic types are those which can be dynamically extended using restriction. We consider
dynamics (reductions and labelled transitions) only for processes with respect to atomic
typing contexts; the definitions ensure that an extruded name can always be taken to be
of an atomic type. The calculus has no basic data types, e.g. a type of integers, that are
not dynamically extensible. This makes the type system a little degenerate.

The rest The typing rules for nil and restriction are straightforward; there is also a
specialisation rule allowing some permitted affectees of a process to be forgotten.

I'z:TF P:procg ' P:procy:
T atomic K CK'

I'FO0:procy T+ (vz)P:procy '+ P:procy

6.1 Soundness

We wish to infer properties of the coloured input/output behaviour of wrappers from the
soundness of the type system, and therefore need a subject reduction result which refers
not only to reductions (equivalently, 7 transitions) but also to input/output transitions.
Define typed labelled transitions by

Thq P—5cQ iff (T atomic AT+ P:procy A dom(T) F P —5¢ Q)

The subject reduction theorem for £ an output Z°v should state that x, o, v and @ have
suitable types; the theorem for £ an input should state that if £ can be typed then @ can.
The result is complicated by the fact that box-7 is a calculus with new name generation,
so new names can be extruded and intruded. Type environments for these names are
calculated as follows. For a type environment I', with I' atomic, and a value v extruded
at type T define the type environment tc(T',v,T') for new names in v as follows.

te(D,z,T) = z:T if z ¢ dom(T")
and T atomic

te(Tyz, T) = z:name if z ¢ dom(T)

te(T, z, ) =0 ifCka:T

te(T, vy .. vg), T) = A, te(T,v,T)

tC(F, <U1 (T Tk)) = Aq o, te(T, i, 1))

te(T,v,T) undeﬁned elsewhere
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Here A,c, , I'i is the type environment that maps each x in some dom(T';) to A{7T" | 3i .
z:T € T'; }, where all of these are defined. A,;., ,T'; is undefined otherwise. Note that
in the T case the te(T',v;, T) will necessarily all be well-defined and will be consistent.
To see the need for A, consider I' = c:chany(boxk name) and P = (vz)c*(@z). P
has an extrusion transition with value (z x); the type context tc(T, (z z), (boxk name))
should be well-defined and equal to x : boxg.

Further, the type system involves subtyping, so te(T',v,T) can only be used as a
bound on the extruded/intruded type environments. Say I' < I' iff dom(T") = dom(I")
and Vz € dom(T") . I'(z) <TV(z).

We can now state the subject reduction result. For output tags {x,1} and 1 the name
x is guaranteed to have a channel type and v the type carried; for a and @ they are only
guaranteed to be a name and a value of type T. {x,1} and @ are communication tags,
so x cannot be extruded, whereas 1 and a are movement tags, so x may be extruded. By
convention we elide a conjunct that tc(...) is defined wherever it is mentioned.

Theorem 5 (Subject Reduction) IfT' k¢ P E—O%c Q then

case o € {x,1}: for some K',T we have C C K', T I x:chany, T, and there exists © <
te(D,v,T) such that T',0 - Q : procy.

case o =1: for some K',T we have C C K’ and there ezists © < tc(T,(x v), (chany, T T'))
such that T',© F @Q : procyg.

case o = a: for some K' we have C CK', T F a:boxg:, and there exists a type environ-
ment O < tc(T, (x v), (name, T)) such that T',0 F Q : procg.

case o = a: for some K' we have C C K', '+ a:boxg:, I' F z:name, and there exists
O < te(T',v, T) such that T',0 F Q : procy.

IfT ¢ P 28¢ Q then

case y € {x,1}: for some K', T we have T + z:chany,T. If moreover C C K' and
O < te(T',v,T) thenT',0 F Q : procg.

case v = a: for some K' C K", and S we have T+ a:boxyk:, I' F z:chany., S, te(T, v, S)
well-defined, and ran(te(T',v,S)) C {name}. If moreover C C K" and © <
te(D,v,S) then T',0 F Q : procyg.

for some K' we have T' F a:boxk:. If moreover C C K' and we have

case vy = a:
O <tc(l,(xv), (name T)) then ', © - Q : procy.

IfTH« P S5¢c Q then C=0 and T F Q : procy.

A run-time error for box-7 is a process in which a potential communication fails
because the associated substitution is not defined. More precisely, P contains a run-time
error if it contains subterms Z7v and z7p.P in parallel (and not under an input prefix)
and {"/,} P is not defined. In a well-typed process run-time errors can only occur within
boxes (whose contents are untyped) or at communications from a box to the wrapper.
Internal transitions of the wrapper and communications between the wrapper and its
parent therefore do not require dynamic typechecking.

Theorem 6 (Limited Runtime Errors) If T - P:procy, P = (va;..z,)(Tv |
2'p.P' | Q), T atomic, P' does not contain a box and v € {x,1} then {"/,}P is well-
defined. Similarly for replicated input.

16



6.2 Typing the Unidirectional-flow Wrapper

Finally, we can show that instantiations of F are well-typed and use the subject reduction
theorem to conclude that F has the causal flow property.

Theorem 7 (F typing) If

I' = inj:chang, T, outy:chang, T,
ine :chan{q}T, outs : chan{p7q}'|',
from : chang,, (T name),

;‘o :chang, +(T chang, (),
1

and also fn(P, Q) C dom(T') — {a,b} then T+ o F(P,Q): proc,.
The proof of this involves type assumptions for the new-bound names of F as follows.

a:boxypyy
b:bOX{p7q}
buff :chang, ( chang,, (T chang,, )
chang, (T chang, 1))
full:changg »(chang, (T chang, ,0)

chan{M} (T chan{p7q} 0)

A straightforward induction on trace lengths using the Subject Reduction theorem then
proves the desired causal flow result:

Theorem 8 Wrapper F has the causal flow property.

7 Discussion

Policy enforcement mechanisms: Wrappers impose security policies on components
for which it is impractical to analyze the internal structure, e.g. where only untyped
object code is available.

Several alternative approaches are possible, differing in the level of trust required,
the flexibility of the security policy enforced, and their costs to component producers
and users. Code signing and Java-style sandboxing have low cost but cannot enforce
flexible policies — signed components may behave in arbitrary ways whereas sandboxed
components should not be able to interact with each other at all. Code signing requires
the user to have total trust in the component producers — not just in their intent, but also
in their ability to produce bug-free components. Sandboxing requires no trust, but the
lack of any interaction is often too restrictive. More delicate policies can be enforced by
shipping code together with data allowing the user to type-check it in a security-sensitive
type system [34, 13], or to check a proof of a security-relevant behavioural property [20].
In the long term these seem likely to be the best approaches, but they require component
producers to invest effort and to conform to a common standard for types or proofs — in
the short term this is prohibitive. Shifting the burden of proof to the user, by performing
type inference or static analysis of downloaded code, seems impractical given only the
object code, which may not have been written with security in mind and so not conform
to any reasonable type system. In contrast, wrappers have been shown to have low-cost
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— none to the producer and only a small run-time cost to the user [9]. They allow more
flexible interaction than sandboxing, albeit coarser-grain policies than proof-carrying
components or security-type-checked components.

Information flow properties: The causal flow property is related to the property,
studied in many contexts, that there is no information flow from a high to a low security
level (though most work addresses components, which may have the property, rather than
wrappers, which may enforce it on subcomponents). The literature contains a range of
definitions that aim to capture this intuition in some particular setting; the formalisations
vary widely. A basic choice is whether the property is stated purely extensionally, in
terms of a semantics that describes only the input/output behaviour of a system, or
using a more intensional semantics. A line of work on Non-Interference, summarised in
[18], takes an extensional approach, stating properties in terms of the traces of input
and output events of a system. Related definitions, adapted to a programming language
setting, are used in [34, 13]. In the presence of nondeterminism, however, non-interference
becomes problematic — as discussed in [35], the property may only be meaningful given
probabilistic scheduling, which has a high run-time cost.

We believe that the basic difficultly is that the intuitive property is an intensional one
— the notion of one component affecting another depends on some understanding of how
components interact; a precise statement requires a semantics that captures some aspects
of internal execution, not just input/output behaviours. This might be denotational or
operational. Intensional denotational semantics have been used in the proofs (and, in the
last, statements) of non-interference properties in [13, 1, 25], which use a logical relations
proof and PER-based models. [35] and [25] go on to consider probabilistic properties.

For wrappers, it is important that the end-user be able to understand the security that
they provide as clearly as possible. We therefore wish to use as lightweight a semantics
as possible, as this must be understood before any security property stated using it,
and so adopt an annotated operational semantics (developing a satisfactory denotational
semantics of box-m, dealing with name creation, boxes, and untyped components, would
be a challenging research problem in its own right). In a sequential setting annotated
operational semantics have been used by [38]; see also [17]. The definition of the coloured
semantics for box-7 seems unproblematic, but in general one might validate an annotated
semantics by relating it to a lower-level execution model (as mentioned below).

Information flow type systems: The type system differs from previous work [34,
35, 21] primarily in handling badly typed components. Necessarily, it does not provide
fine-grain tracking of information flow through these components. It also handles non-
determinism, new name creation and channel passing. Precise comparisons with related
type systems are difficult as the languages involved differ widely. One can, however,
embed fragments of these languages into box-7 (noting that this only exploits the fully-
typed part of our calculus). For example, in the work of Smith and Volpano [31] an
assignment to a low security variable can follow an assignment to a high variable — the
program h:=3;1:=1 is well-typed. The natural translation of this program in box-7
would be

0|70 | mry.(R3 |1yl
with an initial store assigning 0 to h and [. This would not be well-typed in the system
of this paper, taking h: chan{H’L}Int, l: chan{L}Int and a new base type Int. Here the
low assignment is causally dependent on the high, even though no high information can

leak. On the other hand a box-m encoding of branches would not forbid high variable
guards.
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Causal flow is a robust and straightforward property; it can be enforced by a remark-
ably simple type system. But, as the example above shows, it is sometimes overcon-
straining. We envisage that in a large system the bulk of the code will be typeable in a
secure type system, a small portion will be in clearly-identified unsafe modules that are
subject only to conventional typechecking, and a small portion (any untrusted code) will
be encapsulated in wrappers. Automatic type inference would be required to relieve the
burden of adding security annotations to all declarations.

8 Conclusion

The issue of securely composing untrusted or partially trusted components has great
practical relevance. In this paper we have studied techniques for formally proving that
software wrappers — the glue between components — actually enforce user-specified in-
formation flow constraints. We have defined a coloured operational semantics for a
concurrent wrapper language. By keeping track of all the principals that have affected
a process in the semantics it becomes easy to formulate clear statements of information
flow properties. To prove that particular wrappers are secure, we defined a causal type
system and so only need show that the wrappers are well typed.

Throughout the paper we focussed on wrapper properties — the calculus, statement
of security properties and type system are all designed specifically for wrappers — but
we believe similar techniques are applicable to other situations in which interaction must
be controlled but not completely excluded, for example in isolating a security-critical
kernel of a single application, or in controlling interactions between packets in an active
network. Allowing untyped code fragments in otherwise typed programs gives a way to
loosen security restrictions when necessary.

In future work we intend to integrate the causal type system with a lower-level se-
mantics for object code, such as the typed assembly language of [11]. We also intend
to address the issue of type inference of security levels and the statements of properties
involving dynamic changes in information flow policy.
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A Coloured LTS and Typing Rules

- (Out) . (¢) (In)
AFC:7% 3¢ 0 AFz'p.P Z5c Co{¥/,}P
t pr
ARP TC L (Par) - (¢) (Repl)
AFP|Q —=cP|Q AFl2'p.P 5S¢ la'p.P | Ce{",}P

AFPIZSC P AR QS @

Comm
AFP|Q g (vin(z,v) — A)(P' | Q) ( :
AP IS P (Box-1)

A+ n[P] D (vin(z,v) — A)(C:Z" | n[P"])

- — (Box-2) AEP S P (Box-3)
A+ n[P] 3¢ n[C:EMv | P] AF n[P] Ss¢ n[P']
AP 5P Az P X8 P
2= ¢ (a) (Res-1) —————S"— (b) (Res-2)
A (vz)P —¢ (vx)P’ AF(wa)P L5 P

AFP-ScpP P =P
AFP S P

(Struct)

(a) The (Res-1) rule is subject to z & fn(¢). (b) The (Res-2) rule is subject to = €
fn(v) — fn(y,0), if ois %, T or 7, and to z € fn(y,v) — fn(o) otherwise. (c) In the (In)
and (Repl) axioms there is a side condition that {°/,}P is well-defined. In all rules with
conclusion of the form A - P —¢ Q@ there is an implicit side condition fn(P) C A.
Symmetric versions of (Par) and (Comm) are elided.

Figure 2: Coloured Box-7 Labelled Transition Semantics
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Patterns:

Fpi:Ti > Ay BT > Ay
Fo:T0 Frx:T>az:T Fproepr) (T T > Aq, . Ay

Values:
ko Ty .. T o : Ty fn(v) C dom(I) T atomic
Lz:Tka:T TF (v .oog) (Th .. T) F'ko:T I'z:TF z:name
Processes:
o€ {x 11T} L€ {x 1}
' z:chan T I' - z:chan T
F'kFo:T Fp:T>A
CCK _ A+ P:procy
'+ C:z% : procy (Out-x1, 1) 't az'p.P:procyg (In-x1)
' a:boxyk:
'+ z:chan,S
Fp:S> A
o € {a,a} ')A+ P:procg
'k a:boxk K'CcK
'+ z:name A flat
Fto:T P tests all names of type name in A
CCK o p contains no wildcards .
t-a.a -
'+ C:z% : prock (Out-a,3) 'k 2%.P:procy (In-a)
I' F n:boxk
'+ P:procy pn(P) C K
'+ @ :procy fn(P) C dom(T")
(Par) ox)
' P|Q:procgx I'F n[P]:procg
I'z:TF P:procg
T atomic R
— (Nil
'+ 0:procg (Nil) 't (vz)P:procy (Res)
' P:procy
K CK
' P:procy (Spec)
The replicated input rules are similar to the input rules. The predicate

‘P tests all names of type name in A’ is defined to be true iff for all y:name in
A, y occurs free in channel or box position within P.

Figure 3: Coloured Box-m Typing
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B Proofs

This appendix gives the soundness proofs for the type system (of the Subject Reduction
and Limited Runtime Error theorems) and the proof that F has the causal flow property.

B.1 Soundness

The proof of Subject Reduction is divided into three main parts. First we require lem-
mas giving conditions under which a substitution is well-defined and well-typed (here
‘good’). We then prove substitution lemmas for values and processes by induction on
typing derivations, and finally the Subject Reduction result by induction on pairs of tran-
sition and typing derivations. The Limited Runtime Error result is almost an immediate
consequence of these lemmas.

Say T'; A F {"/p} good iff {*/,} is well-defined, dom({"/,}) = dom(A), and Vz:T €
A .TF{%}x:T. We adopt the convention below that wherever t¢(I', v, T') is mentioned
it is also assumed well-defined.

Lemma 9 IfT = A [; and for somej € l.nT;Fv:T then'Fv:T.

i€l..n

Proof Induction on derivation of I'; - v:T.

(Var) v = z. We have I'(z) < I';(z) = T so by examination of the value typing rules
F'Fz:T.

(Tuple) By the induction hypothesis.
(Top) We have fn(v) C dom([';) Cdom(T) soT'Fwv:T.

(Name) v = z. We have I'(z) < T'j(z) so as the atomic types are down-closed I" I
I name.

O

Lemma 10 (tc) If© dzeftc(F,v,T) then © atomic and I',O Fv:T.

Proof The first part is by induction on v, noting that the set of atomic types is closed
under defined glbs. The second part is also by induction on v.

Case z. Immediate from the definition of tc(T, z, -).

Case (v; ..v,,). For tc(T',v,T) to be defined one of the following two cases must hold.

Case T'=T. We have that 0; 1o te(T',v;, T) are well-defined and © = A, ,, ©;.
By the induction hypothesis T, ©; F v; : T, so fn(v;) € dom(T, ©;), so fn((v1 .. vp)) C
dom(T,0), 50 T,0 F (vg ..v,): T.

Case T = (T ..T,,). We have that ©; def te(D,v;, T;) are well-defined and © =
Nici.., ©i- By the induction hypothesis T',©; + v;:T;. Now for each i T
and ©; have disjoint domains, so T', A, , ©i = A;c; ,, T, 0;. By Lemma 9
[,0 F v;:T;. By the (Tuple) rule I', O F (vy ..v,) (17 .. T},).

O

Lemma 11 If T atomic then te(T,v, T) is well-defined and is equal to the type context
mapping each x € fn(v) — dom(T) to name.
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Proof Induction on v. O

Lemma 12 (Goodness - Standard - Preliminary) If

I' atomic
'w:U
Fp:Up> A

then T'; A = {*/,} good.

Proof By induction on the two typing derivations. Consider the last rule of the pattern
judgement.

(Wild) F _:U > 0. Clearly {¥/.} = {}; the second clause of the definition of good is
trivial; the third is vacuous.

(Var) Fy:U > y:U. Clearly {*/,} = {y — u}, dom({y — u}) = dom(y:U), and
LE{*}y:U.

(Tuple) F 01 ..pr): (Ur .. Uy > Ay, .., Ag. As T atomic the last rule of the value judge-
ment must be the value (Tuple) rule, with conclusion T' F (uq .. ug) :(U; .. Ug). By
the induction hypothesis T'; A; F {*i/,.} good for each i. By the definition of
substitution {“+"/,, .} is defined and equal to (J;cq ,{"/p:}. As for each
i dom({"/p,}) = dom(A;), we have dom({J;c; ,{"“/p:}) = dom(Ay,..,A;). To
check T; Ay, ., Ay B {0/, 0} good it remains only to observe that for
each z:T € Aq,.., Ay there is an ¢ with z:T € A;, hence ' - {¥/,,}2:T, hence

Lk (UiEL.k{Ui/Pi Hz:T.
O

Note that this result requires that the range of I' contains no tuple types. Consider
u=u=x, U= (boxkboxk), ' =z:U and p = (y2). We have - p:U > y:boxg, z: boxk
but {7/ »)} is not well-defined.

Lemma 13 (Goodness - Dynamic) If

I' atomic

Fp:S> A

dom(T") and dom(A) disjoint
{"/p} well defined

A flat (so ran(A) C {T,name})
Vy:name € A . {*/,}y is a name
p contains no wildcards

then © d:eftc(I‘,u,S) is well-defined, ran(©) C {name}, and ', ©; A F {¥/,} good.
Proof By induction on the pattern p.
Case _. Contradicts the premises.

Case y. We have A = y:S. Trivially {*/,} has domain dom(A). As S transmissible
and A flat either S = nameor S =T.

Case S = name. We have {*/,}y = « for some name z and u = z.
If ¢ dom(T') then tc(T', z,name) = z: name.
If € dom(T) then by I' atomic we have I' F 2 : name, so t¢(T, z, name) = §).
In either case we have I, © - {"/, }y: S, so T, ©; A + {7/, } good.
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Case S = T. By Lemma 11 © is well-defined and maps each z € fn(u) — dom(T")
to name, so I, O F {*/,}y: T, so T, 0; A - {*/,} good.

Case (p1 ..pg). We have S = (S1..Sk), A = Ay,..,Ap, and F p;:S; > A; for i € 1..k.
By {“/; ..pi} well-defined we know there exist uy, .., uy such that u = (uy .. ug),
each {"i/, } is well-defined and {*/ip, ..piy } = U;{"/p: }-

By the induction hypothesis each ©; = te(D,u;,S;) is well-defined, ran(©;) C

{name}, and T,0;A; F {%/,} good. © % A.©; is then well-defined, with
domain | J; dom(©;) and maps all names in its domain to name.

For I',©; A - {(wud/ -} good the well-definedness of the substitution is a
premise; the fact that it has domain dom(A) follows from I', ©;; A; F {“i/,,,} good.
Consider z:T € A. For some i € 1.k we have z:T € A;, so I',0; - {%/,, }z:T.
By Lemma 9T,0 F {“/, }2:T. We have x € dom({%/,,}) so {“* -/, poy}x =
{%/p: }x, hence I, © + {*/p}z: T.

O

Lemma 14 (Substitution - values) If

LAvFow:T
I,0;A F {",} good

then {"/,}v is well-defined and T',© - {*/,}v:T

Proof By I',0;A F {%/,} good we have that {“/,} is well-defined, so {"/,}v is well-
defined. The second part is proved by induction on the value typing derivation.

(Var) T)AFz:T.
Case z:T € I'. By goodness the domain of {%/,} coincides with that of A and
hence is disjoint from I', so {*/p}z =z, s0 T',0 F {¥/,}z:T.
Case z:T € A. By goodness I', © F {*/,}z: T.

(Tuple) T, A+ vy ..vg) (T} .. Ti,). By the induction hypothesis for each i we have I', ©
{*p}v; : T; hence T',© F {¥/p, } w1 .. vg) «(Th .. T},)

(Top) I AFv:T. We have fn(v) C dom(T",A). By goodness dom({"/,}) = dom(A)
and fn(ran({"/,})) C dom(T", ©), so fn({*/,}v) C dom(T', ©), hence I, © F {*/,}v: T.

(Name) I', A F z:name. We have z:T € I', A for some T atomic.

Case z:T € I'. By goodness the domain of {%/,} coincides with that of A and
hence is disjoint from I', so {*/,}x =z, so ', © I {*/,}x : name.

Case z:T € A. By goodnessT',© F {*/,}x:T. As T atomic this must be derivable
using the (Var) or (Name) rules. In the (Var) case {%/,}x = y for some name
y withy:T €T',0,s0',0 F y:name. In the (Name) case T' = name so we
are done.

O
Note that for this to hold the typing rules must ensure that names of tuple types do not

have type name. Note also that this lemma does not require any atomicity, and that
that is important in the first input clause of the process substitution lemma.
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Lemma 15 (Substitution - processes) If

I'AF P:procg
T,0;AF {*,} good

then (1) if {¥/p}P is well-defined then T',0 + {*/,}P :procy and (2) if P contains no
subterm n[Q] then {"/,} P is well-defined.

Proof We prove both parts simultaneously by induction on the size of type derivation
for P. For (1) we give two instances of each typing rule; in each case showing that the
premises of the right-hand instance follow from those of the left-hand instance.

(OUt_*aT7$)
o€ {x 1,1} 0€ {x 1,1}
A F z:changT I,0F {*p}z:chan,T
LLARw:T Lok {*}v:T
CCK CCK

(Out_*z Ta ?)

A+ C:z% : procyg (Out-x1,1) r,or C:{“/p}xo{“/p}v : procg

For (1) we use Lemma 14 for z and v, so all the premises of the right-hand in-
stance hold. For (2) by ', ® F {*/,}z :chanyT we have that {*/,}z is a name, so
{"/p}C:T°v is defined and is equal to the conclusion of the right-hand instance.

(Out-a,a)
ve (o) ("ho € ({*h}e. T1a)
I' A F a:boxg [0 F{"/y}a:boxk
I AF 2:name I,oe+ {",}r:name
T AFuv:T Lo {"}v:T
Cck CeK _
— (Out-a,a) —{"/,}o (Out-a,a)

A+ C:z% : procyg ror C:{v,lx {"/p}v : procg

For (1) we use Lemma 14 for a, z and v, so the middle 3 premises of the right-
hand instance hold. By I, © - {*/,}a :boxk we have that {*/,}a is a name, so the
first premise holds. For (2) note also that by I, © - {*/,}x : chan,T we have that
{"/p}z is a name, so {*/,}C:Z°v is defined and is equal to the conclusion of the
right-hand instance.

(Il’l-*, T)
L€ {x, 1} L€ {x 1}
A F z:chan T 0 F ({*}z):chan T
Fq:T>® Fqg:Tr>®
I'A,®F P:proc r,e,®+ {*,}P:proc
P (e, 1) - ()

A& 2tq.P:procy L0+ ({“}z) q{"p}P:procy

We assume without loss of generality that dom(®) and dom(©) are disjoint (but
elide the result on renaming of typing derivations that justifies this).

For (1) we use Lemma 14 for x, so the second premises of the right-hand instance
holds, and further {“/,}z is a name. By the definition of Good we have I', ©, ®; A F
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{*/p} good, so by the induction hypothesis the fourth premise of the right-hand
instance holds.

For (2) we noted above that {%/,}z is a name, and by the induction hypothesis
{*/p} P is well-defined, so {*/,}(x*q.P) is well-defined. By the disjointness assump-
tion it is equal to the conclusion of the right-hand side.

(In-a)
F, AlFa: bOXKI F, ok {“/p}a . bOXKI
I'yAF z:changS 0+ {*,}r:chan,S
Fqg:S> @ Fg:S> @
A & F P:procg 0,0+ {*,}P:procg
K' CK K'CK
& flat & flat
P tests all y : name in ¢ {“p}P ‘tests all ‘?J :name in ¢
p contains no wildcards p contains no wildcards

(In-a)

(In-a)

A F z%q.P:procg r,er {“/p}m{u/p}aq.{“/p}P : procg

For (1), as in the previous case we have the right-hand side requirements on a, z,
and P. The last right-hand premise follows from the disjointness of dom(®) and

dom({"/,}).

For (2), by the typing of {*/,}a and {*/,}z both must be names; it remains only
to use the induction hypothesis.

(Par)
I['A+ P:procg e+ {*,}P:prock
I'AF Q:procy IO F {*,}Q:procy
(Par) — — (Par)
I AR P|Q:prockqg L0 F{"/p}P [ {"/p}Q : Prockak:
Straightforward use of the induction hypothesis.
(Box)
A+ n:boxg L, 0F ({*/»}n):boxk
p(P) C K on({",}P) C K
fn(P) C dom(T, A) tmn({*/p}P) C dom(T', ©) (Box)
OX

T AFa[Pliproce — T,0F ({(“}n)[{"}F]: procy

For (1) we use Lemma 14 for n, so the first premise of the right-hand instance holds.
The second is immediate as value-for-pattern substitutions do not affect principal
sets. The third follows from the definition of goodness. Clause (2) is vacuously

true.
(Nil)
AT ooroe. ™ ToTopree;
Immediate.
(Res)
IA,z:TF P:procy ,0,z:TF {*,}P:procy
T atomic T atomic
I' A+ (vz)P:procg (Res) I,OF (va){"/p}P:procy (Res)
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We assume without loss of generality that ¢ dom(©). By the definition of Good
we have I', z: T, 0; A F {*/,} good, so by the induction hypothesis the first premise
of the right-hand instance holds.

(Spec)

I'AF P:procy I, 0F {*,}P:procy
K C K’ K C K

A+ P:procg (Spec) e+ {*,}P:prock

(Spec)
Straightforward use of the induction hypothesis.
0

To see the need for the condition that P is box-free, consider ' = (), A = z :(name name),
O = z:name, P = (vn)n[z*0], and {“/,} = {**/,}. The premises of the Lemma hold,
but {%/,} P is not well-defined.

Lemma 16 (Painting — Jackson Pollack style)) If

' P:procy
CCK
then I' = Co P : procy
Proof Routine induction on typing derivations. O

Lemma 17 IfT'F v:T then te(T,v,T) = 0.
Proof Induction on v. a
Lemma 18 If dom(A) is disjoint from dom(T'), fn(v) and fn(P) then

1. THuv:T < T,AFwv:T.

2. tc(T,v,T) = te((T,A),v,T).

3. T'FP:procy < I',AF P:procg

Proof Routine inductions. O

Lemma 19 If te((T,y:U),v,T) well-defined and y € fn(v) then there exists some V
with U <V and tc(T,v,T) = te((T,y:U),v,T),y: V.

Proof Induction on v.

Case . We must have = y. From the tc definition tc((T,y: U),y,T) =@ and T, y: U +
y:T, hence U < T. From the tc definition t¢(T,y,T) =y:T, so take V =T.

Case (V] ..0V,).
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Case T = (T}, ..T,). We have tc((T',y:U),v,T) = A\, tc((T,y:U),v;, T}).
Let J={j |y € (v;) }.
For all j € J by the induction hypothesis we have V; with U < V; and
te(T',v;, T;) = te((T,y:U),v;,T;),y:V;.
For all i ¢ J by Lemma 18.2 we have tc(T',v;, T;) = te((T,y:U),v;, T3).

The types {V; | j € J} have a lower bound U so a glb V' o Njes Vi exists

and U <V.
It follows that A, tc(T', v;, T}) exists and moreover is equal to (/\l te((T,y:U), v, Tl)) ,y:V,
so te(T, (1 .. vp), (Th .. Tn)) = te((T,y:U), (w1 ccvn), (11 .. T)),y: V.

Case T = T. This is similar to the previous case. We have tc((I',y:U),v,T) =
N;ite((T,y:U), v, T).
Let J={j |y € (v;) }.
For all j € J by the induction hypothesis we have V; with U < V; and
te(T',v;, T) = tc((T,y:U),v;, T),y:Vj.
For all i ¢ J by Lemma 18.2 we have tc(T',v;, T) = te((T,y :U),v;, T).

The types {V; | j € J} have a lower bound U so a glb V' o Njes Vi exists

and U < V.

It follows that. A, tc(T', v;, T) exists and moreover is equal to (/\z te((T,y:U), v, T)) ,y:V,
so te(T, (y .. vp), T) = te((T,y :U), (01 ..vn), T),y: V.

O

Lemma 20 If ',y:U atomic, © < te((T,y:U),v,T) and y € tn(v) then 0,y:U <
te(T,v,T).

Proof An immediate corollary of Lemma 19, which gives that there exists some V' with
U<V and te(T,v,T) =te((T,y:U),v,T),y:V. a

Lemma 21 (Structural Congruence) IfT - P:procg and P = Q thenT I @ : procy.

Proof Induction on derivations of P = Q. O
Say I' < I iff dom(T") = dom(I") and Vz € dom(T") . I'(z) < I'(z).

Lemma 22 If T <IV and "+ v:T thenT Fov:T.

Proof Induction on typing derivation of v. O

Lemma 23 IfT <T' and I"; A + {*/,} good then I'; A + {*/,} good.

Proof By the definition of Good and Lemma 22. |

Lemma 24 If A+ P E—o%c Q then C C pn(P) and pn(Q) C pn(P).

Proof Routine induction on transition derivations. |

We can now restate and prove Theorem 5.

Theorem 25 (subject reduction)

28



1. IfTHc P T—O%c Q and o € {x,1} then for some K',T
't z:chan,, T
there exists © < te(T,v,T) such that T, 0 F Q : procg
CcK
Ty
2. If Tk P —¢ Q then for some K', T
there exists © < te(T, (x v), (chan, T T)) such that T, 0 - Q : procg
CCcK
3 IfT ¢ P ﬂ)c Q then for some K’

T'F a:boxk
there exists © < te(T, (zv), (name, T)) such that T',0 F Q : procyk
CCK

4. IfT ¢ P ﬂc Q then for some K’

't a:boxy:
I'F 2 :name
there exists © < te(T,v, T) such that T',0 F Q : procg
CCK
7y
5. IfT bk P —c Q and v € {x,1} then for some K', T T\ x:chany T. If moreover

0 <tc(l,v,T)
CCcK

then ', © F Q : procy.

6. If T Fx P ﬂ)c Q then for some K' C K", and S we have I' + a:boxk, ' I
x:chany., S, tc(T',v, S) well-defined, and ran(tc(T,v,S)) C {name}. If moreover

0 <tc(,v,S)
C g KII

then ', © F Q : procy.
7. IfT ¢ P ﬂ)c Q then for some K' we have I' - a:boxg:. If moreover

O <tc(T, (xv), (name T))
CCcK

then ', © F Q : procy.
8 IfTFk P 3¢ Q then C=0 and T Q : procy.

Proof We give first the output part, for clauses 1-4, then the input part, for 5-7, then
the tau part, for 8. Each is by induction on pairs of transition and typing derivations.

Output Consider the last pair of rules used:
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(Out),(Out-x,1,1) Take K’ = K and consider cases of o

1: %, 1 By Lemma 17 we can take © = tc¢(T',v,T) = (.
2: 1 By Lemma 17 we can take © = tc¢(T, (z v), (chan,, T'T)) = §.

(Out),(Out-a,a) Take K" = K and consider cases of o:

3: a By Lemma 17 we can take © = te(T, (z v), (name, T)) = 0.
4: @ By Lemma 17 we can take © = tc(T',v, T) = 0.

(Struct),(*) 1-4 follow from the same clauses of the induction hypothesis and Lemma 21.

(*),(Spec) 14 follow from the same clauses of the induction hypothesis and a use of
(Spec) for Q.

(Par),(Par) Consider T k¢ P | P —5¢ Q| P! with T F¢ P —5¢ Q. 1-4 follow from
the same clauses of the induction hypothesis and a use of Lemma 18.3 for P'.

(Res-1),(Res) Consider T' ¢ (vy)P e (vy)Q with I',y:U k¢ P e Q, ! an
output °v and y ¢ fn(¢). Suppose o € {x,1}. By clause 1 of the induction
hypothesis for some K', T

I'y:U F x:chanyT
there exists @ < te((T,y:U),v,T) such that I',y:U,0 F Q : procyk
CCK

By Lemma 18.1 '  z:chany,T. By Lemma 18.2 tc((T',y:U),v,T) = te(T,v,T),
so taking the same @ and using the (Res) typing rule we have I', © - (v y)@Q : procg
as required. The other cases of o are similar.

(Res-2),(Res) Consider ' ¢ (vy)P i)c Q with I'y:U k¢ P i)c Q, ¢ an output
Z% and y € fn(¢).
Case -mv(0). We have o € {x,1,@} and y € fn(v) — fn(z, 0).
Suppose o € {x,1}. By clause 1 of the induction hypothesis for some K', T
Iy:U F x:chany,T

there exists © < tc((T',y:U),v,T) such that ',y : U, O | Q : procy
CCK

By Lemma 18.1 T' F z:chany,T. By Lemma 20 0,y:U < te(,v,T). The
case o = a, for clause 4, is similar.

Case mv(0). We have o € {1,a} and y € fn(z,v) — fn(0).
Suppose o =1. By clause 2 of the induction hypothesis for some K', T

there exists © < te((T,y:U), (@ v), (chan,, T T)) such that I',y: U, 0 I Q : procg
CCK

By Lemma 20 0,y :U < te(T, (xv), (chany, T T)). The case o = a, for clause
3, is similar.

Input Consider the last pair of rules used:
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(In)(In-x,1) Clause 5. Take K' = K. By te¢(T,v,T) defined and Lemma 10 we have
te(D,v,T) atomic and T, t¢(T,v,T) F v : T. Tt follows that © atomic and by Lemma
22T,0 F v:T. By Lemma 12 T',0;A + {Y/,} good. By the definition of la-
belled transitions {V/, } P is well-defined so by Lemma 15 T", © + {¥/,} P : procyk. By
Lemma 16 I', © - Co{?/,} P : procy.

(In)(In-a) Clause 6. Take K" = K. By the definition of labelled transitions {¥/,}P is
well-defined so {/,} is well-defined. As P tests all y:name € A and {¥/,}P is
defined Vy:name € A . {Y/,}y is a name. By Lemma 13 t¢(T', v, S) is well-defined,
ran(te(l,v,S)) C {name}, and T, tc(I',v,S5);A F {Y/,} good. By Lemma 23
Io;A + {",} good. By Lemma 15 I',0 F {¥/,}P:prock. By Lemma 16
I,0F Co{",}P:procg.

(Repl) (Repl-«, 1) and (Repl) (Repl-a) Similar to the two cases above.
(Box-2)(Box) Clause 7. Take K' = K. To check I',® + n[C:fﬂ) | P]:procy observe

that I', ©  n:boxk by weakening, pn(C:z'v | P) C CUpn(P) C K, and fn(C:
z'v | P) C fn(z,v) U fn(P) C dom(T, ©).

(Struct),(*) 5-7 follow from the same clauses of the induction hypothesis and Lemma 21.

(*),(Spec) 5-7 follow from the same clauses of the induction hypothesis and a use of

(Spec) for Q.

(Par),(Par) Consider T F¢ P | P —5¢ Q | P! with T Fx P —55¢ Q. 5-7 follow from
the same clauses of the induction hypothesis and a use of Lemma 18.3 for P'.

(Res-1)(Res) Consider I' ¢ (vy)P e (vy)Q withT',y:U g P e @, £ an input
xz7v and y & fn(¢). Suppose v € {*,1}. By clause 5 of the induction hypothesis for
some K', T T',y:U F z:chany T and

O < te((T,y:U),v,T)
CCK

implies ',y : U, © F @Q : prock. By y & fn(¢) we have I - z: chany,T. Now suppose

0 < te(T,v,T)
CCK

By Lemma 18.2 te(T,v,T) = te((T',y: U),v,T) so by the implication in the induc-
tion hypothesis I',y: U,© + @ :procg, hence I',0 F (vy)Q :prock. The case of
v =, for 7, is similar.

Now suppose v = a. By clause 6 of the induction hypothesis for some K’ C K",
and S we have T,y :U F a:boxk/, I',y:U F x:chany., S, te((T,y:U),v,S) well-
defined, and ran(tc((T',y: U),v,S)) C {name}. Moreover

0 <te((l,y:U),v,S)
CQ KII

implies ',y : U, © F Q : procyg.

As y & fin(¢) the various strengthening results suffice to show clause 6.

Tau Consider the last pair of rules used:
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(Comm)(Par) We have

Tk, Pt Z8¢ P! Ty, P, 28¢ P

[ Fkink, Pr | Py == (v fn(z,v) — dom(D)) (P | P3)

(Comm)

Consider cases of v and the corresponding output and input clauses:

Case *,1 1,5. By the induction hypotheses there exists © < t¢(T, v, T) such that
IO F P[:procy, and I',© F P;:procg,. By the (Par) and (Res) typing
rules T' - (v fn(z,v) — dom(T"))(P] | P;) : procy, ,-

Case a 4,6 By clause 4 of the induction hypothesis there exists © < te(T',v, T)
such that I',® - P|:procy,. By Lemma 11 tc(I',v, T) is the type context
mapping each = € fn(v) — dom(T") to name.

By clause 4 C C K’ and by clause 6 K' C K" so C C K".
By clause 6 of the induction hypothesis tc(T',v,S) is well-defined and has
range contained in {name}, so te(T',v,S) = te(T, v, T), so © < te(T, v, 5), so
[0 F P;:procy,.
By the (Par) and (Res) typing rules I" - (v fn(z,v) —dom(T'))(P] | P;) : procy, -
Case @ 3,7 Similar to case x, 1 above.
(Par)(Par) By the induction hypothesis.

(Box-1)(Box) We have

dom(T) F P 8¢
dom(T) F n[P] ¢ (v fn(z,v) — dom(T"))(C:Z™ | n[Q))

(Box-1)

and

I' F n:boxk
pn(P) CK
fn(P) C dom(T")

[+ n[P]:procg

0x)

Note that we do not have I' F P :procy, so the induction hypothesis is not appli-
cable.

Take © = te(T, (xv), T).

By weakening I',©® + n:boxk. By Lemma 24 pn(Q) C K. In addition we have
n(Q) C dom(T',0), so I, © - n[Q] : prock.

We have also I',© F z:name, I',;0 F v: T and (again by Lemma 24) C C K, so
IO+ C:z"v:procg.

By the (Par) and (Res) typing rules I' (v fn(z,v)—dom(T))(C:Z™v | n[Q]) : prock.

(Box-3)(Box) As a 7 transitions cannot increase the principal set or free name set of
a process.

(Res-1)(Res) By the induction hypothesis.
(Struct) (*) Follows from the induction hypothesis and Lemma 21.

(*)(Spec) Follows from the induction hypothesis and a use of (Spec) for Q.
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O

Proof (of Theorem 6) By I' - P:procy and for some T and K, we get z:chanyT €T
Furthermore, we have I' - v: T and since v € {x,1} we also have T' F p:T. By Lemma
12 and the facts that I' atomic, I' F v:T and F p:T > A, we have I'; A + {¥/,} good.
By Lemma 15 and the facts that P does not contain a box, I';A + P’:procj and
Ty A {Y,} good, we have {¥/,} P is well-defined. O

B.2 Proving Causal Flow for F

The proof that F has the causal flow property is a straightforward induction on the
traces of F(P, () using the Subject Reduction theorem.

Proof (of Theorem 8) Consider an instantiation F(P, Q) and coloured trace

AF 0o F(P,Q) ¢, Ri... 25c, Ry,

such that all inputs on in; in ¢;..¢; are coloured with p and all inputs on ins are coloured
with q.

By the definition of transitions (if k¥ > 1) we have fn(F(P,Q)) C A.

Let I'g be the type environment I" above with I'; removed.

Let T'; be the type environment mapping fn(P, Q) —dom(T'y) to name and ' = Ty, T';.
Clearly T atomic.

By the definition of instantiation we have fn(P, Q) C dom(T") — {a, b}.

By Theorem 7 T F o F(P,Q) : proc,,.

By F pure we know the £; have the form 7, in; v, or O’U,tiTU, for i € {1,2}.
Take Ry = Do F(P,Q) and ©¢9 = #. We now show by induction on k that for all
jeELEkL; = outlTU = q ¢ C; and there exists ©; atomic such that I', ©; - R; : proc,.

Consider the transition Rj_1 Ack Ry. Wehave T, ©_; atomic, ', ©_1 F Ry_; : proc,,

and dOm(F,@k_l) F Rk—l i)C,c Rk, SO

¢
I',0k-1 Fp Rk—1 —c¢, Ry
Consider cases of ¢;.

Case outlTv. By Theorem 5 for some K',T we have C; C K’ and there exists © <
te(T, ©p—1, (outy v), (chany, T'T)) such that I',0_1,0 F Ry :proc,.

As tc(...) is defined and out;:chan,T € T' we have K'={p} and 7" = T, so
G C{p},s0q ¢ G

Take O = ©_1,0; it is clearly atomic.

Case MT’U. By Theorem 5 for some K', T we have I, O _1 F in; : chany, T. If moreover
Cr €K' and © < te(T', Of—1,v,T) then T',0;_1,0 - Ry : proc,.
As iny:chan,T € T' we have K' = {p} and T' = T. By the premises C;, C {p}.

As T = T we have t¢(T',©;_1,v,T) defined and atomic; take © equal to this and
O =0;_1,0.

The other cases are similar. O

33



References

[1]

2]

3]

8]

[9]

[10]

[11]

[12]

[13]
[14]

[15]

Martin Abadi, Anindya Banerjee, Nevin Heintze, and Jon G. Riecke. A core calculus of
dependency. In ACM, editor, POPL ’99. Proceedings of the 26th ACM SIGPLAN-SIGACT
on Principles of programming languages, January 20-22, 1999, San Antonio, TX, pages
147-160, New York, NY, USA, 1999. ACM Press.

Martin Abadi, Cédric Fournet, and Georges Gonthier. Secure implementation of channel
abstractions. In LICS 98 (Indiana), pages 105-116. IEEE, Computer Society Press, July
1998.

Michele Boreale and Davide Sangiorgi. A fully abstract semantics for causality in the pi-
calculus. In E. W. Mayr and C. Puech, editors, Proceedings of STACS’95, volume 900 of
Lecture Notes in Computer Science, pages 243-254. Springer-Verlag, 1995.

Gérard Boudol. Asynchrony and the m-calculus (note). Rapport de Recherche 1702, INRIA
Sofia- Antipolis, May 1992.

S.D. Brookes, C.A.R. Hoare, and A.W. Roscoe. A theory of communicating sequential
processes. Journal of the ACM, 31(3):560-599, 1984.

Luca Cardelli and Andrew D. Gordon. Mobile ambients. In Proc. of Foundations of Software
Science and Computation Structures (FoSSaCS), ETAPS’98, LNCS 1378, pages 140-155,
March 1998.

Pierpaolo Degano and Corrado Priami. Causality for mobile processes. In Zoltan Fiilop
and Ferenc Gécseg, editors, Proceedings of ICALP 95, volume 944 of Lecture Notes in
Computer Science, pages 660—671. Springer-Verlag, 1995.

Cédric Fournet, Georges Gonthier, Jean-Jacques Lévy, Luc Maranget, and Didier Rémy.
A calculus of mobile agents. In Proceedings of CONCUR ’96. LNCS 1119, pages 406-421.
Springer-Verlag, August 1996.

Timothy Fraser, Lee Badger, and Mark Feldman. Hardening COTS software with generic
software wrappers. In IEEE Symposium on Security and Privacy, Berkeley, California, May
1999.

Douglas P. Ghormley, Steven H. Rodrigues, David Petrou, and Thomas E. Anderson. In-
terposition as an operating system extension mechanism. Technical Report CSD-96-920,
University of California, Berkeley, April 9, 1997.

Neal Glew and Greg Morrisett. Type-safe linking and modular assembly language. In
ACM, editor, POPL ’99. Proceedings of the 26th ACM SIGPLAN-SIGACT on Principles
of programming languages, January 20-22, 1999, San Antonio, TX, pages 250-261, New
York, NY, USA, 1999. ACM Press.

Tan Goldberg, David Wagner, Randi Thomas, and Eric A. Brewer. A secure environment for
untrusted helper applications. In Sizth USENIX Security Symposium, San Jose, California,
July 1996.

Nevin Heintze and Jon G. Riecke. The SLam calculus: Programming with secrecy and
integrity. In Proceedings of the 25th POPL, January 1998.

Kohei Honda and Mario Tokoro. An object calculus for asynchronous communication. In
Pierre America, editor, Proceedings of ECOOP ’91, LNCS 512, pages 133147, July 1991.

Michael B. Jones. Interposition agents: Transparently interposing user code at the system
interface. In Jan Vitek and Christian Jensen, editors, Secure Internet Programing: Security
Issues for Mobile and Distributed Objects. Springer Verlag, 1999.

Myong H. Kang, Ira S. Moskowitz, and Daniel C. Lee. A network pump. IEEE Transactions
on Software Engineering, 22(5):329-338, May 1996.

Xavier Leroy and Frangois Rouaix. Security properties of typed applets. In Conference
Record of POPL ’98: The 25th ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, pages 391-403, San Diego, California, 19-21 January 1998.

34



[18]
[19]
[20]
[21]

[22]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[34]
[35]

[36]

J. McLean. Security models. In J. Marciniak, editor, Encyclopedia of Software Engineering.
Wiley & Sons, 1994.

R. Milner, J. Parrow, and D. Walker. A calculus of mobile processes, Parts T + II. Infor-
mation and Computation, 100(1):1-77, 1992.

G. C. Necula and P. Lee. Safe, untrusted agents using proof-carrying code. In G. Vigna,
editor, Mobile Agents and Security, volume 1419 of LNCS, pages 61-91. SV, 1998.

Jens Palsberg and Peter Orbak. Trust in the lambda-calculus. Journal of Functional
Programming, 7(6):557-591, November 1997.

Benjamin C. Pierce and David N. Turner. Pict: A programming language based on the
pi-calculus. In Gordon Plotkin, Colin Stirling, and Mads Tofte, editors, Proof, Language
and Interaction: Essays in Honour of Robin Milner. MIT Press, 1999.

James Riely and Matthew Hennessy. A typed language for distributed mobile processes.
In Proceedings of the 25th POPL, January 1998.

A W. Roscoe and M.H. Goldsmith. What is intransitive noninterference? In Proceedings
of the 12th IEEE Computer Security Foundations Workshop (CSFW-12), Mordano, Italy,
June 1999.

Andrei Sabelfeld and David Sands. A PER model of secure information flow in sequential
programs. In Proceedings of European Symposium on Programming, Amsterdam, Nether-
lands, March 1999.

Peter Sewell. Global/local subtyping and capability inference for a distributed m-calculus.
In Proceedings of ICALP ’98, LNCS 1443, pages 695-706, 1998.

Peter Sewell. A brief introduction to applied 7, January 1999. Lecture notes for the Mathfit
Instructional Meeting on Recent Advances in Semantics and Types for Concurrency: The-
ory and Practice, July 1998. Available from http://www.cl.cam.ac.uk/users/pes20/.

Peter Sewell and Jan Vitek. Secure composition of insecure components. In Proceedings
of the 12th IEEE Computer Security Foundations Workshop (CSFW-12), Mordano, Italy,
June 1999.

Peter Sewell and Jan Vitek. Secure composition of insecure components. Trusted objects,
Centre Universitaire d’Informatique, University of Geneva, July 1999. Also available as
University of Cambridge TR 463.

Peter Sewell, Pawel T. Wojciechowski, and Benjamin C. Pierce. Location-independent com-
munication for mobile agents: a two-level architecture. In Internet Programming Languages,
LNCS 1686. Springer-Verlag, October 1999.

Geoffrey Smith and Dennis Volpano. Secure information flow in a multi-threaded imper-
ative language. In Conference Record of POPL ’98: The 25th ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, pages 355-364, San Diego, California,
19-21 January 1998.

Jan Vitek and Guiseppe Castagna. Towards a calculus of mobile computations. In Workshop
on Internet Programming Languages, Chicago, May 1998.

Jose-Luis Vivas and Mads Dam. From higher-order pi-calculus to pi-calculus in the presence
of static operators. In Davide Sangiorgi and Robert de Simone, editors, CONCUR ’98:
Concurrency Theory (9th International Conference, Nice, France), volume 1466 of Incs,
pages 115-130. sv, September 1998.

D. Volpano, G. Smith, and C. Irvine. A sound type system for secure flow analysis. Journal
of Computer Security, 4(3):1-21, 1996.

Dennis Volpano and Geoffrey Smith. Confinement properties for programming languages.
SIGACT News, 29(3):33-42, September 1998.

Dan S. Wallach, Dirk Balfanz, Drew Dean, and Edward W. Felten. Extensible security ar-
chitectures for Java. In Proceedings of the 16th Symposium on Operating System Principles,
1997.

35



[37] G. Winskel and M. Nielsen. Models for concurrency. In Abramsky, Gabbay, and Maibaum,
editors, Handbook of Logic in Computer Science, volume IV, pages 1-148. Oxford University
Press, 1995.

[38] Steve Zdancewic, Dan Grossman, and Greg Morrisett. Principals in programming lan-
guages: A syntactic proof technique. In International Conference on Functional Program-
ming, Paris, France, September 1999.

36



