
Seure Composition of Inseure Components

Peter Sewell

Computer Laboratory,

University of Cambridge,

England

Peter.Sewell�l.am.a.uk

Jan Vitek

Objet Systems Group,

Universit�e de Gen�eve,

Switzerland

Jan.Vitek�ui.unige.h

April 9, 1999

Abstrat

Software systems are beoming heterogeneous: instead of a small number of

large programs from well-established soures, a user's desktop may now onsist of

many smaller omponents that interat in intriate ways. Some omponents will be

downloaded from the network from soures that are only partially trusted. A user

would like to know that a number of seurity properties hold, e.g. that personal data

is not leaked to the net, but it is typially infeasible to verify that suh omponents

are well-behaved. Instead, they must be exeuted in a seure environment, or

wrapper, that provides �ne-grain ontrol of the allowable interations between them,

and between omponents and other system resoures.

In this paper we study suh wrappers, fousing on how they an be expressed in

a way that enables their seurity properties to be stated and proved rigorously. We

introdue a model programming language, the box-� alulus, that supports om-

position of software omponents and the enforement of seurity poliies. Several

example wrappers are expressed using the alulus; we explore the deliate seurity

properties they guarantee.

Contents

1 Introdution 2

2 A Boxed � Calulus 4

2.1 Syntax . 5

2.2 Redution . 6

2.3 Labelled Transitions . 7

2.4 Bisimulation . 9

3 Seurity Wrappers 9

4 Honesty and Composition 11

4.1 Honesty for Binary Wrappers . 13

5 Constrained Interation Between Components 14

5.1 New-name diretionality . 14

5.2 Permutation . 14

5.3 Coloured Redutions . 15

6 Conlusion 17

6.1 Related Work . 17

6.2 Future Diretions . 18

A Coinidene of the Two Semantis 20

B Other Proofs 37

1

1 Introdution

Software systems are evolving. Inreasingly, monolithi appliations are being replaed

with assemblages of software omponents oming from di�erent soures. Instead of a

small number of large programs from well-established suppliers, nowadays a user's desk-

top is made up of many smaller appliations and software modules that interat in

intriate ways to arry out a variety of information proessing tasks. Moreover, whereas

it used to be that a software base was fairly stati and often ontrolled by a system

administrator, it is now easy to download ode from the network; tehnologies suh as

Java even allow an appliation program to be extended with new omponents while the

program is running.

In suh uid operating environments, traditional seurity mehanisms and poliies

appear almost irrelevant. While passwords and aess ontrol mehanisms are ade-

quate to protet the integrity of the omputer system as whole, they utterly fail to

address the issue of proteting the user from downloaded ode being run from her a-

ount [IAJR97, GWTB96, NL98℄. Approahes suh as the Java sandbox that promise

seurity by isolation are not satisfatory either: omponents an interat freely or not

at all [VB99, Gon97℄. What is needed is muh �ner-grained protetion mehanisms that

take into aount the interonnetion of software omponents and the spei� seurity

requirements of individual users.

We give a small motivating example (based on a true story) involving a �tional

harater, Karen, performing some �nanial omputation. To manage her aounts she

downloads a software pakage alled Quikest from a ompany Q. Karen does not want

any information about her to be leaked without her onsent, so she would like to run

Quikest in an environment that does not allow it aess to the Internet (she has observed

that it sometimes uploads information { presumably for marketing purposes { to Q). On

the other hand she often needs stok quotes, for whih she must allow net aess. At

present she runs two instanes of Quikest, one on an isolated PC, with her �nanial

reords, and one onneted, used to obtain stok quotes. She transfers data from the

seond to the �rst only on oppy dis, thereby manually ensuring that no information

ows in the onverse diretion.

Karen would like to dispose of the isolated PC, using a software solution to prevent

her personal data being leaked to the net. Now, Quikest is a large piee of ommerial

software that was not programmed by Karen. The soure ode is not available to her

and its internal behaviour is omplex and inaessible; ensuring the desired properties by

program analysis will not be feasible. Instead she must run the two opies of the pakage

in seure software environments that allow ontrol of the information ow between them

and between eah pakage and the net.

More generally, she will wish to run many pakages, eah trusted in di�erent ways, and

will want to be able to dynamially ontrol the interations between them and between

these pakages and other resoures { the net, regions of the loal dis, the terminal, audio

and video apture devies et. In some ases she will wish to log the data sent from one

to another; in others she will wish to limit the allowed bandwidth (e.g. to disallow audio

and video hannels). In general her notion of what data is to be onsidered \sensitive" is

likely to be ontext dependent. In a Web browser, she may hoose to onsider her e-mail

address as a seret that should be proteted from broadast to junk mail lists, while the

same e-mail will not be treated speially in her text editor.

While it is not feasible to analyse or modify large third-party software pakages, it is

possible to interept the ommuniations between a pakage and the other parts of the

system, interposing ode at the boundaries of the di�erent software omponents [Jon99,

FHL

+

96, BTS

+

98, GWTB96℄. It is thus possible to monitor or ontrol the operations

2

that these omponents are able to invoke, and the data that is exhanged between them.

We all a ode fragment that enapsulates untrusted omponents a seurity wrapper or

wrapper for short.

Clearly the task of writing wrappers should not be left solely to the end-user. Rather

we envision wrappers as reusable software omponents, users should then only have to

pik the most appropriate wrappers, ustomize them with some parameters and install

them. All of this proess should be dynami: wrappers must be no harder to add to

a running system than new appliations. A user will require a lear desription of the

seurity properties that a wrapper guarantees. Moreover, wrappers should ompose with

a lear notion of whih properties are preserved.

The goal of this work is to study suh seure environments, fousing on how they

an be expressed in a way that enables their seurity properties to be stated and proved

rigorously. It appears that there is a wide range of rather deliate properties, making

hard for designers to develop suÆiently lear intuitions without suh rigour. Moreover

the wrappers, although ritial, may be rather small piees of software, making it feasible

to prove properties about them, or about mild idealisations.

To express and reason about wrappers we require a small programming language,

with a well-de�ned semantis, that allows the omposition of software omponents to be

expressed straightforwardly and also supports the enforement of seurity poliies. Suh

a language, the box-� alulus, is introdued in x2. We begin with a simple example,

a wrapper W

1

written in the alulus. It enapsulates a single omponent and ontrols

its interations with the environment, limiting them to two hannels in and out . W

1

is

written as a unary ontext:

W

1

[℄

def

= (� a)

�

a[℄

j ! in

"

y:in

a

y

j ! out

a

y:out

"

y

�

This reates a box with a new name a, installing in parallel with it two forwarders {

one that reeives messages from the environment on hannel in and sends them to the

wrapped program, and one that reeives messages from the wrapped program on hannel

out and sends them to the environment. An arbitrary program P (possibly maliious) an

be wrapped to give W

1

[P ℄; the design of the alulus and of W

1

ensures that no matter

how P behaves the wrapped program W

1

[P ℄ an only interat with its environment on

the two hannels in and out . This ould be ahieved simply by forbidding all interation

between P and the outside world, a rather unsatisfatory wrapper | W

1

is also honest,

in that it faithfully forwards messages on in and out . These informal properties are made

preise in Propositions 2 and 5 below. We also disuss the sense in whih wrapping a

well-behaved P has no e�et on its behaviour. W

1

is atypial in that it has no behaviour

exept the forwarding of legitimate messages { other reasonable unary wrappers may

perform some kind of logging, or have a ontrol interfae for the wrapper. The honesty

property that should hold for any reasonable wrapper is therefore somewhat deliate; to

state it (and our other seurity properties) we make extensive use of a labelled transition

semantis for the alulus.

The wrapper W

1

ontrols interation between a single omponent and its environ-

ment. Our seond main example goes further towards solving Karen's problem, allowing

ontrol of the interation between omponents. W

2

(de�ned in x3) is a binary wrapper

that enapsulates two omponents P and Q as W

2

[P;Q℄, allowing eah to interat with

the environment in a limited way but also allowing information to ow from P to Q

(but not vie versa) along a direted ommuniation hannel. Making this preise is the

subjet of x5.

3

Both W

1

and W

2

are hosen to be as simple as possible, in partiular with �xed inter-

faes for omponents to interat with eah other and with the environment. Generalising

this to arbitrary interfaes and to wrappers taking any number of omponents should be

straightforward but ompliates the notation; other generalisations are disussed in the

onlusion.

Overview We begin in the next setion (x2) by introduing the alulus and giving

its operational semantis. A number of wrappers are de�ned in x3, inluding one whih

logs traÆ. The basi properties of honesty and well-behaviour are introdued in x4.

Information ows between wrapped omponents are studied in x5, then we onlude in

x6 with disussion of related and future work. This paper desribes work in progress {

Setions 4 and 5 ontain a number of onjetures whih are yet to be proved, but whih

we hope will stimulate disussion. This tehnial report is an extended version of a paper

appearing in the Computer Seurity Foundations Workshop (CSFW-99).

2 A Boxed � Calulus

The language { known as the box-� alulus { that we use for studying enapsulation

properties must allow interating omponents to be omposed. The omponents will

typially be exeuting onurrently, introduing nondeterminism. It is therefore natural

to base the language on a proess alulus. The box-� alulus lies in a large design

spae of distributed aluli that build on the �-alulus of Milner, Parrow and Walker

[MPW92℄. Related aluli have been used by a number of authors, e.g. in [AFG98,

Ama97, AP94, CG98, CG99, FGL

+

96, HR98, HR98b, RH98, Sew97, Sew98, SWP98a,

SWP98b, VC98, VC99℄. A brief overview of the design spae an be found in [Sew99℄;

here we highlight the main design hoies for box-�, deferring omparison with related

work to x6.

The alulus is based on asynhronous message passing, with omponents interating

only by the exhange of unordered asynhronous messages. Box-� has an asynhronous

�-alulus as a subalulus { we build on a large body of work studying suh aluli,

notably [HT91, Bou92, ACS96℄. They are known to be very expressive, supporting many

programming idioms inluding funtions and objets, and are Turing-omplete; a box-�

proess may therefore perform arbitrary internal omputation.

To � we must add primitives for onstraining ommuniation { in standard �-aluli,

if one proess an send a message to another then the only way to prevent information

owing in the reverse diretion is to impose a type system, whih (as observed above)

is not appropriate here. We therefore add a boxing primitive. Boxes may be nested,

giving hierarhial protetion domains; ommuniation aross box boundaries is stritly

limited. Underlying the alulus design is the priniple that eah box should be able to

ontrol all interations of its hildren, both with the outside world and with eah other

[VC98℄. Communiation is therefore allowed only between a box and its parent, or within

the proess running in a partiular box. In partiular, two sibling boxes annot interat

without the assistane of their parent. To enable a box to interat with a partiular

hild, boxes are named, analogously to � hannel names. The seurity properties of our

wrappers depend on the ability to reate fresh box names.

Turning to the values that may be ommuniated, it is onvenient to allow arbitrary

tuples of names (or other tuples). Note that we do not allow ommuniation of proess

terms. Moreover, no primitives for movement of boxes are provided. The alulus is

therefore entirely �rst order, whih is important for the tratable theory of behaviour (the

labelled transition semantis) that we require to state and prove seurity properties. The

4

alulus is also untyped { we wish to onsider the wrapping of ill-understood, probably

buggy and possibly maliious programs.

2.1 Syntax

The syntax of the alulus is as follows:

Names We take an in�nite set N of names, ranged over by lower-ase roman letters

n;m; x; y; z et. (exept i; j; k; o; p; u; v). Both boxes and ommuniation hannels are

named; names also play the role of variables, as in the �-alulus.

Values and Patterns Proesses will interat by ommuniating values whih are de-

onstruted by pattern-mathing upon reeption. Values u; v an be names or tuples,

with patterns p orrespondingly tuple-strutured:

u; v ::= x name

h

v

1

:: v

k

i

tuple (k � 0)

p ::= wildard

x name pattern

(

p

1

:: p

k

)

tuple pattern (k � 0, no repeated names)

Proesses The main syntati ategory is that of proesses, ranged over by P;Q. We

introdue the primitives in three groups.

Boxes A box n[P ℄ has a name n, it an ontain an arbitrary proess P . Box names are

not neessarily unique { the proess n[0℄ j n[0℄ onsists of two distint boxes named n,

both ontaining an empty proess, in parallel.

P ::= n[P ℄ box named n ontaining P

P j P

0

P and P

0

in parallel

0 the nil proess

: : :

Communiation The standard asynhronous �-alulus ommuniation primitives are

xv, indiating an output of value v on the hannel named x, and xp:P , a proess that

will reeive a value output on hannel x, binding it to p in P . Here we re�ne these with

a tag indiating the diretion of the ommuniation in the box hierarhy. An input tag

� an be either ?, for input within a box, ", for input from the parent box, or a name

n, for input from a sub-box named n. An output tag o an be any of these, similarly.

For tehnial reasons we must also allow an output tag to be ", indiating an output

reeived from the parent that has not yet interated with an input, or n, indiating an

output reeived from hild n that has not yet interated. The ommuniation primitives

are then

P ::= : : :

x

o

v output v on hannel x to o

x

�

p:P input on hannel x from �

!x

�

p:P repliated input

: : :

The repliated input !x

�

p:P behaves essentially as in�nitely many opies of x

�

p:P in

parallel. This gives omputational power, allowing e.g. reursion to be enoded simply,

5

while keeping the theory simple. In x

�

p:P and !x

�

p:P the names ourring in the pattern

p bind in P .

New name reation Both box and hannel names an be reated fresh, with the standard

�-alulus (� x)P operator. This delares any free instanes of x within P to be instanes

of a globally fresh name.

P ::= : : :

(� x)P new name reation

In (� x)P the x binds in P . We work up to alpha onversion of bound names throughout,

writing the free name funtion, de�ned in the obvious way for values, tags and proesses,

as fn().

2.2 Redution

The simplest semanti de�nition of the alulus is a redution semantis, a one-step

redution relation P ! P

0

indiating that P an perform one step of internal omputation

to beome P

0

. We �rst de�ne the omplement � of a tag � in the obvious way, with ? = ?

and � = �. We de�ne a partial funtion f = g, taking a pattern and a value and giving,

where it is de�ned, a partial funtion from names to values.

f

v

= g = fg

f

v

=

x

g = fx 7! vg

f

h

v

1

:: v

k

0

i

=

(

p

1

:: p

k

)

g = f

v

1

=

p

1

g [: : : [f

v

k

=

p

k

g if these are de�ned and k = k

0

unde�ned, otherwise

The natural de�nition of the appliation of a substitution � (from names to values) to

a proess term P , written �P , is also a partial operation, as the syntax does not allow

arbitrary values in all the plaes where free names an our. We write f

v

=

p

gP for the

result of applying the substitution f

v

=

p

g to P . This may be unde�ned either beause f

v

=

p

g

is unde�ned, or beause f

v

=

p

g is a substitution but the appliation of that substitution to

P is unde�ned. Note that the result f

y

=

x

gP of applying a name-for-name substitution is

always de�ned. We de�ne strutural ongruene � as the least ongruene relation suh

that the axioms below hold. This allows the parts of a redex to be brought syntatially

adjaent.

P j 0 � P (� x)(� y)P � (� y)(� x)P

P j Q � Q j P (� x)(P j Q) � P j (� x)Q x 62 fn(P)

(P j Q) j R � P j (Q j R) (� x)n[P ℄ � n[(� x)P ℄ x 6= n

The redution relation is now the least relation over proesses satisfying the axioms and

rules below. The (Red Comm) and (Red Repl) axioms are subjet to the ondition that

f

v

=

p

gP is well-de�ned.

n[x

"

v j Q℄ ! x

n

v j n[Q℄ (Red Up)

x

n

v j n[Q℄ ! n[x

"

v j Q℄ (Red Down)

x

�

v j x

�

p:P ! f

v

=

p

gP (Red Comm)

x

�

v j !x

�

p:P ! !x

�

p:P j f

v

=

p

gP (Red Repl)

P ! Q) P j R! Q j R (Red Par)

P ! Q) (� x)P ! (� x)Q (Red Res)

P ! Q) n[P ℄ ! n[Q℄ (Red Box)

P � P

0

! Q

0

� Q) P ! Q (Red Strut)

6

The (Red Up) axiom allows an output to the parent of a box to ross the enlosing

box boundary. Similarly, the (Red Down) axiom allows an output to a hild box n to

ross the boundary of n. The (Red Comm) axiom then allows synhronisation between a

omplementary output and input within the same box. The (Red Repl) axiom is similar,

but preserves the repliated input in the resulting state.

Communiations aross box boundaries thus take two redution steps, for example in

the following upwards and downwards ommuniations.

n[x

"

v℄ j x

n

p:P ! n[0℄ j x

n

v j x

n

p:P

! n[0℄ j f

v

=

p

gP

x

n

v j n[x

"

p:P ℄ ! n[x

"

v j x

"

p:P ℄

! n[f

v

=

p

gP ℄

This removes the need for 3-way synhronisations between a box, an output and an input

(as in [VC98℄), simplifying both the semantis and the implementation model.

2.3 Labelled Transitions

The redution semantis de�nes only the internal omputation of proesses. The state-

ments of our seurity properties must involve the interations of proesses with their

environments, requiring more struture: a labelled transition relation haraterising the

potential inputs and outputs of a proess. We give a labelled semantis for box-� in an

expliitly-indexed early style, de�ned indutively on proess struture by an SOS. The

labels are

` ::= � internal ation

x

o

v output ation

x

v input ation

where ranges over all output tags exept ". The labelled transitions an be divided

into those involved in moving messages aross box boundaries and those involved in

ommuniations between outputs and inputs. The movement labels are

x

n

v (sending to hild n) x

n

v (box n reeiving from its parent)

x

"

v (sending to the parent)

Say mv(o) is true if o is of the form n or ". The ommuniation labels are

x

?

v (loal output) x

?

v (loal input)

x

n

v (output reeived from hild n) x

n

v (input a message reeived from hild n)

x

"

v (output reeived from parent) x

"

v (input a message reeived from parent)

Labels will synhronise in the pairs given. The labelled transition relation has the form

A ` P

`

�! Q

where A is a �nite set of names and fn(P) � A; it should be read as `in a state where

the names A may be known to P and its environment, proess P an do ` to beome

Q'. The relation is de�ned as the smallest relation satisfying the rules in Figure 1. We

write A; x for A [fxg where x is assumed not to be in A, and A; p for the union of

A and the names ourring in the pattern p, where these are assumed disjoint. For

the subalulus without new-binding the labelled transition rules are straightforward |

7

x

o

v

x

o

v

�! 0

(Out)

x

�

p:P

x

�

v

�! f

v

=

p

gP

(In)

!x

�

p:P

x

�

v

�! !x

�

p:P j f

v

=

p

gP

(Repl)

n[P ℄

x

n

v

�! n[x

"

v j P ℄

(Box-2)

A ` P

x

"

v

�! P

0

A ` n[P ℄

�

�! (� fn(x; v)�A)(x

n

v j n[P

0

℄)

(Box-1)

P

�

�! P

0

n[P ℄

�

�! n[P

0

℄

(Box-3)

P

`

�! P

0

P j Q

`

�! P

0

j Q

(Par)

A ` P

x

v

�! P

0

A ` Q

x

v

�! Q

0

A ` P j Q

�

�! (� fn(x; v) �A)(P

0

j Q

0

)

(Comm)

A; x ` P

`

�! P

0

A ` (� x)P

`

�! (� x)P

0

(Res-1)

A; x ` P

y

o

v

�! P

0

A ` (� x)P

y

o

v

�! P

0

(Res-2)

P

`

�! P

0

P

0

� P

00

P

`

�! P

00

(Strut Right)

The (Res-1) rule is subjet to x 62 fn(`), the (Res-2) rule is subjet to x 2 fn(v) �

fn(y; o) if :mv(o) and to x 2 fn(y; v)� fn(o) otherwise. The indexing A ` has beeen

elided in rules where it is not involved in any interesting way. In all rules with

onlusion of the form A ` P

`

�! Q there is an impliit side ondition fn(P) � A.

In the (In) and (Repl) axioms there is an impliit side ondition that f

v

=

p

gP is

well-de�ned. Symmetri versions of (Par) and (Comm) are elided.

Figure 1: Box-� Labelled Transitions

instanes of the redution rule (Red Up) orrespond to uses of (Box-1), (Out), and (Par);

instanes of (Red Down) orrespond to uses of (Comm), (Out), and (Box-2); instanes

of (Red Comm) orrespond to uses of (Comm), (Out), and (In). The derivations of the

orresponding � -transitions an be found in the proof of Lemma 19. The addition of

new-binding introdues several subtleties, some inherited from the �-alulus and some

related to sope extrusion and intrusion aross box boundaries. We disuss the latter

briey.

The (Red Down) rule involves synhronisation on the box name n but not on the

hannel name x | there are redutions suh as

((� x)
x

n

z) j n[0℄ ! (� x)n[
x

"

z℄

in whih a new-bound name enters a box boundary. To orretly math this with a � -

transition the side-ondition for (Res-2) for labels with output tag n requires the bound

name to our either in hannel or value position, and the (Comm) rule reintrodues the

8

x binder on the right hand side.

Similarly, the (Red Up) rule allows new-bound names in hannel position to exit a

box boundary, for example in

n[(� x)x

"

z℄ ! (� x)(x

n

z j n[0℄)

The (Res-2) ondition for output tag " again requires the bound name to our either in

hannel or value position, here the (Box-1) rule reintrodues the x binder on the right

hand side.

Redutions generated by (Red Comm) involve synhronisation both on the tags and

on the hannel name. The (Res-2) ondition for output tags ?, " and n is analogous to

the standard �-alulus (Open) rule; requiring the bound name to our in the value but

not in the tag or hannel. The (Comm) rule for these output tags is analogous to the

standard � rule | in partiular, here it is guaranteed that x 2 A (see Lemma 11).

Some auxiliary notation is useful. For a sequene of labels `

1

: : : `

k

we write

A ` P

1

`

1

�! : : :

`

k

�! P

k+1

to mean 9P

2

; : : : ; P

k

: 8i 2 1::k : A

i

` P

i

`

i

�! P

i+1

, where A

i

= A [

S

j21::i

fn(`

j

). If

` 6= � we write A ` P

^

`

=) P

0

for A ` P

�

�!

�

`

�!

�

�!

�

P

0

; if ` = � then A ` P

^

`

=) P

0

is

de�ned as A ` P

�

�!

�

P

0

.

The two semantis oinide in the following sense.

Theorem 1 If fn(P) � A then A ` P

�

�! Q i� P ! Q.

This give on�dene that the labelled semantis arries enough information. The proof

is somewhat deliate | it an be found in Appendix A.

2.4 Bisimulation

The statements of some relationships between the behaviour of a wrapped and an un-

wrapped program require an operational equivalene relation. As box-� is asynhronous,

an appropriate notion an be based on the weak asynhronous bisimulation of [ACS96℄.

Consider a family S of relations indexed by �nite sets of names suh that eah S

A

is a

symmetri relation over fP j fn(P) � A g. Say S is a weak asynhronous bisimulation if

� P S

A

Q, A ` P

`

�! P

0

and ` is an output or � transition imply 9Q

0

: A ` Q

^

`

=)

Q

0

^ P

0

S

A[fn(`)

Q

0

, and

� P S

A

Q, A ` P

x

v

�! P

0

imply either 9Q

0

: A ` Q

x

v

=) Q

0

^ P

0

S

A[fn(x

v)

Q

0

or

9Q

0

: A ` Q =) Q

0

^ P

0

S

A[fn(x

v)

(Q

0

j x

v).

We write � for the union of all weak asynhronous bisimulations. (This de�nition has

not been thoroughly tested { in partiular, it has not been proved to be a ongruene.)

3 Seurity Wrappers

This setion gives three example wrappers. The �rst enapsulates a single omponent,

restriting its interations with the outside world to ommuniations obeying a ertain

protool. The seond is similar, but also writes a log of all suh ommuniations. The

9

third wrapper enapsulates two omponents, allowing eah to interat with the outside

world in a limited way but also allowing information to ow from the �rst to the seond

(but not vie versa).

A wrapper design must be in the ontext of some �xed protool whih omponents

should use for ommuniation with their environment and with eah other. For the �rst

two wrappers we �x two hannel names, in and out , for omponents to reeive and send

messages respetively. Moreover, we assume that omponents will always be exeuted

within some box and should be ommuniating with the parent box. A trivial omponent

that reeives values v and then opies pairs

h

v v

i

to the output would be written as

! in

"

y:out

"

h

y y

i

A maliious omponent might also write data to another illiit output hannel available

in the environment, e.g.

! in

"

y:

�

net

"

y j out

"

h

y y

i

�

or eavesdrop on ommuniations between other parts of the system, e.g.

!

?

y:(net

"

 j

?

y

�

We an express whether a omponent obeys the protool in terms of the labelled transi-

tion semantis { say P is well-behaved for a unary wrapper i� whenever A ` P

l

1

::l

k

�! Q

then the l

j

are of the form in

"

v, out

"

v, or � .

A Filtering Wrapper A �lter is a wrapper that simply restrits the ommuniation

abilities of a proess. We onsider a stati �lter that allows interation on two hannels

in and out only.

W

1

[℄

def

= (� a)

�

a[℄

j ! in

"

y:in

a

y

j ! out

a

y:out

"

y

�

W

1

exeutes its omponent within a freshly-named box, installing forwarders to move

legitimate messages aross the boundary. Note that this and further wrappers are non-

binding ontexts { equivalently, we assume wherever we apply W

1

to a proess P that

the new-bound a does not our free in P (in an implementation this ould be ensured

either probabilistially or with a linear-time san of P). Irrespetive of the behaviour of

P , W

1

[P ℄ does obey the protool { this an be stated learly using the labelled transition

semantis:

Proposition 2 For any program P with a 62 fn(P), if A ` W

1

[P ℄

l

1

::l

k

�! Q then the l

j

are

of the form in

"

v, out

"

v, or � .

The proof is via an expliit haraterisation of the states reahable by labelled transitions

of W

1

[P ℄. A proof of this, and of the other properties of W

1

, an be found in the

Appendies. We say a unary wrapper with this property is pure.

The Logging Wrapper The �lter an be extended to maintain a log of all ommuni-

ations of a proess, sending opies on a hannel log to the environment:

L[℄

def

= (� a)

�

a[℄

j ! in

"

y:(log

"

y j in

a

y)

j ! out

a

y:(log

"

y j out

"

y)

�

10

A wrapped program L[P ℄ again an interat only in limited ways.

Proposition 3 For any program P with a 62 fn(P), if A ` L[P ℄

l

1

::l

n

�! Q then the l

j

are

of the form in

"

v, out

"

v, log

"

v, or � .

A Pipeline Wrapper A pipeline wrapper allows a ontrolled ow of information

between two omponents. We give a binary wrapper W

2

that takes two proesses. In an

exeution of W

2

[Q

1

; Q

2

℄ the two wrapped proesses Q

i

an interat with the environment

as before, on hannels in

i

and out

i

. In addition, Q

1

an send messages to Q

2

on a hannel

mid . The pipeline implemented here is unordered.

W

2

[

1

;

2

℄

def

= (� a

1

; a

2

)

�

a

1

[

1

℄ j a

2

[

2

℄

j ! in

1

"

y:in

1

a

1

y

j ! in

2

"

y:in

2

a

2

y

j ! out

1

a

1

y:out

1

"

y

j ! out

2

a

2

y:out

2

"

y

j !mid

a

1

y:mid

a

2

y

�

As before W

2

is a non-binding ontext { we assume, wherever we apply it to two proesses

P

1

; P

2

, that fa

1

; a

2

g\ fn(P

1

; P

2

) = ;. Say a binary wrapper C is pure i� for any programs

P

1

; P

2

, (satisfying the appropriate free name ondition { for W

2

that with fa

1

; a

2

g \

fn(P

1

; P

2

) = ;), if A ` C[P

1

; P

2

℄

l

1

::l

k

�! Q then the l

j

are of the form in

i

"

v, out

i

"

v, or � .

Proposition 4 W

2

is pure.

For an example of a bloked attempt by the seond proess to send a value to the �rst,

suppose P

2

= mid

"

v. We have

W

2

[P

1

;mid

"

v℄ = (� a

1

; a

2

)

�

a

1

[P

1

℄ j a

2

[mid

"

v℄ j R

�

! (� a

1

; a

2

)

�

a

1

[P

1

℄ j a

2

[0℄ j mid

a

2

v j R

�

where R is the parallel omposition of forwarders. The output mid

a

2

v in the �nal state

annot interat further { not with the environment, as a

2

is restrited, and not with the

forwarder !mid

a

1

y:mid

a

2

y, as a

1

6= a

2

.

These wrappers all assume a rather simple �xed protool. It would be straightforward

to generalise to arbitrary sets of hannels instead of in, out and mid . It would also be

straightforward to allow n-ary wrappers, enapsulating many omponents and allowing

information to ow only on a given preorder between them. Other generalisations are

disussed in the onlusion.

4 Honesty and Composition

The properties of wrappers stated in the previous setion are very weak. For example,

the unary wrapper

C[℄

def

= 0

is also pure, but is useless. In this setion we identify the lass of honest wrappers that

are guaranteed to forward legitimate messages. This gives the authors of omponents a

lear statement of (some of) the properties of the environment that an be relied upon.

11

An initial attempt might be to take W

1

as a spei�ation, de�ning a unary wrapper

C to be honest i� for any program P the proesses C[P ℄ and W

1

[P ℄ are operationally

equivalent. This is unsatisfatory { it rules out wrappers suh as L, and it does not give

a very lear statement of the properties that may be assumed of an honest wrapper.

A better attempt might be to say that a unary wrapper C is honest i� for any well-

behaved P the proesses C[P ℄ and P are operationally equivalent. This would be unsatis-

fatory in two ways. Firstly, some intuitively sound wrappers have additional interations

with the environment { e.g. the logging outputs of L { and so would not be onsidered

honest by this de�nition. Seondly, this de�nition would not onstrain the behaviour of

wrappers for non-well-behaved P at all { if a omponent P attempted, in error, a single

illiit ommuniation then C[P ℄ might behave arbitrarily.

To address these points we give expliit de�nitions of honesty, �rst for unary wrappers

and then for binary, in the style of weak asynhronous bisimulation. Consider a family

R indexed by �nite sets of names suh that eah R

A

is a relation over fP j fn(P) � A g.

Say R is an h-bisimulation if, whenever C R

A

Q then:

1. if A ` C

`

�! C

0

for ` = out

"

v; � then A ` Q

^

`

=) Q

0

^ C

0

R

A[fn(`)

Q

0

2. if A ` C

in

"

v

�! C

0

then either A ` Q

in

"

v

=) Q

0

and C

0

R

A[fn(in;v)

Q

0

or A ` Q =) Q

0

and C

0

R

A[fn(in;v)

Q

0

j in

"

v

3. if A ` C

`

�! C

0

for any other label then C

0

R

A[fn(`)

Q

together with symmetri versions of lauses 1 and 2. Say a unary wrapper C is honest if

for any program P (satisfying the appropriate free name ondition) and any A � fn(C[P ℄)

there is an h-bisimulation R with C[P ℄ R

A

P .

Loosely, lauses 1, 2 and the symmetri versions ensure that legitimate ommuni-

ations and internal redutions must be weakly mathed. Clause 3 ensures that if the

wrapper performs some additional ommuniation then this does not a�et the state as

seen by the wrapped proess.

Proposition 5 The unary wrappers W

1

and L are honest.

We give some examples of dishonest wrappers. Take

C[℄

def

= (� a)a[℄

This is not honest { a transition A ` P

out

"

v

�! P

0

annot be mathed by C[P ℄, violating

the symmetri version of lause 1. Now onsider

C[℄

def

=

This wrapper is also dishonest as C[P ℄ an perform ations not in the protool that

essentially a�et the state of P . For example, take P = x

?

y:out

"

hi

. Suppose C[P ℄ R

A

P

for an h-bisimulation R. We have A ` C[P ℄

x

?

hi

�! out

"

hi

so by lause 3 out

"

hi

R

A

P ,

but then lause 1 annot hold { the left hand side an perform an out

"

hi

transition that

annot be mathed be the right hand side.

12

Composition of Wrappers The protool for ommuniation between a omponent

and a unary wrapper is designed so that wrappers may be nested. We onjeture that

the omposition of any honest unary wrappers is honest.

Conjeture 6 If C

1

and C

2

are honest unary wrappers then C

1

Æ C

2

is honest.

Analogous results for non-unary wrappers would require wrappers with more omplex

interfaes so that the input, output and mid hannels ould be onneted orretly.

A desirable property of a pure wrapper is that it should not a�et the behaviour of

any well-behaved omponent | one might expet for any pure and honest C and well-

behaved P that C[P ℄ �

A

P (where A � fn(C[P ℄)). Unfortunately this does not hold, even

for W

1

, as the wrapper an make input transitions that annot be mathed. One an

hek W

1

[0℄ 6�

A

0, yet 0 is well-behaved. In pratie one would expet the environment

of a wrapper to not be able to detet these inputs, but to make this preise would require

an operational equivalene relativised to suh `well-behaved' environments.

A simpler property would be that multiple wrappings have no e�et. We onjeture

that W

1

is idempotent, i.e. that W

1

[W

1

[P ℄℄ and W

1

[P ℄ have the same behaviour (up to

weak asynhronous bisimulation):

Conjeture 7 For any program P with a 62 fn(P) and A � fn(W

1

[P ℄) we haveW

1

[P ℄ �

A

W

1

[W

1

[P ℄℄.

4.1 Honesty for Binary Wrappers

The de�nition of honesty for binary wrappers must take into aount the mid ommu-

niation. Consider a family R indexed by �nite sets of names suh that eah R

A

is

a relation between terms and pairs of terms, all with free names ontained in A. Say

R is a binary h-bisimulation if, whenever C R

A

(Q

1

; Q

2

) the lauses below hold. The

key di�erene with the unary de�nition is lause 7; the other lauses are routine, albeit

notationally omplex.

1. if A ` C

out

i

"

v

�! C

0

then A ` Q

i

out

i

"

v

=) Q

0

i

, A ` Q

3�i

=) Q

0

3�i

and C

0

R

A[fn(v)

(Q

0

1

; Q

0

2

).

2. if A ` C

in

i

"

v

�! C

0

then A ` Q

3�i

=) Q

0

3�i

and either A ` Q

i

in

i

"

v

=) Q

0

i

^ C

0

R

A[fn(v)

(Q

0

1

; Q

0

2

) or A ` Q

i

=) Q

00

i

^ C

0

R

A[fn(v)

(Q

0

1

; Q

0

2

), where Q

0

i

= Q

00

i

j in

"

v.

3. if A ` C

�

�! C

0

then A ` Q

1

=) Q

0

1

, A ` Q

2

=) Q

0

2

and C

0

R

A

(Q

0

1

; Q

0

2

).

4. if A ` C

`

�! C

0

for any other label then C

0

R

A[fn(`)

(Q

1

; Q

2

)

5. if A ` Q

i

`

�! Q

0

i

for ` = out

i

"

v; � then A ` C

^

`

=) C

0

, and C

0

R

A[fn(`)

(Q

0

1

; Q

0

2

),

where Q

0

3�i

= Q

3�i

.

6. if A ` Q

i

in

i

"

v

�! Q

0

i

then either A ` C

in

i

"

v

=) C

0

^ C

0

R

A[fn(v)

(Q

0

1

; Q

0

2

) or A ` C =)

C

0

^ C

0

j in

"

v R

A[fn(v)

(Q

0

1

; Q

0

2

), where Q

0

3�i

= Q

3�i

.

7. if A ` Q

1

mid

"

v

�! Q

0

1

then A ` C =) C

0

^ C

0

R

A[fn(v)

(Q

0

1

; Q

2

j mid

"

v).

A binary wrapper C is honest if for all P

1

; P

2

(satisfying the appropriate free name ondi-

tion) and any A � fn(C[P

1

; P

2

℄) there exists a binary h-bisimulation R with C[P

1

; P

2

℄ R

A

(P

1

; P

2

).

13

Conjeture 8 W

2

is honest.

5 Constrained Interation Between Components

In our motivating example Karen required �ne-grain ontrol over the information ows

between omponents { in the binary ase, allowing unidiretional ow. By examining

the ode for W

2

it is intuitively lear that it ahieves this, preventing information owing

from Q to P within W

2

[P;Q℄. When one omes to make this intuition preise, however,

it beomes far from lear exatly what behavioural properties W

2

guarantees that make

it a satisfatory wrapper from the user's point of view (who should not have to examine

the wrapper ode). Honesty is one, but it does not prohibit bad ows. In this setion we

give a number of andidate properties, stating four preisely and the others informally.

We onjeture that all are satis�ed by W

2

but that none are equivalent. None are entirely

satisfatory; we hope to provoke disussion of exatly what guarantees should be desired

by users and by omponent designers. For simpliity, only pure binary wrappers C are

onsidered { reall that for a pure binary C the labelled transitions of C[P

1

; P

2

℄ will only

be of the forms in

i

"

v, out

i

"

v and � .

5.1 New-name diretionality

As we are using a alulus with reation of new names, we an test a wrapper by supplying

a new name to the seond omponent, on in

2

, and observing whether it an ever be output

by the �rst omponent on out

1

. Say C is diretional for new names if whenever

A ` C[P

1

; P

2

℄

`

1

�! : : :

`

j

�!

in

2

"

u

�!

`

0

1

�! : : :

`

0

k

�!

out

1

"

u

0

�! P

with x 2 fn(u), but x is new, i.e. x 62 A [fn(`

1

: : : `

j

), and x is not subsequently input

to the �rst omponent, i.e.

x 62

[

i21::k^`

0

i

=in

1

"

v

fn(v)

then x is not output by the �rst omponent, i.e. x 62 fn(u

0

). This property does not

prevent all information ow, however { a variant of W

2

ontaining a reverse-forwarder

that only forwards partiular values, suh as

!mid

a

2

y:if y 2 f0; 1g then mid

a

1

y

ould still satisfy it. (Here 0 and 1 are free names, whih must therefore be in A.)

Note that a binary wrapper C is intended only to limit information ow within

C[P

1

; P

2

℄. We do not wish to plae any onstraint on the environment of the wrap-

per, for example forbidding the environment to opy values reeived from out

2

to in

1

.

Suh a restrition ould only be imposed by draonian measures, e.g. by waiting for P

1

to terminate before starting P

2

, that would not be aeptable to the desktop user. Many

programs are essentially non-terminating; if they are exeuting onurrently then the

user annot be prevented from reading the output of one and opying it to the other. In

many irumstanes this should be expliitly supported by the desktop ut-and-paste,

perhaps with a warning signal.

5.2 Permutation

Our seond property formalises the intuition that if no observable behaviour due to P

1

depends on the behaviour of P

2

then in any trae it should be possible to move the ations

14

assoiated with P

1

before all ations assoiated with P

2

. Say C has the permutation

property if whenever

A ` C[P

1

; P

2

℄

`

1

=) : : :

`

k

=) P

with `

i

6= � there exists a permutation � of f1; : : : ; kg suh that

A ` C[P

1

; P

2

℄

`

�(1)

=) : : :

`

�(k)

=) P

and no in

1

or out

1

transition ours after any in

2

or out

2

transition in `

�(1)

: : : `

�(k)

. For

an example wrapper without this property, onsider

C[

1

;

2

℄

def

= (� a

1

; a

2

)

�

a

1

[

1

℄ j a

2

[

2

℄

j ! in

2

"

y:

�

in

2

a

2

y j ! in

1

"

y:in

1

a

1

y

�

j ! out

1

a

1

y:out

1

"

y

j ! out

2

a

2

y:out

2

"

y

j !mid

a

1

y:mid

a

2

y

�

Here the in

1

messages are not forwarded until at least one in

2

input is reeived from

the environment. Nonetheless, in some sense there is still no information ow from the

seond omponent to the �rst.

The new-name diretionality and permutation properties are expressed purely in

terms of the externally observable behaviour of C[P;Q℄ (in fat, they are properties of its

trae set, a very extensional semantis). Note, however, that the intuitive statement that

information does not ow from Q to P depends on an understanding of the internal om-

putation of P and Q that is not present in the redution or labelled transition relations

(given only that C[P;Q℄ !

�

R there is no way to assoiate subterms of R with an `origin'

in C, P or Q). Our next two properties involve a more intensional semantis in whih

output and input proesses are tagged with sets of olours. The semantis propagates

olours in interation steps, thereby traking the dependenies of redutions.

5.3 Coloured Redutions

Take a set ol of olours (disjoint from N), and let and d range over subsets of ol.

We de�ne a oloured box-� alulus by annotating all outputs and inputs with sets of

olours:

P ::= :x

o

v

�

�

 :x

�

p:P

�

�

 : !x

�

p:P

�

�

n[P ℄

�

�

0

�

�

P j P

0

�

�

(� x)P

If P is a oloured term we write jP j for the term of the original syntax obtained by

erasing all annotations. Conversely, for a term P of the original syntax ÆP denotes the

term with every partile oloured by . For a oloured P we write �P for the oloured

term whih is as P but with unioned to every set of olours ourring in it. We write d

for the union [d. The redution relation now takes the form P !

Q, where P and Q

are oloured terms and is a set of olours indiating what this redution depends upon.

It is de�ned as follows, in whih strutural ongruene is de�ned by the same axioms as

15

before.

n[:x

"

v j Q℄ !

 :x

n

v j n[Q℄ (C Red Up)

 :x

n

v j n[Q℄ !

n[:x

"

v j Q℄ (C Red Down)

 :x

�

v j d :x

�

p:P !

d

d �(f

v

=

p

gP) (C Red Comm)

 :x

�

v j d : !x

�

p:P !

d

d : ! x

�

p:P j d �(f

v

=

p

gP) (C Red Repl)

P !

Q) P j R!

Q j R (C Red Par)

P !

Q) (� x)P !

(� x)Q (C Red Res)

P !

Q) n[P ℄ !

n[Q℄ (C Red Box)

P � P

0

!

Q

0

� Q) P !

Q (C Red Strut)

The oloured alulus has the same essential behaviour as the original alulus:

Proposition 9 For any oloured P we have jP j ! Q i� 9; P

0

: P !

P

0

^ jP

0

j = Q.

Mediation We an now apture the intuition that all interation between wrapped

omponents should be mediated by the wrapper. We onsider oloured redution se-

quenes of a wrapper C and two omponents P

1

; P

2

from an initial state in whih eah is

oloured di�erently. Let gr, bl and rd be distint singleton subsets fgreeng, fblueg, fredg

of ol. Suppose

(gr Æ C)

�

bl ÆP

1

; rd ÆP

2

�

j bl Æ I

1

j rd Æ I

2

!

1

: : :!

k

Q

where eah I

i

is a parallel omposition of messages on in

i

, i.e. of terms of the form in

i

"

v.

Say C is mediating i� whenever red 2

j

and blue 2

j

then green 2

j

.

Colour ow The oloured semantis an also be used to express the property that

no output on out

1

should depend on the seond wrapped omponent. Say C has the

olour diretionality property if whenever there is a redution sequene as above and

Q � (� A)(:out

1

"

v j Q

0

) then red 62 .

For an example wrapper that we onjeture has the permutation property but not

the olour diretionality property, onsider a version of W

2

that has an extra parallel

omponent out

2

a

2

y:(out

2

"

y j out

1

a

1

y:out

1

"

y). This establishes an additional one-shot

forwarder for out

1

after forwarding a message on out

2

.

These statements of mediation and oloured diretionality share a defet: the use

of a redution semantis makes it awkward to onsider inputs of values ontaining new

names that have previously been output by the wrapped omponents. To address this

one would need a oloured labelled transition semantis, allowing e.g. a re�ned olour

diretionality property to be stated as follows. Whenever

A ` (gr Æ C)

�

bl ÆP

1

; rd ÆP

2

�

`

1

�!

1

: : :

`

k

�!

k

;

if the inputs are properly oloured (i.e. for eah i 2 1::k we have `

i

= in

"

1

v =)

i

= blue

and `

i

= in

"

2

v =)

i

= red), then for eah i 2 1::k the out

1

outputs should be properly

oloured, i.e.

`

i

= out

1

"

v =) red 62

i

Causality A very strong diretionality property that one might ask for { perhaps the

strongest { would be that in an exeution of C[P

1

; P

2

℄ no output on out

1

an be ausally

dependent on any ation of P

2

. Casual semantis for proess aluli have been muh

16

studied, often under the name `true onurreny semantis' { see [WN95℄ for an overview.

It would be interesting to give a ausal semantis to the box � alulus. There is a trade-

o� here, however { suh a semantis would be rather omplex; it would have to be

understood in order to understand any property stated using it. The oloured redution

semantis an be onsidered as an more tratable approximation to real ausality.

Another point is that a ausal property is sometimes too strong { a usable wrapper

may have to allow low-bandwidth ommuniation in the reverse diretion, perhaps not

arrying any data values, to permit aknowledgement messages. A ausal property would

then not hold, while a modi�ed olour ow property would.

6 Conlusion

The ode base of modern systems is beoming inreasingly diverse. Whereas previously

a typial system would involve a small number of monolithi appliations, obtained from

trusted organisations, now users routinely download omponents from partially trusted

or untrusted soures. Downloaded or mobile ode fragments are ommonly run under the

user's authority to grant aess to system resoures and permit interation with other

software omponents. This presents obvious seurity risks for the serey and integrity

of the user's data.

In this paper we have developed a theory of seurity wrappers. These are small

programs that an regulate the interations between untrusted software omponents,

enforing dynami and exible seurity poliies. We have presented a minimal onurrent

programming language for studying the problem, the box-� alulus, and proved a basi

metatheoreti result: that a redution and labelled transition semantis oinide. We

have expressed a number of seurity wrappers in the alulus and begun an investigation

of the seurity properties that wrappers should provide.

6.1 Related Work

There is an extensive literature on information ow properties of various kinds. Muh

of it is in the ontext of multi-level seurity, in whih one has a �xed lattie of seurity

levels and is onerned with properties whih state that a omponent (expressed purely

semantially, e.g. as a set of traes) respets the levels. The theory ould be applied

during the design of the omponents of a large multi-user system (with a relatively stati

seurity poliy) by proving that the omponents obey partiular properties. A onise

introdution an be found in the survey of MLean [ML94℄. The problem of designing

and understanding wrappers appears to be rather di�erent { we have foussed on the

protetion required by a single user exeuting a variety of partially-trusted omponents

obtained from third parties. This requires exible protetion mehanisms { a stati

assignment of seurity levels would be inadequate { and annot depend on stati analysis

of the omponents. Related work on dynami enforement of poliies has been presented

by Shneider [Sh98℄.

Other reent work has studied type systems that ensure seurity properties, e.g.

the type systems of Volpano, Irvine and Smith [VIS96, VS98℄, the SLam alulus of

Heintze and Rieke [HR98a℄, the systems allowing delassi�ation of Myers and Liskov

[ML98, Mye99℄, the type systems of Riely and Hennessy [HR98, HR98b, RH98℄, and

work on proof-arrying ode [NL98℄. If the produers of omponents that one uses all

adopt suh systems then they may beome very e�etive. Until then, however, and until

type systems an provide the exible poliies required, partially trusted ode will in

pratie either be run dangerously or be wrapped.

17

In this paper we have made extensive use of tehniques from proess aluli and op-

erational semantis. These are beginning to provide fruitful ways of studying problems

in seurity and distributed systems, inluding the analysis of seurity protools, for ex-

ample in [AG97, Aba97, LR97℄, and more general seure language design, inluding work

on the Ambient alulus [CG98, CG99℄, the Seure Join alulus [AFG98℄, the mobile

agent aluli in [HR98, HR98b, RH98, Sew97, Sew98, SWP98a, SWP98b℄, and the Seal

alulus of [VC98, VC99℄. These works have studied several di�erent problems, using

a variety of aluli designed for the purpose. Common to all is the use of a redution

or labelled-transition operational semantis, providing lear rigorous semantis to the

rather high-level onstruts involved. One distinguishing feature of the present work is

that we do not onsider any mobility primitives, allowing us to use a tratable early la-

belled transition system. This appears to be important for the statement of the deliate

seurity properties of wrappers.

6.2 Future Diretions

This paper opens up a number of diretions that we would like to pursue. Most imme-

diately, it gives several onjetures that should be proved or refuted, and we would like

a better understanding of the properties of binary wrappers. There are then extensions

for typing, to riher interfaes, and with mobility primitives.

Typing We are primarily interested in omponents for whih it is infeasible to statially

determine whether they are well-behaved. Nonetheless, for simple omponents one ould

onservatively ensure well-behaviour with a standard type system, most simply taking

types

T ::= box

�

�

h

T

1

::T

k

i

�

�

lT

where lT is the type of hannel names that an be used to ommuniate values of type

T , together with the obvious inferene rules. If P is well-typed with respet to a typing

ontext in : lS; out : lT for types S and T ontaining no instanes of l then one would

expet P to be well-behaved for unary wrappers.

Riher interfaes The wrappers of x3 allowed the enapsulated omponents to inter-

at only on very simple interfaes. Ultimately, we would like to understand wrappers

with more realisti interfaes. For example, in a mild extension of box-� one an express

a wrapper that enapsulates k omponents, allows internal ow along an arbitrary pre-

order, and permits eah omponent to open and lose windows for harater IO. Suppose

p

1

; : : : ; p

k

is a list of distint names, and � is a preorder over them giving the allowable

information ow. De�ne a k-ary wrapper as follows.

C[

1

; : : : ;

k

℄

def

= (� p

1

; : : : ; p

k

)

�

p

1

[

1

℄ j : : : j p

k

[

k

℄

j ! fwd

(m)

(

n z y

)

:if m � n then z

n

y else 0

j BWindow

�

18

where

BWindow

def

= ! openwindow

(m)

(

s x

)

:

openwindow

"

h

s x

i

j x

"

(

get put lose

)

:

x

m

h

get put lose

i

j ! get

m

y:(get

"

y j y

"

:y

m

)

j ! put

m

(

 y

)

:(put

"

h

 y

i

j y

"

:y

m

)

j ! lose

m

y:(lose

"

y j y

"

:y

m

)

This uses an additional input tag { a proess x

(n)

p:P will input from any hild box,

binding the name of the box to n in P . The BWindow part of C reeives requests

for a new window from the enapsulated omponents and forwards them to the OS. It

then reeives the interfae for the new window from the OS, forwarding it down to the

omponent and also setting up forwarders for the interfae hannels. Making the seurity

properties of C preise is at present a hallenging problem. One would like to extend C

further by adding an interfae allowing the user to dynamially add and remove pairs

from �.

Covert hannels It should be noted that none of the semanti models that we use for

the box-� alulus make any ommitment to the preise details of sheduling proesses.

The properties expressed using these semantis therefore annot address timing-based

overt hannels suh as those mentioned by Lampson [Lam73℄. Certain other overt

hannels, in partiular those involving system IO and dis aess, ould be addressed

by expressing models of the IO and dis systems in the alulus, further enrihing the

wrapper interfaes.

Mobility The original motivation for this work involved downloadable or mobile ode

and mobile agents. To expliitly model the dynami on�guration of wrappers and ap-

pliations the alulus must be extended with mobility primitives, while keeping both a

tratable semantis and the priniple that eah box ontrols the interations and move-

ments of its ontents [VC98℄.

Aknowledgements Sewell was supported by EPSRC grant GR/L 62290 Caluli for

Interative Systems: Theory and Experiment. The authors would like to thank Ciar�an

Brye for his omments.

19

A Coinidene of the Two Semantis

This appendix ontains the proof of equivalene of the labelled transition semantis

and the redution semantis. It is divided into three parts, the �rst giving basi properties

of the labelled transition system, the seond showing that any redution an be mathed

by a � -transition and the third showing the onverse.

Basi Properties of the LTS

Lemma 10 If P � Q then fn(P) = fn(Q).

Proof Routine indution on derivation of P � Q. 2

Lemma 11 If A ` P

`

�! Q then

1. fn(P) � A

2. fn(Q) � fn(P; `)

3. if ` = x

o

v then fn(`) \ A � fn(P)

4. if ` = x

o

v then fn(o) � fn(P)

5. if ` = x

o

v and :mv(o) then x 2 fn(P)

6. if ` = x

v then fn() � fn(P).

7. if ` = x

v and 6= n then x 2 fn(P).

Proof By indution on the derivation of A ` P

`

�! Q. Part 1 is immediate in all

ases by the impliit ondition. For the other parts:

(Trans Out) By the ondition fn(x

o

v) � A.

(Trans In) For Part 2, fn(f

v

=

p

gP) � (fn(P)� fn(p)) [fn(v) � fn(x

�

p:P) [fn(x

�

v). For

Parts 6 and 7, fn(x; �) � fn(x

�

p:P). All other parts do not apply.

(Trans Repl) For Part 2, fn(!x

�

p:P j f

v

=

p

gP) � fn(!x

�

p:P) [(fn(P)� fn(p)) [fn(v) �

fn(!x

�

p:P) [fn(x

�

v). For Part 6 and 7, fn(x; �) � fn(! x

�

p:P). All other parts do

not apply.

(Trans Box-1) We have ` = � . For Part 2:

fn((� fn(x; v) �A)(x

n

v j n[P

0

℄))

= (fn(x

n

v) [fng [fn(P

0

))� (fn(x; v)�A) (by de�nition of fn)

� (fn(x

n

v) [fng [fn(P) [fn(x

"

v))� (fn(x; v)�A) (by ind. hyp., part 2)

� (fn(x

n

v) [fn(n[P ℄))� (fn(x; v) �A)

� fn(n[P ℄) (by ind. hyp., part 3)

= fn(n[P ℄; �)

All other parts do not apply.

(Trans Box-2) We have ` = x

n

v. For Part 2: fn(n[x

"

v j P ℄) = fn(n[P ℄) [fn(x

"

v) �

fn(n[P ℄) [fn(x

n

v). For Part 6 note that n 2 fn(n[P ℄). All other parts do not

apply.

20

(Trans Box-3) For Part 2, by the indution hypothesis fn(P

0

) � fn(P) so fn(n[P

0

℄) �

fn(n[P ℄). All other parts do not apply.

(Trans Par) By the indution hypothesis.

(Trans Comm) Part 2 is by parts 2, 4 and 6 of the indution hypothesis. All other

parts do not apply.

(Trans Res-1) By the indution hypothesis.

(Trans Res-2) For Part 2, by Part 2 of the indution hypothesis fn(P

0

) � fn(P) [

fn(y

o

v). As x 2 fn(y

o

v) we have fn(P

0

) � fn((� x)P) [fn(y

o

v). For Part 3, by the

indution hypothesis fn(y

o

v) \ (A; x) � fn(P) so fn(y

o

v) \ A � fn((� x)P). For

Part 4, by the indution hypothesis fn(o) � fn(P) and by the side ondition x 6= o

so fn(o) � fn((� x)P). For Part 5, if :mv(o) then by the indution hypothesis

y 2 fn(P) and by the side ondition x 6= y so y 2 fn((� x)P). All other parts do

not apply.

(Trans Strut Right) By the indution hypothesis and Lemma 10.

2

Lemma 12 (Strengthening) If A;B ` P

`

�! P

0

and B \ fn(P; `) = ; then A ` P

`

�!

P

0

.

Proof Indution on derivations of transitions.

(Out), (In), (Repl), (Box-2) All immediate.

(Box-3),(Par),(Strut Right) Straightforward use of the indution hypothesis.

(Comm) We have a rule instane of the form

A;B ` P

x

v

�! P

0

A;B ` Q

x

v

�! Q

0

A;B ` P j Q

�

�! (� fn(x; v)� (A;B))(P

0

j Q

0

)

(Comm)

By Lemma 11.3 fn(x

v) \ (A;B) � fn(P) and by assumption B \ fn(P) = ;

so fn(x

v) \ B = ;. By the indution hypothesis and (Comm) we then have

A ` P j Q

�

�! (� fn(x; v)�A)(P

0

j Q

0

), but fn(x; v) � A = fn(x; v) � (A;B), so

A ` P j Q

�

�! (� fn(x; v) � (A;B))(P

0

j Q

0

) as required.

(Box-1) Similar to (Comm). In detail: we have a rule instane of the form

A;B ` P

x

"

v

�! P

0

A;B ` n[P ℄

�

�! (� fn(x; v) � (A;B))(x

n

v j n[P

0

℄)

(Box-1)

By Lemma 11.3 fn(x

"

v) \ (A;B) � fn(P) and by assumption B \ fn(P) = ; so

fn(x

"

v) \ B = ;. By the indution hypothesis and (Box-1) we then have A `

n[P ℄

�

�! (� fn(x; v) � (A))(x

n

v j n[P

0

℄) but fn(x; v) � A = fn(x; v) � (A;B), so

A ` n[P ℄

�

�! (� fn(x; v) � (A;B))(x

n

v j n[P

0

℄) as required.

21

(Res-1) We have a rule instane of the form

A;B; x ` P

`

�! P

0

A;B ` (� x)P

`

�! (� x)P

0

(Res-1)

with x 62 fn(`). By A;B; x well-formed we have x 62 B, so B \ fn((� x)P) = ;

implies B \ fn(P) = ;. By the indution hypothesis A; x ` P

`

�! P

0

so by (Res-1)

A ` (� x)P

`

�! (� x)P

0

.

(Res-2) Similar to (Res-1), noting that the sideondition is a prediate on x and the

label only.

2

Lemma 13 (Injetive Substitution) If A ` P

`

�! P

0

, and f :A!B and g :(fn(`)�

A)!(N �B) are injetive, then B ` fP

(f+g)`

�! (f + g)P

0

.

Proof Indution on derivations of transitions.

(Out),(Box-1) immediate.

(Box-3),(Par),(Strut Right) Straightforward uses of the indution hypothesis.

(In) Consider A ` x

�

p:P

x

�

v

�! f

v

=

p

gP . We have fn(x

�

p:P) � A and f

v

=

p

gP well de�ned.

Take some p̂ and

^

P suh that x

�

p:P = x

�

p̂:

^

P and n(p̂)\(A[B[(fn(`)�A)[ran(g)) =

;, then f(x

�

p:P) = f(x

�

p̂:

^

P) = f(x)

f(�)

p̂:f(

^

P) and fn(f(x)

f(�)

p̂:f(

^

P)) � B.

We have f

v

=

p̂

g

^

P de�ned, hene f

v

=

p̂

g(f

^

P) is de�ned (as n(p̂)\ (dom(f)[ran(f)) =

;), hene f

(f+g)v

=

p̂

g(f

^

P) is de�ned (as (f + g)v and v are the same shape).

By (In) B ` f(x)

f(�)

p̂:f(

^

P)

f(x)

f(�)

(f+g)v

�! f

(f+g)v

=

p̂

gf

^

P .

Now fn(

^

P) � A [n(p̂) so fn(

^

P) \ dom(g) = ;, so f

^

P = (f + g)

^

P . Hene

f

(f+g)v

=

p̂

gf

^

P = f

(f+g)v

=

p̂

g(f + g)

^

P = (f + g)(f

v

=

p̂

g

^

P) = (f + g)(f

v

=

p

gP), so B `

f(x

�

p:P)

(f+g)x

�

v

�! (f + g)(f

v

=

p

gP).

(Repl) Similar to (In), using in addition that f(!x

�

p:P) = (f + g)(!x

�

p:P).

(Comm) fn(�) = ;, so we have f :A!B and g : ;!(N �B). Take some ĝ :(fn(x

v)�

A)!(N �B) injetive. By the indution hypothesis and (Comm) we have

B ` fP

(f+ĝ)(x

v)

�! (f + ĝ)P

0

B ` fQ

(f+ĝ)(x

v)

�! (f + ĝ)Q

0

B ` f(P j Q)

�

�! (� fn((f + ĝ)x; (f + ĝ)v) �B)((f + ĝ)(P

0

j Q

0

))

(Comm)

Now by Lemma 11.(4,1) fn() � A, so dom(ĝ) = fn(x; v) � A and ran(ĝ) =

fn((f + ĝ)x; (f + ĝ)v) � B, so B ` f(P j Q)

�

�! (� ran(ĝ))((f + ĝ)(P

0

j Q

0

)). We

have f((� dom(ĝ))(P

0

j Q

0

)) = ((� ran(ĝ))(f + ĝ)(P

0

j Q

0

)), so B ` f(P j Q)

�

�!

f((� fn(x; v) �A)(P

0

j Q

0

)).

22

(Box-1) Again similar to (Comm). fn(�) = ;, so we have f :A!B and g : ;!(N �B).

Take some ĝ :(fn(x

"

v)� A)!(N � B) injetive. By the indution hypothesis and

(Box-1) we have

B ` fP

(f+ĝ)(x

"

v)

�! (f + ĝ)P

0

B ` f(n)[fP ℄

�

�! (� fn((f + ĝ)x; (f + ĝ)v)�B)((f + ĝ)(x

n

v j n[P

0

℄)

(Box-1)

using f(n) = (f+ĝ)(n). It follows that B ` f(n[P ℄)

�

�! f((� fn(x; v) �A)(x

n

v j n[P

0

℄)).

(Res-1) Take some x̂ 62 B [ran(g) and de�ne

^

f :(A; x)!(B; x̂) by

^

f(x) = x̂

^

f(z) = f(z), for z 2 A.

By the indution hypothesis B; x̂ `

^

fP

(

^

f+g)`

�! (

^

f + g)P

0

. By (Res-1) B ` (� x̂)

^

fP

(

^

f+g)`

�!

(� x̂)(

^

f + g)P

0

, so B ` f((� x)P)

(f+g)`

�! (f + g)(� x)P

0

.

(Res-2) De�ne

^

f :(A; x)!(B; g(x)) and ĝ as f + (x 7! g(x)) and g � (fn(y

o

v)� (A; x))

respetively. By the indution hypothesis B; g(x) `

^

fP

(

^

f+ĝ)y

o

v

�! (

^

f + ĝ)P

0

, so

by (Res-2) B ` (� g(x))

^

fP

(

^

f+ĝ)y

o

v

�! (

^

f + ĝ)P

0

, so as f + g =

^

f + ĝ we have

B ` f((� x)P)

(f+g)y

o

v

�! (f + g)P

0

.

2

Lemma 14 (Weakening and Strengthening) (A ` P

`

�! P

0

^ x 62 A [fn(`)) i�

(A; x ` P

`

�! P

0

^ x 62 fn(P; `)).

Proof The right-to-left impliation follows from the well-formedness of A; x and from

Lemma 12. The left-to-right impliation follows from the ondition fn(P) � A in the

de�nition of the transition rules and from Lemma 13, taking f to be the inlusion from

A to A; x and g the identity on fn(`)�A. 2

Lemma 15 (Shifting)

1. (A ` P

z

�

v

�! P

0

^ x 2 fn(v)�A) i� (A; x ` P

z

�

v

�! P

0

^ x 2 fn(v) � fn(P)) .

2. (A ` P

z

n

v

�! P

0

^ x 2 fn(z; v)�A) i� (A; x ` P

z

n

v

�! P

0

^ x 2 fn(z; v)� fn(P))

Proof Eah part is by two indutions on derivations of transitions. For the �rst:

(Out),(Box-1),(Box-2),(Box-3),(Comm),(Res-2) vauous.

(Par),(Strut Right) Straightforward uses of the indution hypothesis.

(In),(Repl) Straightforward.

23

(Res-1) Consider

A; y ` P

z

�

v

�! P

0

A ` (� y)P

z

�

v

�! (� y)P

0

(Res-1)

A; x; y ` P

z

�

v

�! P

0

A; x ` (� y)P

z

�

v

�! (� y)P

0

(Res-1)

y 62 fn(z

�

v) y 62 fn(z

�

v)

x 2 fn(v)�A x 2 fn(v) � fn((� y)P))

For the left-to-right impliation, note that x 2 fn(v) � (A; y), so by the indution

hypothesis A; y; x ` P

z

�

v

�! P

0

and x 2 fn(v) � fn(P). For the right-to-left impli-

ation, note that as A; x; y is well-formed we have x 2 fn(v) � fn(P), so by the

indution hypothesis A; y ` P

z

�

v

�! P

0

and x 2 fn(v)� (A; y).

For the seond part:

(Out),(In),(Repl),(Box-1),(Box-3),(Comm),(Res-2) vauous.

(Par),(Strut Right) Straightforward uses of the indution hypothesis.

(Box-2) Straightforward.

(Res-1) Similar to the (Res-1) ase of the �rst part.

2

As we are working up to alpha onversion a little are is required when analysing

transitions. We need the following lemma (of whih only the input and restrition ases

are at all interesting).

Lemma 16

1. A ` x

o

v

`

�! Q i� fn(x

o

v) � A, ` = x

o

v and Q � 0.

2. A ` x

�

p:P

`

�! Q i� there exists v suh that fn(x

�

p:P) � A, ` = x

�

v, f

v

=

p

gP is

de�ned and Q � f

v

=

p

gP .

3. A ` !x

�

p:P

`

�! Q i� there exists v suh that fn(! x

�

p:P) � A, ` = x

�

v, f

v

=

p

gP is

de�ned and Q � !x

�

p:P j f

v

=

p

gP .

4. A ` n[P ℄

`

�! Q i� one of the following hold.

(a) there exist x, v, and

^

P suh that n 2 A, ` = � , A ` P

x

"

v

�!

^

P , and Q �

(� fn(x; v) �A)(x

n

v j n[

^

P ℄).

(b) there exist x and v suh that fn(n[P ℄) � A, ` = x

n

v and Q � n[x

"

v j P ℄.

() there exists

^

P suh that n 2 A, ` = � , A ` P

�

�!

^

P , and Q � n[

^

P ℄.

5. A ` P j Q

`

�! R i� either

(a) there exists

^

P suh that fn(Q) � A, A ` P

`

�!

^

P and R �

^

P j Q.

(b) there exists x, , v,

^

P and

^

Q suh that ` = � , A ` P

x

v

�!

^

P , A ` Q

x

v

�!

^

Q,

and R � (� fn(x; v)�A)(

^

P j

^

Q).

24

or symmetri ases.

6. A ` (� x)P

`

�! Q i� either

(a) there exists x̂ 62 A [fn(`) [(fn(P)� x) and

^

Q suh that A; x̂ ` f

x̂

=

x

gP

`

�!

^

Q

and Q � (� x̂)

^

Q.

(b) there exists y, o, v,

^

Q and x̂ 62 A [fn(y; o) [(fn(P) � x) suh that ` = y

o

v,

A; x̂ ` f

x̂

=

x

gP

y

o

v

�!

^

Q, x̂ 2 fn(v), :mv(o) and Q �

^

Q.

() there exists y, o, v,

^

Q and x̂ 62 A [fn(o) [(fn(P) � x) suh that ` = y

o

v,

A; x̂ ` f

x̂

=

x

gP

y

o

v

�!

^

Q, x̂ 2 fn(y; v), mv(o) and Q �

^

Q.

Proof The right-to-left impliations are all shown using a single transition rule together

with (Trans Strut Right). The left-to-right impliations are shown by indution on

derivations of transitions. Only the input, repliated input and restrition ases are at

all interesting; we give just the restrition ase.

Case 6a, (() By Lemma 11, fn(f

x̂

=

x

gP) � A; x̂, so we have fn((� x̂)f

x̂

=

x

gP) � A.

By (Trans Res-1), A ` (� x̂)f

x̂

=

x

gP

`

�! (� x̂)

^

Q. By x̂ 62 fn(P) � x we have

(� x̂)f

x̂

=

x

gP = (� x)P . By (Trans Strut Right), A ` (� x)P

`

�! Q.

Case 6b, (() Again by Proposition 11, fn(f

x̂

=

x

gP) � A; x̂, so we have fn((� x̂)f

x̂

=

x

gP) �

A. By (Trans Res-2-nmv), A ` (� x̂)f

x̂

=

x

gP

y

o

v

�!

^

Q. Again by x̂ 62 fn(P) � x, we

have (� x̂)f

x̂

=

x

gP = (� x)P so by (Trans Strut Right) A ` (� x)P

`

�! Q.

Case 6, (() Again by Proposition 11 fn(f

x̂

=

x

gP) � A; x̂, so fn((� x̂)f

x̂

=

x

gP) � A.

By (Trans Res-2-mv) A ` (� x̂)f

x̂

=

x

gP

x̂

"

v

�!

^

Q. Again by x̂ 62 fn(P) � x we have

(� x̂)f

x̂

=

x

gP = (� x)P so by (Trans Strut Right) A ` (� x)P

`

�! Q.

Case 6, ()) Let �(A;R; `;Q)

def

, R = (� x)P =) (a) _ (b) _ (). We show � is losed

under the rules de�ning labelled transitions.

(Trans Res-1) An instane of (Trans Res-1) with onlusion A ` (� x)P

`

�! Q

must be of the form

A; x̂ `

^

P

`

�!

^

Q

A ` (� x̂)

^

P

`

�! (� x̂)

^

Q

x̂ 62 fn(`) (Trans Res-1)

for some x̂,

^

P ,

^

Q with (� x̂)

^

P = (� x)P , (� x̂)

^

Q = Q and fn((� x̂)

^

P) � A. By

A; x̂ de�ned and x̂ 62 fn(`) we have x̂ 62 A [fn(`). By (� x̂)

^

P = (� x)P we

have x̂ 62 fn(P) � x and

^

P = f

x̂

=

x

gP , so A; x̂ ` f

x̂

=

x

gP

`

�!

^

Q. By reexivity

of �, we have Q � (� x̂)

^

Q. So lause 6a holds.

(Trans Res-2-nmv) An instane of (Trans Res-2-nmv) with the onlusion A `

(� x)P

`

�! Q must be of the form

A; x̂ `

^

P

y

o

v

�! Q

A ` (� x̂)

^

P

y

o

v

�! Q

:mv(o) ^ x̂ 2 fn(v)� fn(y; o) (Trans Res-2-nmv)

for some x̂,

^

P , y, o, v with (� x̂)

^

P = (� x)P , y

o

v = ` and fn((� x̂)

^

P) � A. As

before x̂ 62 A[(fn(P)�x) and

^

P = f

x̂

=

x

gP , so taking

^

Q = Q lause 6b holds.

25

(Trans Res-2-mv) An instane of (Trans Res-2-mv) with the onlusion A `

(� x)P

`

�! Q must be of the form

A; x̂ `

^

P

y

o

v

�! Q

A ` (� x̂)

^

P

y

o

v

�! Q

mv(o) ^ x̂ 2 fn(y; v)� fn(o) (Trans Res-2-mv)

for some x̂,

^

P , y, o, v with (� x̂)

^

P = (� x)P , y

o

v = ` and fn((� x̂)

^

P) � A. As

before x̂ 62 A[(fn(P)� x) and

^

P = f

x̂

=

x

gP , so taking

^

Q = Q lause 6 holds.

(Trans Strut Right) An instane of (Trans Strut Right) with onlusion A `

(� x)P

`

�! Q must be of the form

A ` (� x)P

`

�! Q

0

Q

0

� Q

A ` (� x)P

`

�! Q

(Trans Strut Right)

for some Q

0

with fn((� x)P) � A. By �(A; (� x)P; `;Q

0

) either

Case 6a there exists x̂ 62 A [fn(`) [(fn(P) � x) and

^

Q suh that A; x̂ `

f

x̂

=

x

gP

`

�!

^

Q and Q

0

� (� x̂)

^

Q. By � an equivalene we have Q �

(� x̂)

^

Q, so lause 6a holds.

Case 6b there exists y, o, v,

^

Q and x̂ 62 A [fn(y; o) [(fn(P)� x) suh that

` = y

o

v, A; x̂ ` f

x̂

=

x

gP

y

o

v

�!

^

Q, x̂ 2 fn(v), :mv(o) and Q

0

�

^

Q. By � an

equivalene we have Q �

^

Q, so lause 6b holds.

Case 6 there exists y, o, v,

^

Q and x̂ 62 A [fn(o) [(fn(P) � x) suh that

` = y

o

v, A; x̂ ` f

x̂

=

x

gP

y

o

v

�!

^

Q, x̂ 2 fn(y; v), mv(o) and Q

0

�

^

Q. By � an

equivalene we have Q �

^

Q, so lause 6 holds.

The ases for all other rules are vauous.

2

Redutions Imply Transitions

Take the size of a derivation of a strutural ongruene to be number of instanes of

inferene rules ontained in it.

Lemma 17 If P

0

� P and f

v

=

p

gP is de�ned then f

v

=

p

gP

0

is de�ned and f

v

=

p

gP

0

�

f

v

=

p

gP . Moreover, for any derivation of P

0

� P there is a derivation of the same size of

f

v

=

p

gP

0

� f

v

=

p

gP .

Proof Obvious. 2

Proposition 18 If P

0

� P then A ` P

0

`

�! Q i� A ` P

`

�! Q.

Proof Indution on the size of derivation of P

0

� P . In symmetri ases we show only

the right-to-left diretion of the onlusion.

(Strut Cong Re) By the reexivity of i�.

26

(Strut Cong Sym) By the symmetry of i�.

(Strut Cong Tran) By the indution hypothesis and transitivity of i�.

(Strut Cong Input) Consider P

0

� P and A ` x

�

p:P

`

�! Q. By Lemma 16.2, there

exists v suh that fn(x

�

p:P) � A, ` = x

�

v, f

v

=

p

gP is de�ned and Q � f

v

=

p

gP .

Using Lemma 10, fn(x

�

p:P

0

) = fn(x

�

p:P). By Lemma 17, f

v

=

p

gP

0

is de�ned and

f

v

=

p

gP

0

� f

v

=

p

gP , so Q � f

v

=

p

gP

0

. Finally by Lemma 16.2, A ` x

�

p:P

0

`

�! Q.

(Strut Cong Repl) Consider P

0

� P and A ` !x

�

p:P

`

�! Q. By Lemma 16.3 there

exists v suh that fn(! x

�

p:P) � A; ` = x

�

v, f

v

=

p

gP is de�ned and Q � !x

�

p:P j

f

v

=

p

gP . Using Lemma 10, fn(!x

�

p:P

0

) = fn(!x

�

p:P). By Lemma 17, f

v

=

p

gP

0

is

de�ned and f

v

=

p

gP

0

� f

v

=

p

gP , so Q � !x

�

p:P

0

j f

v

=

p

gP

0

. Finally by Lemma 16.3,

A ` x

�

p:P

0

`

�! Q.

(Strut Cong Box) Consider P

0

� P and A ` n[P ℄

`

�! Q. By Lemma 16.4 one of the

following hold:

Case 16.4a there exist x, v, and

^

P suh that n 2 A, ` = � , A ` P

x

"

v

�!

^

P , and

Q � (� fn(x; v) � A)(x

n

v j n[

^

P ℄). By the indutive hypothesis A ` P

0

x

"

v

�!

^

P .

By Lemma 16.4 A ` n[P

0

℄

`

�! Q

Case 16.4b there exist x and v suh that fn(n[P ℄) � A, ` = x

n

v and Q �

n[x

"

v j P ℄. Using Lemma 10, fn(n[P

0

℄) = fn(n[P ℄). Clearly n[x

"

v j P ℄ �

n[x

"

v j P

0

℄, so Q � n[x

"

v j P

0

℄. Finally by Lemma 16.4, A ` n[P

0

℄

`

�! Q.

Case 16.4 there exists

^

P suh that n 2 A, ` = � , A ` P

�

�!

^

P , and Q � n[

^

P ℄.

By the indutive hypothesis A ` P

0

`

�!

^

P , so by Lemma 16.4, A ` n[P

0

℄

`

�!

Q.

(Strut Cong Par) Consider P

0

� P , Q

0

� Q and A ` P j Q

`

�! R. By Lemma 16.5

one of the following holds.

Case 16.5a there exists

^

P suh that fn(Q) � A, A ` P

`

�!

^

P and R �

^

P j Q. By

Lemma 10, fn(Q

0

) = fn(Q). By the indutive hypothesis A ` P

0

`

�!

^

P and

learly

^

P j Q �

^

P j Q

0

, so by Lemma 16.5, A ` P

0

j Q

0

`

�! R.

Case 16.5b there exists x, , v,

^

P and

^

Q suh that ` = � , A ` P

x

v

�!

^

P , A `

Q

x

v

�!

^

Q, and R � (� fn(x; v) � A)(

^

P j

^

Q). By the indution hypothesis

A ` P

0

x

v

�!

^

P and A ` Q

0

x

v

�!

^

Q. By Lemma 16.5, A ` P

0

j Q

0

`

�! R.

or symmetri ases.

(Strut Cong Res) Consider P

0

� P and A ` (� x)P

`

�! Q. By Lemma 16.6 one of

the following holds.

Case 16.6a there exists x̂ 62 A [fn(`) [(fn(P) � x) and

^

Q suh that A; x̂ `

f

x̂

=

x

gP

`

�!

^

Q and Q � (� x̂)

^

Q. By Lemma 17 f

x̂

=

x

gP

0

� f

x̂

=

x

gP (with a

derivation of the same size). By the indution hypothesis A; x̂ ` f

x̂

=

x

gP

0

`

�!

^

Q. By Lemma 16.6 A ` (� x)P

0

`

�! Q.

27

Case 16.6b there exists y, o, v,

^

Q and x̂ 62 A [fn(y; o) [(fn(P) � x) suh

that ` = y

o

v, A; x̂ ` f

x̂

=

x

gP

y

o

v

�!

^

Q, x̂ 2 fn(v), :mv(o) and Q �

^

Q. By

Lemma 17 f

x̂

=

x

gP

0

� f

x̂

=

x

gP , with a derivation of the same size. By the in-

dution hypothesis A; x̂ ` f

x̂

=

x

gP

0

y

o

v

�!

^

Q. By Lemma 10 fn(P

0

) = fn(P), so

x̂ 62 A [fn(y; o) [(fn(P

0

)� x). By Lemma 16.6, A ` (� x)P

0

`

�! Q.

Case 16.6 there exists y, o, v,

^

Q and x̂ 62 A [fn(o) [(fn(P) � x) suh that

` = y

o

v, A; x̂ ` f

x̂

=

x

gP

y

o

v

�!

^

Q, x̂ 2 fn(y; v), mv(o) and Q �

^

Q. By Lemma 17

f

x̂

=

x

gP

0

� f

x̂

=

x

gP (with a derivation of the same size). By the indution

hypothesis A; x̂ ` f

x̂

=

x

gP

0

y

o

v

�!

^

Q. By Lemma 10 fn(P

0

) = fn(P), so x̂ 62

A [fn(o) [(fn(P

0

)� x). By Lemma 16.6 A ` (� x)P

0

`

�! Q.

(Strut Par Nil), (Strut Par Comm), (Strut Par Asso), (Strut Res Res)

These should be straightforward. We hek the other two axioms in detail.

(Strut Res Par) (� x)(P j Q) � P j (� x)Q where x 62 fn(P). In the following, we

use the fat f

x̂

=

x

gP = P sine x 62 fn(P), and the fat that (� x)Q = (� x̂)f

x̂

=

x

gQ

when x̂ 62 fn(Q) � x. The proofs in the �rst part will yield results of the form

A ` P j (� x̂)f

x̂

=

x

gQ

`

�! R

0

with R

0

� R, thus we get A ` P j (� x)Q

`

�! R by an

appliation of (Trans Strut Right).

Consider A ` (� x)(P j Q)

`

�! R. By Lemma 16.6 this holds i� one of the following

holds:

Case 16.6a (Trans Res-1) there exists x̂ 62 A [fn(`) [(fn((P j Q)) � x) and

^

R

suh that A; x̂ ` f

x̂

=

x

g(P j Q)

`

�!

^

R and R � (� x̂)

^

R. By Lemma 16.5 this

transition holds i� one of the following holds:

Case 16.5a (Trans Par)[Left℄ there exists

^

P suh that fn(f

x̂

=

x

gQ) � A; x̂,

A; x̂ ` f

x̂

=

x

gP

`

�!

^

P and

^

R �

^

P j f

x̂

=

x

gQ. It follows that A; x̂ `

P

`

�!

^

P . By Lemma 14, A ` P

`

�!

^

P . By (Trans Par), we get A `

P j (� x̂)f

x̂

=

x

gQ

`

�!

^

P j (� x̂)f

x̂

=

x

gQ. By Lemma 11 x̂ 62 fn(

^

P). By (Trans

Strut Right), we obtain A ` P j (� x̂)f

x̂

=

x

gQ

`

�! (� x̂)(

^

P j f

x̂

=

x

gQ).

Case 16.5a

0

(Trans Par)[Right℄ there exists

^

Q suh that fn(f

x̂

=

x

gP) � A; x̂,

A; x̂ ` f

x̂

=

x

gQ

`

�!

^

Q and

^

R �

^

Q j f

x̂

=

x

gP . By (Trans Res-1) and the

fat that x̂ 62 fn(`), we get A ` (� x̂)f

x̂

=

x

gQ

`

�! (� x̂)

^

Q. By (Trans

Par)[Right℄, we get A ` P j (� x̂)f

x̂

=

x

gQ

`

�! P j (� x̂)

^

Q. By the fat that

x̂ 62 fn(P) and (Trans Strut Right), we get A ` P j (� x̂)f

x̂

=

x

gQ

`

�!

(� x̂)(P j

^

Q).

Case 16.5b (Trans Comm) there exists z, , v,

^

P and

^

Q suh that ` = � ,

A; x̂ ` f

x̂

=

x

gP

z

v

�!

^

P , A; x̂ ` f

x̂

=

x

gQ

z

v

�!

^

Q, and

^

R � (� fn(z; v)�A; x̂)(

^

P j

^

Q). By x̂ 62 fn(f

x̂

=

x

gP) and Lemma 11.3, x̂ 62 fn(z

v). By x̂ 62 fn(z

v)

and (Trans Res-1), A ` (� x̂)f

x̂

=

x

gQ

z

v

�! (� x̂)

^

Q. By the fat that x̂ 62

fn(P; z

v) and Lemma 14, we get A ` P

z

v

�!

^

P . By (Trans Comm),

A ` P j (� x̂)f

x̂

=

x

gQ

�

�! (� fn(z; v)�A)(

^

P j (� x̂)

^

Q). By Lemma 11.2

x̂ 62 fn(

^

P), so we may alulate (� fn(z; v)�A)(

^

P j (� x̂)

^

Q) � (� fn(z; v)�

A; x̂)(� x̂)(

^

P j

^

Q) � R.

28

Case 16.5b

0

(Trans Comm) there exists z, , v,

^

Q and

^

P suh that ` = � ,

A; x̂ ` f

x̂

=

x

gQ

z

v

�!

^

Q, A; x̂ ` f

x̂

=

x

gP

z

v

�!

^

P , and

^

R � (� fn(z; v)�A; x̂)(

^

Q j

^

P). There are some ases to onsider:

Case = � By Lemma 11.(6,7) x̂ 62 fn(z;).

Case x̂ 62 fn(v) By Lemma 14 A ` P

z

v

�!

^

P . By (Res-1) A `

(� x̂)f

x̂

=

x

gQ

z

v

�! (� x̂)

^

Q. By (Comm) we have A ` P j (� x̂)f

x̂

=

x

gQ

�

�!

(� fn(z; v)�A)(

^

P j (� x̂)

^

Q). By Lemma 11.2 x̂ 62 fn(

^

P), so (� fn(z; v)�

A)(

^

P j (� x̂)

^

Q) � (� x̂)(� fn(z; v)� A; x̂)(

^

P j

^

Q).

Case x̂ 2 fn(v) By Lemma 15.1 A ` P

z

v

�!

^

P . By (Res-2) A `

(� x̂)f

x̂

=

x

gQ

z

v

�!

^

Q. By (Comm) we have

A ` P j (� x̂)f

x̂

=

x

gQ

�

�! (� fn(z; v)�A)(

^

P j

^

Q):

Clearly (� fn(z; v)�A)(

^

P j

^

Q) � (� x̂)(� fn(z; v)�A; x̂)(

^

P j

^

Q).

Case = n By Lemma 11.6 x̂ 62 fn().

Case x̂ 62 fn(z; v) Exatly as the x̂ 62 fn(v) ase above.

Case x̂ 2 fn(z; v) By Lemma 15.2 A ` P

z

v

�!

^

P . By (Res-2) A `

(� x̂)f

x̂

=

x

gQ

z

v

�!

^

Q. By (Comm) we have

A ` P j (� x̂)f

x̂

=

x

gQ

�

�! (� fn(z; v)�A)(

^

P j

^

Q):

Clearly (� fn(z; v)�A)(

^

P j

^

Q) � (� x̂)(� fn(z; v)�A; x̂)(

^

P j

^

Q).

Case 16.6b (Trans Res-2-nmv) there exists y, o, v,

^

R and x̂ 62 A[fn(y; o)[(fn((P j

Q))�x) suh that ` = y

o

v, A; x̂ ` f

x̂

=

x

g(P j Q)

y

o

v

�!

^

R, x̂ 2 fn(v), :mv(o) and

R �

^

R. By Lemma 16.5 either one of the following holds:

Case 16.5a there exists

^

P suh that fn(f

x̂

=

x

gQ) � A; x̂, A; x̂ ` f

x̂

=

x

gP

y

o

v

�!

^

P

and

^

R �

^

P j f

x̂

=

x

gQ. This leads to a ontradition, as by Lemma 11

x 2 fn(P).

Case 16.5a

0

there exists

^

Q suh that fn(f

x̂

=

x

gP) � A; x̂, A; x̂ ` f

x̂

=

x

gQ

y

o

v

�!

^

Q and

^

R �

^

Q j f

x̂

=

x

gP . We apply (Trans Res-2-nmv) to get A `

(� x̂)f

x̂

=

x

gQ

y

o

v

�!

^

Q. By x̂ 62 fn(P), we an apply (Trans Par)[Right℄

to obtain A ` P j (� x̂)f

x̂

=

x

gQ

y

o

v

�! P j

^

Q � R.

Case 16.6 (Trans Res-2-mv) there exists y, o, v,

^

R and x̂ 62 A[fn(o) [(fn((P j

Q)) � x) suh that ` = y

o

v, A; x̂ ` f

x̂

=

x

g(P j Q)

y

o

v

�!

^

R, x̂ 2 fn(y; v), mv(o)

and R �

^

R. By Lemma 16.5 either one of the following holds:

Case 16.5a there exists

^

P suh that fn(f

x̂

=

x

gQ) � A; x̂, A; x̂ ` f

x̂

=

x

gP

y

o

v

�!

^

P

and

^

R �

^

P j f

x̂

=

x

gQ. This leads to a ontradition, as by Lemma 11

x 2 fn(P).

Case 16.5a

0

there exists

^

Q suh that fn(f

x̂

=

x

gP) � A; x̂, A; x̂ ` f

x̂

=

x

gQ

y

o

v

�!

^

Q

and

^

R �

^

Q j f

x̂

=

x

gP . By (Trans Res-2-mv) and the fats that x̂ 2

fn(y; v) � fn(o) and mv(o), we get A ` (� x̂)f

x̂

=

x

gQ

y

o

v

�!

^

Q. By (Trans

Par)[Right℄, we get A ` P j (� x̂)f

x̂

=

x

gQ

y

o

v

�! P j

^

Q.

Now onsider A ` P j (� x)Q

`

�! R. By Lemma 16.5 this transition holds i� one

of the following holds.

29

Case 16.5a (Trans Par)[Left℄ there exists

^

P suh that fn((� x)Q) � A, A `

P

`

�!

^

P and R �

^

P j (� x)Q. Take x̂ suh that x̂ 62 A[fn(`)[(fn(P;Q)�x).

By x̂ 62 A [fn(`) and Lemma 14, A; x̂ ` P

`

�!

^

P . By (Trans Par), A; x̂ `

P j f

x̂

=

x

gQ

`

�!

^

P j f

x̂

=

x

gQ. By x̂ 62 ` and (Trans Res-1), A ` (� x̂)(P j f

x̂

=

x

gQ)

`

�!

(� x̂)(

^

P j f

x̂

=

x

gQ). Sine x̂ 62 fn(

^

P), (� x̂)(

^

P j f

x̂

=

x

gQ) � R.

Case 16.5a

0

(Trans Par)[Right℄ there exists

^

Q suh that fn(P) � A, A ` (� x)Q

`

�!

^

Q and R �

^

Q j P . By Lemma 16.6 this transition holds i� one of the following

holds.

Case 16.6a (Trans Res-1) there exists x̂ 62 A [fn(`) [(fn(Q) � x) and

^

^

Q

suh that A; x̂ ` f

x̂

=

x

gQ

`

�!

^

^

Q and

^

Q � (� x̂)

^

^

Q. By (Trans Par)[Right℄,

we have A; x̂ ` P j f

x̂

=

x

gQ

`

�! P j

^

^

Q. By x̂ 62 fn(`) and (Trans Res-1),

we get A ` (� x̂)(P j f

x̂

=

x

gQ)

`

�! (� x̂)(P j

^

^

Q). By x̂ 62 fn(P) and (Trans

Strut Right), we obtain A ` (� x̂)(P j f

x̂

=

x

gQ)

`

�! P j (� x̂)

^

^

Q.

Case 16.6b (Trans Res-2-nmv) there exists y, o, v,

^

^

Q and x̂ 62 A[fn(y; o)[

(fn(Q) � x) suh that ` = y

o

v, A; x̂ ` f

x̂

=

x

gQ

y

o

v

�!

^

^

Q, x̂ 2 fn(v), :mv(o)

and

^

Q �

^

^

Q. By (Trans Par)[Right℄, we have A; x̂ ` P j f

x̂

=

x

gQ

`

�! P j

^

^

Q.

By :mv(o), x̂ 2 fn(v) � fn(y; o) and (Trans Res-2-nmv), we get A `

(� x̂)(P j f

x̂

=

x

gQ)

`

�! P j

^

^

Q.

Case 16.6 (Trans Res-2-mv) there exists y, o, v,

^

^

Q and x̂ 62 A [fn(o) [

(fn(Q) � x) suh that ` = y

o

v, A; x̂ ` f

x̂

=

x

gQ

y

o

v

�!

^

^

Q, x̂ 2 fn(y; v), mv(o)

and

^

Q �

^

^

Q. By (Trans Par)[Right℄, we have A; x̂ ` P j f

x̂

=

x

gQ

`

�!

P j

^

^

Q. By mv(o), x̂ 2 fn(y; v) � fn(o) and (Trans Res-2-mv), we get

A ` (� x̂)(P j f

x̂

=

x

gQ)

`

�! P j

^

^

Q.

Case 16.5b (Trans Comm) there exists z, , v,

^

P and

^

Q suh that ` = � , A `

P

z

v

�!

^

P , A ` (� x)Q

z

v

�!

^

Q, and R � (� fn(z; v)�A)(

^

P j

^

Q). By Lemma 16.6

there exists x̂ 62 A[fn(z

v)[(fn(Q)�x) and

^

^

^

Q suh that A; x̂ ` f

x̂

=

x

gQ

z

v

�!

^

^

^

Q

and

^

Q � (� x̂)

^

^

^

Q. By Lemma 14 and x̂ 62 A [fn(z

v), we get A; x̂ ` P

z

v

�!

^

P . By (Trans Comm), A; x̂ ` P j f

x̂

=

x

gQ

�

�! (� fn(z; v)�A; x̂)(

^

P j

^

^

^

Q).

By (Tran Res-1) and x̂ 62 fn(z; v), we obtain A ` (� x̂)(P j f

x̂

=

x

gQ)

�

�!

(� x̂)(� fn(z; v)�A)(

^

P j

^

^

^

Q), hene A ` (� x̂)(P j f

x̂

=

x

gQ)

�

�! (� fn(z; v)�A)(

^

P j

^

Q).

Case 16.5b

0

(Trans Comm) there exists z, , v,

^

Q and

^

P suh that ` = � ,

A ` (� x)Q

z

v

�!

^

Q, A ` P

z

v

�!

^

P , and R � (� fn(z; v) � A)(

^

Q j

^

P). By

Lemma 16.6 the (� x)Q transition holds i� one of the following holds.

Case 16.6a (Trans Res-1) there exists x̂ 62 A [fn(z

v) [(fn(Q) � x) and

^

^

Q suh that A; x̂ ` f

x̂

=

x

gQ

z

v

�!

^

^

Q and

^

Q � (� x̂)

^

^

Q. By Lemma 14

and x̂ 62 A [fn(z

v) we have A; x̂ ` P

z

v

�!

^

P . By (Trans Comm),

A; x̂ ` P j f

x̂

=

x

gQ

�

�! (� fn(z; v)�A; x̂)(

^

P j

^

^

Q). By (Tran Res-1) and x̂ 62

fn(z; v), we obtain A ` (� x̂)(P j f

x̂

=

x

gQ)

�

�! (� x̂)(� fn(z; v)�A)(

^

P j

^

^

Q).

Case 16.6b (Trans Res-2-nmv) there exists z, , v,

^

^

Q and x̂ 62 A[fn(z;)[

(fn(Q)�x) suh that z

v = z

v, A; x̂ ` f

x̂

=

x

gQ

z

v

�!

^

^

Q, x̂ 2 fn(v), :mv()

30

and

^

Q �

^

^

Q. By Lemma 15.1 and 6= n, A; x̂ ` P

z

v

�!

^

P . By (Trans

Comm), A; x̂ ` P j f

x̂

=

x

gQ

�

�! (� fn(z; v)�A; x̂)(

^

P j

^

^

Q). By (Tran Res-

1) we obtain A ` (� x̂)(P j f

x̂

=

x

gQ)

�

�! (� x̂)(� fn(z; v)�A; x̂)(

^

P j

^

^

Q),

hene as x̂ 2 fn(v) A ` (� x̂)(P j f

x̂

=

x

gQ)

�

�! (� fn(z; v)�A)(

^

P j

^

^

Q).

Case 16.6 (Trans Res-2-mv) there exists z, , v,

^

^

Q and x̂ 62 A [fn() [

(fn(Q)�x) suh that z

v = z

v, A; x̂ ` f

x̂

=

x

gQ

z

v

�!

^

^

Q, x̂ 2 fn(z; v), mv()

and

^

Q �

^

^

Q. By mv() we have = n for some n. By Lemma 15.2 A; x̂ `

P

z

v

�!

^

P . By (Trans Comm), A; x̂ ` P j f

x̂

=

x

gQ

�

�! (� fn(z; v)�A; x̂)(

^

P j

^

^

Q).

By (Tran Res-1) A ` (� x̂)(P j f

x̂

=

x

gQ)

�

�! (� x̂)(� fn(z; v)�A; x̂)(

^

P j

^

^

Q),

hene as x̂ 2 fn(z; v) A ` (� x̂)(P j f

x̂

=

x

gQ)

�

�! (� fn(z; v)�A)(

^

P j

^

^

Q).

(Strut Res Box) (� x)n[P ℄ � n[(� x)P ℄ where x 6= n. Consider A ` (� x)n[P ℄

`

�! Q.

By Lemma 16.6 this holds i� one of the following holds.

Case 16.6a (Trans Res-1) there exists x̂ 62 A [fn(`) [(fn(n[P ℄)� x) and

^

Q suh

that A; x̂ ` f

x̂

=

x

gn[P ℄

`

�!

^

Q and Q � (� x̂)

^

Q. By x 6= n we have f

x̂

=

x

gn = n,

so we have A; x̂ ` n[f

x̂

=

x

gP ℄

`

�!

^

Q. By Lemma 16.4 this transition exists i�

one of the following hold:

Case 16.4a (Trans Box-1) there exist z, v, and

^

P suh that n 2 A; x̂, ` = � ,

A; x̂ ` f

x̂

=

x

gP

z

"

v

�!

^

P , and

^

Q � (� fn(z; v) � A; x̂)(z

n

v j n[

^

P ℄). There are

two ases to onsider:

Case x̂ 62 fn(z

"

v) By (Trans Res-1) and the fat that x̂ 62 fn(z

"

v), we

obtain A ` (� x̂)f

x̂

=

x

gP

z

"

v

�! (� x̂)

^

P . By (Trans Box-1), we obtain

A ` n[(� x̂)f

x̂

=

x

gP ℄

�

�! (� fn(z; v)�A)(z

n

v j n[(� x̂)

^

P ℄). Sine x̂ 62

fn(z

n

v) we have (� fn(z; v)� A)(z

n

v j n[(� x̂)

^

P ℄) � (� x̂)(� fn(z; v)�

A; x̂)(z

n

v j n[

^

P ℄).

Case x̂ 2 fn(z

"

v) By (Trans Res-2), mv("), and x̂ 2 fn(z; v)� fn("), we

obtain A ` (� x̂)f

x̂

=

x

gP

z

"

v

�!

^

P . By (Trans Box-1), we obtain A `

n[(� x̂)f

x̂

=

x

gP ℄

�

�! (� fn(z; v)�A)(z

n

v j n[

^

P ℄). Sine x̂ 2 fn(z; v) �

A, we get (� fn(z; v)�A)(z

n

v j n[

^

P ℄) � (� x̂)(� fn(z; v)�A; x̂)(z

n

v j

n[

^

P ℄).

Case 16.4b (Trans Box-2) there exist z and v suh that fn(n[f

x̂

=

x

gP ℄) �

A; x̂, ` = z

n

v and

^

Q � n[z

"

v j f

x̂

=

x

gP ℄. By (Trans Box-2), A ` n[(� x̂)f

x̂

=

x

gP ℄

z

n

v

�!

n[z

"

v j (� x̂)f

x̂

=

x

gP ℄. Sine x̂ 62 fn(z

n

v), we have n[z

"

v j (� x̂)f

x̂

=

x

gP ℄ �

(� x̂)n[z

"

v j f

x̂

=

x

gP ℄.

Case 16.4 (Trans Box-3) there exists

^

P suh that n 2 A; x̂, ` = � , A; x̂ `

f

x̂

=

x

gP

�

�!

^

P , and

^

Q � n[

^

P ℄. By (Trans Res-1), A ` (� x̂)f

x̂

=

x

gP

�

�!

(� x̂)

^

P . By (Trans Box-3), (Trans Strut Right), and x̂ 6= n, A `

n[(� x̂)f

x̂

=

x

gP ℄

�

�! (� x̂)n[

^

P ℄.

Case 16.6b (Trans Res-2-nmv) there exists y, o, v,

^

Q and x̂ 62 A [fn(y; o) [

(fn(n[P ℄) � x) suh that ` = y

o

v, A; x̂ ` f

x̂

=

x

gn[P ℄

y

o

v

�!

^

Q, x̂ 2 fn(v), :mv(o)

and Q �

^

Q. This leads to a ontradition as no suh term has any output

transitions.

31

Case 16.6 (Trans Res-2-mv) there exists y, o, v,

^

Q and x̂ 62 A[fn(o)[(fn(n[P ℄)�

x) suh that ` = y

o

v, A; x̂ ` f

x̂

=

x

gn[P ℄

y

o

v

�!

^

Q, x̂ 2 fn(y; v), mv(o) and Q �

^

Q.

This leads to a ontradition as no suh term has any output transitions.

Now onsider A ` n[(� x)P ℄

`

�! Q. By Lemma 16.4 this holds i� one of the

following hold:

Case 16.4a (Trans Box-1) there exist z, v, and

^

P suh that n 2 A, ` = � ,

A ` (� x)P

z

"

v

�!

^

P , and Q � (� fn(z; v)�A)(z

n

v j n[

^

P ℄). By Lemma 16.6 this

transition holds i� one of the following holds:

Case 16.6a (Trans Res-1) there exists x̂ 62 A [fn(z

"

v) [(fn(P) � x) and

^

Q suh that A; x̂ ` f

x̂

=

x

gP

z

"

v

�!

^

Q and

^

P � (� x̂)

^

Q. By (Trans Box-1),

we have A; x̂ ` n[f

x̂

=

x

gP ℄

�

�! (� fn(z; v)�A; x̂)(z

n

v j n[

^

Q℄). By (Trans

Res-1), A ` (� x̂)n[f

x̂

=

x

gP ℄

�

�! (� x̂)(� fn(z; v)�A; x̂)(z

n

v j n[

^

Q℄). Sine

x̂ 62 fn(z

"

v) and x̂ 6= n, we obtain (� x̂)(� fn(z; v) � A; x̂)(z

n

v j n[

^

Q℄) �

(� fn(z; v)�A)(z

n

v j n[(� x̂)

^

Q℄).

Case 16.6b (Trans Res-2-nmv) there exists z, ", v,

^

Q and x̂ 62 A [fn(z; "

) [(fn(P) � x) suh that z

"

v = z

"

v, A; x̂ ` f

x̂

=

x

gP

z

"

v

�!

^

Q, x̂ 2 fn(v),

:mv(") and

^

P �

^

Q. This annot hold, as mv(").

Case 16.6 (Trans Res-2-mv) there exists z, ", v,

^

Q and x̂ 62 A [fn(") [

(fn(P)�x) suh that z

"

v = z

"

v, A; x̂ ` f

x̂

=

x

gP

z

"

v

�!

^

Q, x̂ 2 fn(z; v), mv(")

and

^

P �

^

Q. By (Trans Box-1), A; x̂ ` n[f

x̂

=

x

gP ℄

�

�! (� fn(z; v)�A; x̂)(z

n

v j n[

^

Q℄).

By (Tran Res-1), A ` (� x̂)n[f

x̂

=

x

gP ℄

�

�! (� x̂)(� fn(z; v)�A; x̂)(z

n

v j n[

^

Q℄).

Sine x̂ 2 fn(z; v) � A we obtain (� x̂)(� fn(z; v) � A; x̂)(z

n

v j n[

^

Q℄) �

(� fn(z; v)�A)(z

n

v j n[

^

Q℄).

Case 16.4b (Trans Box-2) there exist z and v suh that fn(n[(� x)P ℄) � A,

` = z

n

v and Q � n[z

"

v j (� x)P ℄. Take x̂ 62 A [fn(z

n

v), then by (Tran Box-

2), we obtain A; x̂ ` n[f

x̂

=

x

gP ℄

z

n

v

�! n[z

"

v j f

x̂

=

x

gP ℄. By (Trans Res-1), we get

A ` (� x̂)n[f

x̂

=

x

gP ℄

z

n

v

�! (� x̂)n[z

"

v j f

x̂

=

x

gP ℄. By (Trans Strut Right) and

x̂ 62 fn(n; z

"

v), we obtain A ` (� x̂)n[f

x̂

=

x

gP ℄

z

n

v

�! n[z

"

v j (� x̂)f

x̂

=

x

gP ℄.

Case 16.4 (Trans Box-3) there exists

^

^

Q suh that n 2 A, ` = � , A ` (� x)P

�

�!

^

^

Q, and Q � n[

^

^

Q℄. By Lemma 16.6 there exists x̂ 62 A [(fn(P) � x) and

^

P

suh that A; x̂ ` f

x̂

=

x

gP

�

�!

^

P and

^

^

Q � (� x̂)

^

P . By (Trans Box-3), A; x̂ `

n[f

x̂

=

x

gP ℄

�

�! n[

^

P ℄. By (Trans Res-1), A ` (� x̂)n[f

x̂

=

x

gP ℄

�

�! (� x̂)n[

^

P ℄. By

(Trans Strut Right) and x 6= n, we obtain A ` (� x̂)n[f

x̂

=

x

gP ℄

�

�! n[(� x̂)

^

P ℄.

2

Lemma 19 If fn(P) � A and P ! Q then A ` P

�

�! Q.

Proof Indution on derivations of P ! Q. For the base ases we onstrut derivations

of � transitions:

(Red Up)

32

A ` x

"

v

x

"

v

�! 0

(Trans Out)

A ` x

"

v j Q

x

"

v

�! 0 j Q

(Trans Par)

A ` n[x

"

v j Q℄

�

�! (� fn(x; v) �A)(x

n

v j n[0 j Q℄)

(Trans Box-1)

By the premise fn(n[x

"

v j Q℄) � A we have fn(x; v) � A, so using (Trans Strut

Right) we have A ` n[x

"

v j Q℄

�

�! x

n

v j n[Q℄, the right hand side of whih is

exatly the right hand side of (Red Up).

(Red Down)

A ` x

n

v

x

n

v

�! 0

(Trans Out)

x 2 A

A ` n[Q℄

x

n

v

�! n[x

"

v j Q℄

(Trans Box-2)

A ` x

n

v j n[Q℄

�

�! (� fn(v)�A)(0 j n[x

"

v j Q℄)

(Trans Comm)

By the premise fn(x

n

v j n[Q℄) � A we have x 2 A and also fn(v) � A, so using

(Trans Strut Right) we have A ` x

n

v j n[Q℄

�

�! n[x

"

v j Q℄, the right hand side of

whih is exatly the right hand side of (Red Down).

(Red Comm)

A ` x

�

v

x

�

v

�! 0

(Trans Out)

A ` x

�

p:P

x

�

v

�! f

v

=

p

gP

(Trans In)

A ` x

�

v j x

�

p:P

�

�! (� fn(v)�A)(0 j f

v

=

p

gP)

(Trans Comm)

The side ondition f

v

=

p

gP de�ned for (Trans In) is ensured by the same ondition

for (Red Comm). By the premise fn(x

�

v j x

�

p:P) � A we have fn(v) � A, so using

(Trans Strut Right) we have A ` x

�

v j x

�

p:P

�

�! f

v

=

p

gP , the right hand side of

whih is exatly the right hand side of (Red Comm).

(Red Repl)

A ` x

�

v

x

�

v

�! 0

(Trans Out)

!x

�

p:P

x

�

v

�! !x

�

p:P j f

v

=

p

gP

(Trans Repl)

A ` x

�

v j !x

�

p:P

�

�! (� fn(v)�A)(0 j (!x

�

p:P j f

v

=

p

gP))

(Trans Comm)

The side ondition f

v

=

p

gP de�ned for (Trans Repl) is ensured by the same ondition

for (Red Repl). By the premise fn(x

�

v j !x

�

p:P) � A we have fn(v) � A, so using

(Trans Strut Right) we have A ` x

�

v j !x

�

p:P

�

�! !x

�

p:P j f

v

=

p

gP , the right hand

side of whih is exatly the right hand side of (Red Repl).

(Red Par), (Red Res) and (Red Box) require straightforward uses of indution hy-

pothesis, using (Trans Par), (Trans Res-1) and (Trans Box-3).

(Red Strut) By Lemma 10, fn(P

0

) � A. By the indutive hypothesis, A ` P

0

�

�! Q

0

.

By Proposition 18, A ` P

�

�! Q

0

. By (Tran-Strut-Right), A ` P

�

�! Q.

2

33

Transitions Imply Redutions

Lemma 20 If A ` P

z

o

v

�! P

0

then P � (� fn(z; v)�A)(z

o

v j P

0

)

Proof Indution on derivation of A ` P

z

o

v

�! P

0

.

(Trans Out) Obvious.

(Trans Par) By the indution hypothesis, P � (� fn(z; v)�A)(z

o

v j P

0

), so

P j Q � ((� fn(z; v)�A)(z

o

v j P

0

)) j Q

� (� fn(z; v)�A)(z

o

v j P

0

j Q) (as by fn(P j Q) � A we have fn(Q) � A)

(Trans Res-1) By the indution hypothesis P � (� fn(z; v)� (A; x))(z

o

v j P

0

), so

(� x)P � (� x)(� fn(z; v)� (A; x))(z

o

v j P

0

)

� (� fn(z; v)�A)(z

o

v j (� x)P

0

) (as x 62 fn(z

o

v))

(Trans Res-2-nmv) By the indution hypothesis P � (� fn(z; v) � (A; x))(z

o

v j P

0

),

so

(� x)P � (� x)(� fn(z; v)� (A; x))(z

o

v j P

0

)

� (� fn(z; v)�A)(z

o

v j P

0

) (as x 2 fn(v)� fn(z; o))

(Trans Res-2-mv) By the indution hypothesis P � (� fn(x; v) � (A; x))(x

o

v j P

0

), so

(� x)P � (� x)(� fn(x; v)� (A; x))(x

o

v j P

0

)

� (� fn(x; v) �A)(x

o

v j P

0

)

(Trans Strut-Right) By the indution hypothesis.

All other ases are vauous.

2

Lemma 21 If A ` Q

x

�

v

�! Q

0

then there exist B; p;Q

1

and Q

2

suh that B \ (A [

fn(x

�

v)) = fg and either Q � (� B)(x

�

p:Q

1

j Q

2

) and Q

0

� (� B)(f

v

=

p

gQ

1

j Q

2

) or

Q � (� B)(! x

�

p:Q

1

j Q

2

) and Q

0

� (� B)(f

v

=

p

gQ

1

j !x

�

p:Q

1

j Q

2

).

Proof Indution on derivation of A ` Q

x

�

v

�! Q

0

.

(Trans In), (Trans Repl) Obvious.

(Trans Par) Consider A ` Q j P

x

�

v

�! Q

0

j P . By the indution hypothesis there exist

B; p;Q

1

and Q

2

suh that B \ (A [fn(x

�

v)) = fg and either Q � (� B)(x

�

p:Q

1

j

Q

2

) and Q

0

� (� B)(f

v

=

p

gQ

1

j Q

2

) or Q � (� B)(! x

�

p:Q

1

j Q

2

) and Q

0

�

(� B)(f

v

=

p

gQ

1

j !x

�

p:Q

1

j Q

2

).

Consider the �rst disjunt (the seond is similar). Taking

^

Q

2

= Q

2

j P we have

Q j P � (� B)(x

�

p:Q

1

j Q

2

) j P

� (� B)(x

�

p:Q

1

j

^

Q

2

)

Q

0

j P � (� B)(f

v

=

p

gQ

1

j Q

2

) j P

� (� B)(f

v

=

p

gQ

1

j

^

Q

2

)

34

(Trans Res-1) Consider A ` (� z)Q

x

�

v

�! (� z)Q

0

with z 62 A[fn(x

�

v). By the indution

hypothesis there exist B, p, Q

1

and Q

2

suh that B\(A; z[fn(x

�

v)) = fg and either

Q � (� B)(x

�

p:Q

1

j Q

2

) and Q

0

� (� B)(f

v

=

p

gQ

1

j Q

2

) or Q � (� B)(! x

�

p:Q

1

j Q

2

)

and Q

0

� (� B)(f

v

=

p

gQ

1

j !x

�

p:Q

1

j Q

2

).

Consider the �rst disjunt (the seond is similar). Taking

^

B = B; z we have

(� z)Q � (� z)(� B)(x

�

p:Q

1

j Q

2

)

� (�

^

B)(x

�

p:Q

1

j Q

2

)

(� z)Q

0

� (� z)(� B)(f

v

=

p

gQ

1

j Q

2

)

� (�

^

B)(f

v

=

p

gQ

1

j Q

2

)

(Trans Strut Right) By the indution hypothesis.

All other ases are vauous.

2

Lemma 22 If A ` Q

x

n

v

�! Q

0

then there exist B, Q

1

and Q

2

suh that B\(A[fn(x

n

v)) =

fg, Q � (� B)(n[Q

1

℄ j Q

2

) and Q

0

� (� B)(n[(x

"

v j Q

1

)℄ j Q

2

).

Proof Indution on derivation of A ` Q

x

n

v

�! Q

0

.

(Trans Box-2) Obvious.

(Trans Par) Consider A ` Q j P

x

n

v

�! Q

0

j P . By the indution hypothesis there exist

B, Q

1

and Q

2

suh that B \ (A [fn(x

n

v)) = fg, Q � (� B)(n[Q

1

℄ j Q

2

) and

Q

0

� (� B)(n[(x

"

v j Q

1

)℄ j Q

2

).

Take

^

Q

2

= Q

2

j P . We have

Q j P � (� B)(n[Q

1

℄ j Q

2

) j P

� (� B)(n[Q

1

℄ j Q

2

j P) (as fn(P) � A)

� (� B)(n[Q

1

℄ j

^

Q

2

)

Q

0

j P � (� B)(n[(x

"

v j Q

1

)℄ j Q

2

) j P

� (� B)(n[(x

"

v j Q

1

)℄ j Q

2

j P) (as fn(P) � A)

� (� B)(n[(x

"

v j Q

1

)℄ j

^

Q

2

)

(Trans Res-1) Consider A ` (� z)Q

x

n

v

�! (� z)Q

0

with z 62 A[fn(x

n

v). By the indution

hypothesis there exist B, Q

1

and Q

2

suh that B \ (A; z [fn(x

n

v)) = fg, Q �

(� B)(n[Q

1

℄ j Q

2

) and Q

0

� (� B)(n[(x

"

v j Q

1

)℄ j Q

2

).

Let

^

B = B; z. We have

(� z)Q � (� z)(� B)(n[Q

1

℄ j Q

2

)

� (�

^

B)(n[Q

1

℄ j Q

2

)

(� z)Q

0

� (� z)(� B)(n[(x

"

v j Q

1

)℄ j Q

2

)

� (�

^

B)(n[(x

"

v j Q

1

)℄ j Q

2

)

(Trans Strut Right) By the indution hypothesis.

All other ases are vauous.

35

2

Lemma 23 If A ` P

�

�! Q then P ! Q.

Proof Indution on derivations of A ` P

�

�! Q

(Trans Box-1) By Lemma 20 P � (� fn(x; v) �A)(x

"

v j P

0

), so

n[P ℄ � n[(� fn(x; v) �A)(x

"

v j P

0

)℄

� (� fn(x; v) �A)(n[x

"

v j P

0

℄) (by fn(n[P ℄) � A we have n 2 A)

! (� fn(x; v) �A)(x

n

v j n[P

0

℄) (by (Red Up))

(Trans Box-3) By the indution hypothesis and (Red Box).

(Trans Par) By the indution hypothesis and (Red Par).

(Trans Comm) By Lemma 20 P � (� fn(x; v)�A)(x

v j P

0

). By Lemma 11 x 2 A so

P � (� fn(v)�A)(x

v j P

0

).

Case = �. By Lemma 21 there exist B, p, Q

1

and Q

2

suh that B \ (A [

fn(x

�

v)) = fg and either Q � (� B)(x

�

p:Q

1

j Q

2

) and Q

0

� (� B)(f

v

=

p

gQ

1

j Q

2

) or

Q � (� B)(! x

�

p:Q

1

j Q

2

) and Q

0

� (� B)(f

v

=

p

gQ

1

j !x

�

p:Q

1

j Q

2

). Consider the

�rst disjunt. We have

P j Q � (� fn(v)�A)(x

v j P

0

) j (� B)(x

�

p:Q

1

j Q

2

)

� (� fn(v)�A)(x

v j P

0

j (� B)(x

�

p:Q

1

j Q

2

)) (as fn(Q) � A)

� (� fn(v)�A)(� B)(x

v j P

0

j x

�

p:Q

1

j Q

2

) (as (A [fn(v)) \ B = fg)

! (� fn(v)�A)(� B)(f

v

=

p

gQ

1

j P

0

j Q

2

) (by Red Comm)

� (� fn(v)�A)(P

0

j (� B)(f

v

=

p

gQ

1

j Q

2

)) (as (A [fn(v)) \ B = fg)

� (� fn(v)�A)(P

0

j Q

0

)

The seond disjunt is similar.

Case = n. By Lemma 22 there exist B, Q

1

and Q

2

suh that B\ (A[fn(x

n

v)) =

fg, Q � (� B)(n[Q

1

℄ j Q

2

) and Q

0

� (� B)(n[(x

"

v j Q

1

)℄ j Q

2

). We have

P j Q � (� fn(v)�A)(x

n

v j P

0

) j (� B)(n[Q

1

℄ j Q

2

)

� (� fn(v)�A)(x

n

v j P

0

j (� B)(n[Q

1

℄ j Q

2

)) (as fn(Q) � A)

� (� fn(v)�A)(� B)(x

n

v j P

0

j n[Q

1

℄ j Q

2

) (as (A [fn(v)) \ B = fg)

! (� fn(v)�A)(� B)(P

0

j n[x

"

v j Q

1

℄ j Q

2

) (by Red Down)

� (� fn(v)�A)(P

0

j (� B)(n[(x

"

v j Q

1

)℄ j Q

2

)) (as (A [fn(v)) \ B = fg)

� (� fn(v)�A)(P

0

j Q

0

)

(Trans Res-1) By the indution hypothesis and (Red Res).

(Trans Strut Right) By the indution hypothesis and (Red Strut).

All other ases are vauous.

2

Proof (of Theorem 1) We must show that if fn(P) � A then A ` P

�

�! Q i� P ! Q.

This is immediate from Lemmas 19 and 23 above. 2

36

B Other Proofs

We �rst give another transition-analysis lemma. This allows us to rename extruded

names in a label instead of in the soure proess term.

Lemma 24 If A ` (�N)P

`

�! Q, ` = y

"

v, and A, N and M are pairwise disjoint �nite

sets of names then there exists a partition N

1

; N

2

of N , a proess P

0

, and

h :(fn(`)�A)!(N � (A;N

2

;M))

injetive suh that

A;N ` P

(1

A

+h)`

�! P

0

A ` (�N)P

(1

A

+h)`

�! (�N

2

)P

0

� (1

A

+ h)Q

N

2

= N � fn((1

A

+ h)`)

Proof Indution on N . For N = ; we have A ` P

`

�! Q. Take any h :(fn(`) �

A)!(N � (A;M)) injetive. By Lemma 13 A ` 1

A

P

(1

A

+h)`

�! (1

A

+ h)Q. Now onsider

A ` (� x)(�N)P

`

�! Q with A, (N; x), and M pairwise disjoint. By Lemma 16.6 one of

the following ases hold.

Case 6a there exists x̂ 62 A[fn(`)[(fn((�N)P)�x) and

^

Q suh that A; x̂ ` f

x̂

=

x

g(�N)P

`

�!

^

Q and Q � (� x̂)

^

Q.

Take some

f :A; x̂!A; x

g :(fn(`)�A; x̂)!N � (A; x;M)

injetive with f the identity on A. By Lemma 13

A; x ` (�N)P

(f+g)`

�! (f + g)

^

Q

By the indution hypothesis there exists a partition N

0

1

; N

0

2

of N , a proess P

0

, and

h

0

:(fn((f + g)`)� (A; x))!(N � (A; x;N

0

2

;M))

injetive suh that

A; x;N ` P

(1

A;x

+h

0

)(f+g)`

�! P

0

A; x ` (�N)P

(1

A;x

+h

0

)(f+g)`

�! (�N

0

2

)P

0

� (1

A;x

+ h

0

)(f + g)

^

Q

Now x̂ 62 fn`, so x 62 fn((f + g)`), so x 62 fn((1

A;x

+ h

0

)(f + g)`), so by (Res-1)

A ` (� x)(� N)P

(1

A;x

+h

0

)(f+g)`

�! (� x)(�N

0

2

)P

0

� (� x)(1

A;x

+ h

0

)(f + g)

^

Q

Take N

1

= N

0

1

, N

2

= N

0

2

; x and h = h

0

g.

Case 6 there exists y, o, v,

^

Q and x̂ 62 A[fn(o) [(fn((�N)P)� x) suh that ` = y

o

v,

A; x̂ ` f

x̂

=

x

g(�N)P

y

o

v

�!

^

Q, x̂ 2 fn(y; v), mv(o) and Q �

^

Q.

Similarly, take some

f :A; x̂!A; x

g :(fn(`)�A; x̂)!N � (A; x;M)

37

injetive with f the identity on A. By Lemma 13

A; x ` (�N)P

(f+g)`

�! (f + g)

^

Q

By the indution hypothesis there exists a partition N

0

1

; N

0

2

of N , a proess P

0

, and

h

0

:(fn((f + g)`)� (A; x))!(N � (A; x;N

0

2

;M))

injetive suh that

A; x;N ` P

(1

A;x

+h

0

)(f+g)`

�! P

0

A; x ` (�N)P

(1

A;x

+h

0

)(f+g)`

�! (�N

0

2

)P

0

� (1

A;x

+ h

0

)(f + g)

^

Q

Now here x̂ 2 fn`, so x 2 fn((f + g)`), so x 2 fn((1

A;x

+ h

0

)(f + g)`), so by (Res-2)

A ` (� x)(�N)P

(1

A;x

+h

0

)(f+g)`

�! (�N

0

2

)P

0

� (1

A;x

+ h

0

)(f + g)

^

Q

Take N

1

= N

0

1

; x, N

2

= N

0

2

and h = fx=x̂g+ h

0

g.

2

Expliit Charaterisation

The simple seurity properties are proved using an expliit haraterisation of the states

and labelled transitions of W

1

[P ℄. If N is a �nite set of names, a is a name and A and

Q are proesses de�ne

[[a;N ;A;Q℄℄

def

= (�N [fag)

�

A

j a[Q℄

j ! in

"

y:in

a

y

j ! out

a

y:out

"

y

�

Say the 4-tuple a, N , A, Q is good if N , fag, and fin; outg are pairwise disjoint, A is a

parallel omposition of outputs of the forms

out

a

v; out

"

v; in

a

v; x

a

v where x 62 fout; ag

with a 62 fn(v) in eah ase, and Q is a proess with a 62 fn(Q). Say a proess P is good

if P � [[a;N ;A;Q℄℄ for some good a, N , A, Q.

Lemma 25 If a 62 fn(P) then W

1

[P ℄ � [[a; ;; 0;P ℄℄, hene W

1

[P ℄ is good.

Proof Straightforward. 2

We de�ne a transition relation A ` P

`

* Q as the least satisfying the following rules.

t

1

A ` [[a;N ;A;Q℄℄

in

"

v

* [[a;N ;A j in

a

v;Q℄℄ fn(v) \ (N [fag) = ;

t

2

A ` [[a;N ;A j in

a

v;Q℄℄

�

* [[a;N ;A;Q j in

"

v℄℄

t

4

A;N; a ` Q

out

"

v

�! Q

0

A ` [[a;N ;A;Q℄℄

�

* [[a;N; fn(v)� (A;N; a);A j out

a

v;Q

0

℄℄

t

5

A;N; a ` Q

x

"

v

�! Q

0

A ` [[a;N ;A;Q℄℄

�

* [[a;N; fn(x; v)� (A;N; a);A j x

a

v;Q

0

℄℄

t

6

A ` [[a;N ;A j out

a

v;Q℄℄

�

* [[a;N ;A j out

"

v;Q℄℄

t

7

A ` [[a;N ;A j out

"

v;Q℄℄

out

"

v

* [[a;N � fn(v);A;Q℄℄

t

8

A;N; a ` Q

�

�! Q

0

A ` [[a;N ;A;Q℄℄

�

* [[a;N ;A;Q

0

℄℄

38

A ` P

`

* P

0

P

0

� P

00

A ` P

`

* P

00

For rule t

5

, we have a side ondition that x 6= out. For all rules we have a sideondition

that the 4-tuple in the left hand side of the onlusion is good. For all rules we have a

sideondition that the free names of the proess on the left hand side of the onlusion

are ontained in A.

Lemma 26 If A ` P

`

* P

0

then P

0

is good.

Proof By inspetion of the transition axioms, heking that the 4-tuple on the right

hand side is good in eah ase, and noting that the de�nition of P good is preserved by

strutural ongruene. For t

4

by the ondition fn([[a;N ;A;Q℄℄) � A we have fin; outg �

A so fin; outg \ (fn(v) � (A;N; a)) = ;. By Lemma 11.3 a 62 fn(v) By Lemma 11.2

a 62 fn(Q

0

). For t

5

by the ondition fn([[a;N ;A;Q℄℄) � A we have fin; outg � A so

fin; outg \ (fn(x; v) � (A;N; a)) = ;. By Lemma 11.3 a 62 fn(x; v) By Lemma 11.2

a 62 fn(Q

0

). For t

8

by Lemma 11.2 a 62 fn(Q

0

). The other ases are straightforward. 2

Lemma 27 For all good P we have A ` P

`

�! P

0

i� A ` P

`

* P

0

.

Proof We �rst show that A ` P

`

* P

0

implies A ` P

`

�! P

0

, by indution on deriva-

tions of the former. The onverse diretion is by a ase analysis of the possible transition

derivations. 2

Purity

Proof (of Proposition 2) We show by indution on k that Q is good and that the

onlusion holds. The k = 0 ase is by Lemma 25. The indutive step uses Lemmas 26

and 27. 2

Proof (of Proposition 3) Similar to that of Proposition 2; we omit the details. 2

Proof (of Proposition 4) Similar to that of Proposition 2; we omit the details. 2

Honesty

Proof (of Proposition 5) We hek that the unary wrapper W

1

is honest (the proof

for L should be similar). If N is a �nite set of names, a is a name and A and Q are

proesses de�ne

hhha;N ;A;Qiii

def

= Q

j fj out

"

v j out

a

v 2 A jg

j fj out

"

v j out

"

v 2 A jg

j fj x

"

v j x

a

v 2 A ^ x 6= out jg

j fj in

"

v j in

a

v 2 A jg

hha;N ;A;Qii

def

= (�N)hhha;N ;A;Qiii

39

Note that if a;N ;A;Q is good then a 62 fn(hha;N ;A;Qii). Now take the family of relations

below.

R

A

= � Æf [[a;N ;A;Q℄℄; hha;N ;A;Qii j a;N ;A;Q good and fn([[a;N ;A;Q℄℄) � A gÆ �

We must hek that for any P with a 62 fn(P) and A � fn(W

1

[P ℄) we have W

1

[P ℄ R

A

P and that R is an h-bisimulation. The former follows from Lemma 25 and the fat

hha; ;; 0;P ii � P . For the latter there are a number of ases to hek, as below. We give

only the most interesting in detail.

Consider C R

A

D. We know there exist good a;N ;A;Q suh that C � [[a;N ;A;Q℄℄,

D � hha;N ;A;Qii, and fn(C) � A. Without loss of generality suppose A and N; a are

disjoint. Note that by Proposition 18 if A ` C

`

�! C

0

then A ` [[a;N ;A;Q℄℄

`

�! C

0

, and

similarly for transitions of D.

Clause 1

0

Suppose A ` hha;N ;A;Qii

out

"

v

�! U .

By Lemma 24 there exists a partition N

1

; N

2

of N , a proess U

0

, and

h :(fn(v)�A)!(N � (A;N

2

; a))

injetive suh that

A;N ` hhha;N ;A;Qiii

out

"

v

0

�! U

0

A ` hha;N ;A;Qii

out

"

v

0

�! (�N

2

)U

0

� (1

A

+ h)U

N

2

= N � fn(v

0

)

where v

0

= (1

A

+ h)v. There are three ases.

(a) due to A;N ` Q

out

"

v

0

�! Q

0

with U

0

� hhha;N ;A;Q

0

iii.

By Lemma 14 A;N; a ` Q

out

"

v

0

�! Q

0

.

By t4,t6,t7 and Lemmas 26,27

A ` [[a;N ;A;Q℄℄

�

�!

�

�!

out

"

v

0

�! [[a;N � fn(v

0

);A;Q

0

℄℄

By Lemma 13

A ` [[a;N ;A;Q℄℄

�

�!

�

�!

out

"

v

�! (1

A

+ h

�1

)[[a;N � fn(v

0

);A;Q

0

℄℄

Now a;N � fn(v

0

);A;Q

0

is good, hene

[[a;N � fn(v

0

);A;Q

0

℄℄ R

A[fn(v

0

)

hha;N � fn(v

0

);A;Q

0

ii;

and R is losed under injetive renamings that preserve fin; outg, so

(1

A

+ h

�1

)[[a;N � fn(v

0

);A;Q

0

℄℄ R

A[fn(v)

(1

A

+ h

�1

)hha;N � fn(v

0

);A;Q

0

ii � U

(b) due to an out

a

v 2 A. Math using t6,t7.

() due to an out

"

v 2 A. Math using t7.

Suppose A ` hha;N ;A;Qii

�

�!

(a) due to A;N ` Q

�

�! Q

0

. Math using t8.

40

(b) due to A;N ` Q

in

"

v

�! Q

0

and in

a

v 2 A. Math using t2,t8.

Clause 2

0

Suppose A ` hha;N ;A;Qii

in

"

v

�! . This must be due to A;N ` Q

in

"

v

�! Q

0

. Math

using t1,t2,t8.

Clause 1 Suppose A ` [[a;N ;A;Q℄℄

out

"

v

�! . This must be by t7; it an be mathed diretly.

Suppose A ` [[a;N ;A;Q℄℄

�

�! . This must be by one of the following rules.

t2 Math with zero � steps.

t4 Using Lemma 20 the output partile is present in Q. The transition an then

be mathed with zero � steps.

t5 Similar to t4.

t6 Math with zero � steps.

t8 Math with one � step.

Clause 2 Suppose A ` [[a;N ;A;Q℄℄

in

"

v

�! . This must be by t1. It an be mathed with zero

� steps, using the seond part of Clause 2 of the de�nition of h-bisimulation.

Clause 3 Suppose A ` [[a;N ;A;Q℄℄

`

�! for another label `. Vauous.

2

41

Referenes

[Aba97℄ Mart��n Abadi. Serey by typing in seurity protools. In TACS '97 (open

leture), LNCS 1281, pages 611{638, September 1997.

[ACS96℄ Roberto M. Amadio, Ilaria Castellani, and Davide Sangiorgi. On bisimu-

lations for the asynhronous �-alulus. In Ugo Montanari and Vladimiro

Sassone, editors, CONCUR '96, volume 1119 of Leture Notes in Computer

Siene, pages 147{162. Springer-Verlag, 1996.

[AFG98℄ Mart��n Abadi, C�edri Fournet, and Georges Gonthier. Seure implementa-

tion of hannel abstrations. In LICS 98 (Indiana), pages 105{116. IEEE,

Computer Soiety Press, July 1998.

[AG97℄ Mart��n Abadi and Andrew D. Gordon. A alulus for ryptographi pro-

tools: The spi alulus. In Proeedings of the Fourth ACM Conferene on

Computer and Communiations Seurity, Z�urih, pages 36{47. ACM Press,

April 1997.

[Ama97℄ R. M. Amadio. An asynhronous model of loality, failure, and proess

mobility. In Pro. COORDINATION 97, LNCS 1282, 1997.

[AP94℄ R. M. Amadio and S. Prasad. Loalities and failures. In P. S. Thiagarajan,

editor, Proeedings of 14

th

FST and TCS Conferene, FST-TCS'94. LNCS

880, pages 205{216. Springer-Verlag, 1994.

[Bou92℄ G�erard Boudol. Asynhrony and the �-alulus (note). Rapport de Reherhe

1702, INRIA So�a-Antipolis, May 1992.

[BTS

+

98℄ Godmar Bak, Patrik Tullmann, Leigh Stoller, Wilson C. Hsieh, and Jay

Lepreau. Java operating systems: Design and implementation. Tehnial

Report UUCS-98-015, University of Utah, Department of Computer Siene,

August 6, 1998.

[CG98℄ Lua Cardelli and Andrew D. Gordon. Mobile ambients. In Pro. of

Foundations of Software Siene and Computation Strutures (FoSSaCS),

ETAPS'98, LNCS 1378, pages 140{155, Marh 1998.

[CG99℄ Lua Cardelli and Andrew D. Gordon. Types for mobile ambients. In Pro-

eedings of the 26th ACM Symposium on Priniples of Programming Lan-

guages, 1999.

[FGL

+

96℄ C�edri Fournet, Georges Gonthier, Jean-Jaques L�evy, Lu Maranget, and

Didier R�emy. A alulus of mobile agents. In Proeedings of CONCUR '96.

LNCS 1119, pages 406{421. Springer-Verlag, August 1996.

[FHL

+

96℄ Bryan Ford, Mike Hibler, Jay Lepreau, Patrik Tullman, Godmar Bak, and

Steven Clawson. Mirokernels meet reursive virtual mahines. In USENIX,

editor, 2nd Symposium on Operating Systems Design and Implementation

(OSDI '96), Otober 28{31, 1996. Seattle, WA, pages 137{151, Berkeley,

CA, USA, Otober 1996. USENIX.

[Gon97℄ Li Gong. Java seurity arhiteture (JDK 1.2). Tehnial report, JavaSoft,

July 1997. Revision 0.5.

42

[GWTB96℄ Ian Goldberg, David Wagner, Randi Thomas, and Eri A. Brewer. A seure

environment for untrusted helper appliations. In Sixth USENIX Seurity

Symposium, San Jose, California, July 1996.

[HR98a℄ Nevin Heintze and Jon G. Rieke. The SLam alulus: Programming with

serey and integrity. In Proeedings of the 25th POPL, January 1998.

[HR98b℄ Matthew Hennessy and James Riely. Resoure aess ontrol in systems of

mobile agents. In Workshop on High-Level Conurrent Languages, 1998. Full

version as University of Sussex tehnial report CSTR 98/02.

[HR98℄ Matthew Hennessy and James Riely. Type-safe exeution of mobile agents

in anonymous networks. In Workshop on Mobile Objet Systems, (satellite

of ECOOP '98), 1998. Full version as University of Sussex tehnial report

CSTR 98/03.

[HT91℄ Kohei Honda and Mario Tokoro. An objet alulus for asynhronous om-

muniation. In Pierre Ameria, editor, Proeedings of ECOOP '91, LNCS

512, pages 133{147, July 1991.

[IAJR97℄ Nayeem Islam, Rangahari Anand, Trent Jaeger, and Josyula R. Rao. A

exible seurity system for using Internet ontent. IEEE Software, 14(5):52{

59, September/Otober 1997.

[Jon99℄ Mihael B. Jones. Interposition agents: Transparently interposing user ode

at the system interfae. In Jan Vitek and Christian Jensen, editors, Seure

Internet Programing: Seurity Issues for Mobile and Distributed Objets.

Springer Verlag, 1999.

[Lam73℄ Butler W. Lampson. A note on the on�nement problem. Communiations

of the ACM, 16(10):613{615, 1973.

[LR97℄ G. Lowe and B. Rosoe. Using CSP to detet Errors in the TMN Protool.

IEEE Transations on Software Engineering, 23(10):659{669, 1997.

[ML94℄ J. MLean. Seurity models. In J. Mariniak, editor, Enylopedia of Soft-

ware Engineering. Wiley & Sons, 1994.

[ML98℄ Andrew C. Myers and Barbara Liskov. Complete, safe information ow with

deentralized labels. In Proeedings of the 1998 IEEE Symposium on Seurity

and Privay, Oakland, California, pages 186{197, 1998.

[MPW92℄ R. Milner, J. Parrow, and D. Walker. A alulus of mobile proesses, Parts

I + II. Information and Computation, 100(1):1{77, 1992.

[Mye99℄ Andrew C. Myers. Jow: Pratial stati information ow ontrol. In Pro-

eedings of the 26th ACM Symposium on Priniples of Programming Lan-

guages (POPL 99), 1999.

[NL98℄ G. C. Neula and P. Lee. Safe, untrusted agents using proof-arrying ode. In

G. Vigna, editor, Mobile Agents and Seurity, volume 1419 of LNCS, pages

61{91. SV, 1998.

[RH98℄ James Riely and Matthew Hennessy. A typed language for distributed mobile

proesses. In Proeedings of the 25th POPL, January 1998.

43

[Sh98℄ Fred B. Shneider. Enforeable seurity poliies. Tehnial Report TR 98-

1664, Computer Siene Department, Cornell University, Ithaa, New York,

January 1998.

[Sew97℄ Peter Sewell. Global/loal subtyping for a distributed �-alulus. Teh-

nial Report 435, University of Cambridge, August 1997. Available from

http://www.l.am.a.uk/users/pes20/.

[Sew98℄ Peter Sewell. Global/loal subtyping and apability inferene for a dis-

tributed �-alulus. In Proeedings of ICALP '98, LNCS 1443, pages 695{

706, 1998.

[Sew99℄ Peter Sewell. A brief introdution to applied �, January 1999. Leture notes

for the Math�t Instrutional Meeting on Reent Advanes in Semantis and

Types for Conurreny: Theory and Pratie, July 1998. Available from

http://www.l.am.a.uk/users/pes20/.

[SWP98a℄ Peter Sewell, Pawe l T. Wojiehowski, and Benjamin C. Piere. Loation

independene for mobile agents. In Workshop on Internet Programming

Languages, Chiago, May 1998.

[SWP98b℄ Peter Sewell, Pawe l T. Wojiehowski, and Benjamin C. Piere.

Loation-independent ommuniation for mobile agents: a two-

level arhiteture. Submitted for publiation. Draft available from

http://www.l.am.a.uk/users/pes20/, 1998.

[VB99℄ Jan Vitek and C

�

iaran Brye. Seure mobile ode: the javaseal experiment.

Manusript, 1999.

[VC98℄ Jan Vitek and Guiseppe Castagna. Towards a alulus of mobile ompu-

tations. In Workshop on Internet Programming Languages, Chiago, May

1998.

[VC99℄ Jan Vitek and Giuseppe Castagna. Mobile Agents and Hostile Hosts.

In Journ�ees Franophones des Langaages Appliatifs (JFLA99), Morizine,

Frane, Feb 1999.

[VIS96℄ D. Volpano, C. Irvine, and G. Smith. A sound type system for seure ow

analysis. Journal of Computer Seurity, 4:167{187, May 1996.

[VS98℄ Dennis Volpano and Geo�rey Smith. Con�nement properties for program-

ming languages. SIGACT News, 29(3):33{42, September 1998.

[WN95℄ G. Winskel and M. Nielsen. Models for onurreny. In Abramsky, Gabbay,

and Maibaum, editors, Handbook of Logi in Computer Siene, volume IV,

pages 1{148. Oxford University Press, 1995.

44

