
Se
ure Composition of Inse
ure Components

Peter Sewell

Computer Laboratory,

University of Cambridge,

England

Peter.Sewell�
l.
am.a
.uk

Jan Vitek

Obje
t Systems Group,

Universit�e de Gen�eve,

Switzerland

Jan.Vitek�
ui.unige.
h

April 9, 1999

Abstra
t

Software systems are be
oming heterogeneous: instead of a small number of

large programs from well-established sour
es, a user's desktop may now
onsist of

many smaller
omponents that intera
t in intri
ate ways. Some
omponents will be

downloaded from the network from sour
es that are only partially trusted. A user

would like to know that a number of se
urity properties hold, e.g. that personal data

is not leaked to the net, but it is typi
ally infeasible to verify that su
h
omponents

are well-behaved. Instead, they must be exe
uted in a se
ure environment, or

wrapper, that provides �ne-grain
ontrol of the allowable intera
tions between them,

and between
omponents and other system resour
es.

In this paper we study su
h wrappers, fo
using on how they
an be expressed in

a way that enables their se
urity properties to be stated and proved rigorously. We

introdu
e a model programming language, the box-�
al
ulus, that supports
om-

position of software
omponents and the enfor
ement of se
urity poli
ies. Several

example wrappers are expressed using the
al
ulus; we explore the deli
ate se
urity

properties they guarantee.

Contents

1 Introdu
tion 2

2 A Boxed � Cal
ulus 4

2.1 Syntax . 5

2.2 Redu
tion . 6

2.3 Labelled Transitions . 7

2.4 Bisimulation . 9

3 Se
urity Wrappers 9

4 Honesty and Composition 11

4.1 Honesty for Binary Wrappers . 13

5 Constrained Intera
tion Between Components 14

5.1 New-name dire
tionality . 14

5.2 Permutation . 14

5.3 Coloured Redu
tions . 15

6 Con
lusion 17

6.1 Related Work . 17

6.2 Future Dire
tions . 18

A Coin
iden
e of the Two Semanti
s 20

B Other Proofs 37

1

1 Introdu
tion

Software systems are evolving. In
reasingly, monolithi
 appli
ations are being repla
ed

with assemblages of software
omponents
oming from di�erent sour
es. Instead of a

small number of large programs from well-established suppliers, nowadays a user's desk-

top is made up of many smaller appli
ations and software modules that intera
t in

intri
ate ways to
arry out a variety of information pro
essing tasks. Moreover, whereas

it used to be that a software base was fairly stati
 and often
ontrolled by a system

administrator, it is now easy to download
ode from the network; te
hnologies su
h as

Java even allow an appli
ation program to be extended with new
omponents while the

program is running.

In su
h
uid operating environments, traditional se
urity me
hanisms and poli
ies

appear almost irrelevant. While passwords and a

ess
ontrol me
hanisms are ade-

quate to prote
t the integrity of the
omputer system as whole, they utterly fail to

address the issue of prote
ting the user from downloaded
ode being run from her a
-

ount [IAJR97, GWTB96, NL98℄. Approa
hes su
h as the Java sandbox that promise

se
urity by isolation are not satisfa
tory either:
omponents
an intera
t freely or not

at all [VB99, Gon97℄. What is needed is mu
h �ner-grained prote
tion me
hanisms that

take into a

ount the inter
onne
tion of software
omponents and the spe
i�
 se
urity

requirements of individual users.

We give a small motivating example (based on a true story) involving a �
tional

hara
ter, Karen, performing some �nan
ial
omputation. To manage her a

ounts she

downloads a software pa
kage
alled Qui
kest from a
ompany Q. Karen does not want

any information about her to be leaked without her
onsent, so she would like to run

Qui
kest in an environment that does not allow it a

ess to the Internet (she has observed

that it sometimes uploads information { presumably for marketing purposes { to Q). On

the other hand she often needs sto
k quotes, for whi
h she must allow net a

ess. At

present she runs two instan
es of Qui
kest, one on an isolated PC, with her �nan
ial

re
ords, and one
onne
ted, used to obtain sto
k quotes. She transfers data from the

se
ond to the �rst only on
oppy dis
, thereby manually ensuring that no information

ows in the
onverse dire
tion.

Karen would like to dispose of the isolated PC, using a software solution to prevent

her personal data being leaked to the net. Now, Qui
kest is a large pie
e of
ommer
ial

software that was not programmed by Karen. The sour
e
ode is not available to her

and its internal behaviour is
omplex and ina

essible; ensuring the desired properties by

program analysis will not be feasible. Instead she must run the two
opies of the pa
kage

in se
ure software environments that allow
ontrol of the information
ow between them

and between ea
h pa
kage and the net.

More generally, she will wish to run many pa
kages, ea
h trusted in di�erent ways, and

will want to be able to dynami
ally
ontrol the intera
tions between them and between

these pa
kages and other resour
es { the net, regions of the lo
al dis
, the terminal, audio

and video
apture devi
es et
. In some
ases she will wish to log the data sent from one

to another; in others she will wish to limit the allowed bandwidth (e.g. to disallow audio

and video
hannels). In general her notion of what data is to be
onsidered \sensitive" is

likely to be
ontext dependent. In a Web browser, she may
hoose to
onsider her e-mail

address as a se
ret that should be prote
ted from broad
ast to junk mail lists, while the

same e-mail will not be treated spe
ially in her text editor.

While it is not feasible to analyse or modify large third-party software pa
kages, it is

possible to inter
ept the
ommuni
ations between a pa
kage and the other parts of the

system, interposing
ode at the boundaries of the di�erent software
omponents [Jon99,

FHL

+

96, BTS

+

98, GWTB96℄. It is thus possible to monitor or
ontrol the operations

2

that these
omponents are able to invoke, and the data that is ex
hanged between them.

We
all a
ode fragment that en
apsulates untrusted
omponents a se
urity wrapper or

wrapper for short.

Clearly the task of writing wrappers should not be left solely to the end-user. Rather

we envision wrappers as reusable software
omponents, users should then only have to

pi
k the most appropriate wrappers,
ustomize them with some parameters and install

them. All of this pro
ess should be dynami
: wrappers must be no harder to add to

a running system than new appli
ations. A user will require a
lear des
ription of the

se
urity properties that a wrapper guarantees. Moreover, wrappers should
ompose with

a
lear notion of whi
h properties are preserved.

The goal of this work is to study su
h se
ure environments, fo
using on how they

an be expressed in a way that enables their se
urity properties to be stated and proved

rigorously. It appears that there is a wide range of rather deli
ate properties, making

hard for designers to develop suÆ
iently
lear intuitions without su
h rigour. Moreover

the wrappers, although
riti
al, may be rather small pie
es of software, making it feasible

to prove properties about them, or about mild idealisations.

To express and reason about wrappers we require a small programming language,

with a well-de�ned semanti
s, that allows the
omposition of software
omponents to be

expressed straightforwardly and also supports the enfor
ement of se
urity poli
ies. Su
h

a language, the box-�
al
ulus, is introdu
ed in x2. We begin with a simple example,

a wrapper W

1

written in the
al
ulus. It en
apsulates a single
omponent and
ontrols

its intera
tions with the environment, limiting them to two
hannels in and out . W

1

is

written as a unary
ontext:

W

1

[℄

def

= (� a)

�

a[℄

j ! in

"

y:in

a

y

j ! out

a

y:out

"

y

�

This
reates a box with a new name a, installing in parallel with it two forwarders {

one that re
eives messages from the environment on
hannel in and sends them to the

wrapped program, and one that re
eives messages from the wrapped program on
hannel

out and sends them to the environment. An arbitrary program P (possibly mali
ious)
an

be wrapped to give W

1

[P ℄; the design of the
al
ulus and of W

1

ensures that no matter

how P behaves the wrapped program W

1

[P ℄
an only intera
t with its environment on

the two
hannels in and out . This
ould be a
hieved simply by forbidding all intera
tion

between P and the outside world, a rather unsatisfa
tory wrapper | W

1

is also honest,

in that it faithfully forwards messages on in and out . These informal properties are made

pre
ise in Propositions 2 and 5 below. We also dis
uss the sense in whi
h wrapping a

well-behaved P has no e�e
t on its behaviour. W

1

is atypi
al in that it has no behaviour

ex
ept the forwarding of legitimate messages { other reasonable unary wrappers may

perform some kind of logging, or have a
ontrol interfa
e for the wrapper. The honesty

property that should hold for any reasonable wrapper is therefore somewhat deli
ate; to

state it (and our other se
urity properties) we make extensive use of a labelled transition

semanti
s for the
al
ulus.

The wrapper W

1

ontrols intera
tion between a single
omponent and its environ-

ment. Our se
ond main example goes further towards solving Karen's problem, allowing

ontrol of the intera
tion between
omponents. W

2

(de�ned in x3) is a binary wrapper

that en
apsulates two
omponents P and Q as W

2

[P;Q℄, allowing ea
h to intera
t with

the environment in a limited way but also allowing information to
ow from P to Q

(but not vi
e versa) along a dire
ted
ommuni
ation
hannel. Making this pre
ise is the

subje
t of x5.

3

Both W

1

and W

2

are
hosen to be as simple as possible, in parti
ular with �xed inter-

fa
es for
omponents to intera
t with ea
h other and with the environment. Generalising

this to arbitrary interfa
es and to wrappers taking any number of
omponents should be

straightforward but
ompli
ates the notation; other generalisations are dis
ussed in the

on
lusion.

Overview We begin in the next se
tion (x2) by introdu
ing the
al
ulus and giving

its operational semanti
s. A number of wrappers are de�ned in x3, in
luding one whi
h

logs traÆ
. The basi
 properties of honesty and well-behaviour are introdu
ed in x4.

Information
ows between wrapped
omponents are studied in x5, then we
on
lude in

x6 with dis
ussion of related and future work. This paper des
ribes work in progress {

Se
tions 4 and 5
ontain a number of
onje
tures whi
h are yet to be proved, but whi
h

we hope will stimulate dis
ussion. This te
hni
al report is an extended version of a paper

appearing in the Computer Se
urity Foundations Workshop (CSFW-99).

2 A Boxed � Cal
ulus

The language { known as the box-�
al
ulus { that we use for studying en
apsulation

properties must allow intera
ting
omponents to be
omposed. The
omponents will

typi
ally be exe
uting
on
urrently, introdu
ing nondeterminism. It is therefore natural

to base the language on a pro
ess
al
ulus. The box-�
al
ulus lies in a large design

spa
e of distributed
al
uli that build on the �-
al
ulus of Milner, Parrow and Walker

[MPW92℄. Related
al
uli have been used by a number of authors, e.g. in [AFG98,

Ama97, AP94, CG98, CG99, FGL

+

96, HR98
, HR98b, RH98, Sew97, Sew98, SWP98a,

SWP98b, VC98, VC99℄. A brief overview of the design spa
e
an be found in [Sew99℄;

here we highlight the main design
hoi
es for box-�, deferring
omparison with related

work to x6.

The
al
ulus is based on asyn
hronous message passing, with
omponents intera
ting

only by the ex
hange of unordered asyn
hronous messages. Box-� has an asyn
hronous

�-
al
ulus as a sub
al
ulus { we build on a large body of work studying su
h
al
uli,

notably [HT91, Bou92, ACS96℄. They are known to be very expressive, supporting many

programming idioms in
luding fun
tions and obje
ts, and are Turing-
omplete; a box-�

pro
ess may therefore perform arbitrary internal
omputation.

To � we must add primitives for
onstraining
ommuni
ation { in standard �-
al
uli,

if one pro
ess
an send a message to another then the only way to prevent information

owing in the reverse dire
tion is to impose a type system, whi
h (as observed above)

is not appropriate here. We therefore add a boxing primitive. Boxes may be nested,

giving hierar
hi
al prote
tion domains;
ommuni
ation a
ross box boundaries is stri
tly

limited. Underlying the
al
ulus design is the prin
iple that ea
h box should be able to

ontrol all intera
tions of its
hildren, both with the outside world and with ea
h other

[VC98℄. Communi
ation is therefore allowed only between a box and its parent, or within

the pro
ess running in a parti
ular box. In parti
ular, two sibling boxes
annot intera
t

without the assistan
e of their parent. To enable a box to intera
t with a parti
ular

hild, boxes are named, analogously to �
hannel names. The se
urity properties of our

wrappers depend on the ability to
reate fresh box names.

Turning to the values that may be
ommuni
ated, it is
onvenient to allow arbitrary

tuples of names (or other tuples). Note that we do not allow
ommuni
ation of pro
ess

terms. Moreover, no primitives for movement of boxes are provided. The
al
ulus is

therefore entirely �rst order, whi
h is important for the tra
table theory of behaviour (the

labelled transition semanti
s) that we require to state and prove se
urity properties. The

4

al
ulus is also untyped { we wish to
onsider the wrapping of ill-understood, probably

buggy and possibly mali
ious programs.

2.1 Syntax

The syntax of the
al
ulus is as follows:

Names We take an in�nite set N of names, ranged over by lower-
ase roman letters

n;m; x; y; z et
. (ex
ept i; j; k; o; p; u; v). Both boxes and
ommuni
ation
hannels are

named; names also play the role of variables, as in the �-
al
ulus.

Values and Patterns Pro
esses will intera
t by
ommuni
ating values whi
h are de-

onstru
ted by pattern-mat
hing upon re
eption. Values u; v
an be names or tuples,

with patterns p
orrespondingly tuple-stru
tured:

u; v ::= x name

h

v

1

:: v

k

i

tuple (k � 0)

p ::= wild
ard

x name pattern

(

p

1

:: p

k

)

tuple pattern (k � 0, no repeated names)

Pro
esses The main synta
ti

ategory is that of pro
esses, ranged over by P;Q. We

introdu
e the primitives in three groups.

Boxes A box n[P ℄ has a name n, it
an
ontain an arbitrary pro
ess P . Box names are

not ne
essarily unique { the pro
ess n[0℄ j n[0℄
onsists of two distin
t boxes named n,

both
ontaining an empty pro
ess, in parallel.

P ::= n[P ℄ box named n
ontaining P

P j P

0

P and P

0

in parallel

0 the nil pro
ess

: : :

Communi
ation The standard asyn
hronous �-
al
ulus
ommuni
ation primitives are

xv, indi
ating an output of value v on the
hannel named x, and xp:P , a pro
ess that

will re
eive a value output on
hannel x, binding it to p in P . Here we re�ne these with

a tag indi
ating the dire
tion of the
ommuni
ation in the box hierar
hy. An input tag

�
an be either ?, for input within a box, ", for input from the parent box, or a name

n, for input from a sub-box named n. An output tag o
an be any of these, similarly.

For te
hni
al reasons we must also allow an output tag to be ", indi
ating an output

re
eived from the parent that has not yet intera
ted with an input, or n, indi
ating an

output re
eived from
hild n that has not yet intera
ted. The
ommuni
ation primitives

are then

P ::= : : :

x

o

v output v on
hannel x to o

x

�

p:P input on
hannel x from �

!x

�

p:P repli
ated input

: : :

The repli
ated input !x

�

p:P behaves essentially as in�nitely many
opies of x

�

p:P in

parallel. This gives
omputational power, allowing e.g. re
ursion to be en
oded simply,

5

while keeping the theory simple. In x

�

p:P and !x

�

p:P the names o

urring in the pattern

p bind in P .

New name
reation Both box and
hannel names
an be
reated fresh, with the standard

�-
al
ulus (� x)P operator. This de
lares any free instan
es of x within P to be instan
es

of a globally fresh name.

P ::= : : :

(� x)P new name
reation

In (� x)P the x binds in P . We work up to alpha
onversion of bound names throughout,

writing the free name fun
tion, de�ned in the obvious way for values, tags and pro
esses,

as fn().

2.2 Redu
tion

The simplest semanti
 de�nition of the
al
ulus is a redu
tion semanti
s, a one-step

redu
tion relation P ! P

0

indi
ating that P
an perform one step of internal
omputation

to be
ome P

0

. We �rst de�ne the
omplement � of a tag � in the obvious way, with ? = ?

and � = �. We de�ne a partial fun
tion f = g, taking a pattern and a value and giving,

where it is de�ned, a partial fun
tion from names to values.

f

v

= g = fg

f

v

=

x

g = fx 7! vg

f

h

v

1

:: v

k

0

i

=

(

p

1

:: p

k

)

g = f

v

1

=

p

1

g [: : : [f

v

k

=

p

k

g if these are de�ned and k = k

0

unde�ned, otherwise

The natural de�nition of the appli
ation of a substitution � (from names to values) to

a pro
ess term P , written �P , is also a partial operation, as the syntax does not allow

arbitrary values in all the pla
es where free names
an o

ur. We write f

v

=

p

gP for the

result of applying the substitution f

v

=

p

g to P . This may be unde�ned either be
ause f

v

=

p

g

is unde�ned, or be
ause f

v

=

p

g is a substitution but the appli
ation of that substitution to

P is unde�ned. Note that the result f

y

=

x

gP of applying a name-for-name substitution is

always de�ned. We de�ne stru
tural
ongruen
e � as the least
ongruen
e relation su
h

that the axioms below hold. This allows the parts of a redex to be brought synta
ti
ally

adja
ent.

P j 0 � P (� x)(� y)P � (� y)(� x)P

P j Q � Q j P (� x)(P j Q) � P j (� x)Q x 62 fn(P)

(P j Q) j R � P j (Q j R) (� x)n[P ℄ � n[(� x)P ℄ x 6= n

The redu
tion relation is now the least relation over pro
esses satisfying the axioms and

rules below. The (Red Comm) and (Red Repl) axioms are subje
t to the
ondition that

f

v

=

p

gP is well-de�ned.

n[x

"

v j Q℄ ! x

n

v j n[Q℄ (Red Up)

x

n

v j n[Q℄ ! n[x

"

v j Q℄ (Red Down)

x

�

v j x

�

p:P ! f

v

=

p

gP (Red Comm)

x

�

v j !x

�

p:P ! !x

�

p:P j f

v

=

p

gP (Red Repl)

P ! Q) P j R! Q j R (Red Par)

P ! Q) (� x)P ! (� x)Q (Red Res)

P ! Q) n[P ℄ ! n[Q℄ (Red Box)

P � P

0

! Q

0

� Q) P ! Q (Red Stru
t)

6

The (Red Up) axiom allows an output to the parent of a box to
ross the en
losing

box boundary. Similarly, the (Red Down) axiom allows an output to a
hild box n to

ross the boundary of n. The (Red Comm) axiom then allows syn
hronisation between a

omplementary output and input within the same box. The (Red Repl) axiom is similar,

but preserves the repli
ated input in the resulting state.

Communi
ations a
ross box boundaries thus take two redu
tion steps, for example in

the following upwards and downwards
ommuni
ations.

n[x

"

v℄ j x

n

p:P ! n[0℄ j x

n

v j x

n

p:P

! n[0℄ j f

v

=

p

gP

x

n

v j n[x

"

p:P ℄ ! n[x

"

v j x

"

p:P ℄

! n[f

v

=

p

gP ℄

This removes the need for 3-way syn
hronisations between a box, an output and an input

(as in [VC98℄), simplifying both the semanti
s and the implementation model.

2.3 Labelled Transitions

The redu
tion semanti
s de�nes only the internal
omputation of pro
esses. The state-

ments of our se
urity properties must involve the intera
tions of pro
esses with their

environments, requiring more stru
ture: a labelled transition relation
hara
terising the

potential inputs and outputs of a pro
ess. We give a labelled semanti
s for box-� in an

expli
itly-indexed early style, de�ned indu
tively on pro
ess stru
ture by an SOS. The

labels are

` ::= � internal a
tion

x

o

v output a
tion

x

v input a
tion

where
 ranges over all output tags ex
ept ". The labelled transitions
an be divided

into those involved in moving messages a
ross box boundaries and those involved in

ommuni
ations between outputs and inputs. The movement labels are

x

n

v (sending to
hild n) x

n

v (box n re
eiving from its parent)

x

"

v (sending to the parent)

Say mv(o) is true if o is of the form n or ". The
ommuni
ation labels are

x

?

v (lo
al output) x

?

v (lo
al input)

x

n

v (output re
eived from
hild n) x

n

v (input a message re
eived from
hild n)

x

"

v (output re
eived from parent) x

"

v (input a message re
eived from parent)

Labels will syn
hronise in the pairs given. The labelled transition relation has the form

A ` P

`

�! Q

where A is a �nite set of names and fn(P) � A; it should be read as `in a state where

the names A may be known to P and its environment, pro
ess P
an do ` to be
ome

Q'. The relation is de�ned as the smallest relation satisfying the rules in Figure 1. We

write A; x for A [fxg where x is assumed not to be in A, and A; p for the union of

A and the names o

urring in the pattern p, where these are assumed disjoint. For

the sub
al
ulus without new-binding the labelled transition rules are straightforward |

7

x

o

v

x

o

v

�! 0

(Out)

x

�

p:P

x

�

v

�! f

v

=

p

gP

(In)

!x

�

p:P

x

�

v

�! !x

�

p:P j f

v

=

p

gP

(Repl)

n[P ℄

x

n

v

�! n[x

"

v j P ℄

(Box-2)

A ` P

x

"

v

�! P

0

A ` n[P ℄

�

�! (� fn(x; v)�A)(x

n

v j n[P

0

℄)

(Box-1)

P

�

�! P

0

n[P ℄

�

�! n[P

0

℄

(Box-3)

P

`

�! P

0

P j Q

`

�! P

0

j Q

(Par)

A ` P

x

v

�! P

0

A ` Q

x

v

�! Q

0

A ` P j Q

�

�! (� fn(x; v) �A)(P

0

j Q

0

)

(Comm)

A; x ` P

`

�! P

0

A ` (� x)P

`

�! (� x)P

0

(Res-1)

A; x ` P

y

o

v

�! P

0

A ` (� x)P

y

o

v

�! P

0

(Res-2)

P

`

�! P

0

P

0

� P

00

P

`

�! P

00

(Stru
t Right)

The (Res-1) rule is subje
t to x 62 fn(`), the (Res-2) rule is subje
t to x 2 fn(v) �

fn(y; o) if :mv(o) and to x 2 fn(y; v)� fn(o) otherwise. The indexing A ` has beeen

elided in rules where it is not involved in any interesting way. In all rules with

on
lusion of the form A ` P

`

�! Q there is an impli
it side
ondition fn(P) � A.

In the (In) and (Repl) axioms there is an impli
it side
ondition that f

v

=

p

gP is

well-de�ned. Symmetri
 versions of (Par) and (Comm) are elided.

Figure 1: Box-� Labelled Transitions

instan
es of the redu
tion rule (Red Up)
orrespond to uses of (Box-1), (Out), and (Par);

instan
es of (Red Down)
orrespond to uses of (Comm), (Out), and (Box-2); instan
es

of (Red Comm)
orrespond to uses of (Comm), (Out), and (In). The derivations of the

orresponding � -transitions
an be found in the proof of Lemma 19. The addition of

new-binding introdu
es several subtleties, some inherited from the �-
al
ulus and some

related to s
ope extrusion and intrusion a
ross box boundaries. We dis
uss the latter

brie
y.

The (Red Down) rule involves syn
hronisation on the box name n but not on the

hannel name x | there are redu
tions su
h as

((� x)
x

n

z) j n[0℄ ! (� x)n[
x

"

z℄

in whi
h a new-bound name enters a box boundary. To
orre
tly mat
h this with a � -

transition the side-
ondition for (Res-2) for labels with output tag n requires the bound

name to o

ur either in
hannel or value position, and the (Comm) rule reintrodu
es the

8

x binder on the right hand side.

Similarly, the (Red Up) rule allows new-bound names in
hannel position to exit a

box boundary, for example in

n[(� x)x

"

z℄ ! (� x)(x

n

z j n[0℄)

The (Res-2)
ondition for output tag " again requires the bound name to o

ur either in

hannel or value position, here the (Box-1) rule reintrodu
es the x binder on the right

hand side.

Redu
tions generated by (Red Comm) involve syn
hronisation both on the tags and

on the
hannel name. The (Res-2)
ondition for output tags ?, " and n is analogous to

the standard �-
al
ulus (Open) rule; requiring the bound name to o

ur in the value but

not in the tag or
hannel. The (Comm) rule for these output tags is analogous to the

standard � rule | in parti
ular, here it is guaranteed that x 2 A (see Lemma 11).

Some auxiliary notation is useful. For a sequen
e of labels `

1

: : : `

k

we write

A ` P

1

`

1

�! : : :

`

k

�! P

k+1

to mean 9P

2

; : : : ; P

k

: 8i 2 1::k : A

i

` P

i

`

i

�! P

i+1

, where A

i

= A [

S

j21::i

fn(`

j

). If

` 6= � we write A ` P

^

`

=) P

0

for A ` P

�

�!

�

`

�!

�

�!

�

P

0

; if ` = � then A ` P

^

`

=) P

0

is

de�ned as A ` P

�

�!

�

P

0

.

The two semanti
s
oin
ide in the following sense.

Theorem 1 If fn(P) � A then A ` P

�

�! Q i� P ! Q.

This give
on�den
e that the labelled semanti
s
arries enough information. The proof

is somewhat deli
ate | it
an be found in Appendix A.

2.4 Bisimulation

The statements of some relationships between the behaviour of a wrapped and an un-

wrapped program require an operational equivalen
e relation. As box-� is asyn
hronous,

an appropriate notion
an be based on the weak asyn
hronous bisimulation of [ACS96℄.

Consider a family S of relations indexed by �nite sets of names su
h that ea
h S

A

is a

symmetri
 relation over fP j fn(P) � A g. Say S is a weak asyn
hronous bisimulation if

� P S

A

Q, A ` P

`

�! P

0

and ` is an output or � transition imply 9Q

0

: A ` Q

^

`

=)

Q

0

^ P

0

S

A[fn(`)

Q

0

, and

� P S

A

Q, A ` P

x

v

�! P

0

imply either 9Q

0

: A ` Q

x

v

=) Q

0

^ P

0

S

A[fn(x

v)

Q

0

or

9Q

0

: A ` Q =) Q

0

^ P

0

S

A[fn(x

v)

(Q

0

j x

v).

We write � for the union of all weak asyn
hronous bisimulations. (This de�nition has

not been thoroughly tested { in parti
ular, it has not been proved to be a
ongruen
e.)

3 Se
urity Wrappers

This se
tion gives three example wrappers. The �rst en
apsulates a single
omponent,

restri
ting its intera
tions with the outside world to
ommuni
ations obeying a
ertain

proto
ol. The se
ond is similar, but also writes a log of all su
h
ommuni
ations. The

9

third wrapper en
apsulates two
omponents, allowing ea
h to intera
t with the outside

world in a limited way but also allowing information to
ow from the �rst to the se
ond

(but not vi
e versa).

A wrapper design must be in the
ontext of some �xed proto
ol whi
h
omponents

should use for
ommuni
ation with their environment and with ea
h other. For the �rst

two wrappers we �x two
hannel names, in and out , for
omponents to re
eive and send

messages respe
tively. Moreover, we assume that
omponents will always be exe
uted

within some box and should be
ommuni
ating with the parent box. A trivial
omponent

that re
eives values v and then
opies pairs

h

v v

i

to the output would be written as

! in

"

y:out

"

h

y y

i

A mali
ious
omponent might also write data to another illi
it output
hannel available

in the environment, e.g.

! in

"

y:

�

net

"

y j out

"

h

y y

i

�

or eavesdrop on
ommuni
ations between other parts of the system, e.g.

!

?

y:(net

"

 j

?

y

�

We
an express whether a
omponent obeys the proto
ol in terms of the labelled transi-

tion semanti
s { say P is well-behaved for a unary wrapper i� whenever A ` P

l

1

::l

k

�! Q

then the l

j

are of the form in

"

v, out

"

v, or � .

A Filtering Wrapper A �lter is a wrapper that simply restri
ts the
ommuni
ation

abilities of a pro
ess. We
onsider a stati
 �lter that allows intera
tion on two
hannels

in and out only.

W

1

[℄

def

= (� a)

�

a[℄

j ! in

"

y:in

a

y

j ! out

a

y:out

"

y

�

W

1

exe
utes its
omponent within a freshly-named box, installing forwarders to move

legitimate messages a
ross the boundary. Note that this and further wrappers are non-

binding
ontexts { equivalently, we assume wherever we apply W

1

to a pro
ess P that

the new-bound a does not o

ur free in P (in an implementation this
ould be ensured

either probabilisti
ally or with a linear-time s
an of P). Irrespe
tive of the behaviour of

P , W

1

[P ℄ does obey the proto
ol { this
an be stated
learly using the labelled transition

semanti
s:

Proposition 2 For any program P with a 62 fn(P), if A ` W

1

[P ℄

l

1

::l

k

�! Q then the l

j

are

of the form in

"

v, out

"

v, or � .

The proof is via an expli
it
hara
terisation of the states rea
hable by labelled transitions

of W

1

[P ℄. A proof of this, and of the other properties of W

1

,
an be found in the

Appendi
es. We say a unary wrapper with this property is pure.

The Logging Wrapper The �lter
an be extended to maintain a log of all
ommuni-

ations of a pro
ess, sending
opies on a
hannel log to the environment:

L[℄

def

= (� a)

�

a[℄

j ! in

"

y:(log

"

y j in

a

y)

j ! out

a

y:(log

"

y j out

"

y)

�

10

A wrapped program L[P ℄ again
an intera
t only in limited ways.

Proposition 3 For any program P with a 62 fn(P), if A ` L[P ℄

l

1

::l

n

�! Q then the l

j

are

of the form in

"

v, out

"

v, log

"

v, or � .

A Pipeline Wrapper A pipeline wrapper allows a
ontrolled
ow of information

between two
omponents. We give a binary wrapper W

2

that takes two pro
esses. In an

exe
ution of W

2

[Q

1

; Q

2

℄ the two wrapped pro
esses Q

i

an intera
t with the environment

as before, on
hannels in

i

and out

i

. In addition, Q

1

an send messages to Q

2

on a
hannel

mid . The pipeline implemented here is unordered.

W

2

[

1

;

2

℄

def

= (� a

1

; a

2

)

�

a

1

[

1

℄ j a

2

[

2

℄

j ! in

1

"

y:in

1

a

1

y

j ! in

2

"

y:in

2

a

2

y

j ! out

1

a

1

y:out

1

"

y

j ! out

2

a

2

y:out

2

"

y

j !mid

a

1

y:mid

a

2

y

�

As before W

2

is a non-binding
ontext { we assume, wherever we apply it to two pro
esses

P

1

; P

2

, that fa

1

; a

2

g\ fn(P

1

; P

2

) = ;. Say a binary wrapper C is pure i� for any programs

P

1

; P

2

, (satisfying the appropriate free name
ondition { for W

2

that with fa

1

; a

2

g \

fn(P

1

; P

2

) = ;), if A ` C[P

1

; P

2

℄

l

1

::l

k

�! Q then the l

j

are of the form in

i

"

v, out

i

"

v, or � .

Proposition 4 W

2

is pure.

For an example of a blo
ked attempt by the se
ond pro
ess to send a value to the �rst,

suppose P

2

= mid

"

v. We have

W

2

[P

1

;mid

"

v℄ = (� a

1

; a

2

)

�

a

1

[P

1

℄ j a

2

[mid

"

v℄ j R

�

! (� a

1

; a

2

)

�

a

1

[P

1

℄ j a

2

[0℄ j mid

a

2

v j R

�

where R is the parallel
omposition of forwarders. The output mid

a

2

v in the �nal state

annot intera
t further { not with the environment, as a

2

is restri
ted, and not with the

forwarder !mid

a

1

y:mid

a

2

y, as a

1

6= a

2

.

These wrappers all assume a rather simple �xed proto
ol. It would be straightforward

to generalise to arbitrary sets of
hannels instead of in, out and mid . It would also be

straightforward to allow n-ary wrappers, en
apsulating many
omponents and allowing

information to
ow only on a given preorder between them. Other generalisations are

dis
ussed in the
on
lusion.

4 Honesty and Composition

The properties of wrappers stated in the previous se
tion are very weak. For example,

the unary wrapper

C[℄

def

= 0

is also pure, but is useless. In this se
tion we identify the
lass of honest wrappers that

are guaranteed to forward legitimate messages. This gives the authors of
omponents a

lear statement of (some of) the properties of the environment that
an be relied upon.

11

An initial attempt might be to take W

1

as a spe
i�
ation, de�ning a unary wrapper

C to be honest i� for any program P the pro
esses C[P ℄ and W

1

[P ℄ are operationally

equivalent. This is unsatisfa
tory { it rules out wrappers su
h as L, and it does not give

a very
lear statement of the properties that may be assumed of an honest wrapper.

A better attempt might be to say that a unary wrapper C is honest i� for any well-

behaved P the pro
esses C[P ℄ and P are operationally equivalent. This would be unsatis-

fa
tory in two ways. Firstly, some intuitively sound wrappers have additional intera
tions

with the environment { e.g. the logging outputs of L { and so would not be
onsidered

honest by this de�nition. Se
ondly, this de�nition would not
onstrain the behaviour of

wrappers for non-well-behaved P at all { if a
omponent P attempted, in error, a single

illi
it
ommuni
ation then C[P ℄ might behave arbitrarily.

To address these points we give expli
it de�nitions of honesty, �rst for unary wrappers

and then for binary, in the style of weak asyn
hronous bisimulation. Consider a family

R indexed by �nite sets of names su
h that ea
h R

A

is a relation over fP j fn(P) � A g.

Say R is an h-bisimulation if, whenever C R

A

Q then:

1. if A ` C

`

�! C

0

for ` = out

"

v; � then A ` Q

^

`

=) Q

0

^ C

0

R

A[fn(`)

Q

0

2. if A ` C

in

"

v

�! C

0

then either A ` Q

in

"

v

=) Q

0

and C

0

R

A[fn(in;v)

Q

0

or A ` Q =) Q

0

and C

0

R

A[fn(in;v)

Q

0

j in

"

v

3. if A ` C

`

�! C

0

for any other label then C

0

R

A[fn(`)

Q

together with symmetri
 versions of
lauses 1 and 2. Say a unary wrapper C is honest if

for any program P (satisfying the appropriate free name
ondition) and any A � fn(C[P ℄)

there is an h-bisimulation R with C[P ℄ R

A

P .

Loosely,
lauses 1, 2 and the symmetri
 versions ensure that legitimate
ommuni-

ations and internal redu
tions must be weakly mat
hed. Clause 3 ensures that if the

wrapper performs some additional
ommuni
ation then this does not a�e
t the state as

seen by the wrapped pro
ess.

Proposition 5 The unary wrappers W

1

and L are honest.

We give some examples of dishonest wrappers. Take

C[℄

def

= (� a)a[℄

This is not honest { a transition A ` P

out

"

v

�! P

0

annot be mat
hed by C[P ℄, violating

the symmetri
 version of
lause 1. Now
onsider

C[℄

def

=

This wrapper is also dishonest as C[P ℄
an perform a
tions not in the proto
ol that

essentially a�e
t the state of P . For example, take P = x

?

y:out

"

hi

. Suppose C[P ℄ R

A

P

for an h-bisimulation R. We have A ` C[P ℄

x

?

hi

�! out

"

hi

so by
lause 3 out

"

hi

R

A

P ,

but then
lause 1
annot hold { the left hand side
an perform an out

"

hi

transition that

annot be mat
hed be the right hand side.

12

Composition of Wrappers The proto
ol for
ommuni
ation between a
omponent

and a unary wrapper is designed so that wrappers may be nested. We
onje
ture that

the
omposition of any honest unary wrappers is honest.

Conje
ture 6 If C

1

and C

2

are honest unary wrappers then C

1

Æ C

2

is honest.

Analogous results for non-unary wrappers would require wrappers with more
omplex

interfa
es so that the input, output and mid
hannels
ould be
onne
ted
orre
tly.

A desirable property of a pure wrapper is that it should not a�e
t the behaviour of

any well-behaved
omponent | one might expe
t for any pure and honest C and well-

behaved P that C[P ℄ �

A

P (where A � fn(C[P ℄)). Unfortunately this does not hold, even

for W

1

, as the wrapper
an make input transitions that
annot be mat
hed. One
an

he
k W

1

[0℄ 6�

A

0, yet 0 is well-behaved. In pra
ti
e one would expe
t the environment

of a wrapper to not be able to dete
t these inputs, but to make this pre
ise would require

an operational equivalen
e relativised to su
h `well-behaved' environments.

A simpler property would be that multiple wrappings have no e�e
t. We
onje
ture

that W

1

is idempotent, i.e. that W

1

[W

1

[P ℄℄ and W

1

[P ℄ have the same behaviour (up to

weak asyn
hronous bisimulation):

Conje
ture 7 For any program P with a 62 fn(P) and A � fn(W

1

[P ℄) we haveW

1

[P ℄ �

A

W

1

[W

1

[P ℄℄.

4.1 Honesty for Binary Wrappers

The de�nition of honesty for binary wrappers must take into a

ount the mid
ommu-

ni
ation. Consider a family R indexed by �nite sets of names su
h that ea
h R

A

is

a relation between terms and pairs of terms, all with free names
ontained in A. Say

R is a binary h-bisimulation if, whenever C R

A

(Q

1

; Q

2

) the
lauses below hold. The

key di�eren
e with the unary de�nition is
lause 7; the other
lauses are routine, albeit

notationally
omplex.

1. if A ` C

out

i

"

v

�! C

0

then A ` Q

i

out

i

"

v

=) Q

0

i

, A ` Q

3�i

=) Q

0

3�i

and C

0

R

A[fn(v)

(Q

0

1

; Q

0

2

).

2. if A ` C

in

i

"

v

�! C

0

then A ` Q

3�i

=) Q

0

3�i

and either A ` Q

i

in

i

"

v

=) Q

0

i

^ C

0

R

A[fn(v)

(Q

0

1

; Q

0

2

) or A ` Q

i

=) Q

00

i

^ C

0

R

A[fn(v)

(Q

0

1

; Q

0

2

), where Q

0

i

= Q

00

i

j in

"

v.

3. if A ` C

�

�! C

0

then A ` Q

1

=) Q

0

1

, A ` Q

2

=) Q

0

2

and C

0

R

A

(Q

0

1

; Q

0

2

).

4. if A ` C

`

�! C

0

for any other label then C

0

R

A[fn(`)

(Q

1

; Q

2

)

5. if A ` Q

i

`

�! Q

0

i

for ` = out

i

"

v; � then A ` C

^

`

=) C

0

, and C

0

R

A[fn(`)

(Q

0

1

; Q

0

2

),

where Q

0

3�i

= Q

3�i

.

6. if A ` Q

i

in

i

"

v

�! Q

0

i

then either A ` C

in

i

"

v

=) C

0

^ C

0

R

A[fn(v)

(Q

0

1

; Q

0

2

) or A ` C =)

C

0

^ C

0

j in

"

v R

A[fn(v)

(Q

0

1

; Q

0

2

), where Q

0

3�i

= Q

3�i

.

7. if A ` Q

1

mid

"

v

�! Q

0

1

then A ` C =) C

0

^ C

0

R

A[fn(v)

(Q

0

1

; Q

2

j mid

"

v).

A binary wrapper C is honest if for all P

1

; P

2

(satisfying the appropriate free name
ondi-

tion) and any A � fn(C[P

1

; P

2

℄) there exists a binary h-bisimulation R with C[P

1

; P

2

℄ R

A

(P

1

; P

2

).

13

Conje
ture 8 W

2

is honest.

5 Constrained Intera
tion Between Components

In our motivating example Karen required �ne-grain
ontrol over the information
ows

between
omponents { in the binary
ase, allowing unidire
tional
ow. By examining

the
ode for W

2

it is intuitively
lear that it a
hieves this, preventing information
owing

from Q to P within W

2

[P;Q℄. When one
omes to make this intuition pre
ise, however,

it be
omes far from
lear exa
tly what behavioural properties W

2

guarantees that make

it a satisfa
tory wrapper from the user's point of view (who should not have to examine

the wrapper
ode). Honesty is one, but it does not prohibit bad
ows. In this se
tion we

give a number of
andidate properties, stating four pre
isely and the others informally.

We
onje
ture that all are satis�ed by W

2

but that none are equivalent. None are entirely

satisfa
tory; we hope to provoke dis
ussion of exa
tly what guarantees should be desired

by users and by
omponent designers. For simpli
ity, only pure binary wrappers C are

onsidered { re
all that for a pure binary C the labelled transitions of C[P

1

; P

2

℄ will only

be of the forms in

i

"

v, out

i

"

v and � .

5.1 New-name dire
tionality

As we are using a
al
ulus with
reation of new names, we
an test a wrapper by supplying

a new name to the se
ond
omponent, on in

2

, and observing whether it
an ever be output

by the �rst
omponent on out

1

. Say C is dire
tional for new names if whenever

A ` C[P

1

; P

2

℄

`

1

�! : : :

`

j

�!

in

2

"

u

�!

`

0

1

�! : : :

`

0

k

�!

out

1

"

u

0

�! P

with x 2 fn(u), but x is new, i.e. x 62 A [fn(`

1

: : : `

j

), and x is not subsequently input

to the �rst
omponent, i.e.

x 62

[

i21::k^`

0

i

=in

1

"

v

fn(v)

then x is not output by the �rst
omponent, i.e. x 62 fn(u

0

). This property does not

prevent all information
ow, however { a variant of W

2

ontaining a reverse-forwarder

that only forwards parti
ular values, su
h as

!mid

a

2

y:if y 2 f0; 1g then mid

a

1

y

ould still satisfy it. (Here 0 and 1 are free names, whi
h must therefore be in A.)

Note that a binary wrapper C is intended only to limit information
ow within

C[P

1

; P

2

℄. We do not wish to pla
e any
onstraint on the environment of the wrap-

per, for example forbidding the environment to
opy values re
eived from out

2

to in

1

.

Su
h a restri
tion
ould only be imposed by dra
onian measures, e.g. by waiting for P

1

to terminate before starting P

2

, that would not be a

eptable to the desktop user. Many

programs are essentially non-terminating; if they are exe
uting
on
urrently then the

user
annot be prevented from reading the output of one and
opying it to the other. In

many
ir
umstan
es this should be expli
itly supported by the desktop
ut-and-paste,

perhaps with a warning signal.

5.2 Permutation

Our se
ond property formalises the intuition that if no observable behaviour due to P

1

depends on the behaviour of P

2

then in any tra
e it should be possible to move the a
tions

14

asso
iated with P

1

before all a
tions asso
iated with P

2

. Say C has the permutation

property if whenever

A ` C[P

1

; P

2

℄

`

1

=) : : :

`

k

=) P

with `

i

6= � there exists a permutation � of f1; : : : ; kg su
h that

A ` C[P

1

; P

2

℄

`

�(1)

=) : : :

`

�(k)

=) P

and no in

1

or out

1

transition o

urs after any in

2

or out

2

transition in `

�(1)

: : : `

�(k)

. For

an example wrapper without this property,
onsider

C[

1

;

2

℄

def

= (� a

1

; a

2

)

�

a

1

[

1

℄ j a

2

[

2

℄

j ! in

2

"

y:

�

in

2

a

2

y j ! in

1

"

y:in

1

a

1

y

�

j ! out

1

a

1

y:out

1

"

y

j ! out

2

a

2

y:out

2

"

y

j !mid

a

1

y:mid

a

2

y

�

Here the in

1

messages are not forwarded until at least one in

2

input is re
eived from

the environment. Nonetheless, in some sense there is still no information
ow from the

se
ond
omponent to the �rst.

The new-name dire
tionality and permutation properties are expressed purely in

terms of the externally observable behaviour of C[P;Q℄ (in fa
t, they are properties of its

tra
e set, a very extensional semanti
s). Note, however, that the intuitive statement that

information does not
ow from Q to P depends on an understanding of the internal
om-

putation of P and Q that is not present in the redu
tion or labelled transition relations

(given only that C[P;Q℄ !

�

R there is no way to asso
iate subterms of R with an `origin'

in C, P or Q). Our next two properties involve a more intensional semanti
s in whi
h

output and input pro
esses are tagged with sets of
olours. The semanti
s propagates

olours in intera
tion steps, thereby tra
king the dependen
ies of redu
tions.

5.3 Coloured Redu
tions

Take a set
ol of
olours (disjoint from N), and let
 and d range over subsets of
ol.

We de�ne a
oloured box-�
al
ulus by annotating all outputs and inputs with sets of

olours:

P ::=
 :x

o

v

�

�

 :x

�

p:P

�

�

 : !x

�

p:P

�

�

n[P ℄

�

�

0

�

�

P j P

0

�

�

(� x)P

If P is a
oloured term we write jP j for the term of the original syntax obtained by

erasing all annotations. Conversely, for a term P of the original syntax
 ÆP denotes the

term with every parti
le
oloured by
. For a
oloured P we write
 �P for the
oloured

term whi
h is as P but with
 unioned to every set of
olours o

urring in it. We write
d

for the union
 [d. The redu
tion relation now takes the form P !

Q, where P and Q

are
oloured terms and
 is a set of
olours indi
ating what this redu
tion depends upon.

It is de�ned as follows, in whi
h stru
tural
ongruen
e is de�ned by the same axioms as

15

before.

n[
 :x

"

v j Q℄ !

 :x

n

v j n[Q℄ (C Red Up)

 :x

n

v j n[Q℄ !

n[
 :x

"

v j Q℄ (C Red Down)

 :x

�

v j d :x

�

p:P !

d

d �(f

v

=

p

gP) (C Red Comm)

 :x

�

v j d : !x

�

p:P !

d

d : ! x

�

p:P j
d �(f

v

=

p

gP) (C Red Repl)

P !

Q) P j R!

Q j R (C Red Par)

P !

Q) (� x)P !

(� x)Q (C Red Res)

P !

Q) n[P ℄ !

n[Q℄ (C Red Box)

P � P

0

!

Q

0

� Q) P !

Q (C Red Stru
t)

The
oloured
al
ulus has the same essential behaviour as the original
al
ulus:

Proposition 9 For any
oloured P we have jP j ! Q i� 9
; P

0

: P !

P

0

^ jP

0

j = Q.

Mediation We
an now
apture the intuition that all intera
tion between wrapped

omponents should be mediated by the wrapper. We
onsider
oloured redu
tion se-

quen
es of a wrapper C and two
omponents P

1

; P

2

from an initial state in whi
h ea
h is

oloured di�erently. Let gr, bl and rd be distin
t singleton subsets fgreeng, fblueg, fredg

of
ol. Suppose

(gr Æ C)

�

bl ÆP

1

; rd ÆP

2

�

j bl Æ I

1

j rd Æ I

2

!

1

: : :!

k

Q

where ea
h I

i

is a parallel
omposition of messages on in

i

, i.e. of terms of the form in

i

"

v.

Say C is mediating i� whenever red 2

j

and blue 2

j

then green 2

j

.

Colour
ow The
oloured semanti
s
an also be used to express the property that

no output on out

1

should depend on the se
ond wrapped
omponent. Say C has the

olour dire
tionality property if whenever there is a redu
tion sequen
e as above and

Q � (� A)(
 :out

1

"

v j Q

0

) then red 62
.

For an example wrapper that we
onje
ture has the permutation property but not

the
olour dire
tionality property,
onsider a version of W

2

that has an extra parallel

omponent out

2

a

2

y:(out

2

"

y j out

1

a

1

y:out

1

"

y). This establishes an additional one-shot

forwarder for out

1

after forwarding a message on out

2

.

These statements of mediation and
oloured dire
tionality share a defe
t: the use

of a redu
tion semanti
s makes it awkward to
onsider inputs of values
ontaining new

names that have previously been output by the wrapped
omponents. To address this

one would need a
oloured labelled transition semanti
s, allowing e.g. a re�ned
olour

dire
tionality property to be stated as follows. Whenever

A ` (gr Æ C)

�

bl ÆP

1

; rd ÆP

2

�

`

1

�!

1

: : :

`

k

�!

k

;

if the inputs are properly
oloured (i.e. for ea
h i 2 1::k we have `

i

= in

"

1

v =)

i

= blue

and `

i

= in

"

2

v =)

i

= red), then for ea
h i 2 1::k the out

1

outputs should be properly

oloured, i.e.

`

i

= out

1

"

v =) red 62

i

Causality A very strong dire
tionality property that one might ask for { perhaps the

strongest { would be that in an exe
ution of C[P

1

; P

2

℄ no output on out

1

an be
ausally

dependent on any a
tion of P

2

. Casual semanti
s for pro
ess
al
uli have been mu
h

16

studied, often under the name `true
on
urren
y semanti
s' { see [WN95℄ for an overview.

It would be interesting to give a
ausal semanti
s to the box �
al
ulus. There is a trade-

o� here, however { su
h a semanti
s would be rather
omplex; it would have to be

understood in order to understand any property stated using it. The
oloured redu
tion

semanti
s
an be
onsidered as an more tra
table approximation to real
ausality.

Another point is that a
ausal property is sometimes too strong { a usable wrapper

may have to allow low-bandwidth
ommuni
ation in the reverse dire
tion, perhaps not

arrying any data values, to permit a
knowledgement messages. A
ausal property would

then not hold, while a modi�ed
olour
ow property would.

6 Con
lusion

The
ode base of modern systems is be
oming in
reasingly diverse. Whereas previously

a typi
al system would involve a small number of monolithi
 appli
ations, obtained from

trusted organisations, now users routinely download
omponents from partially trusted

or untrusted sour
es. Downloaded or mobile
ode fragments are
ommonly run under the

user's authority to grant a

ess to system resour
es and permit intera
tion with other

software
omponents. This presents obvious se
urity risks for the se
re
y and integrity

of the user's data.

In this paper we have developed a theory of se
urity wrappers. These are small

programs that
an regulate the intera
tions between untrusted software
omponents,

enfor
ing dynami
 and
exible se
urity poli
ies. We have presented a minimal
on
urrent

programming language for studying the problem, the box-�
al
ulus, and proved a basi

metatheoreti
 result: that a redu
tion and labelled transition semanti
s
oin
ide. We

have expressed a number of se
urity wrappers in the
al
ulus and begun an investigation

of the se
urity properties that wrappers should provide.

6.1 Related Work

There is an extensive literature on information
ow properties of various kinds. Mu
h

of it is in the
ontext of multi-level se
urity, in whi
h one has a �xed latti
e of se
urity

levels and is
on
erned with properties whi
h state that a
omponent (expressed purely

semanti
ally, e.g. as a set of tra
es) respe
ts the levels. The theory
ould be applied

during the design of the
omponents of a large multi-user system (with a relatively stati

se
urity poli
y) by proving that the
omponents obey parti
ular properties. A
on
ise

introdu
tion
an be found in the survey of M
Lean [M
L94℄. The problem of designing

and understanding wrappers appears to be rather di�erent { we have fo
ussed on the

prote
tion required by a single user exe
uting a variety of partially-trusted
omponents

obtained from third parties. This requires
exible prote
tion me
hanisms { a stati

assignment of se
urity levels would be inadequate { and
annot depend on stati
 analysis

of the
omponents. Related work on dynami
 enfor
ement of poli
ies has been presented

by S
hneider [S
h98℄.

Other re
ent work has studied type systems that ensure se
urity properties, e.g.

the type systems of Volpano, Irvine and Smith [VIS96, VS98℄, the SLam
al
ulus of

Heintze and Rie
ke [HR98a℄, the systems allowing de
lassi�
ation of Myers and Liskov

[ML98, Mye99℄, the type systems of Riely and Hennessy [HR98
, HR98b, RH98℄, and

work on proof-
arrying
ode [NL98℄. If the produ
ers of
omponents that one uses all

adopt su
h systems then they may be
ome very e�e
tive. Until then, however, and until

type systems
an provide the
exible poli
ies required, partially trusted
ode will in

pra
ti
e either be run dangerously or be wrapped.

17

In this paper we have made extensive use of te
hniques from pro
ess
al
uli and op-

erational semanti
s. These are beginning to provide fruitful ways of studying problems

in se
urity and distributed systems, in
luding the analysis of se
urity proto
ols, for ex-

ample in [AG97, Aba97, LR97℄, and more general se
ure language design, in
luding work

on the Ambient
al
ulus [CG98, CG99℄, the Se
ure Join
al
ulus [AFG98℄, the mobile

agent
al
uli in [HR98
, HR98b, RH98, Sew97, Sew98, SWP98a, SWP98b℄, and the Seal

al
ulus of [VC98, VC99℄. These works have studied several di�erent problems, using

a variety of
al
uli designed for the purpose. Common to all is the use of a redu
tion

or labelled-transition operational semanti
s, providing
lear rigorous semanti
s to the

rather high-level
onstru
ts involved. One distinguishing feature of the present work is

that we do not
onsider any mobility primitives, allowing us to use a tra
table early la-

belled transition system. This appears to be important for the statement of the deli
ate

se
urity properties of wrappers.

6.2 Future Dire
tions

This paper opens up a number of dire
tions that we would like to pursue. Most imme-

diately, it gives several
onje
tures that should be proved or refuted, and we would like

a better understanding of the properties of binary wrappers. There are then extensions

for typing, to ri
her interfa
es, and with mobility primitives.

Typing We are primarily interested in
omponents for whi
h it is infeasible to stati
ally

determine whether they are well-behaved. Nonetheless, for simple
omponents one
ould

onservatively ensure well-behaviour with a standard type system, most simply taking

types

T ::= box

�

�

h

T

1

::T

k

i

�

�

lT

where lT is the type of
hannel names that
an be used to
ommuni
ate values of type

T , together with the obvious inferen
e rules. If P is well-typed with respe
t to a typing

ontext in : lS; out : lT for types S and T
ontaining no instan
es of l then one would

expe
t P to be well-behaved for unary wrappers.

Ri
her interfa
es The wrappers of x3 allowed the en
apsulated
omponents to inter-

a
t only on very simple interfa
es. Ultimately, we would like to understand wrappers

with more realisti
 interfa
es. For example, in a mild extension of box-� one
an express

a wrapper that en
apsulates k
omponents, allows internal
ow along an arbitrary pre-

order, and permits ea
h
omponent to open and
lose windows for
hara
ter IO. Suppose

p

1

; : : : ; p

k

is a list of distin
t names, and � is a preorder over them giving the allowable

information
ow. De�ne a k-ary wrapper as follows.

C[

1

; : : : ;

k

℄

def

= (� p

1

; : : : ; p

k

)

�

p

1

[

1

℄ j : : : j p

k

[

k

℄

j ! fwd

(m)

(

n z y

)

:if m � n then z

n

y else 0

j BWindow

�

18

where

BWindow

def

= ! openwindow

(m)

(

s x

)

:

openwindow

"

h

s x

i

j x

"

(

get
 put

lose

)

:

x

m

h

get
 put

lose

i

j ! get

m

y:(get

"

y j y

"

:y

m

)

j ! put

m

(

 y

)

:(put

"

h

 y

i

j y

"

:y

m

)

j !
lose

m

y:(
lose

"

y j y

"

:y

m

)

This uses an additional input tag { a pro
ess x

(n)

p:P will input from any
hild box,

binding the name of the box to n in P . The BWindow part of C re
eives requests

for a new window from the en
apsulated
omponents and forwards them to the OS. It

then re
eives the interfa
e for the new window from the OS, forwarding it down to the

omponent and also setting up forwarders for the interfa
e
hannels. Making the se
urity

properties of C pre
ise is at present a
hallenging problem. One would like to extend C

further by adding an interfa
e allowing the user to dynami
ally add and remove pairs

from �.

Covert
hannels It should be noted that none of the semanti
 models that we use for

the box-�
al
ulus make any
ommitment to the pre
ise details of s
heduling pro
esses.

The properties expressed using these semanti
s therefore
annot address timing-based

overt
hannels su
h as those mentioned by Lampson [Lam73℄. Certain other
overt

hannels, in parti
ular those involving system IO and dis
 a

ess,
ould be addressed

by expressing models of the IO and dis
 systems in the
al
ulus, further enri
hing the

wrapper interfa
es.

Mobility The original motivation for this work involved downloadable or mobile
ode

and mobile agents. To expli
itly model the dynami

on�guration of wrappers and ap-

pli
ations the
al
ulus must be extended with mobility primitives, while keeping both a

tra
table semanti
s and the prin
iple that ea
h box
ontrols the intera
tions and move-

ments of its
ontents [VC98℄.

A
knowledgements Sewell was supported by EPSRC grant GR/L 62290 Cal
uli for

Intera
tive Systems: Theory and Experiment. The authors would like to thank Ciar�an

Bry
e for his
omments.

19

A Coin
iden
e of the Two Semanti
s

This appendix
ontains the proof of equivalen
e of the labelled transition semanti
s

and the redu
tion semanti
s. It is divided into three parts, the �rst giving basi
 properties

of the labelled transition system, the se
ond showing that any redu
tion
an be mat
hed

by a � -transition and the third showing the
onverse.

Basi
 Properties of the LTS

Lemma 10 If P � Q then fn(P) = fn(Q).

Proof Routine indu
tion on derivation of P � Q. 2

Lemma 11 If A ` P

`

�! Q then

1. fn(P) � A

2. fn(Q) � fn(P; `)

3. if ` = x

o

v then fn(`) \ A � fn(P)

4. if ` = x

o

v then fn(o) � fn(P)

5. if ` = x

o

v and :mv(o) then x 2 fn(P)

6. if ` = x

v then fn(
) � fn(P).

7. if ` = x

v and
 6= n then x 2 fn(P).

Proof By indu
tion on the derivation of A ` P

`

�! Q. Part 1 is immediate in all

ases by the impli
it
ondition. For the other parts:

(Trans Out) By the
ondition fn(x

o

v) � A.

(Trans In) For Part 2, fn(f

v

=

p

gP) � (fn(P)� fn(p)) [fn(v) � fn(x

�

p:P) [fn(x

�

v). For

Parts 6 and 7, fn(x; �) � fn(x

�

p:P). All other parts do not apply.

(Trans Repl) For Part 2, fn(!x

�

p:P j f

v

=

p

gP) � fn(!x

�

p:P) [(fn(P)� fn(p)) [fn(v) �

fn(!x

�

p:P) [fn(x

�

v). For Part 6 and 7, fn(x; �) � fn(! x

�

p:P). All other parts do

not apply.

(Trans Box-1) We have ` = � . For Part 2:

fn((� fn(x; v) �A)(x

n

v j n[P

0

℄))

= (fn(x

n

v) [fng [fn(P

0

))� (fn(x; v)�A) (by de�nition of fn)

� (fn(x

n

v) [fng [fn(P) [fn(x

"

v))� (fn(x; v)�A) (by ind. hyp., part 2)

� (fn(x

n

v) [fn(n[P ℄))� (fn(x; v) �A)

� fn(n[P ℄) (by ind. hyp., part 3)

= fn(n[P ℄; �)

All other parts do not apply.

(Trans Box-2) We have ` = x

n

v. For Part 2: fn(n[x

"

v j P ℄) = fn(n[P ℄) [fn(x

"

v) �

fn(n[P ℄) [fn(x

n

v). For Part 6 note that n 2 fn(n[P ℄). All other parts do not

apply.

20

(Trans Box-3) For Part 2, by the indu
tion hypothesis fn(P

0

) � fn(P) so fn(n[P

0

℄) �

fn(n[P ℄). All other parts do not apply.

(Trans Par) By the indu
tion hypothesis.

(Trans Comm) Part 2 is by parts 2, 4 and 6 of the indu
tion hypothesis. All other

parts do not apply.

(Trans Res-1) By the indu
tion hypothesis.

(Trans Res-2) For Part 2, by Part 2 of the indu
tion hypothesis fn(P

0

) � fn(P) [

fn(y

o

v). As x 2 fn(y

o

v) we have fn(P

0

) � fn((� x)P) [fn(y

o

v). For Part 3, by the

indu
tion hypothesis fn(y

o

v) \ (A; x) � fn(P) so fn(y

o

v) \ A � fn((� x)P). For

Part 4, by the indu
tion hypothesis fn(o) � fn(P) and by the side
ondition x 6= o

so fn(o) � fn((� x)P). For Part 5, if :mv(o) then by the indu
tion hypothesis

y 2 fn(P) and by the side
ondition x 6= y so y 2 fn((� x)P). All other parts do

not apply.

(Trans Stru
t Right) By the indu
tion hypothesis and Lemma 10.

2

Lemma 12 (Strengthening) If A;B ` P

`

�! P

0

and B \ fn(P; `) = ; then A ` P

`

�!

P

0

.

Proof Indu
tion on derivations of transitions.

(Out), (In), (Repl), (Box-2) All immediate.

(Box-3),(Par),(Stru
t Right) Straightforward use of the indu
tion hypothesis.

(Comm) We have a rule instan
e of the form

A;B ` P

x

v

�! P

0

A;B ` Q

x

v

�! Q

0

A;B ` P j Q

�

�! (� fn(x; v)� (A;B))(P

0

j Q

0

)

(Comm)

By Lemma 11.3 fn(x

v) \ (A;B) � fn(P) and by assumption B \ fn(P) = ;

so fn(x

v) \ B = ;. By the indu
tion hypothesis and (Comm) we then have

A ` P j Q

�

�! (� fn(x; v)�A)(P

0

j Q

0

), but fn(x; v) � A = fn(x; v) � (A;B), so

A ` P j Q

�

�! (� fn(x; v) � (A;B))(P

0

j Q

0

) as required.

(Box-1) Similar to (Comm). In detail: we have a rule instan
e of the form

A;B ` P

x

"

v

�! P

0

A;B ` n[P ℄

�

�! (� fn(x; v) � (A;B))(x

n

v j n[P

0

℄)

(Box-1)

By Lemma 11.3 fn(x

"

v) \ (A;B) � fn(P) and by assumption B \ fn(P) = ; so

fn(x

"

v) \ B = ;. By the indu
tion hypothesis and (Box-1) we then have A `

n[P ℄

�

�! (� fn(x; v) � (A))(x

n

v j n[P

0

℄) but fn(x; v) � A = fn(x; v) � (A;B), so

A ` n[P ℄

�

�! (� fn(x; v) � (A;B))(x

n

v j n[P

0

℄) as required.

21

(Res-1) We have a rule instan
e of the form

A;B; x ` P

`

�! P

0

A;B ` (� x)P

`

�! (� x)P

0

(Res-1)

with x 62 fn(`). By A;B; x well-formed we have x 62 B, so B \ fn((� x)P) = ;

implies B \ fn(P) = ;. By the indu
tion hypothesis A; x ` P

`

�! P

0

so by (Res-1)

A ` (� x)P

`

�! (� x)P

0

.

(Res-2) Similar to (Res-1), noting that the side
ondition is a predi
ate on x and the

label only.

2

Lemma 13 (Inje
tive Substitution) If A ` P

`

�! P

0

, and f :A!B and g :(fn(`)�

A)!(N �B) are inje
tive, then B ` fP

(f+g)`

�! (f + g)P

0

.

Proof Indu
tion on derivations of transitions.

(Out),(Box-1) immediate.

(Box-3),(Par),(Stru
t Right) Straightforward uses of the indu
tion hypothesis.

(In) Consider A ` x

�

p:P

x

�

v

�! f

v

=

p

gP . We have fn(x

�

p:P) � A and f

v

=

p

gP well de�ned.

Take some p̂ and

^

P su
h that x

�

p:P = x

�

p̂:

^

P and n(p̂)\(A[B[(fn(`)�A)[ran(g)) =

;, then f(x

�

p:P) = f(x

�

p̂:

^

P) = f(x)

f(�)

p̂:f(

^

P) and fn(f(x)

f(�)

p̂:f(

^

P)) � B.

We have f

v

=

p̂

g

^

P de�ned, hen
e f

v

=

p̂

g(f

^

P) is de�ned (as n(p̂)\ (dom(f)[ran(f)) =

;), hen
e f

(f+g)v

=

p̂

g(f

^

P) is de�ned (as (f + g)v and v are the same shape).

By (In) B ` f(x)

f(�)

p̂:f(

^

P)

f(x)

f(�)

(f+g)v

�! f

(f+g)v

=

p̂

gf

^

P .

Now fn(

^

P) � A [n(p̂) so fn(

^

P) \ dom(g) = ;, so f

^

P = (f + g)

^

P . Hen
e

f

(f+g)v

=

p̂

gf

^

P = f

(f+g)v

=

p̂

g(f + g)

^

P = (f + g)(f

v

=

p̂

g

^

P) = (f + g)(f

v

=

p

gP), so B `

f(x

�

p:P)

(f+g)x

�

v

�! (f + g)(f

v

=

p

gP).

(Repl) Similar to (In), using in addition that f(!x

�

p:P) = (f + g)(!x

�

p:P).

(Comm) fn(�) = ;, so we have f :A!B and g : ;!(N �B). Take some ĝ :(fn(x

v)�

A)!(N �B) inje
tive. By the indu
tion hypothesis and (Comm) we have

B ` fP

(f+ĝ)(x

v)

�! (f + ĝ)P

0

B ` fQ

(f+ĝ)(x

v)

�! (f + ĝ)Q

0

B ` f(P j Q)

�

�! (� fn((f + ĝ)x; (f + ĝ)v) �B)((f + ĝ)(P

0

j Q

0

))

(Comm)

Now by Lemma 11.(4,1) fn(
) � A, so dom(ĝ) = fn(x; v) � A and ran(ĝ) =

fn((f + ĝ)x; (f + ĝ)v) � B, so B ` f(P j Q)

�

�! (� ran(ĝ))((f + ĝ)(P

0

j Q

0

)). We

have f((� dom(ĝ))(P

0

j Q

0

)) = ((� ran(ĝ))(f + ĝ)(P

0

j Q

0

)), so B ` f(P j Q)

�

�!

f((� fn(x; v) �A)(P

0

j Q

0

)).

22

(Box-1) Again similar to (Comm). fn(�) = ;, so we have f :A!B and g : ;!(N �B).

Take some ĝ :(fn(x

"

v)� A)!(N � B) inje
tive. By the indu
tion hypothesis and

(Box-1) we have

B ` fP

(f+ĝ)(x

"

v)

�! (f + ĝ)P

0

B ` f(n)[fP ℄

�

�! (� fn((f + ĝ)x; (f + ĝ)v)�B)((f + ĝ)(x

n

v j n[P

0

℄)

(Box-1)

using f(n) = (f+ĝ)(n). It follows that B ` f(n[P ℄)

�

�! f((� fn(x; v) �A)(x

n

v j n[P

0

℄)).

(Res-1) Take some x̂ 62 B [ran(g) and de�ne

^

f :(A; x)!(B; x̂) by

^

f(x) = x̂

^

f(z) = f(z), for z 2 A.

By the indu
tion hypothesis B; x̂ `

^

fP

(

^

f+g)`

�! (

^

f + g)P

0

. By (Res-1) B ` (� x̂)

^

fP

(

^

f+g)`

�!

(� x̂)(

^

f + g)P

0

, so B ` f((� x)P)

(f+g)`

�! (f + g)(� x)P

0

.

(Res-2) De�ne

^

f :(A; x)!(B; g(x)) and ĝ as f + (x 7! g(x)) and g � (fn(y

o

v)� (A; x))

respe
tively. By the indu
tion hypothesis B; g(x) `

^

fP

(

^

f+ĝ)y

o

v

�! (

^

f + ĝ)P

0

, so

by (Res-2) B ` (� g(x))

^

fP

(

^

f+ĝ)y

o

v

�! (

^

f + ĝ)P

0

, so as f + g =

^

f + ĝ we have

B ` f((� x)P)

(f+g)y

o

v

�! (f + g)P

0

.

2

Lemma 14 (Weakening and Strengthening) (A ` P

`

�! P

0

^ x 62 A [fn(`)) i�

(A; x ` P

`

�! P

0

^ x 62 fn(P; `)).

Proof The right-to-left impli
ation follows from the well-formedness of A; x and from

Lemma 12. The left-to-right impli
ation follows from the
ondition fn(P) � A in the

de�nition of the transition rules and from Lemma 13, taking f to be the in
lusion from

A to A; x and g the identity on fn(`)�A. 2

Lemma 15 (Shifting)

1. (A ` P

z

�

v

�! P

0

^ x 2 fn(v)�A) i� (A; x ` P

z

�

v

�! P

0

^ x 2 fn(v) � fn(P)) .

2. (A ` P

z

n

v

�! P

0

^ x 2 fn(z; v)�A) i� (A; x ` P

z

n

v

�! P

0

^ x 2 fn(z; v)� fn(P))

Proof Ea
h part is by two indu
tions on derivations of transitions. For the �rst:

(Out),(Box-1),(Box-2),(Box-3),(Comm),(Res-2) va
uous.

(Par),(Stru
t Right) Straightforward uses of the indu
tion hypothesis.

(In),(Repl) Straightforward.

23

(Res-1) Consider

A; y ` P

z

�

v

�! P

0

A ` (� y)P

z

�

v

�! (� y)P

0

(Res-1)

A; x; y ` P

z

�

v

�! P

0

A; x ` (� y)P

z

�

v

�! (� y)P

0

(Res-1)

y 62 fn(z

�

v) y 62 fn(z

�

v)

x 2 fn(v)�A x 2 fn(v) � fn((� y)P))

For the left-to-right impli
ation, note that x 2 fn(v) � (A; y), so by the indu
tion

hypothesis A; y; x ` P

z

�

v

�! P

0

and x 2 fn(v) � fn(P). For the right-to-left impli-

ation, note that as A; x; y is well-formed we have x 2 fn(v) � fn(P), so by the

indu
tion hypothesis A; y ` P

z

�

v

�! P

0

and x 2 fn(v)� (A; y).

For the se
ond part:

(Out),(In),(Repl),(Box-1),(Box-3),(Comm),(Res-2) va
uous.

(Par),(Stru
t Right) Straightforward uses of the indu
tion hypothesis.

(Box-2) Straightforward.

(Res-1) Similar to the (Res-1)
ase of the �rst part.

2

As we are working up to alpha
onversion a little
are is required when analysing

transitions. We need the following lemma (of whi
h only the input and restri
tion
ases

are at all interesting).

Lemma 16

1. A ` x

o

v

`

�! Q i� fn(x

o

v) � A, ` = x

o

v and Q � 0.

2. A ` x

�

p:P

`

�! Q i� there exists v su
h that fn(x

�

p:P) � A, ` = x

�

v, f

v

=

p

gP is

de�ned and Q � f

v

=

p

gP .

3. A ` !x

�

p:P

`

�! Q i� there exists v su
h that fn(! x

�

p:P) � A, ` = x

�

v, f

v

=

p

gP is

de�ned and Q � !x

�

p:P j f

v

=

p

gP .

4. A ` n[P ℄

`

�! Q i� one of the following hold.

(a) there exist x, v, and

^

P su
h that n 2 A, ` = � , A ` P

x

"

v

�!

^

P , and Q �

(� fn(x; v) �A)(x

n

v j n[

^

P ℄).

(b) there exist x and v su
h that fn(n[P ℄) � A, ` = x

n

v and Q � n[x

"

v j P ℄.

(
) there exists

^

P su
h that n 2 A, ` = � , A ` P

�

�!

^

P , and Q � n[

^

P ℄.

5. A ` P j Q

`

�! R i� either

(a) there exists

^

P su
h that fn(Q) � A, A ` P

`

�!

^

P and R �

^

P j Q.

(b) there exists x,
, v,

^

P and

^

Q su
h that ` = � , A ` P

x

v

�!

^

P , A ` Q

x

v

�!

^

Q,

and R � (� fn(x; v)�A)(

^

P j

^

Q).

24

or symmetri

ases.

6. A ` (� x)P

`

�! Q i� either

(a) there exists x̂ 62 A [fn(`) [(fn(P)� x) and

^

Q su
h that A; x̂ ` f

x̂

=

x

gP

`

�!

^

Q

and Q � (� x̂)

^

Q.

(b) there exists y, o, v,

^

Q and x̂ 62 A [fn(y; o) [(fn(P) � x) su
h that ` = y

o

v,

A; x̂ ` f

x̂

=

x

gP

y

o

v

�!

^

Q, x̂ 2 fn(v), :mv(o) and Q �

^

Q.

(
) there exists y, o, v,

^

Q and x̂ 62 A [fn(o) [(fn(P) � x) su
h that ` = y

o

v,

A; x̂ ` f

x̂

=

x

gP

y

o

v

�!

^

Q, x̂ 2 fn(y; v), mv(o) and Q �

^

Q.

Proof The right-to-left impli
ations are all shown using a single transition rule together

with (Trans Stru
t Right). The left-to-right impli
ations are shown by indu
tion on

derivations of transitions. Only the input, repli
ated input and restri
tion
ases are at

all interesting; we give just the restri
tion
ase.

Case 6a, (() By Lemma 11, fn(f

x̂

=

x

gP) � A; x̂, so we have fn((� x̂)f

x̂

=

x

gP) � A.

By (Trans Res-1), A ` (� x̂)f

x̂

=

x

gP

`

�! (� x̂)

^

Q. By x̂ 62 fn(P) � x we have

(� x̂)f

x̂

=

x

gP = (� x)P . By (Trans Stru
t Right), A ` (� x)P

`

�! Q.

Case 6b, (() Again by Proposition 11, fn(f

x̂

=

x

gP) � A; x̂, so we have fn((� x̂)f

x̂

=

x

gP) �

A. By (Trans Res-2-nmv), A ` (� x̂)f

x̂

=

x

gP

y

o

v

�!

^

Q. Again by x̂ 62 fn(P) � x, we

have (� x̂)f

x̂

=

x

gP = (� x)P so by (Trans Stru
t Right) A ` (� x)P

`

�! Q.

Case 6
, (() Again by Proposition 11 fn(f

x̂

=

x

gP) � A; x̂, so fn((� x̂)f

x̂

=

x

gP) � A.

By (Trans Res-2-mv) A ` (� x̂)f

x̂

=

x

gP

x̂

"

v

�!

^

Q. Again by x̂ 62 fn(P) � x we have

(� x̂)f

x̂

=

x

gP = (� x)P so by (Trans Stru
t Right) A ` (� x)P

`

�! Q.

Case 6, ()) Let �(A;R; `;Q)

def

, R = (� x)P =) (a) _ (b) _ (
). We show � is
losed

under the rules de�ning labelled transitions.

(Trans Res-1) An instan
e of (Trans Res-1) with
on
lusion A ` (� x)P

`

�! Q

must be of the form

A; x̂ `

^

P

`

�!

^

Q

A ` (� x̂)

^

P

`

�! (� x̂)

^

Q

x̂ 62 fn(`) (Trans Res-1)

for some x̂,

^

P ,

^

Q with (� x̂)

^

P = (� x)P , (� x̂)

^

Q = Q and fn((� x̂)

^

P) � A. By

A; x̂ de�ned and x̂ 62 fn(`) we have x̂ 62 A [fn(`). By (� x̂)

^

P = (� x)P we

have x̂ 62 fn(P) � x and

^

P = f

x̂

=

x

gP , so A; x̂ ` f

x̂

=

x

gP

`

�!

^

Q. By re
exivity

of �, we have Q � (� x̂)

^

Q. So
lause 6a holds.

(Trans Res-2-nmv) An instan
e of (Trans Res-2-nmv) with the
on
lusion A `

(� x)P

`

�! Q must be of the form

A; x̂ `

^

P

y

o

v

�! Q

A ` (� x̂)

^

P

y

o

v

�! Q

:mv(o) ^ x̂ 2 fn(v)� fn(y; o) (Trans Res-2-nmv)

for some x̂,

^

P , y, o, v with (� x̂)

^

P = (� x)P , y

o

v = ` and fn((� x̂)

^

P) � A. As

before x̂ 62 A[(fn(P)�x) and

^

P = f

x̂

=

x

gP , so taking

^

Q = Q
lause 6b holds.

25

(Trans Res-2-mv) An instan
e of (Trans Res-2-mv) with the
on
lusion A `

(� x)P

`

�! Q must be of the form

A; x̂ `

^

P

y

o

v

�! Q

A ` (� x̂)

^

P

y

o

v

�! Q

mv(o) ^ x̂ 2 fn(y; v)� fn(o) (Trans Res-2-mv)

for some x̂,

^

P , y, o, v with (� x̂)

^

P = (� x)P , y

o

v = ` and fn((� x̂)

^

P) � A. As

before x̂ 62 A[(fn(P)� x) and

^

P = f

x̂

=

x

gP , so taking

^

Q = Q
lause 6
 holds.

(Trans Stru
t Right) An instan
e of (Trans Stru
t Right) with
on
lusion A `

(� x)P

`

�! Q must be of the form

A ` (� x)P

`

�! Q

0

Q

0

� Q

A ` (� x)P

`

�! Q

(Trans Stru
t Right)

for some Q

0

with fn((� x)P) � A. By �(A; (� x)P; `;Q

0

) either

Case 6a there exists x̂ 62 A [fn(`) [(fn(P) � x) and

^

Q su
h that A; x̂ `

f

x̂

=

x

gP

`

�!

^

Q and Q

0

� (� x̂)

^

Q. By � an equivalen
e we have Q �

(� x̂)

^

Q, so
lause 6a holds.

Case 6b there exists y, o, v,

^

Q and x̂ 62 A [fn(y; o) [(fn(P)� x) su
h that

` = y

o

v, A; x̂ ` f

x̂

=

x

gP

y

o

v

�!

^

Q, x̂ 2 fn(v), :mv(o) and Q

0

�

^

Q. By � an

equivalen
e we have Q �

^

Q, so
lause 6b holds.

Case 6
 there exists y, o, v,

^

Q and x̂ 62 A [fn(o) [(fn(P) � x) su
h that

` = y

o

v, A; x̂ ` f

x̂

=

x

gP

y

o

v

�!

^

Q, x̂ 2 fn(y; v), mv(o) and Q

0

�

^

Q. By � an

equivalen
e we have Q �

^

Q, so
lause 6
 holds.

The
ases for all other rules are va
uous.

2

Redu
tions Imply Transitions

Take the size of a derivation of a stru
tural
ongruen
e to be number of instan
es of

inferen
e rules
ontained in it.

Lemma 17 If P

0

� P and f

v

=

p

gP is de�ned then f

v

=

p

gP

0

is de�ned and f

v

=

p

gP

0

�

f

v

=

p

gP . Moreover, for any derivation of P

0

� P there is a derivation of the same size of

f

v

=

p

gP

0

� f

v

=

p

gP .

Proof Obvious. 2

Proposition 18 If P

0

� P then A ` P

0

`

�! Q i� A ` P

`

�! Q.

Proof Indu
tion on the size of derivation of P

0

� P . In symmetri

ases we show only

the right-to-left dire
tion of the
on
lusion.

(Stru
t Cong Re
) By the re
exivity of i�.

26

(Stru
t Cong Sym) By the symmetry of i�.

(Stru
t Cong Tran) By the indu
tion hypothesis and transitivity of i�.

(Stru
t Cong Input) Consider P

0

� P and A ` x

�

p:P

`

�! Q. By Lemma 16.2, there

exists v su
h that fn(x

�

p:P) � A, ` = x

�

v, f

v

=

p

gP is de�ned and Q � f

v

=

p

gP .

Using Lemma 10, fn(x

�

p:P

0

) = fn(x

�

p:P). By Lemma 17, f

v

=

p

gP

0

is de�ned and

f

v

=

p

gP

0

� f

v

=

p

gP , so Q � f

v

=

p

gP

0

. Finally by Lemma 16.2, A ` x

�

p:P

0

`

�! Q.

(Stru
t Cong Repl) Consider P

0

� P and A ` !x

�

p:P

`

�! Q. By Lemma 16.3 there

exists v su
h that fn(! x

�

p:P) � A; ` = x

�

v, f

v

=

p

gP is de�ned and Q � !x

�

p:P j

f

v

=

p

gP . Using Lemma 10, fn(!x

�

p:P

0

) = fn(!x

�

p:P). By Lemma 17, f

v

=

p

gP

0

is

de�ned and f

v

=

p

gP

0

� f

v

=

p

gP , so Q � !x

�

p:P

0

j f

v

=

p

gP

0

. Finally by Lemma 16.3,

A ` x

�

p:P

0

`

�! Q.

(Stru
t Cong Box) Consider P

0

� P and A ` n[P ℄

`

�! Q. By Lemma 16.4 one of the

following hold:

Case 16.4a there exist x, v, and

^

P su
h that n 2 A, ` = � , A ` P

x

"

v

�!

^

P , and

Q � (� fn(x; v) � A)(x

n

v j n[

^

P ℄). By the indu
tive hypothesis A ` P

0

x

"

v

�!

^

P .

By Lemma 16.4 A ` n[P

0

℄

`

�! Q

Case 16.4b there exist x and v su
h that fn(n[P ℄) � A, ` = x

n

v and Q �

n[x

"

v j P ℄. Using Lemma 10, fn(n[P

0

℄) = fn(n[P ℄). Clearly n[x

"

v j P ℄ �

n[x

"

v j P

0

℄, so Q � n[x

"

v j P

0

℄. Finally by Lemma 16.4, A ` n[P

0

℄

`

�! Q.

Case 16.4
 there exists

^

P su
h that n 2 A, ` = � , A ` P

�

�!

^

P , and Q � n[

^

P ℄.

By the indu
tive hypothesis A ` P

0

`

�!

^

P , so by Lemma 16.4, A ` n[P

0

℄

`

�!

Q.

(Stru
t Cong Par) Consider P

0

� P , Q

0

� Q and A ` P j Q

`

�! R. By Lemma 16.5

one of the following holds.

Case 16.5a there exists

^

P su
h that fn(Q) � A, A ` P

`

�!

^

P and R �

^

P j Q. By

Lemma 10, fn(Q

0

) = fn(Q). By the indu
tive hypothesis A ` P

0

`

�!

^

P and

learly

^

P j Q �

^

P j Q

0

, so by Lemma 16.5, A ` P

0

j Q

0

`

�! R.

Case 16.5b there exists x,
, v,

^

P and

^

Q su
h that ` = � , A ` P

x

v

�!

^

P , A `

Q

x

v

�!

^

Q, and R � (� fn(x; v) � A)(

^

P j

^

Q). By the indu
tion hypothesis

A ` P

0

x

v

�!

^

P and A ` Q

0

x

v

�!

^

Q. By Lemma 16.5, A ` P

0

j Q

0

`

�! R.

or symmetri

ases.

(Stru
t Cong Res) Consider P

0

� P and A ` (� x)P

`

�! Q. By Lemma 16.6 one of

the following holds.

Case 16.6a there exists x̂ 62 A [fn(`) [(fn(P) � x) and

^

Q su
h that A; x̂ `

f

x̂

=

x

gP

`

�!

^

Q and Q � (� x̂)

^

Q. By Lemma 17 f

x̂

=

x

gP

0

� f

x̂

=

x

gP (with a

derivation of the same size). By the indu
tion hypothesis A; x̂ ` f

x̂

=

x

gP

0

`

�!

^

Q. By Lemma 16.6 A ` (� x)P

0

`

�! Q.

27

Case 16.6b there exists y, o, v,

^

Q and x̂ 62 A [fn(y; o) [(fn(P) � x) su
h

that ` = y

o

v, A; x̂ ` f

x̂

=

x

gP

y

o

v

�!

^

Q, x̂ 2 fn(v), :mv(o) and Q �

^

Q. By

Lemma 17 f

x̂

=

x

gP

0

� f

x̂

=

x

gP , with a derivation of the same size. By the in-

du
tion hypothesis A; x̂ ` f

x̂

=

x

gP

0

y

o

v

�!

^

Q. By Lemma 10 fn(P

0

) = fn(P), so

x̂ 62 A [fn(y; o) [(fn(P

0

)� x). By Lemma 16.6, A ` (� x)P

0

`

�! Q.

Case 16.6
 there exists y, o, v,

^

Q and x̂ 62 A [fn(o) [(fn(P) � x) su
h that

` = y

o

v, A; x̂ ` f

x̂

=

x

gP

y

o

v

�!

^

Q, x̂ 2 fn(y; v), mv(o) and Q �

^

Q. By Lemma 17

f

x̂

=

x

gP

0

� f

x̂

=

x

gP (with a derivation of the same size). By the indu
tion

hypothesis A; x̂ ` f

x̂

=

x

gP

0

y

o

v

�!

^

Q. By Lemma 10 fn(P

0

) = fn(P), so x̂ 62

A [fn(o) [(fn(P

0

)� x). By Lemma 16.6 A ` (� x)P

0

`

�! Q.

(Stru
t Par Nil), (Stru
t Par Comm), (Stru
t Par Asso
), (Stru
t Res Res)

These should be straightforward. We
he
k the other two axioms in detail.

(Stru
t Res Par) (� x)(P j Q) � P j (� x)Q where x 62 fn(P). In the following, we

use the fa
t f

x̂

=

x

gP = P sin
e x 62 fn(P), and the fa
t that (� x)Q = (� x̂)f

x̂

=

x

gQ

when x̂ 62 fn(Q) � x. The proofs in the �rst part will yield results of the form

A ` P j (� x̂)f

x̂

=

x

gQ

`

�! R

0

with R

0

� R, thus we get A ` P j (� x)Q

`

�! R by an

appli
ation of (Trans Stru
t Right).

Consider A ` (� x)(P j Q)

`

�! R. By Lemma 16.6 this holds i� one of the following

holds:

Case 16.6a (Trans Res-1) there exists x̂ 62 A [fn(`) [(fn((P j Q)) � x) and

^

R

su
h that A; x̂ ` f

x̂

=

x

g(P j Q)

`

�!

^

R and R � (� x̂)

^

R. By Lemma 16.5 this

transition holds i� one of the following holds:

Case 16.5a (Trans Par)[Left℄ there exists

^

P su
h that fn(f

x̂

=

x

gQ) � A; x̂,

A; x̂ ` f

x̂

=

x

gP

`

�!

^

P and

^

R �

^

P j f

x̂

=

x

gQ. It follows that A; x̂ `

P

`

�!

^

P . By Lemma 14, A ` P

`

�!

^

P . By (Trans Par), we get A `

P j (� x̂)f

x̂

=

x

gQ

`

�!

^

P j (� x̂)f

x̂

=

x

gQ. By Lemma 11 x̂ 62 fn(

^

P). By (Trans

Stru
t Right), we obtain A ` P j (� x̂)f

x̂

=

x

gQ

`

�! (� x̂)(

^

P j f

x̂

=

x

gQ).

Case 16.5a

0

(Trans Par)[Right℄ there exists

^

Q su
h that fn(f

x̂

=

x

gP) � A; x̂,

A; x̂ ` f

x̂

=

x

gQ

`

�!

^

Q and

^

R �

^

Q j f

x̂

=

x

gP . By (Trans Res-1) and the

fa
t that x̂ 62 fn(`), we get A ` (� x̂)f

x̂

=

x

gQ

`

�! (� x̂)

^

Q. By (Trans

Par)[Right℄, we get A ` P j (� x̂)f

x̂

=

x

gQ

`

�! P j (� x̂)

^

Q. By the fa
t that

x̂ 62 fn(P) and (Trans Stru
t Right), we get A ` P j (� x̂)f

x̂

=

x

gQ

`

�!

(� x̂)(P j

^

Q).

Case 16.5b (Trans Comm) there exists z,
, v,

^

P and

^

Q su
h that ` = � ,

A; x̂ ` f

x̂

=

x

gP

z

v

�!

^

P , A; x̂ ` f

x̂

=

x

gQ

z

v

�!

^

Q, and

^

R � (� fn(z; v)�A; x̂)(

^

P j

^

Q). By x̂ 62 fn(f

x̂

=

x

gP) and Lemma 11.3, x̂ 62 fn(z

v). By x̂ 62 fn(z

v)

and (Trans Res-1), A ` (� x̂)f

x̂

=

x

gQ

z

v

�! (� x̂)

^

Q. By the fa
t that x̂ 62

fn(P; z

v) and Lemma 14, we get A ` P

z

v

�!

^

P . By (Trans Comm),

A ` P j (� x̂)f

x̂

=

x

gQ

�

�! (� fn(z; v)�A)(

^

P j (� x̂)

^

Q). By Lemma 11.2

x̂ 62 fn(

^

P), so we may
al
ulate (� fn(z; v)�A)(

^

P j (� x̂)

^

Q) � (� fn(z; v)�

A; x̂)(� x̂)(

^

P j

^

Q) � R.

28

Case 16.5b

0

(Trans Comm) there exists z,
, v,

^

Q and

^

P su
h that ` = � ,

A; x̂ ` f

x̂

=

x

gQ

z

v

�!

^

Q, A; x̂ ` f

x̂

=

x

gP

z

v

�!

^

P , and

^

R � (� fn(z; v)�A; x̂)(

^

Q j

^

P). There are some
ases to
onsider:

Case
 = � By Lemma 11.(6,7) x̂ 62 fn(z;
).

Case x̂ 62 fn(v) By Lemma 14 A ` P

z

v

�!

^

P . By (Res-1) A `

(� x̂)f

x̂

=

x

gQ

z

v

�! (� x̂)

^

Q. By (Comm) we have A ` P j (� x̂)f

x̂

=

x

gQ

�

�!

(� fn(z; v)�A)(

^

P j (� x̂)

^

Q). By Lemma 11.2 x̂ 62 fn(

^

P), so (� fn(z; v)�

A)(

^

P j (� x̂)

^

Q) � (� x̂)(� fn(z; v)� A; x̂)(

^

P j

^

Q).

Case x̂ 2 fn(v) By Lemma 15.1 A ` P

z

v

�!

^

P . By (Res-2) A `

(� x̂)f

x̂

=

x

gQ

z

v

�!

^

Q. By (Comm) we have

A ` P j (� x̂)f

x̂

=

x

gQ

�

�! (� fn(z; v)�A)(

^

P j

^

Q):

Clearly (� fn(z; v)�A)(

^

P j

^

Q) � (� x̂)(� fn(z; v)�A; x̂)(

^

P j

^

Q).

Case
 = n By Lemma 11.6 x̂ 62 fn(
).

Case x̂ 62 fn(z; v) Exa
tly as the x̂ 62 fn(v)
ase above.

Case x̂ 2 fn(z; v) By Lemma 15.2 A ` P

z

v

�!

^

P . By (Res-2) A `

(� x̂)f

x̂

=

x

gQ

z

v

�!

^

Q. By (Comm) we have

A ` P j (� x̂)f

x̂

=

x

gQ

�

�! (� fn(z; v)�A)(

^

P j

^

Q):

Clearly (� fn(z; v)�A)(

^

P j

^

Q) � (� x̂)(� fn(z; v)�A; x̂)(

^

P j

^

Q).

Case 16.6b (Trans Res-2-nmv) there exists y, o, v,

^

R and x̂ 62 A[fn(y; o)[(fn((P j

Q))�x) su
h that ` = y

o

v, A; x̂ ` f

x̂

=

x

g(P j Q)

y

o

v

�!

^

R, x̂ 2 fn(v), :mv(o) and

R �

^

R. By Lemma 16.5 either one of the following holds:

Case 16.5a there exists

^

P su
h that fn(f

x̂

=

x

gQ) � A; x̂, A; x̂ ` f

x̂

=

x

gP

y

o

v

�!

^

P

and

^

R �

^

P j f

x̂

=

x

gQ. This leads to a
ontradi
tion, as by Lemma 11

x 2 fn(P).

Case 16.5a

0

there exists

^

Q su
h that fn(f

x̂

=

x

gP) � A; x̂, A; x̂ ` f

x̂

=

x

gQ

y

o

v

�!

^

Q and

^

R �

^

Q j f

x̂

=

x

gP . We apply (Trans Res-2-nmv) to get A `

(� x̂)f

x̂

=

x

gQ

y

o

v

�!

^

Q. By x̂ 62 fn(P), we
an apply (Trans Par)[Right℄

to obtain A ` P j (� x̂)f

x̂

=

x

gQ

y

o

v

�! P j

^

Q � R.

Case 16.6
 (Trans Res-2-mv) there exists y, o, v,

^

R and x̂ 62 A[fn(o) [(fn((P j

Q)) � x) su
h that ` = y

o

v, A; x̂ ` f

x̂

=

x

g(P j Q)

y

o

v

�!

^

R, x̂ 2 fn(y; v), mv(o)

and R �

^

R. By Lemma 16.5 either one of the following holds:

Case 16.5a there exists

^

P su
h that fn(f

x̂

=

x

gQ) � A; x̂, A; x̂ ` f

x̂

=

x

gP

y

o

v

�!

^

P

and

^

R �

^

P j f

x̂

=

x

gQ. This leads to a
ontradi
tion, as by Lemma 11

x 2 fn(P).

Case 16.5a

0

there exists

^

Q su
h that fn(f

x̂

=

x

gP) � A; x̂, A; x̂ ` f

x̂

=

x

gQ

y

o

v

�!

^

Q

and

^

R �

^

Q j f

x̂

=

x

gP . By (Trans Res-2-mv) and the fa
ts that x̂ 2

fn(y; v) � fn(o) and mv(o), we get A ` (� x̂)f

x̂

=

x

gQ

y

o

v

�!

^

Q. By (Trans

Par)[Right℄, we get A ` P j (� x̂)f

x̂

=

x

gQ

y

o

v

�! P j

^

Q.

Now
onsider A ` P j (� x)Q

`

�! R. By Lemma 16.5 this transition holds i� one

of the following holds.

29

Case 16.5a (Trans Par)[Left℄ there exists

^

P su
h that fn((� x)Q) � A, A `

P

`

�!

^

P and R �

^

P j (� x)Q. Take x̂ su
h that x̂ 62 A[fn(`)[(fn(P;Q)�x).

By x̂ 62 A [fn(`) and Lemma 14, A; x̂ ` P

`

�!

^

P . By (Trans Par), A; x̂ `

P j f

x̂

=

x

gQ

`

�!

^

P j f

x̂

=

x

gQ. By x̂ 62 ` and (Trans Res-1), A ` (� x̂)(P j f

x̂

=

x

gQ)

`

�!

(� x̂)(

^

P j f

x̂

=

x

gQ). Sin
e x̂ 62 fn(

^

P), (� x̂)(

^

P j f

x̂

=

x

gQ) � R.

Case 16.5a

0

(Trans Par)[Right℄ there exists

^

Q su
h that fn(P) � A, A ` (� x)Q

`

�!

^

Q and R �

^

Q j P . By Lemma 16.6 this transition holds i� one of the following

holds.

Case 16.6a (Trans Res-1) there exists x̂ 62 A [fn(`) [(fn(Q) � x) and

^

^

Q

su
h that A; x̂ ` f

x̂

=

x

gQ

`

�!

^

^

Q and

^

Q � (� x̂)

^

^

Q. By (Trans Par)[Right℄,

we have A; x̂ ` P j f

x̂

=

x

gQ

`

�! P j

^

^

Q. By x̂ 62 fn(`) and (Trans Res-1),

we get A ` (� x̂)(P j f

x̂

=

x

gQ)

`

�! (� x̂)(P j

^

^

Q). By x̂ 62 fn(P) and (Trans

Stru
t Right), we obtain A ` (� x̂)(P j f

x̂

=

x

gQ)

`

�! P j (� x̂)

^

^

Q.

Case 16.6b (Trans Res-2-nmv) there exists y, o, v,

^

^

Q and x̂ 62 A[fn(y; o)[

(fn(Q) � x) su
h that ` = y

o

v, A; x̂ ` f

x̂

=

x

gQ

y

o

v

�!

^

^

Q, x̂ 2 fn(v), :mv(o)

and

^

Q �

^

^

Q. By (Trans Par)[Right℄, we have A; x̂ ` P j f

x̂

=

x

gQ

`

�! P j

^

^

Q.

By :mv(o), x̂ 2 fn(v) � fn(y; o) and (Trans Res-2-nmv), we get A `

(� x̂)(P j f

x̂

=

x

gQ)

`

�! P j

^

^

Q.

Case 16.6
 (Trans Res-2-mv) there exists y, o, v,

^

^

Q and x̂ 62 A [fn(o) [

(fn(Q) � x) su
h that ` = y

o

v, A; x̂ ` f

x̂

=

x

gQ

y

o

v

�!

^

^

Q, x̂ 2 fn(y; v), mv(o)

and

^

Q �

^

^

Q. By (Trans Par)[Right℄, we have A; x̂ ` P j f

x̂

=

x

gQ

`

�!

P j

^

^

Q. By mv(o), x̂ 2 fn(y; v) � fn(o) and (Trans Res-2-mv), we get

A ` (� x̂)(P j f

x̂

=

x

gQ)

`

�! P j

^

^

Q.

Case 16.5b (Trans Comm) there exists z,
, v,

^

P and

^

Q su
h that ` = � , A `

P

z

v

�!

^

P , A ` (� x)Q

z

v

�!

^

Q, and R � (� fn(z; v)�A)(

^

P j

^

Q). By Lemma 16.6

there exists x̂ 62 A[fn(z

v)[(fn(Q)�x) and

^

^

^

Q su
h that A; x̂ ` f

x̂

=

x

gQ

z

v

�!

^

^

^

Q

and

^

Q � (� x̂)

^

^

^

Q. By Lemma 14 and x̂ 62 A [fn(z

v), we get A; x̂ ` P

z

v

�!

^

P . By (Trans Comm), A; x̂ ` P j f

x̂

=

x

gQ

�

�! (� fn(z; v)�A; x̂)(

^

P j

^

^

^

Q).

By (Tran Res-1) and x̂ 62 fn(z; v), we obtain A ` (� x̂)(P j f

x̂

=

x

gQ)

�

�!

(� x̂)(� fn(z; v)�A)(

^

P j

^

^

^

Q), hen
e A ` (� x̂)(P j f

x̂

=

x

gQ)

�

�! (� fn(z; v)�A)(

^

P j

^

Q).

Case 16.5b

0

(Trans Comm) there exists z,
, v,

^

Q and

^

P su
h that ` = � ,

A ` (� x)Q

z

v

�!

^

Q, A ` P

z

v

�!

^

P , and R � (� fn(z; v) � A)(

^

Q j

^

P). By

Lemma 16.6 the (� x)Q transition holds i� one of the following holds.

Case 16.6a (Trans Res-1) there exists x̂ 62 A [fn(z

v) [(fn(Q) � x) and

^

^

Q su
h that A; x̂ ` f

x̂

=

x

gQ

z

v

�!

^

^

Q and

^

Q � (� x̂)

^

^

Q. By Lemma 14

and x̂ 62 A [fn(z

v) we have A; x̂ ` P

z

v

�!

^

P . By (Trans Comm),

A; x̂ ` P j f

x̂

=

x

gQ

�

�! (� fn(z; v)�A; x̂)(

^

P j

^

^

Q). By (Tran Res-1) and x̂ 62

fn(z; v), we obtain A ` (� x̂)(P j f

x̂

=

x

gQ)

�

�! (� x̂)(� fn(z; v)�A)(

^

P j

^

^

Q).

Case 16.6b (Trans Res-2-nmv) there exists z,
, v,

^

^

Q and x̂ 62 A[fn(z;
)[

(fn(Q)�x) su
h that z

v = z

v, A; x̂ ` f

x̂

=

x

gQ

z

v

�!

^

^

Q, x̂ 2 fn(v), :mv(
)

30

and

^

Q �

^

^

Q. By Lemma 15.1 and
 6= n, A; x̂ ` P

z

v

�!

^

P . By (Trans

Comm), A; x̂ ` P j f

x̂

=

x

gQ

�

�! (� fn(z; v)�A; x̂)(

^

P j

^

^

Q). By (Tran Res-

1) we obtain A ` (� x̂)(P j f

x̂

=

x

gQ)

�

�! (� x̂)(� fn(z; v)�A; x̂)(

^

P j

^

^

Q),

hen
e as x̂ 2 fn(v) A ` (� x̂)(P j f

x̂

=

x

gQ)

�

�! (� fn(z; v)�A)(

^

P j

^

^

Q).

Case 16.6
 (Trans Res-2-mv) there exists z,
, v,

^

^

Q and x̂ 62 A [fn(
) [

(fn(Q)�x) su
h that z

v = z

v, A; x̂ ` f

x̂

=

x

gQ

z

v

�!

^

^

Q, x̂ 2 fn(z; v), mv(
)

and

^

Q �

^

^

Q. By mv(
) we have
 = n for some n. By Lemma 15.2 A; x̂ `

P

z

v

�!

^

P . By (Trans Comm), A; x̂ ` P j f

x̂

=

x

gQ

�

�! (� fn(z; v)�A; x̂)(

^

P j

^

^

Q).

By (Tran Res-1) A ` (� x̂)(P j f

x̂

=

x

gQ)

�

�! (� x̂)(� fn(z; v)�A; x̂)(

^

P j

^

^

Q),

hen
e as x̂ 2 fn(z; v) A ` (� x̂)(P j f

x̂

=

x

gQ)

�

�! (� fn(z; v)�A)(

^

P j

^

^

Q).

(Stru
t Res Box) (� x)n[P ℄ � n[(� x)P ℄ where x 6= n. Consider A ` (� x)n[P ℄

`

�! Q.

By Lemma 16.6 this holds i� one of the following holds.

Case 16.6a (Trans Res-1) there exists x̂ 62 A [fn(`) [(fn(n[P ℄)� x) and

^

Q su
h

that A; x̂ ` f

x̂

=

x

gn[P ℄

`

�!

^

Q and Q � (� x̂)

^

Q. By x 6= n we have f

x̂

=

x

gn = n,

so we have A; x̂ ` n[f

x̂

=

x

gP ℄

`

�!

^

Q. By Lemma 16.4 this transition exists i�

one of the following hold:

Case 16.4a (Trans Box-1) there exist z, v, and

^

P su
h that n 2 A; x̂, ` = � ,

A; x̂ ` f

x̂

=

x

gP

z

"

v

�!

^

P , and

^

Q � (� fn(z; v) � A; x̂)(z

n

v j n[

^

P ℄). There are

two
ases to
onsider:

Case x̂ 62 fn(z

"

v) By (Trans Res-1) and the fa
t that x̂ 62 fn(z

"

v), we

obtain A ` (� x̂)f

x̂

=

x

gP

z

"

v

�! (� x̂)

^

P . By (Trans Box-1), we obtain

A ` n[(� x̂)f

x̂

=

x

gP ℄

�

�! (� fn(z; v)�A)(z

n

v j n[(� x̂)

^

P ℄). Sin
e x̂ 62

fn(z

n

v) we have (� fn(z; v)� A)(z

n

v j n[(� x̂)

^

P ℄) � (� x̂)(� fn(z; v)�

A; x̂)(z

n

v j n[

^

P ℄).

Case x̂ 2 fn(z

"

v) By (Trans Res-2), mv("), and x̂ 2 fn(z; v)� fn("), we

obtain A ` (� x̂)f

x̂

=

x

gP

z

"

v

�!

^

P . By (Trans Box-1), we obtain A `

n[(� x̂)f

x̂

=

x

gP ℄

�

�! (� fn(z; v)�A)(z

n

v j n[

^

P ℄). Sin
e x̂ 2 fn(z; v) �

A, we get (� fn(z; v)�A)(z

n

v j n[

^

P ℄) � (� x̂)(� fn(z; v)�A; x̂)(z

n

v j

n[

^

P ℄).

Case 16.4b (Trans Box-2) there exist z and v su
h that fn(n[f

x̂

=

x

gP ℄) �

A; x̂, ` = z

n

v and

^

Q � n[z

"

v j f

x̂

=

x

gP ℄. By (Trans Box-2), A ` n[(� x̂)f

x̂

=

x

gP ℄

z

n

v

�!

n[z

"

v j (� x̂)f

x̂

=

x

gP ℄. Sin
e x̂ 62 fn(z

n

v), we have n[z

"

v j (� x̂)f

x̂

=

x

gP ℄ �

(� x̂)n[z

"

v j f

x̂

=

x

gP ℄.

Case 16.4
 (Trans Box-3) there exists

^

P su
h that n 2 A; x̂, ` = � , A; x̂ `

f

x̂

=

x

gP

�

�!

^

P , and

^

Q � n[

^

P ℄. By (Trans Res-1), A ` (� x̂)f

x̂

=

x

gP

�

�!

(� x̂)

^

P . By (Trans Box-3), (Trans Stru
t Right), and x̂ 6= n, A `

n[(� x̂)f

x̂

=

x

gP ℄

�

�! (� x̂)n[

^

P ℄.

Case 16.6b (Trans Res-2-nmv) there exists y, o, v,

^

Q and x̂ 62 A [fn(y; o) [

(fn(n[P ℄) � x) su
h that ` = y

o

v, A; x̂ ` f

x̂

=

x

gn[P ℄

y

o

v

�!

^

Q, x̂ 2 fn(v), :mv(o)

and Q �

^

Q. This leads to a
ontradi
tion as no su
h term has any output

transitions.

31

Case 16.6
 (Trans Res-2-mv) there exists y, o, v,

^

Q and x̂ 62 A[fn(o)[(fn(n[P ℄)�

x) su
h that ` = y

o

v, A; x̂ ` f

x̂

=

x

gn[P ℄

y

o

v

�!

^

Q, x̂ 2 fn(y; v), mv(o) and Q �

^

Q.

This leads to a
ontradi
tion as no su
h term has any output transitions.

Now
onsider A ` n[(� x)P ℄

`

�! Q. By Lemma 16.4 this holds i� one of the

following hold:

Case 16.4a (Trans Box-1) there exist z, v, and

^

P su
h that n 2 A, ` = � ,

A ` (� x)P

z

"

v

�!

^

P , and Q � (� fn(z; v)�A)(z

n

v j n[

^

P ℄). By Lemma 16.6 this

transition holds i� one of the following holds:

Case 16.6a (Trans Res-1) there exists x̂ 62 A [fn(z

"

v) [(fn(P) � x) and

^

Q su
h that A; x̂ ` f

x̂

=

x

gP

z

"

v

�!

^

Q and

^

P � (� x̂)

^

Q. By (Trans Box-1),

we have A; x̂ ` n[f

x̂

=

x

gP ℄

�

�! (� fn(z; v)�A; x̂)(z

n

v j n[

^

Q℄). By (Trans

Res-1), A ` (� x̂)n[f

x̂

=

x

gP ℄

�

�! (� x̂)(� fn(z; v)�A; x̂)(z

n

v j n[

^

Q℄). Sin
e

x̂ 62 fn(z

"

v) and x̂ 6= n, we obtain (� x̂)(� fn(z; v) � A; x̂)(z

n

v j n[

^

Q℄) �

(� fn(z; v)�A)(z

n

v j n[(� x̂)

^

Q℄).

Case 16.6b (Trans Res-2-nmv) there exists z, ", v,

^

Q and x̂ 62 A [fn(z; "

) [(fn(P) � x) su
h that z

"

v = z

"

v, A; x̂ ` f

x̂

=

x

gP

z

"

v

�!

^

Q, x̂ 2 fn(v),

:mv(") and

^

P �

^

Q. This
annot hold, as mv(").

Case 16.6
 (Trans Res-2-mv) there exists z, ", v,

^

Q and x̂ 62 A [fn(") [

(fn(P)�x) su
h that z

"

v = z

"

v, A; x̂ ` f

x̂

=

x

gP

z

"

v

�!

^

Q, x̂ 2 fn(z; v), mv(")

and

^

P �

^

Q. By (Trans Box-1), A; x̂ ` n[f

x̂

=

x

gP ℄

�

�! (� fn(z; v)�A; x̂)(z

n

v j n[

^

Q℄).

By (Tran Res-1), A ` (� x̂)n[f

x̂

=

x

gP ℄

�

�! (� x̂)(� fn(z; v)�A; x̂)(z

n

v j n[

^

Q℄).

Sin
e x̂ 2 fn(z; v) � A we obtain (� x̂)(� fn(z; v) � A; x̂)(z

n

v j n[

^

Q℄) �

(� fn(z; v)�A)(z

n

v j n[

^

Q℄).

Case 16.4b (Trans Box-2) there exist z and v su
h that fn(n[(� x)P ℄) � A,

` = z

n

v and Q � n[z

"

v j (� x)P ℄. Take x̂ 62 A [fn(z

n

v), then by (Tran Box-

2), we obtain A; x̂ ` n[f

x̂

=

x

gP ℄

z

n

v

�! n[z

"

v j f

x̂

=

x

gP ℄. By (Trans Res-1), we get

A ` (� x̂)n[f

x̂

=

x

gP ℄

z

n

v

�! (� x̂)n[z

"

v j f

x̂

=

x

gP ℄. By (Trans Stru
t Right) and

x̂ 62 fn(n; z

"

v), we obtain A ` (� x̂)n[f

x̂

=

x

gP ℄

z

n

v

�! n[z

"

v j (� x̂)f

x̂

=

x

gP ℄.

Case 16.4
 (Trans Box-3) there exists

^

^

Q su
h that n 2 A, ` = � , A ` (� x)P

�

�!

^

^

Q, and Q � n[

^

^

Q℄. By Lemma 16.6 there exists x̂ 62 A [(fn(P) � x) and

^

P

su
h that A; x̂ ` f

x̂

=

x

gP

�

�!

^

P and

^

^

Q � (� x̂)

^

P . By (Trans Box-3), A; x̂ `

n[f

x̂

=

x

gP ℄

�

�! n[

^

P ℄. By (Trans Res-1), A ` (� x̂)n[f

x̂

=

x

gP ℄

�

�! (� x̂)n[

^

P ℄. By

(Trans Stru
t Right) and x 6= n, we obtain A ` (� x̂)n[f

x̂

=

x

gP ℄

�

�! n[(� x̂)

^

P ℄.

2

Lemma 19 If fn(P) � A and P ! Q then A ` P

�

�! Q.

Proof Indu
tion on derivations of P ! Q. For the base
ases we
onstru
t derivations

of � transitions:

(Red Up)

32

A ` x

"

v

x

"

v

�! 0

(Trans Out)

A ` x

"

v j Q

x

"

v

�! 0 j Q

(Trans Par)

A ` n[x

"

v j Q℄

�

�! (� fn(x; v) �A)(x

n

v j n[0 j Q℄)

(Trans Box-1)

By the premise fn(n[x

"

v j Q℄) � A we have fn(x; v) � A, so using (Trans Stru
t

Right) we have A ` n[x

"

v j Q℄

�

�! x

n

v j n[Q℄, the right hand side of whi
h is

exa
tly the right hand side of (Red Up).

(Red Down)

A ` x

n

v

x

n

v

�! 0

(Trans Out)

x 2 A

A ` n[Q℄

x

n

v

�! n[x

"

v j Q℄

(Trans Box-2)

A ` x

n

v j n[Q℄

�

�! (� fn(v)�A)(0 j n[x

"

v j Q℄)

(Trans Comm)

By the premise fn(x

n

v j n[Q℄) � A we have x 2 A and also fn(v) � A, so using

(Trans Stru
t Right) we have A ` x

n

v j n[Q℄

�

�! n[x

"

v j Q℄, the right hand side of

whi
h is exa
tly the right hand side of (Red Down).

(Red Comm)

A ` x

�

v

x

�

v

�! 0

(Trans Out)

A ` x

�

p:P

x

�

v

�! f

v

=

p

gP

(Trans In)

A ` x

�

v j x

�

p:P

�

�! (� fn(v)�A)(0 j f

v

=

p

gP)

(Trans Comm)

The side
ondition f

v

=

p

gP de�ned for (Trans In) is ensured by the same
ondition

for (Red Comm). By the premise fn(x

�

v j x

�

p:P) � A we have fn(v) � A, so using

(Trans Stru
t Right) we have A ` x

�

v j x

�

p:P

�

�! f

v

=

p

gP , the right hand side of

whi
h is exa
tly the right hand side of (Red Comm).

(Red Repl)

A ` x

�

v

x

�

v

�! 0

(Trans Out)

!x

�

p:P

x

�

v

�! !x

�

p:P j f

v

=

p

gP

(Trans Repl)

A ` x

�

v j !x

�

p:P

�

�! (� fn(v)�A)(0 j (!x

�

p:P j f

v

=

p

gP))

(Trans Comm)

The side
ondition f

v

=

p

gP de�ned for (Trans Repl) is ensured by the same
ondition

for (Red Repl). By the premise fn(x

�

v j !x

�

p:P) � A we have fn(v) � A, so using

(Trans Stru
t Right) we have A ` x

�

v j !x

�

p:P

�

�! !x

�

p:P j f

v

=

p

gP , the right hand

side of whi
h is exa
tly the right hand side of (Red Repl).

(Red Par), (Red Res) and (Red Box) require straightforward uses of indu
tion hy-

pothesis, using (Trans Par), (Trans Res-1) and (Trans Box-3).

(Red Stru
t) By Lemma 10, fn(P

0

) � A. By the indu
tive hypothesis, A ` P

0

�

�! Q

0

.

By Proposition 18, A ` P

�

�! Q

0

. By (Tran-Stru
t-Right), A ` P

�

�! Q.

2

33

Transitions Imply Redu
tions

Lemma 20 If A ` P

z

o

v

�! P

0

then P � (� fn(z; v)�A)(z

o

v j P

0

)

Proof Indu
tion on derivation of A ` P

z

o

v

�! P

0

.

(Trans Out) Obvious.

(Trans Par) By the indu
tion hypothesis, P � (� fn(z; v)�A)(z

o

v j P

0

), so

P j Q � ((� fn(z; v)�A)(z

o

v j P

0

)) j Q

� (� fn(z; v)�A)(z

o

v j P

0

j Q) (as by fn(P j Q) � A we have fn(Q) � A)

(Trans Res-1) By the indu
tion hypothesis P � (� fn(z; v)� (A; x))(z

o

v j P

0

), so

(� x)P � (� x)(� fn(z; v)� (A; x))(z

o

v j P

0

)

� (� fn(z; v)�A)(z

o

v j (� x)P

0

) (as x 62 fn(z

o

v))

(Trans Res-2-nmv) By the indu
tion hypothesis P � (� fn(z; v) � (A; x))(z

o

v j P

0

),

so

(� x)P � (� x)(� fn(z; v)� (A; x))(z

o

v j P

0

)

� (� fn(z; v)�A)(z

o

v j P

0

) (as x 2 fn(v)� fn(z; o))

(Trans Res-2-mv) By the indu
tion hypothesis P � (� fn(x; v) � (A; x))(x

o

v j P

0

), so

(� x)P � (� x)(� fn(x; v)� (A; x))(x

o

v j P

0

)

� (� fn(x; v) �A)(x

o

v j P

0

)

(Trans Stru
t-Right) By the indu
tion hypothesis.

All other
ases are va
uous.

2

Lemma 21 If A ` Q

x

�

v

�! Q

0

then there exist B; p;Q

1

and Q

2

su
h that B \ (A [

fn(x

�

v)) = fg and either Q � (� B)(x

�

p:Q

1

j Q

2

) and Q

0

� (� B)(f

v

=

p

gQ

1

j Q

2

) or

Q � (� B)(! x

�

p:Q

1

j Q

2

) and Q

0

� (� B)(f

v

=

p

gQ

1

j !x

�

p:Q

1

j Q

2

).

Proof Indu
tion on derivation of A ` Q

x

�

v

�! Q

0

.

(Trans In), (Trans Repl) Obvious.

(Trans Par) Consider A ` Q j P

x

�

v

�! Q

0

j P . By the indu
tion hypothesis there exist

B; p;Q

1

and Q

2

su
h that B \ (A [fn(x

�

v)) = fg and either Q � (� B)(x

�

p:Q

1

j

Q

2

) and Q

0

� (� B)(f

v

=

p

gQ

1

j Q

2

) or Q � (� B)(! x

�

p:Q

1

j Q

2

) and Q

0

�

(� B)(f

v

=

p

gQ

1

j !x

�

p:Q

1

j Q

2

).

Consider the �rst disjun
t (the se
ond is similar). Taking

^

Q

2

= Q

2

j P we have

Q j P � (� B)(x

�

p:Q

1

j Q

2

) j P

� (� B)(x

�

p:Q

1

j

^

Q

2

)

Q

0

j P � (� B)(f

v

=

p

gQ

1

j Q

2

) j P

� (� B)(f

v

=

p

gQ

1

j

^

Q

2

)

34

(Trans Res-1) Consider A ` (� z)Q

x

�

v

�! (� z)Q

0

with z 62 A[fn(x

�

v). By the indu
tion

hypothesis there exist B, p, Q

1

and Q

2

su
h that B\(A; z[fn(x

�

v)) = fg and either

Q � (� B)(x

�

p:Q

1

j Q

2

) and Q

0

� (� B)(f

v

=

p

gQ

1

j Q

2

) or Q � (� B)(! x

�

p:Q

1

j Q

2

)

and Q

0

� (� B)(f

v

=

p

gQ

1

j !x

�

p:Q

1

j Q

2

).

Consider the �rst disjun
t (the se
ond is similar). Taking

^

B = B; z we have

(� z)Q � (� z)(� B)(x

�

p:Q

1

j Q

2

)

� (�

^

B)(x

�

p:Q

1

j Q

2

)

(� z)Q

0

� (� z)(� B)(f

v

=

p

gQ

1

j Q

2

)

� (�

^

B)(f

v

=

p

gQ

1

j Q

2

)

(Trans Stru
t Right) By the indu
tion hypothesis.

All other
ases are va
uous.

2

Lemma 22 If A ` Q

x

n

v

�! Q

0

then there exist B, Q

1

and Q

2

su
h that B\(A[fn(x

n

v)) =

fg, Q � (� B)(n[Q

1

℄ j Q

2

) and Q

0

� (� B)(n[(x

"

v j Q

1

)℄ j Q

2

).

Proof Indu
tion on derivation of A ` Q

x

n

v

�! Q

0

.

(Trans Box-2) Obvious.

(Trans Par) Consider A ` Q j P

x

n

v

�! Q

0

j P . By the indu
tion hypothesis there exist

B, Q

1

and Q

2

su
h that B \ (A [fn(x

n

v)) = fg, Q � (� B)(n[Q

1

℄ j Q

2

) and

Q

0

� (� B)(n[(x

"

v j Q

1

)℄ j Q

2

).

Take

^

Q

2

= Q

2

j P . We have

Q j P � (� B)(n[Q

1

℄ j Q

2

) j P

� (� B)(n[Q

1

℄ j Q

2

j P) (as fn(P) � A)

� (� B)(n[Q

1

℄ j

^

Q

2

)

Q

0

j P � (� B)(n[(x

"

v j Q

1

)℄ j Q

2

) j P

� (� B)(n[(x

"

v j Q

1

)℄ j Q

2

j P) (as fn(P) � A)

� (� B)(n[(x

"

v j Q

1

)℄ j

^

Q

2

)

(Trans Res-1) Consider A ` (� z)Q

x

n

v

�! (� z)Q

0

with z 62 A[fn(x

n

v). By the indu
tion

hypothesis there exist B, Q

1

and Q

2

su
h that B \ (A; z [fn(x

n

v)) = fg, Q �

(� B)(n[Q

1

℄ j Q

2

) and Q

0

� (� B)(n[(x

"

v j Q

1

)℄ j Q

2

).

Let

^

B = B; z. We have

(� z)Q � (� z)(� B)(n[Q

1

℄ j Q

2

)

� (�

^

B)(n[Q

1

℄ j Q

2

)

(� z)Q

0

� (� z)(� B)(n[(x

"

v j Q

1

)℄ j Q

2

)

� (�

^

B)(n[(x

"

v j Q

1

)℄ j Q

2

)

(Trans Stru
t Right) By the indu
tion hypothesis.

All other
ases are va
uous.

35

2

Lemma 23 If A ` P

�

�! Q then P ! Q.

Proof Indu
tion on derivations of A ` P

�

�! Q

(Trans Box-1) By Lemma 20 P � (� fn(x; v) �A)(x

"

v j P

0

), so

n[P ℄ � n[(� fn(x; v) �A)(x

"

v j P

0

)℄

� (� fn(x; v) �A)(n[x

"

v j P

0

℄) (by fn(n[P ℄) � A we have n 2 A)

! (� fn(x; v) �A)(x

n

v j n[P

0

℄) (by (Red Up))

(Trans Box-3) By the indu
tion hypothesis and (Red Box).

(Trans Par) By the indu
tion hypothesis and (Red Par).

(Trans Comm) By Lemma 20 P � (� fn(x; v)�A)(x

v j P

0

). By Lemma 11 x 2 A so

P � (� fn(v)�A)(x

v j P

0

).

Case
 = �. By Lemma 21 there exist B, p, Q

1

and Q

2

su
h that B \ (A [

fn(x

�

v)) = fg and either Q � (� B)(x

�

p:Q

1

j Q

2

) and Q

0

� (� B)(f

v

=

p

gQ

1

j Q

2

) or

Q � (� B)(! x

�

p:Q

1

j Q

2

) and Q

0

� (� B)(f

v

=

p

gQ

1

j !x

�

p:Q

1

j Q

2

). Consider the

�rst disjun
t. We have

P j Q � (� fn(v)�A)(x

v j P

0

) j (� B)(x

�

p:Q

1

j Q

2

)

� (� fn(v)�A)(x

v j P

0

j (� B)(x

�

p:Q

1

j Q

2

)) (as fn(Q) � A)

� (� fn(v)�A)(� B)(x

v j P

0

j x

�

p:Q

1

j Q

2

) (as (A [fn(v)) \ B = fg)

! (� fn(v)�A)(� B)(f

v

=

p

gQ

1

j P

0

j Q

2

) (by Red Comm)

� (� fn(v)�A)(P

0

j (� B)(f

v

=

p

gQ

1

j Q

2

)) (as (A [fn(v)) \ B = fg)

� (� fn(v)�A)(P

0

j Q

0

)

The se
ond disjun
t is similar.

Case
 = n. By Lemma 22 there exist B, Q

1

and Q

2

su
h that B\ (A[fn(x

n

v)) =

fg, Q � (� B)(n[Q

1

℄ j Q

2

) and Q

0

� (� B)(n[(x

"

v j Q

1

)℄ j Q

2

). We have

P j Q � (� fn(v)�A)(x

n

v j P

0

) j (� B)(n[Q

1

℄ j Q

2

)

� (� fn(v)�A)(x

n

v j P

0

j (� B)(n[Q

1

℄ j Q

2

)) (as fn(Q) � A)

� (� fn(v)�A)(� B)(x

n

v j P

0

j n[Q

1

℄ j Q

2

) (as (A [fn(v)) \ B = fg)

! (� fn(v)�A)(� B)(P

0

j n[x

"

v j Q

1

℄ j Q

2

) (by Red Down)

� (� fn(v)�A)(P

0

j (� B)(n[(x

"

v j Q

1

)℄ j Q

2

)) (as (A [fn(v)) \ B = fg)

� (� fn(v)�A)(P

0

j Q

0

)

(Trans Res-1) By the indu
tion hypothesis and (Red Res).

(Trans Stru
t Right) By the indu
tion hypothesis and (Red Stru
t).

All other
ases are va
uous.

2

Proof (of Theorem 1) We must show that if fn(P) � A then A ` P

�

�! Q i� P ! Q.

This is immediate from Lemmas 19 and 23 above. 2

36

B Other Proofs

We �rst give another transition-analysis lemma. This allows us to rename extruded

names in a label instead of in the sour
e pro
ess term.

Lemma 24 If A ` (�N)P

`

�! Q, ` = y

"

v, and A, N and M are pairwise disjoint �nite

sets of names then there exists a partition N

1

; N

2

of N , a pro
ess P

0

, and

h :(fn(`)�A)!(N � (A;N

2

;M))

inje
tive su
h that

A;N ` P

(1

A

+h)`

�! P

0

A ` (�N)P

(1

A

+h)`

�! (�N

2

)P

0

� (1

A

+ h)Q

N

2

= N � fn((1

A

+ h)`)

Proof Indu
tion on N . For N = ; we have A ` P

`

�! Q. Take any h :(fn(`) �

A)!(N � (A;M)) inje
tive. By Lemma 13 A ` 1

A

P

(1

A

+h)`

�! (1

A

+ h)Q. Now
onsider

A ` (� x)(�N)P

`

�! Q with A, (N; x), and M pairwise disjoint. By Lemma 16.6 one of

the following
ases hold.

Case 6a there exists x̂ 62 A[fn(`)[(fn((�N)P)�x) and

^

Q su
h that A; x̂ ` f

x̂

=

x

g(�N)P

`

�!

^

Q and Q � (� x̂)

^

Q.

Take some

f :A; x̂!A; x

g :(fn(`)�A; x̂)!N � (A; x;M)

inje
tive with f the identity on A. By Lemma 13

A; x ` (�N)P

(f+g)`

�! (f + g)

^

Q

By the indu
tion hypothesis there exists a partition N

0

1

; N

0

2

of N , a pro
ess P

0

, and

h

0

:(fn((f + g)`)� (A; x))!(N � (A; x;N

0

2

;M))

inje
tive su
h that

A; x;N ` P

(1

A;x

+h

0

)(f+g)`

�! P

0

A; x ` (�N)P

(1

A;x

+h

0

)(f+g)`

�! (�N

0

2

)P

0

� (1

A;x

+ h

0

)(f + g)

^

Q

Now x̂ 62 fn`, so x 62 fn((f + g)`), so x 62 fn((1

A;x

+ h

0

)(f + g)`), so by (Res-1)

A ` (� x)(� N)P

(1

A;x

+h

0

)(f+g)`

�! (� x)(�N

0

2

)P

0

� (� x)(1

A;x

+ h

0

)(f + g)

^

Q

Take N

1

= N

0

1

, N

2

= N

0

2

; x and h = h

0

g.

Case 6
 there exists y, o, v,

^

Q and x̂ 62 A[fn(o) [(fn((�N)P)� x) su
h that ` = y

o

v,

A; x̂ ` f

x̂

=

x

g(�N)P

y

o

v

�!

^

Q, x̂ 2 fn(y; v), mv(o) and Q �

^

Q.

Similarly, take some

f :A; x̂!A; x

g :(fn(`)�A; x̂)!N � (A; x;M)

37

inje
tive with f the identity on A. By Lemma 13

A; x ` (�N)P

(f+g)`

�! (f + g)

^

Q

By the indu
tion hypothesis there exists a partition N

0

1

; N

0

2

of N , a pro
ess P

0

, and

h

0

:(fn((f + g)`)� (A; x))!(N � (A; x;N

0

2

;M))

inje
tive su
h that

A; x;N ` P

(1

A;x

+h

0

)(f+g)`

�! P

0

A; x ` (�N)P

(1

A;x

+h

0

)(f+g)`

�! (�N

0

2

)P

0

� (1

A;x

+ h

0

)(f + g)

^

Q

Now here x̂ 2 fn`, so x 2 fn((f + g)`), so x 2 fn((1

A;x

+ h

0

)(f + g)`), so by (Res-2)

A ` (� x)(�N)P

(1

A;x

+h

0

)(f+g)`

�! (�N

0

2

)P

0

� (1

A;x

+ h

0

)(f + g)

^

Q

Take N

1

= N

0

1

; x, N

2

= N

0

2

and h = fx=x̂g+ h

0

g.

2

Expli
it Chara
terisation

The simple se
urity properties are proved using an expli
it
hara
terisation of the states

and labelled transitions of W

1

[P ℄. If N is a �nite set of names, a is a name and A and

Q are pro
esses de�ne

[[a;N ;A;Q℄℄

def

= (�N [fag)

�

A

j a[Q℄

j ! in

"

y:in

a

y

j ! out

a

y:out

"

y

�

Say the 4-tuple a, N , A, Q is good if N , fag, and fin; outg are pairwise disjoint, A is a

parallel
omposition of outputs of the forms

out

a

v; out

"

v; in

a

v; x

a

v where x 62 fout; ag

with a 62 fn(v) in ea
h
ase, and Q is a pro
ess with a 62 fn(Q). Say a pro
ess P is good

if P � [[a;N ;A;Q℄℄ for some good a, N , A, Q.

Lemma 25 If a 62 fn(P) then W

1

[P ℄ � [[a; ;; 0;P ℄℄, hen
e W

1

[P ℄ is good.

Proof Straightforward. 2

We de�ne a transition relation A ` P

`

* Q as the least satisfying the following rules.

t

1

A ` [[a;N ;A;Q℄℄

in

"

v

* [[a;N ;A j in

a

v;Q℄℄ fn(v) \ (N [fag) = ;

t

2

A ` [[a;N ;A j in

a

v;Q℄℄

�

* [[a;N ;A;Q j in

"

v℄℄

t

4

A;N; a ` Q

out

"

v

�! Q

0

A ` [[a;N ;A;Q℄℄

�

* [[a;N; fn(v)� (A;N; a);A j out

a

v;Q

0

℄℄

t

5

A;N; a ` Q

x

"

v

�! Q

0

A ` [[a;N ;A;Q℄℄

�

* [[a;N; fn(x; v)� (A;N; a);A j x

a

v;Q

0

℄℄

t

6

A ` [[a;N ;A j out

a

v;Q℄℄

�

* [[a;N ;A j out

"

v;Q℄℄

t

7

A ` [[a;N ;A j out

"

v;Q℄℄

out

"

v

* [[a;N � fn(v);A;Q℄℄

t

8

A;N; a ` Q

�

�! Q

0

A ` [[a;N ;A;Q℄℄

�

* [[a;N ;A;Q

0

℄℄

38

A ` P

`

* P

0

P

0

� P

00

A ` P

`

* P

00

For rule t

5

, we have a side
ondition that x 6= out. For all rules we have a side
ondition

that the 4-tuple in the left hand side of the
on
lusion is good. For all rules we have a

side
ondition that the free names of the pro
ess on the left hand side of the
on
lusion

are
ontained in A.

Lemma 26 If A ` P

`

* P

0

then P

0

is good.

Proof By inspe
tion of the transition axioms,
he
king that the 4-tuple on the right

hand side is good in ea
h
ase, and noting that the de�nition of P good is preserved by

stru
tural
ongruen
e. For t

4

by the
ondition fn([[a;N ;A;Q℄℄) � A we have fin; outg �

A so fin; outg \ (fn(v) � (A;N; a)) = ;. By Lemma 11.3 a 62 fn(v) By Lemma 11.2

a 62 fn(Q

0

). For t

5

by the
ondition fn([[a;N ;A;Q℄℄) � A we have fin; outg � A so

fin; outg \ (fn(x; v) � (A;N; a)) = ;. By Lemma 11.3 a 62 fn(x; v) By Lemma 11.2

a 62 fn(Q

0

). For t

8

by Lemma 11.2 a 62 fn(Q

0

). The other
ases are straightforward. 2

Lemma 27 For all good P we have A ` P

`

�! P

0

i� A ` P

`

* P

0

.

Proof We �rst show that A ` P

`

* P

0

implies A ` P

`

�! P

0

, by indu
tion on deriva-

tions of the former. The
onverse dire
tion is by a
ase analysis of the possible transition

derivations. 2

Purity

Proof (of Proposition 2) We show by indu
tion on k that Q is good and that the

on
lusion holds. The k = 0
ase is by Lemma 25. The indu
tive step uses Lemmas 26

and 27. 2

Proof (of Proposition 3) Similar to that of Proposition 2; we omit the details. 2

Proof (of Proposition 4) Similar to that of Proposition 2; we omit the details. 2

Honesty

Proof (of Proposition 5) We
he
k that the unary wrapper W

1

is honest (the proof

for L should be similar). If N is a �nite set of names, a is a name and A and Q are

pro
esses de�ne

hhha;N ;A;Qiii

def

= Q

j fj out

"

v j out

a

v 2 A jg

j fj out

"

v j out

"

v 2 A jg

j fj x

"

v j x

a

v 2 A ^ x 6= out jg

j fj in

"

v j in

a

v 2 A jg

hha;N ;A;Qii

def

= (�N)hhha;N ;A;Qiii

39

Note that if a;N ;A;Q is good then a 62 fn(hha;N ;A;Qii). Now take the family of relations

below.

R

A

= � Æf [[a;N ;A;Q℄℄; hha;N ;A;Qii j a;N ;A;Q good and fn([[a;N ;A;Q℄℄) � A gÆ �

We must
he
k that for any P with a 62 fn(P) and A � fn(W

1

[P ℄) we have W

1

[P ℄ R

A

P and that R is an h-bisimulation. The former follows from Lemma 25 and the fa
t

hha; ;; 0;P ii � P . For the latter there are a number of
ases to
he
k, as below. We give

only the most interesting in detail.

Consider C R

A

D. We know there exist good a;N ;A;Q su
h that C � [[a;N ;A;Q℄℄,

D � hha;N ;A;Qii, and fn(C) � A. Without loss of generality suppose A and N; a are

disjoint. Note that by Proposition 18 if A ` C

`

�! C

0

then A ` [[a;N ;A;Q℄℄

`

�! C

0

, and

similarly for transitions of D.

Clause 1

0

Suppose A ` hha;N ;A;Qii

out

"

v

�! U .

By Lemma 24 there exists a partition N

1

; N

2

of N , a pro
ess U

0

, and

h :(fn(v)�A)!(N � (A;N

2

; a))

inje
tive su
h that

A;N ` hhha;N ;A;Qiii

out

"

v

0

�! U

0

A ` hha;N ;A;Qii

out

"

v

0

�! (�N

2

)U

0

� (1

A

+ h)U

N

2

= N � fn(v

0

)

where v

0

= (1

A

+ h)v. There are three
ases.

(a) due to A;N ` Q

out

"

v

0

�! Q

0

with U

0

� hhha;N ;A;Q

0

iii.

By Lemma 14 A;N; a ` Q

out

"

v

0

�! Q

0

.

By t4,t6,t7 and Lemmas 26,27

A ` [[a;N ;A;Q℄℄

�

�!

�

�!

out

"

v

0

�! [[a;N � fn(v

0

);A;Q

0

℄℄

By Lemma 13

A ` [[a;N ;A;Q℄℄

�

�!

�

�!

out

"

v

�! (1

A

+ h

�1

)[[a;N � fn(v

0

);A;Q

0

℄℄

Now a;N � fn(v

0

);A;Q

0

is good, hen
e

[[a;N � fn(v

0

);A;Q

0

℄℄ R

A[fn(v

0

)

hha;N � fn(v

0

);A;Q

0

ii;

and R is
losed under inje
tive renamings that preserve fin; outg, so

(1

A

+ h

�1

)[[a;N � fn(v

0

);A;Q

0

℄℄ R

A[fn(v)

(1

A

+ h

�1

)hha;N � fn(v

0

);A;Q

0

ii � U

(b) due to an out

a

v 2 A. Mat
h using t6,t7.

(
) due to an out

"

v 2 A. Mat
h using t7.

Suppose A ` hha;N ;A;Qii

�

�!

(a) due to A;N ` Q

�

�! Q

0

. Mat
h using t8.

40

(b) due to A;N ` Q

in

"

v

�! Q

0

and in

a

v 2 A. Mat
h using t2,t8.

Clause 2

0

Suppose A ` hha;N ;A;Qii

in

"

v

�! . This must be due to A;N ` Q

in

"

v

�! Q

0

. Mat
h

using t1,t2,t8.

Clause 1 Suppose A ` [[a;N ;A;Q℄℄

out

"

v

�! . This must be by t7; it
an be mat
hed dire
tly.

Suppose A ` [[a;N ;A;Q℄℄

�

�! . This must be by one of the following rules.

t2 Mat
h with zero � steps.

t4 Using Lemma 20 the output parti
le is present in Q. The transition
an then

be mat
hed with zero � steps.

t5 Similar to t4.

t6 Mat
h with zero � steps.

t8 Mat
h with one � step.

Clause 2 Suppose A ` [[a;N ;A;Q℄℄

in

"

v

�! . This must be by t1. It
an be mat
hed with zero

� steps, using the se
ond part of Clause 2 of the de�nition of h-bisimulation.

Clause 3 Suppose A ` [[a;N ;A;Q℄℄

`

�! for another label `. Va
uous.

2

41

Referen
es

[Aba97℄ Mart��n Abadi. Se
re
y by typing in se
urity proto
ols. In TACS '97 (open

le
ture), LNCS 1281, pages 611{638, September 1997.

[ACS96℄ Roberto M. Amadio, Ilaria Castellani, and Davide Sangiorgi. On bisimu-

lations for the asyn
hronous �-
al
ulus. In Ugo Montanari and Vladimiro

Sassone, editors, CONCUR '96, volume 1119 of Le
ture Notes in Computer

S
ien
e, pages 147{162. Springer-Verlag, 1996.

[AFG98℄ Mart��n Abadi, C�edri
 Fournet, and Georges Gonthier. Se
ure implementa-

tion of
hannel abstra
tions. In LICS 98 (Indiana), pages 105{116. IEEE,

Computer So
iety Press, July 1998.

[AG97℄ Mart��n Abadi and Andrew D. Gordon. A
al
ulus for
ryptographi
 pro-

to
ols: The spi
al
ulus. In Pro
eedings of the Fourth ACM Conferen
e on

Computer and Communi
ations Se
urity, Z�uri
h, pages 36{47. ACM Press,

April 1997.

[Ama97℄ R. M. Amadio. An asyn
hronous model of lo
ality, failure, and pro
ess

mobility. In Pro
. COORDINATION 97, LNCS 1282, 1997.

[AP94℄ R. M. Amadio and S. Prasad. Lo
alities and failures. In P. S. Thiagarajan,

editor, Pro
eedings of 14

th

FST and TCS Conferen
e, FST-TCS'94. LNCS

880, pages 205{216. Springer-Verlag, 1994.

[Bou92℄ G�erard Boudol. Asyn
hrony and the �-
al
ulus (note). Rapport de Re
her
he

1702, INRIA So�a-Antipolis, May 1992.

[BTS

+

98℄ Godmar Ba
k, Patri
k Tullmann, Leigh Stoller, Wilson C. Hsieh, and Jay

Lepreau. Java operating systems: Design and implementation. Te
hni
al

Report UUCS-98-015, University of Utah, Department of Computer S
ien
e,

August 6, 1998.

[CG98℄ Lu
a Cardelli and Andrew D. Gordon. Mobile ambients. In Pro
. of

Foundations of Software S
ien
e and Computation Stru
tures (FoSSaCS),

ETAPS'98, LNCS 1378, pages 140{155, Mar
h 1998.

[CG99℄ Lu
a Cardelli and Andrew D. Gordon. Types for mobile ambients. In Pro-

eedings of the 26th ACM Symposium on Prin
iples of Programming Lan-

guages, 1999.

[FGL

+

96℄ C�edri
 Fournet, Georges Gonthier, Jean-Ja
ques L�evy, Lu
 Maranget, and

Didier R�emy. A
al
ulus of mobile agents. In Pro
eedings of CONCUR '96.

LNCS 1119, pages 406{421. Springer-Verlag, August 1996.

[FHL

+

96℄ Bryan Ford, Mike Hibler, Jay Lepreau, Patri
k Tullman, Godmar Ba
k, and

Steven Clawson. Mi
rokernels meet re
ursive virtual ma
hines. In USENIX,

editor, 2nd Symposium on Operating Systems Design and Implementation

(OSDI '96), O
tober 28{31, 1996. Seattle, WA, pages 137{151, Berkeley,

CA, USA, O
tober 1996. USENIX.

[Gon97℄ Li Gong. Java se
urity ar
hite
ture (JDK 1.2). Te
hni
al report, JavaSoft,

July 1997. Revision 0.5.

42

[GWTB96℄ Ian Goldberg, David Wagner, Randi Thomas, and Eri
 A. Brewer. A se
ure

environment for untrusted helper appli
ations. In Sixth USENIX Se
urity

Symposium, San Jose, California, July 1996.

[HR98a℄ Nevin Heintze and Jon G. Rie
ke. The SLam
al
ulus: Programming with

se
re
y and integrity. In Pro
eedings of the 25th POPL, January 1998.

[HR98b℄ Matthew Hennessy and James Riely. Resour
e a

ess
ontrol in systems of

mobile agents. In Workshop on High-Level Con
urrent Languages, 1998. Full

version as University of Sussex te
hni
al report CSTR 98/02.

[HR98
℄ Matthew Hennessy and James Riely. Type-safe exe
ution of mobile agents

in anonymous networks. In Workshop on Mobile Obje
t Systems, (satellite

of ECOOP '98), 1998. Full version as University of Sussex te
hni
al report

CSTR 98/03.

[HT91℄ Kohei Honda and Mario Tokoro. An obje
t
al
ulus for asyn
hronous
om-

muni
ation. In Pierre Ameri
a, editor, Pro
eedings of ECOOP '91, LNCS

512, pages 133{147, July 1991.

[IAJR97℄ Nayeem Islam, Ranga
hari Anand, Trent Jaeger, and Josyula R. Rao. A

exible se
urity system for using Internet
ontent. IEEE Software, 14(5):52{

59, September/O
tober 1997.

[Jon99℄ Mi
hael B. Jones. Interposition agents: Transparently interposing user
ode

at the system interfa
e. In Jan Vitek and Christian Jensen, editors, Se
ure

Internet Programing: Se
urity Issues for Mobile and Distributed Obje
ts.

Springer Verlag, 1999.

[Lam73℄ Butler W. Lampson. A note on the
on�nement problem. Communi
ations

of the ACM, 16(10):613{615, 1973.

[LR97℄ G. Lowe and B. Ros
oe. Using CSP to dete
t Errors in the TMN Proto
ol.

IEEE Transa
tions on Software Engineering, 23(10):659{669, 1997.

[M
L94℄ J. M
Lean. Se
urity models. In J. Mar
iniak, editor, En
y
lopedia of Soft-

ware Engineering. Wiley & Sons, 1994.

[ML98℄ Andrew C. Myers and Barbara Liskov. Complete, safe information
ow with

de
entralized labels. In Pro
eedings of the 1998 IEEE Symposium on Se
urity

and Priva
y, Oakland, California, pages 186{197, 1998.

[MPW92℄ R. Milner, J. Parrow, and D. Walker. A
al
ulus of mobile pro
esses, Parts

I + II. Information and Computation, 100(1):1{77, 1992.

[Mye99℄ Andrew C. Myers. J
ow: Pra
ti
al stati
 information
ow
ontrol. In Pro-

eedings of the 26th ACM Symposium on Prin
iples of Programming Lan-

guages (POPL 99), 1999.

[NL98℄ G. C. Ne
ula and P. Lee. Safe, untrusted agents using proof-
arrying
ode. In

G. Vigna, editor, Mobile Agents and Se
urity, volume 1419 of LNCS, pages

61{91. SV, 1998.

[RH98℄ James Riely and Matthew Hennessy. A typed language for distributed mobile

pro
esses. In Pro
eedings of the 25th POPL, January 1998.

43

[S
h98℄ Fred B. S
hneider. Enfor
eable se
urity poli
ies. Te
hni
al Report TR 98-

1664, Computer S
ien
e Department, Cornell University, Itha
a, New York,

January 1998.

[Sew97℄ Peter Sewell. Global/lo
al subtyping for a distributed �-
al
ulus. Te
h-

ni
al Report 435, University of Cambridge, August 1997. Available from

http://www.
l.
am.a
.uk/users/pes20/.

[Sew98℄ Peter Sewell. Global/lo
al subtyping and
apability inferen
e for a dis-

tributed �-
al
ulus. In Pro
eedings of ICALP '98, LNCS 1443, pages 695{

706, 1998.

[Sew99℄ Peter Sewell. A brief introdu
tion to applied �, January 1999. Le
ture notes

for the Math�t Instru
tional Meeting on Re
ent Advan
es in Semanti
s and

Types for Con
urren
y: Theory and Pra
ti
e, July 1998. Available from

http://www.
l.
am.a
.uk/users/pes20/.

[SWP98a℄ Peter Sewell, Pawe l T. Woj
ie
howski, and Benjamin C. Pier
e. Lo
ation

independen
e for mobile agents. In Workshop on Internet Programming

Languages, Chi
ago, May 1998.

[SWP98b℄ Peter Sewell, Pawe l T. Woj
ie
howski, and Benjamin C. Pier
e.

Lo
ation-independent
ommuni
ation for mobile agents: a two-

level ar
hite
ture. Submitted for publi
ation. Draft available from

http://www.
l.
am.a
.uk/users/pes20/, 1998.

[VB99℄ Jan Vitek and C

�

iaran Bry
e. Se
ure mobile
ode: the javaseal experiment.

Manus
ript, 1999.

[VC98℄ Jan Vitek and Guiseppe Castagna. Towards a
al
ulus of mobile
ompu-

tations. In Workshop on Internet Programming Languages, Chi
ago, May

1998.

[VC99℄ Jan Vitek and Giuseppe Castagna. Mobile Agents and Hostile Hosts.

In Journ�ees Fran
ophones des Langaages Appli
atifs (JFLA99), Morizine,

Fran
e, Feb 1999.

[VIS96℄ D. Volpano, C. Irvine, and G. Smith. A sound type system for se
ure
ow

analysis. Journal of Computer Se
urity, 4:167{187, May 1996.

[VS98℄ Dennis Volpano and Geo�rey Smith. Con�nement properties for program-

ming languages. SIGACT News, 29(3):33{42, September 1998.

[WN95℄ G. Winskel and M. Nielsen. Models for
on
urren
y. In Abramsky, Gabbay,

and Maibaum, editors, Handbook of Logi
 in Computer S
ien
e, volume IV,

pages 1{148. Oxford University Press, 1995.

44

