Location-Independent Communication for
Mobile Agents: a Two-Level Architecture

Peter Sewell! Pawel T. Wojciechowski'

Benjamin C. Pierce?®

Abstract. We study communication primitives for interaction between
mobile agents. They can be classified into two groups. At a low level
there are location dependent primitives that require a programmer to
know the current site of a mobile agent in order to communicate with
it. At a high level there are location independent primitives that allow
communication with a mobile agent irrespective of its current site and
of any migrations. Implementation of these requires delicate distributed
infrastructure. We propose a simple calculus of agents that allows imple-
mentations of such distributed infrastructure algorithms to be expressed
as encodings, or compilations, of the whole calculus into the fragment
with only location dependent communication. These encodings give exe-
cutable descriptions of the algorithms, providing a clean implementation
strategy for prototype languages. The calculus is equipped with a pre-
cise semantics, providing a solid basis for understanding the algorithms
and for reasoning about their correctness and robustness. Two sample
infrastructure algorithms are presented as encodings.

Table of Contents

1 Introduction

2 The Calculi
2.1 Low-Level Calculus
2.2 High-Level Calculus
2.3 Examples and Idioms. Lo

o 0O = i N

3 A Simple Infrastructure Translation
4 A Forwarding-Pointers Infrastructure Translation
5 Reduction Semantics

6 Discussion

6.1 Infrastructure Description
6.2 Related Calculi
6.3 Implementation o
6.4 Future Work

! Computer Laboratory, University of Cambridge.
{Peter.Sewell,Pawel.Wojciechowski}@cl.cam.ac.uk

2 Dept. of Computer & Information Science, University of Pennsylvania.

bcpierce@cis.upenn.edu

11

1 Introduction

Recent years have seen an explosion of interest in wide-area distributed ap-
plications, executing on intranets or on the global internet. A key concept for
structuring such applications is mobile agents, units of executing code that can
migrate between sites [CHK97]. Mobile agent programming requires novel forms
of language and runtime support—for interaction between agents, responding to
network failures and reconfigurations, binding to resources, managing security,
etc. In this paper we focus on the first of these, considering the design, semantic
definition, and implementation of communication primitives by which mobile
agents can interact.

Mobile agent communication primitives can be classified into two groups. At
a low level, there are location dependent primitives that require a programmer
to know the current site of a mobile agent in order to communicate with it.
If a party to such communications migrates, then the communicating program
must explicitly track its new location. At a high level, there are location inde-
pendent primitives that allow communication with a mobile agent irrespective
of its current site and of any migrations of sender or receiver. Location indepen-
dent primitives may greatly simplify the development of mobile applications,
since they allow movement and interaction to be treated as separate concerns.
Their design and implementation, however, raise several difficult issues. A dis-
tributed infrastructure is required for tracking migrations and routing messages
to migrating agents. This infrastructure must address fundamental network is-
sues such as failures, network latency, locality, and concurrency; the algorithms
involved are thus inherently rather delicate and cannot provide perfect location
independence. Moreover, applications may be distributed on widely different
scales (from local to wide-area networks), may exhibit different patterns of com-
munication and migration, and may demand different levels of performance and
robustness; these varying demands will lead to a multiplicity of infrastructures,
based on a variety of algorithms. These infrastructure algorithms will be ex-
posed, via their performance and behaviour under failure, to the application
programmer — some detailed understanding of an algorithm will be required
for the programmer to understand its robustness properties under, for example,
failure of a site.

The need for clear understanding and easy experimentation with infrastruc-
ture algorithms, as well as the desire to simultaneously support multiple infras-
tructures on the same network, suggests a two-level architecture—a low-level
consisting of a single set of well-understood, location-dependent primitives, in
terms of which a variety of high-level, location-independent communication ab-
stractions may be expressed. This two-level approach enables one to have a stan-
dardized low-level runtime that is common to many machines, with divergent
high-level facilities chosen and installed at run time. It also facilitates simple
implementation of the location-independent primitives (cf. protocol stacks).

For this approach to be realistic, it is essential that the low-level primitives
should be directly implementable above standard network protocols. The Inter-
net Protocol (IP) supports asynchronous, unordered, point-to-point, unreliable

packet delivery; it abstracts from routing. We choose primitives that are directly
implementable using asynchronous, unordered, point-to-point, reliable messages.
This abstracts away from a multitude of additional details—error correction,
retransmission, packet fragmentation, etc.—while still retaining a clear relation-
ship to the well-understood IP level. It also well suited to the process calculus
presentation that we use below. More controversially, we also include agent mi-
gration among the low-level primitives. This requires substantial runtime support
in individual network sites, but not sophisticated distributed algorithms—only
one message need be sent per migration. By treating it as a low-level primi-
tive we focus attention more sharply on the distributed algorithms supporting
location-independent communication. We also provide low-level primitives for
agent creation, for sending messages between agents at the same site, for gener-
ating globally unique names, and for local computation.

Many forms of high-level communication can be implemented in terms of
these low-level primitives, for example synchronous and asynchronous message
passing, remote procedure calls, multicasting to agent groups, etc. For this paper
we consider only a single representative form: an asynchronous message-passing
primitive similar to the low-level primitive for communication between co-located
agents but independent of their locations and transparent to migrations.

This two-level framework can be formulated very cleanly using techniques
from the theory of process calculi. Such a formulation permits a precise defini-
tion of both low and high levels, and allows distributed infrastructure algorithms
to be treated rigorously as translations between calculi. The operational seman-
tics of the calculi provides a precise and clear understanding of the algorithms’
behaviour, aiding design, and ultimately, one may hope, supporting proofs of
correctness and robustness. Our presentation draws on ideas first developed in
Milner, Parrow, and Walker’s m-calculus [MPW92,Mil92] and extended in the
distributed join-calculus of Fournet et al [FGLT96].

To facilitate experimentation, the Nomadic Pict project is implementing
prototype mobile agent programming languages corresponding to our high-
and low-level process calculi. The low-level language extends the compiler and
run-time system of Pict [PT97,Tur96], a concurrent language based on the -
calculus, to support our primitives for agent creation, migration, and location-
dependent communication. High-level languages, with particular infrastructures
for location-independent communication, can then be obtained by applying user-
supplied translations into the low-level language. In both cases, the full language
available to the user remains very close to the process calculus presentation, and
can be given rigorous semantics in a similar style. Analogous extensions could be
given for other concurrent uniprocessor programming languages, such as Amber
[Car86], Concurrent ML [Rep91], and Concurrent Haskell [JGF96].

In the next section we introduce the two calculi informally, discussing our
primitives in detail and giving examples of common programming idioms. In
83 and §4 we then present two sample infrastructure algorithms — one using a
centralised server and one using chains of forwarding pointers — as illustrations
of the use of the calculi. The operational semantics of the calculi are defined

precisely in §5, in terms of a reduction semantics. We conclude with some further
discussion of related work, implementation, and future extensions. The paper
develops ideas first presented in [SWP98] — that work introduced a slightly
different calculus, using it to describe the forwarding-pointers infrastructure.

2 The Calculi

In this section our two levels of abstraction are made precise by giving two
corresponding process calculi, the low- and high-level Nomadic w-calculi. Their
design involves a delicate trade-off — the distributed infrastructure algorithms
that we want to express involve non-trivial local computation within agents, yet
for the theory to be tractable (particularly, for operational congruences to have
tractable characterisations) the calculi must be kept as simple as possible. The
primitives for agent creation, agent migration and inter-agent communication
that we consider do not suffice to allow the required local computation to be
expressed clearly, so we integrate them with those of an asynchronous 7-calculus
[HT91,Bou92]. The other computational constructs that will be needed, e.g. for
finite maps, can then be regarded as lightweight syntactic sugar for m-processes.

The low- and high-level calculi are introduced in §2.1 and §2.2 respectively,
followed by some examples and programming idioms in §2.3. In this section
the operational semantics of the calculi are described informally — the precise
reduction semantics will be given in §5. For simplicity, the calculi are presented
without typing or basic values (such as integers and booleans). Type systems
are briefly discussed in §6.3.

2.1 Low-Level Calculus

We begin with an example. Below is a term of the low-level calculus showing
how an applet server can be expressed. It can receive (on the channel named
getApplet) requests for an applet; the requests contain a pair (bound to a and
s) consisting of the name of the requesting agent and the name of its site.

xgetApplet?(a s) —
agent b =
migrate to s — ((a@s)ack!b| B)
in
0

When a request is received the server creates an applet agent with a new name
bound to b. This agent immediately migrates to site s. It then sends an ac-
knowledgement to the requesting agent a (which is assumed to also be on site s)
containing its name. In parallel, the body B of the applet commences execution.

The example illustrates the main entities represented in the calculus: sites,
agents and channels. Sites should be thought of as physical machines or, more
accurately, as instantiations of the Nomadic Pict runtime system on machines;
each site has a unique name. This paper does not explicitly address questions of

site failure, network failure and reconfiguration, or security. Sites are therefore
unstructured; neither network topology nor administrative domains are repre-
sented in the formalism. Agents are units of executing code; an agent has a
unique name and a body consisting of some term; at any moment it is located
at a particular site. Channels support communication within agents, and also
provide targets for inter-agent communication—an inter-agent message will be
sent to a particular channel within the destination agent. Channels also have
unique names.

The inter-agent message (a@s)ack!b is characteristic of the low-level calculus.
It is location-dependent—if agent a is in fact on site s then the message b will
be delivered, to channel ack in a; otherwise the message will be discarded. In an
implementation at most one inter-site message is sent.

Names As in the m-calculus, names play a key role. We take an infinite set N of
names, ranged over by a, b, ¢, s, and z. Formally, all names are treated identically;
informally, a and b will be used for agent names, ¢ for a channel name, and s for
a site name. (A type system would allow these distinctions to be enforced.) The
calculus allows new names (of agents and channels) to be created dynamically.

Names are pure, in the sense of Needham [Nee89]; they are not assumed to
contain any information about their creation. They can therefore be implemented
by any mechanism that allows globally-unique bit strings to be created locally,
e.g. by appending sequence numbers to IP addresses, or by choosing large random
numbers.

Values We allow the communication of first-order values, consisting of names
and tuples.

U,V =T name
[V1 ..Uy tuple (n > 0)

Patterns As is the m-calculus, values are deconstructed by pattern matching on
input. Patterns have the same form as values, with the addition of a wildcard.

pi=_ wildcard
T name pattern
(p1--pn) tuple pattern (n > 0, no repeated names)

Process terms The main syntactic category is that of process terms, ranged over
by P, Q. We will introduce the low-level primitives in groups.

agent ¢« = P in agent creation
migrate to s —» P agent migration

The execution of the construct agent a = P in () spawns a new agent on the
current site, with body P. After the creation, () commences execution, in parallel
with the rest of the body of the spawning agent. The new agent has a unique
name which may be referred to both in its body and in the spawning agent (i.e.

a is binding in P and Q). Agents can migrate to named sites — the execution
of migrate to s — P as part of an agent results in the whole agent migrating
to site s. After the migration, P commences execution in parallel with the rest
of the body of the agent.

Pl@Q parallel composition
0 nil

The body of an agent may consist of many process terms in parallel, i.e. essen-
tially of many lightweight threads. They will interact only by message passing.

new c in P new channel name creation

cly output v on channel ¢ in the current agent
c?’p—> P input from channel ¢

xc?p > P replicated input from channel ¢

if v = v then P else () value equality testing

To express computation within an agent, while keeping a lightweight semantics,
we include w-calculus-style interaction primitives. Execution of new ¢ in P cre-
ates a new unique channel name; ¢ is binding in P. An output c!v (of value v on
channel ¢) and an input ¢?p — P in the same agent may synchronise, resulting
in P with the names in the pattern p replaced by corresponding parts of v. A
replicated input *xc¢?p — P behaves similarly except that it persists after the syn-
chronisation, and so may receive another value. In both ¢?p — P and xc?p — P
the names in p are binding in P. The conditional allows any two values to be
tested for equality.

iflocal (a)c!lv — P else () test-and-send to agent a on current site

Finally, the low-level calculus includes a single primitive for interaction between
agents. The execution of iflocal (a)c!lv — P else @@ in the body of an agent b
has two possible outcomes. If agent a is on the same site as b, then the message
clv will be delivered to a (where it may later interact with an input) and P
will commence execution in parallel with the rest of the body of b; otherwise
the message will be discarded, and @ will execute as part of b. The construct
is analogous to test-and-set operations in shared memory systems — delivering
the message and starting P, or discarding it and starting @), atomically. It can
greatly simplify algorithms that involve communication with agents that may
migrate away at any time, yet is still implementable locally, by the runtime
system on each site.

As in the m-calculus, names can be scope-extruded — here channel and agent
names can be sent outside the agent in which they were created. For example,
if the body of agent a is

agent b =
new d in
iflocal (a)c!'d — 0 else 0
in
c?z — x!

then channel name d is created in agent b. After the output message c!d has
been sent from b to a (by iflocal) and has interacted with the input ¢?z — 2!
there will be an output d! in agent a.

We require a clear relationship between the semantics of the low-level calculus
and the inter-machine messages that would be sent in an implementation. To
achieve this we allow communication between outputs and inputs on a channel
only if they are in the same agent — messages can be sent from one agent to
another only by iflocal. Intuitively, there is a distinct m-calculus-style channel
for each channel name in every agent. For example, if the body of agent a is

agent b =
new d in
d?—0
| iflocal (a)c!d — 0 else 0
in
c?r — x!

then after some reduction steps a contains an output on d and b contains an in-
put on d, but these cannot react. At first sight this semantics may seem counter-
intuitive, but it reconciles the conflicting requirements of expressiveness and
simplicity of the calculus. An implementation would create the mailbox datas-
tructure — a queue of pending outputs or inputs — required to implement a
channel as required; it could be garbage collected when empty.

Summarizing, the terms of the low-level calculus are:

P,Q :=agent a = P in) agent creation
migrate to s — P agent migration
PlQ parallel composition
0 nil
new c in P new channel name creation
clv output v on channel ¢ in the current agent
c?’p—» P input from channel ¢
xc?p — P replicated input from channel ¢

if v = v then P else () value equality testing
iflocal (a)clv — P else () test-and-send to agent a on current site

Note that the only primitive which involves network communication is migrate,
which requires only a single message to be sent, asynchronously, between ma-
chines. Distributed implementation of the low-level calculus is therefore straight-
forward, requiring no non-trivial distributed algorithms. It could be done either
above a reliable datagram layer or above TCP, using a lightweight layer that
opens and closes streams as required.

Two other forms of location-dependent output will be useful in writing en-
codings, and are expressible in the calculus given.

(a)eclv output to agent a on the current site
(aQs)clv output to agent a on site s

The execution of an output (a)c!v in the body of an agent b will either deliver
the message clv to agent a, if agent b is on the same site as a, or will silently
discard the message, if not. The execution of an output (a@s)c!v in the body of
an agent will either deliver the message clv to agent a, if agent a is on site s, or
will silently discard the message, if not. We regard these as syntactic sugar for

iflocal (a)c!v — 0 else 0
and
agent b = (migrate to s —(iflocal (a)clv — 0 else 0)) in 0

(where b is fresh) respectively. In an implementation, the first is implementable
locally; the second requires only one asynchronous network message. Note that
one could optimize the case in which the second is used on site s itself by trying
iflocal first:

iflocal (a)clv —
0
else
agent b = (migrate to s —(iflocal (a)clv — 0 else 0)) in 0

2.2 High-Level Calculus

The high-level calculus is obtained by extending the low-level calculus with a
single location-independent communication primitive:

(a@Q?yclv location-independent output to agent a

The intended semantics of an output (a@?)clv is that its execution will reliably
deliver the message clv to agent a, irrespective of the current site of a and of
any migrations.

2.3 Examples and Idioms

We give some syntactic sugar and programming idioms that will be used in
the translations. Most are standard m-calculus idioms; some involve distributed
communication.

Syntactic sugar Empty tuples and tuple patterns will generally be elided, writ-
ing ¢! and ¢? — P for ¢![] and ¢?() — P. Multiple new channel bindings will be
coalesced, writing new ¢, ¢’ in P for new ¢ in new ¢’ in P. Let-declarations
will be used, writing let p = v in P for new c in clv|c¢?p — P (where c is a
name not occurring free in v or P).

Procedures Within a single agent one can express ‘procedures’ as simple repli-
cated inputs. Below is a first attempt at a pair-server, that receives values z
on channel pair and returns two copies of £ on channel result, together with a
single invocation of the server.

new pair, result in
xpair?c — result![z x]
| pairlv
| result?z —...z...

This pair-server can only be invoked sequentially—there is no association be-
tween multiple requests and their corresponding results. A better idiom is below,
in which new result channels are used for each invocation.

new pair in
xpair?(x r) — rl[z z]
| new result in pair![v result]| result?z — ...z ...
| new result in pair![w result] | result?z — ...z ...

The example can easily be lifted to remote procedure calls between agents. We
show two versions, firstly for location-dependent RPC between static agents and
secondly for location-independent RPC between agents that may be migrating.
In the first, the server becomes

new pair in
xpair?(z r b s) — (bQs)r![z]

which returns the result using location-dependent communication to the agent
b on site s received in the request. If the server is part of agent a; on site s; it
would be invoked from agent ag on site ss by

new result in
(a; Qs;)pair![v result ag so]
| result?z—...z...

If agents a; or ae can migrate this can fail. A more robust idiom is easily
expressible in the high-level calculus—the server becomes

new pair in
xpair?(x rb) — (bQ?r![z z]

which returns the result using location-independent communication to the agent
b. If the server is part of agent a; it would be invoked from agent as by

new result in
(a; Q?ypair![v result az]
| result?z —...z...

Locks, methods and objects An agent consisting of a parallel composition of
replicated inputs, such as

xmethodl?Targ — ...
| x*method2?arg — ...

is analogous to an object with methods methodl and method2. Mutual exclusion
between the bodies of the methods can be enforced by using a lock channel:

new lock in
lock!
| *method!?arg —
lock? —
lock!
| *method2?arg —
lock? —

lock!
Here the lock is free if there is an output on channel lock and not free otherwise.

State that is shared between the methods can be conveniently kept as the value
of the output on the lock channel:

new lock in
lock!initialState
| xmethodl?arg —
lock? state —

lock!state’
| *method2?arg —
lock? state —

lock!state"

For more detailed discussion of object representations in process calculi, the
reader is referred to [PT94].

Finite maps The algorithms given in the following two sections involve finite
maps — in the first, there is a daemon maintaining a map from agent names
to site names; in the second, there are daemons maintaining maps from agent
names to lock channels. The translations make use of the following constructs:

clemptymap output the empty map on channel ¢

lookup a in m with look up a in map m
found(p) » P
notfound —

let m' = (m with a = v) in P add a new binding

10

Our calculi are sufficiently expressive to allow these to be expressed directly, in
a standard m-calculus style — we regard the constructs as syntactic sugar for
the three process terms below. In the second and third the names z, found, and
notfound are assumed not to occur free in P, @), or a.

def .
clemptymap = new m in
clm
| *m?(x found notfound) — notfound!

lookup... X new found, notfound in
m![a found notfound)
| found?p — P
| notfound? — Q

def I
let ... = new m' in
xm'?(z found notfound) —
if £ = a then
found!v
else
m![z found notfound]
| P

These represent a finite map as a channel on which there is a process that receives
lookup requests. Requests consist of a triple of a key and two result channels;
the process returns a value on the first if the lookup succeeds, and otherwise
signals on the second.

3 A Simple Infrastructure Translation

In this section and the following one we present two infrastructure algorithms, ex-
pressed as translations. The first is one of the simplest algorithms possible, highly
sequential and with a centralized server daemon; the second is one step more so-
phisticated, with multiple daemons maintaining forwarding-pointer chains. The
algorithms have been chosen to illustrate our approach, and the use of the calculi
— algorithms that are widely applicable to actual mobile agent systems would
have to be yet more delicate, both for efficiency and for robustness under partial
failure. Even the simplest of our algorithms, however, requires delicate synchro-
nization that (the authors can attest) is easy to get wrong; expressing them as
translations between well-defined calculi provides a solid basis for discussion and
algorithm design.

The algorithm presented in this section involves a central daemon that keeps
track of the current sites of all agents and forwards any location-independent,
messages to them. The daemon is itself implemented as an agent which never
migrates; the translation of a program then consists roughly of the daemon agent,
in parallel with a compositional translation of the program. For simplicity we

11

consider only programs that are initiated as single agents, rather than many
agents initiated separately on different sites. (Programs may, of course, begin by
creating other agents that immediately migrate). The precise definition is given
in Figures 1 and 2. Figure 2 defines a top-level translation []. For each term
P of the high-level calculus, considered as the body of an agent named a and
initiated at site s, the result [P],,s of the translation is a term of the low-level
calculus. The definition of [] involves the body Daemon of the daemon agent
and an auxiliary compositional translation [P],, defined phrase-by-phrase, of P
considered as part of the body of agent a. Both are given in Figure 1.

Let us look first at the daemon. It contains three replicated inputs, on the
register, migrating, and message channels, for receiving messages from the en-
codings of agents. The daemon is essentially single-threaded — the channel lock
is used to enforce mutual exclusion between the bodies of the replicated inputs,
and the code preserves the invariant that at any time there is at most one output
on lock. The lock channel is also used to maintain the site map — a finite map
from agent names to site names, recording the current site of every agent. The
body of each replicated input begins with an input on lock, thereby acquiring
both the lock and the site map.

Turning to the compositional translation [_],, only three clauses are not triv-
ial — for the location-independent output, agent creation, and agent migration
primitives. We discuss each, together with their interactions with the daemon,
in turn.

Location-independent output A location-independent output in an agent a is
implemented simply by using a location-dependent output to send a request to
the daemon D, at its site SD, on its channel message:

[(b@?yclv], = (DQSD)message![b ¢ v]
The corresponding replicated input on channel message in the daemon

| *message?(a cv) —
lock?m —
lookup a in m with
found(s) —
(aQs)deliver![c v]
| dack? — lock!m
notfound — 0

first acquires the lock and current site map m, then looks up the target agent’s
site in the map and sends a location-dependent message to the deliver chan-
nel of that agent. It then waits to receive an acknowledgement (on the dack
channel) from the agent before relinquishing the lock. This prevents the agent
migrating before the deliver message arrives. Note that the notfound branch of
the lookup will never be taken, as the algorithm ensures that all agents register
before messages can be sent to them. The inter-agent communications involved

12

[«b@7?)clv]a = (DQ@QSD)message![b c v]
[agent b = P in Q]. = currentloc?s —
agent b =
xdeliver?(c v) >((DQSD)dack! | clv)
| (DQSDyregister![b s
| ack? = ((aQsyack!| currentloc!s |[P]s)

in
ack? —(currentloc!s |[Q]a)
[migrate to s — PJ. = currentloc?_—
(DQSDymigrating'a
| ack? —
migrate to s —
(DQSDymigrated!s
| ack? —(currentloc!s |[P]a)
[0]. =0
[[P | Q]]a = [[P]]a |[[Q]|a
[¢?p — Pla = ¢?p =[P]a
[*c?p — Pla = x¢?p =[P]a
[iflocal (b)clv — P else Q). = iflocal (b)clv =»[P]. else [Q]a
[new ¢ in PJ, =new c in [P].

[if v = v then P else Q. = if u = v then [P]. else [Q].

Daemon = new lock in
lock!lemptymap
| *xregister?(a s) —
lock?m —
let m' = (m with a — s) in
lock!m' | (a@s)ack!
| *migrating?a —
lock?m —
lookup a in m with
found(s) —
(aQsyack!
| migrated?s’ —
let m' = (m with a — s') in
lock!m' | (a@s'yack!
notfound — 0
| *message?(a cv) —
lock?m —
lookup a in m with
found(s) —
(aQs)deliver![c v]
| dack? — lock!m
notfound — 0

Fig. 1. A Simple Translation: the compositional translation and the daemon

13

in delivery of a single location-independent output are illustrated below.

a D b

messagel[b ¢ v]

\ deliver![c U]

dack!

Creation In order for the daemon’s site map to be kept up to date, agents must
register with the daemon, telling it their site, both when they are created and
after they migrate. Each agent records its current site internally as an output
on its currentloc channel. This channel is also used as a lock, to enforce mutual
exclusion between the encodings of all agent creation and migration commands
within the body of the agent.

The encoding of an agent creation in an agent a

[agent b = P in Q], = currentloc?s —
agent b =
xdeliver?(c v) > ((DQSD)dack!| clv)
| (DQSD)register![b s]
| ack? —((a@s)ack!| currentloc!s |[P]s)
in
ack? —(currentloc!s |[Q].)
first acquires the lock and current site s of a, and then creates the new agent
b. The body of b sends a register message to the daemon and waits for an
acknowledgement. It then sends an acknowledgement to a, initializes the lock
for b and allows the encoding of the body P of b to proceed. Meanwhile, in a the
lock is kept until the acknowledgement from b is received. The body of b is put
in parallel with the replicated input

xdeliver?(c v) >((DQSD)dack!| clv)

which will receive forwarded messages for channels in b from the daemon, send an
acknowledgement back, and deliver the value locally to the appropriate channel.
The replicated input on register in the daemon

| xregister?(a s) —
lock?m —
let m' = (m with a — s) in
lock!m'| (aQs)ack!

first acquires the lock and current site map, replaces the site map with an up-
dated map, thereby relinquishing the lock, and sends an acknowledgement to

14

the registering agent. The inter-agent communications involved in a single agent
creation are illustrated below.

a b D

|
create

register![b s]

AV

Migration The encoding of a migrate in agent a

[migrate to s — P], = currentloc?_—
(D@SD)ymigrating'a
| ack? —
migrate to s —
(DQSD)ymigrated!s
| ack? —(currentloc!s |[P]a)

first acquires the lock for a (discarding the current site data). It then sends a
migrating message to the daemon, waits for an ack, migrates to its new site s,
sends a migrated message to the daemon, waits again for an ack, and releases
the lock (with the new site s). The replicated input on migrating in the daemon

| xmigrating?a —
lock?m —
lookup a in m with
found(s) —
(a@s)ack!
| migrated?s’ —
let m' = (m with a — s') in
lock!m' | (aQs')ack!
notfound — 0

first acquires the lock and current site map, looks up the current site of a and
sends an ack to a at that site. It then waits to receive the new site, replaces
the site map with an updated map, thereby relinquishing the lock, and sends an
acknowledgement to a at its new site. The inter-agent communications involved

15

in a single migration are shown below.

a D

migrating'a

ack!

migrate to s
migrated's

ack!

The top level Putting the daemon and the compositional encoding together, the
top level translation, defined in Figure 2, creates the daemon agent, installs the

[Pla,s = new register, migrating, migrated, message, dack, deliver, ack, currentloc in
agent D = Daemon in
let SD = s in
xdeliver?(c v) =»((DQSDydack! | clv)
| (DQSD)register![a s]
| ack? —(currentloc!s |[P]a)

where the new-bound names, SD, and D, do not occur in P.

Fig. 2. A Simple Translation: the top level

replicated input on deliver for a, registers agent a to be at site s, initializes the
lock for a, and starts the encoding of the body [P],.-

4 A Forwarding-Pointers Infrastructure Translation

In this section we give a more distributed algorithm, in which daemons on each
site maintain chains of forwarding pointers for agents that have migrated. It
removes the single bottleneck of the centralised-server solution in the preceding
section; it is thus a step closer to algorithms that may be of wide practical use.
The algorithm is more delicate; expressing it as a translation provides a more
rigorous test of the framework.

As before, the translation consists of a compositional encoding of the bodies
of agents, given in Figure 3, daemons, defined in Figure 4, and a top-level trans-
lation putting them together, given in Figure 5. The top-level translation of a

16

program, again initially a single agent, creates a daemon on each site mentioned
by the agent. These will each maintain a collection of forwarding pointers for all
agents that have migrated away from their site. To keep the pointers current,
agents synchronize with their local daemons on creation and migration. Location
independent communications are implemented via the daemons, using the for-
warding pointers where possible. If a daemon has no pointer for the destination
agent of a message then it will forward the message to the daemon on the site
where the destination agent was created; to make this possible an agent name
is encoded by a triple of an agent name and the site and daemon of its creation.
Similarly, a site name is encoded by a pair of a site name and the daemon name
for that site. A typed version of the encoding would involve a translation of types
with clauses

[Agent] = [Agent Site Agent]
[Site] = [Site Agent]

We generally use lower case letters for site and agent names occurring in the
source program and upper case letters for sites and agents introduced by its
encoding,.

Looking first at the compositional encoding, in Figure 3, each agent uses a
currentloc channel as a lock, as before. It is now also used to store both the
site where the agent is and the name of the daemon on that site. The three
interesting clauses of the encoding, for location-independent output, creation,
and migration, each begin with an input on currentloc. They are broadly similar
to those of the simple translation.

Turning to the body of a daemon, defined in Figure 4, it is parametric in a
pair s of the name of the site S where it is and the daemon’s own name DS.
It has four replicated inputs, on its register, migrating, migrated, and message
channels. Some partial mutual exclusion between the bodies of these inputs is
enforced by using the lock channel. The data stored on the lock channel now maps
the name of each agent that has ever been on this site to a lock channel (e.g.
Bstate) for that agent. These agent locks prevent the daemon from attempting
to forward messages to agents that may be migrating. Each stores the site and
daemon (of that site) where the agent was last seen by this daemon — i.e. either
this site/daemon, or the site/daemon to which it migrated to from here. The use
of agent locks makes this algorithm rather more concurrent than the previous
one — rather than simply sequentialising the entire daemon, it allows daemons
to process inputs while agents are migrating, so many agents can be migrating
away from the same site, concurrently with each other and with delivery of
messages to other agents at the site.

Location-independent output A location-independent output (b@Q7?)clv in agent
A is implemented by requesting the local daemon to deliver it. (Note that A
may migrate away before the request is sent to the daemon, so the request must
be of the form (DSQS)ymessage![b ¢ v], not of the form (DSymessage![b c v].)
The message replicated input of the daemon gets the map m from agent
names to agent lock channels. If the destination agent B is not found, the message

17

[(b@?yclv]a = currentloc?(S DS) —
(DSQS)ymessagel[b c v]
| currentloc![S DS]
[agent b = P in Q]a = currentloc?(S DS) —
agent B =
let b=[BSDS]in
currentloc![S DS]
| (DS)register! B
| ack? =((AQSyack!|[P]s)
in
let b=[BSDS]in
ack? —(currentloc![S DS]|[Q]4)
[migrate to v — P]a = currentloc?(S DS) —
let (UDU)=uin
if [S DS] = [U DU] then
(currentloc![U DU |[P]a)
else
(DSymigrating! A
| ack? —
migrate to U —
(DUyregister! A
| ack? —
(DSQS)ymigrated![A[U DU]|
| ack? —(currentloc![U DU]|[P]a)
[iflocal (byclv — P else Q]a =let (B__) =bin
iflocal (B)clv —»[P]a else [Q]a

[0]a =0

[P|Q]a = [P]a |[Q]a
[e?p — Pla = ¢?’p —[P]a
[¥c?p — P]a = *c?p —[P]a
[new ¢ in P]4 =new c in [P]a

[if v = v then P else Q)4 = if u = v then [P], else [Q]4

Fig. 3. A Forwarding-Pointers Translation: the compositional translation

18

Daemons = let (SDS) =sin
new lock in

lock!emptymap

| *xregister? B — lock?m — lookup B in m with
found(Bstate) —
Bstate?(__) —
Bstate![S DS
| lock!m
| (Byack!
notfound —
new Bstate in

Bstate![S DS
| let m' = (m with B~ Bstate) in lock!m’
| (B)ack!

| *migrating? B — lock?m — lookup B in m with
found(Bstate) —
Bstate?(__) —
lock!m
| (B)ack!
notfound — 0

| *migrated?(B (U DU)) — lock?m — lookup B in m with
found(Bstate) —
lock!m
| Bstate![U DU]
| (BQU)yack!
notfound — 0

| *message?((B U DU) ¢ v) — lock?m — lookup B in m with
found(Bstate) —
lock!m
| Bstate?(R DR) —
iflocal (B)clv —
Bstate![R DR)
else
(DRQR)ymessage![[B U DU] cv]
| Bstate![R DR)]
notfound —
lock!m
| (DUQU)message![[B U DU] ¢ v]

Fig. 4. A Forwarding-Pointers Translation: the Daemon

19

is forwarded to the daemon DU on the site U where B was created. Otherwise,
if B is found, the agent lock Bstate is grabbed, obtaining the forwarding pointer
[R DR] for B. Using iflocal, the message is then either delivered to B, if it is
here, or to the daemon DR, otherwise. Note that the lock is released before the
agent lock is requested, so the daemon can process other inputs even if B is
currently migrating.

A single location-independent output, forwarded once between daemons, in-
volves inter-agent messages as below. (Communications that are guaranteed to
be between agents on the same site are drawn with thin arrows.)

A DS DS’ B
message![b ¢ v]

message![b c v]

\

Creation The compositional encoding for agent is similar to that of the encoding
in the previous section. It differs in two main ways. Firstly the source language
name b of the new agent must be replaced by the actual agent name B tupled
with the names S of this site and DS of the daemon on this site. Secondly, the
internal forwarder, receiving on deliver, is no longer required: the final delivery of
messages from daemons to agents is now always local to a site, and so can be done
using iflocal. An explicit acknowledgement (on dack in the simple translation)
is likewise unnecessary.
A single creation involves inter-agent messages as below.

A B DS
|

create
register! B

ack!

y

Migration Degenerate migrations, of an agent to the site it is currently on, must
now be identified and treated specially; otherwise the Daemon can deadlock.
An agent A executing a non-degenerate migration now synchronises with the

20

daemon DS on its starting site S, then migrates, registers with the daemon DU
on its destination site U, then synchronises again with DS. In between the first
and last synchronisations the agent lock for A in daemon DS is held, preventing
DS from attempting to deliver messages to A.

A single migration involves inter-agent messages as below.

DS A DU

migrating' A

migrate to U
register! A

ack!
migrated![A[U DU]]

ack!

Local communication The translation of iflocal must now extract the real agent
name B from the triple b, but is otherwise trivial.

The top level The top-level translation of a program P, given in Figure 5, dy-
namically creates a daemon on each site mentioned in P. Each site name si is
re-bound to the pair [si DS4i] of the site name together with the respective dae-
mon name. A top-level agent A is created and initialised; the agent name a is
re-bound to the triple [A S1 DS1] of the low-level agent name A together with
the initial site and daemon names.

5 Reduction Semantics

The informal descriptions of the primitives in §2 can be made precise by giving
them an operational semantics. We adopt a reduction semantics, defining the
atomic state-changes that a system of agents can undergo by reduction axioms
with a structural congruence, following the style of [BB92,Mil92].

The process terms of the calculi in §2.1,2.2 only allow the source code of
the body of a single agent to be expressed. During computation, this agent may
evolve into a system of many agents, distributed over many sites. The reduction
relation must be between the possible states of these systems, not simply between
terms of the source calculi; we express such states as configurations I', P. Here

21

[Pla,s1..sn = new register, migrating, migrated, message, ack, currentloc, lock,
daemondaemon, nd in
xdaemondaemon?S —
agent D =
migrate to S —(Daemons py | (a@s1)ynd![S D])
in0
| daemondaemon!s! | nd?s1 —

daemondaemon!sn | nd?sn —
let (S1DS1) =51 in
agent A =
let a =[AS1DS1] in
currentloc!s1
| (DS1)yregister! A
| ack? —>[P]a

in0

where P is initiated on site s1, the free site names in P are sl..sn, and the new-bound
names, S1, DS1, and A do not occur in P.

Fig. 5. A Forwarding-Pointers Translation: the top level

I is a location context that gives the current site of any free agent names; P is
a term of the (low- or high-level) calculus extended with two new forms.

@, P P as part of agent a
new Qs in P new agent name a, currently at site s

Configurations may involve many agents in parallel. The form @, P denotes
the process term P as part of the body of agent a, so for example @, P | @ Q
denotes P as part of the body of a in parallel with) as part of the body of b. It
will be convenient to allow the parts of the body of an agent to be syntactically
separated, so e.g. @, P, | @, Q | @, P> denotes Py | P> as part of a in parallel with
Q@ as part of b. Configurations must record the current sites of all agents. For
free agent names this is done by the location context I'; for the others, the form
new a@s in P declares a new agent name a, which is binding in P, and records
that agent a is currently at site s.

We now give the detailed definitions. Process terms are taken up to alpha-
conversion throughout. Structural congruence = includes the axiom

Q,(P|Q) =@, P|Q,Q

allowing the parts of an agent a to be syntactically separated or brought together,
and the axiom

@,new cin P =new c in @, P ifc#a

allowing channel binders to be extruded past @, . It is otherwise similar to
a standard structural congruence for an asynchronous w-calculus, with scope

22

extrusion both for the new channel binder new ¢ in P and for the new agent
binder new a@s in P. In full, it is the least congruence satisfying the following
axioms.

P=P|0
PIQ=Q|P
PIQIR) = (P|Q)|R
P|new cin) =new cin P|Q if ¢ not free in P

P|new a@s in Q = new ¢@s in P|Q if a not free in P
Q,(P|Q)=@,P|Q,Q

@Q,new cin P = new ¢ in Q, P ifec£a

A configuration is a pair I, P, where the location context I' is a finite partial
function from A to N, intuitively giving the current site of any free agent names
in P, and P is a term of the (low- or high-level) extended calculus. The initial
configuration, for a program P of the (low- or high-level) unextended calculus,
to be considered as the body of an agent a created on site s, is:

{a— s}, @, P

We are concerned only with configurations that can arise by reduction of ini-
tial configurations for well-typed programs. In these, any particle (i.e., agent,
migrate, output, input, if, or iflocal) will be under exactly one @ operator,
specifying the agent that contains it. (In this paper we do not give a type sys-
tem, and so leave this informal.) Other configurations have mathematically well-
defined reductions but may not be easily implementable or desirable, for example

T, @, (c?b— @, P)
receives an agent name and then adds P to the body of that agent.

We define a partial function match, taking a value and a pattern and giving
(where it is defined) a finite substitution from names to values.

match(v,) = {}
{z — v}

match([v1 .. vy], (P1 .- Pm)) = match(vy,pr) U. .. Umatch(vp, pm)

)
match(v, x)
)
)

p
match(v, (p1 .. pm)) undefined, if v is not of the form [v .. vy,]
The natural definition of the application of a substitution from names to values
to a process term P is also a partial operation, as the syntax does not allow
arbitrary values in all the places where free names can occur. We write {v/p} P for
the result of applying the substitution match(v, p) to P. This may be undefined
either because match(v, p) is undefined, or because match(v, p) is a substitution
but the application of that substitution to P is undefined.

23

The reduction axioms for the low-level calculus are as follows.

I',@,agent b =P in @ — I',new bQI'(a) in (@, P|Q, Q)

I', @, migrate to s - P — T®awrs),@,P

I, @, iflocal (b)clv — P else Q — T', @, clv|@, P if I'(a) = T'(b)
—T1,Q,Q if D(a) # T'(b)

T, @, (clv|c?p — P) — I, Q, {v/p}P

T, @, (clv|xc?p — P) — I',@, ({v/p}P|*c?p — P)

I'Q,if u=v then Pelse Q —I,Q,P ifu=v
—I,a,Q ifu#w

The rules mentioning potentially-undefined expressions I'(x) or {v/p} P in their
side-condition or conclusion have an implicit additional premise that these are
defined. Such premises should be automatically satisfied in derivations of reduc-
tions of well-typed programs.

Note that the only inter-site communication in an implementation will be
for the migrate reduction, in which the body of the migrating agent a must be
sent from its current site to site s.

The high-level calculus has the additional axiom below, for delivering
location-independent messages to their destination agent.

I,Q, h@?%clv — T', @ clv

Reduction is closed under structural congruence, parallel, new ¢ in _ and
new a@Qs in _, as specified by the rules below.

Q=P T.P—I',P' P'=(T, P—T", P’
[,Q—TI",Q' ILP|Q—T ,P'|Q
(T,ars s),P—(T,a+— s'), P I, P—TI' P c¢¢dom()

I',new a@s in P—I"' new a@s' in P’ T',new ¢ in P—I’' ,new c in P’

6 Discussion

We conclude by discussing alternative approaches for the description of mobile
agent infrastructures, related distributed process calculi, implementation, and
future work.

6.1 Infrastructure Description

In this paper we have identified two levels of abstraction, precisely formulated
them as process calculi, and argued that distributed infrastructure algorithms
for mobile agents can usefully be expressed as translations between the calculi.
Such translations should be compared with the many other possible ways of
describing the algorithms — we briefly consider diagrammatic, pseudocode, and
automata based approaches.

24

The diagrams used in §3,4 convey basic information about the algorithms —
the messages involved in isolated transactions — but they are far from complete
descriptions and can be misleading. The correctness of the algorithms depends
on details of synchronisation and locking that are precisely defined by the trans-
lation but are hard to express visually.

For a psuedocode description to provide a clear (if necessarily informal) de-
scription of an algorithm the constructs of the psuedocode must themselves have
clear intuitive semantics. This may hold for psuedocodes based on widespread
procedural languages, such as Pascal. Infrastructure algorithms, however, in-
volve constructs for agent creation, migration and communication. These do not
have a widespread, accepted, semantics — a number of rather different seman-
tic choices are possible — so more rigorous descriptions are required for clear
understanding.

Automata-based descriptions have been widely used for precise specification
of distributed algorithms, for example in the text of Lynch [Lyn96]. Automata
do not allow agent creation and migration to be represented directly, so for
working with a mobile agent algorithm one would either have to use a complex
encoding or consider only an abstraction of the algorithm — a non-executable
model, rather than an executable complete description.

The modelling approach has been followed by Amadio and Prasad in their
work on IP mobility [AP98]. They consider idealizations of protocols from IPv6
proposals for mobile host support, expressed in a variant of CCS, and prove
correctness results. There is a trade-off here: the idealizations can be expressed
in a simpler formal framework, greatly simplifying correctness proofs, but they
are further removed from implementation, inevitably increasing the likelihood
that important details have been abstracted away.

Few current proposals for mobile agent systems support any form of
location-independence. Those that do include the Distributed Join Language
[FGL196,J0i98], the MOA project of the Open Group Research Institute
[MLC98], and the Voyager system of ObjectSpace [Obj97]. The distributed join
language is at roughly the same level of abstraction as the high-level Nomadic 7-
calculus. It provides location-independent communication, with primitives simi-
lar to the outputs and replicated inputs used here. The MOA project associates
a locating scheme to each agent; chosen from querying a particular site (updated
on each migration), searching along a pre-defined itinerary, and following for-
warding pointers. Voyager provides location-independent asynchronous and syn-
chronous messages, and multicasts. Migrating objects leave trails of forwarders
behind them; entities that communicate with these objects are sent updated
addresses to be cached. Forwarders are garbage-collected; the garbage collection
involves heartbeat messages. More precise descriptions of the algorithms used in
these systems do not appear to have been published, making it difficult for the
application programmer to predict their performance and robustness.

25

6.2 Related Calculi

In recent years a number of process calculi have been introduced in order to
study some aspect of distributed and mobile agent computation. They include:

— The m calculus of Amadio and Prasad [AP94], for modelling the failure
semantics of Facile [TLK96].

— The Distributed Join Calculus of Fournet et al [FGLT96], intended as the
basis for a mobile agent language.

— The language of located processes and the D7 calculus of Riely and Hennessy,
used to study the semantics of failure [RH97,RH98] and typing for control
of resource use by mobile agents [HR98b,HR98a].

— The calculus of Sekiguchi and Yonezawa [SY97], used to study various prim-
itives for code and data movement.

— The dpi calculus of Sewell [Sew97a,Sew98], used to study a subtyping system
for locality enforcement of capabilities.

— The Ambient calculus of Cardelli and Gordon [CG98], used for modelling
security domains.

— The Seal calculus of Vitek and Castagna [VC98], focussing on protection
mechanisms including revocable capabilities.

There is a large design space of such calculi, with very different primitives being
appropriate for different purposes, and with many semantic choices. A thorough
comparison and discussion of the design space is beyond the scope of this paper
— a brief discussion can be found in [Sew99]; here we highlight only some of the
main design choices:

Hierarchy We have adopted a two-level hierarchy, of agents located on sites. One
might consider tree-structured mobile agents with migration of subtrees, e.g. as
in [FGLT96]. The added expressiveness may be desirable from the programmer’s
point of view, but it requires somewhat more complex infrastructure algorithms
— migrations of an agent can be caused by migrations of their parents — so we
neglect it in the first instance.

Unique Naming The calculi of §2 ensure that agents have unique names, in con-
trast, for example, to the Ambients of [CG98]. Inter-agent messages are therefore
guaranteed to have a unique destination.

Communication In earlier work [SWP98] the inter-agent communication prim-
itives were separated from the channel primitives used for local computation.
The inter-agent primitives were

(a@ly location-independent output of v to agent a
(aQs)ly location-dependent output
’p—> P input at the current agent

These give a conceptually simpler model, with messages sent to agents rather
than to channels at agents, but to allow encodings to be expressed it was neces-
sary to add variants and local channels. This led to a rather large calculus and
somewhat awkward encodings.

26

6.3 Implementation

In order to experiment with infrastructure algorithms, and with applications that
use location-independent communication, we have implemented an experimental
programming language, Nomadic Pict. The Nomadic Pict implementation is
based on the Pict compiler of Pierce and Turner [PT97]. It is a two-level language,
corresponding to the calculi presented in this paper. The low level extends Pict
by providing direct support for agent creation, migration and location-dependent,
communication. The high level supports location-independent communication by
applying translations — the compiler takes as input a program in the high-level
language together with an encoding of each high-level primitive into the low-
level language. It type-checks and applies the encoding; the resulting low-level
intermediate code can be executed on a relatively straightforward distributed
run-time system. The two encodings given have both been successfully type-
checked and executed.

Typing In this paper the calculi have been presented without typing. The No-
madic Pict implementation inherits from Pict its rather expressive type system.
For reasoning about infrastructure encodings a simple type system for the calculi
would be desirable, with types

T ::= Site | Agent | 3T | [T ..T)| X | 3IX.T

for site and agent names, channels carrying values of type T, tuples, and exis-
tential polymorphism.

The calculi allow a channel name to escape the agent in which it is declared
and be used subsequently both for input and output within other agents. The
global/local typing of [Sew97a,Sew98] could be used to impose tighter disci-
plines on channels that are intended to be used only locally, preventing certain
programming errors.

Input/Output and Traders Up to this point we have considered only communica-
tions that are internal to a distributed computation. External input and output
primitives can be cleanly provided in the form of special agent names, so that
from within the calculus inputs and outputs are treated exactly as other commu-
nications. For example, for console I/O one might have a fictitious console agent
on each site, together with globally-known channel names getchar and putchar.
Messages sent to these would be treated specially by the local run-time system,
leading to idioms such as

new a in (console)putchar![c a]|(a? — P)
for synchronous output of a character ¢ to the local console, and
new a in (console)getchar'a |(a?z — P)

for synchronous input of a character, to be bound to z, from the local console.

27

In realistic systems there will be a rich collection of input/output resources,
differing from site to site, so agents may need to acquire resources dynamically.
Moreover, in realistic systems agents will be initiated separately on many sites; if
they are to interact some mechanism must be provided for them to acquire each
other’s names dynamically. To do this in a lexically-scoped manner we envisage
each site maintaining a trader, a finite map from strings to values that supports
registration and lookup of resources. Agents would typically obtain the trader
name associated with a site at the same time as obtaining the site name. For
traders to be type-sound a type Dynamic [ACPP91] is required.

6.4 Future Work

This paper provides only a starting point — much additional work is required
on algorithms, semantics, and implementation.

— The choice of infrastructure algorithm(s) for a given application will depend
strongly on many characteristics of the application and target network, es-
pecially on the expected statistical properties of communication and migra-
tion. In wide area applications, sophisticated distributed algorithms will be
required, allowing for dynamic system reconfigurations such as adding new
sites to the system, migrating parts of the distributed computation before
shutting down some machines, tracing locations of different kinds of agents,
and implementing tolerance of partial failures. The space of feasible algo-
rithms and the trade-offs involved require detailed investigation.

— Turning to semantics, in order to state correctness properties (in the absence
of failures) a theory of observational equivalence is required. Such a theory
was developed for an idealised Pict in [Sew97b]; it must be generalized to
the distributed setting and supported by coinductive proof techniques.

— Finally, to investigate the behaviour of infrastructure algorithms in practice,
and to assess the usefulness of our high-level location-independent primitives
in applications, the implementation must be developed to the point where
it is possible to experiment with non-trivial applications.

The calculi of §2 make the unrealistic assumption that communications and sites
are reliable. This is implausible, even for local area networks of moderate size,
so usable infrastructure algorithms must be robust under some level of failure.
To express such algorithms some notion of time must be introduced into the
low-level calculus, to allow timeouts to be expressed, yet the semantics must be
kept tractable, to allow robustness properties to be stated and proved.

One might also consider other high-level communication primitives, such as
location-independent multicast, and agent primitives, such as tree-structured
agents. More speculatively, the two levels of abstraction that we have identified
may be a useful basis for work on security properties of mobile agent infrastruc-
tures — to consider whether a distributed infrastructure for mobile agents is
secure one must first be able to define it precisely, and have a clear understand-
ing of how it is distributed on actual machines.

28

Acknowledgements The authors would like to thank Ken Moody and Asis
Unyapoth for discussions and comments. Sewell was supported by EPSRC grants
GR/K 38403 and GR/L 62290, Wojciechowski by the Wolfson Foundation, and
Pierce by Indiana University and by NSF grant CCR-9701826, Principled Foun-
dations for Programming with Objects.

References

[ACPP91] Martin Abadi, Luca Cardelli, Benjamin Pierce, and Gordon Plotkin. Dy-

[AP94]

[APOS]

[BB92]
[Bou92]

[Car86]

[CGOS]

[CHK97]

namic typing in a statically typed language. ACM Transactions on Program-
ming Languages and Systems,, 13(2):237-268, April 1991.

R. M. Amadio and S. Prasad. Localities and failures. In P. S. Thiagarajan,
editor, Proceedings of 14" FST and TCS Conference, FST-TCS’94. LNCS
880, pages 205-216. Springer-Verlag, 1994.

Roberto M. Amadio and Sanjiva Prasad. Modelling IP mobility. In Proceed-
ings of CONCUR °98: Concurrency Theory. LNCS 1466, pages 301-316,
September 1998.

G. Berry and G. Boudol. The chemical abstract machine. Theoretical Com-
puter Science, 96:217-248, 1992.

Gérard Boudol. Asynchrony and the m-calculus (note). Rapport de
Recherche 1702, INRIA Sofia-Antipolis, May 1992.

Luca Cardelli. Amber and the amber machine. In Guy Cousineau, Pierre-
Louis Curien, and Bernard Robinet, editors, Combinators and Functional
Programming Languages, LNCS 242, pages 21-70, 1986.

Luca Cardelli and Andrew D. Gordon. Mobile ambients. In Proc. of
Foundations of Software Science and Computation Structures (FoSSaCS),
ETAPS’98, LNCS 1378, pages 140-155, March 1998.

D. Chess, C. Harrison, and A. Kershenbaum. Mobile agents: Are they a
good idea? In Mobile Object Systems — Towards the Programmable Internet.
LNCS 1222, pages 25-48, 1997.

[FGL*96] Cédric Fournet, Georges Gonthier, Jean-Jacques Lévy, Luc Maranget, and

[HR98a]

[FTROSb]

[HT91]

[TGF96]

Didier Rémy. A calculus of mobile agents. In Proceedings of CONCUR ’96.
LNCS 1119, pages 406-421. Springer-Verlag, August 1996.

Matthew Hennessy and James Riely. Resource access control in systems of
mobile agents. In Workshop on High-Level Concurrent Languages, 1998. Full
version as University of Sussex technical report CSTR 98/02.

Matthew Hennessy and James Riely. Type-safe execution of mobile agents
in anonymous networks. In Workshop on Mobile Object Systems, (satellite
of ECOOP ’98), 1998. Full version as University of Sussex technical report
CSTR. 98/03.

Kohei Honda and Mario Tokoro. An object calculus for asynchronous com-
munication. In Pierre America, editor, Proceedings of ECOOP ’91, LNCS
512, pages 133-147, July 1991.

Simon Peyton Jones, Andrew Gordon, and Sigbjorn Finne. Concurrent
Haskell. In Conference Record of the 23"¢ ACM Symposium on Principles
of Programming Languages, pages 295-308, St. Petersburg, Florida, January
21-24, 1996. ACM Press.

29

[J0i98]

[Lyn96]
[Mil92]

[MLCO8]

The join calculus language, 1998. Implementations available from
http://pauillac.inria.fr/join/unix/eng.htm.

Nancy A. Lynch. Distributed algorithms. Morgan Kaufmann, 1996.

Robin Milner. Functions as processes. Journal of Mathematical Structures
in Computer Science, 2(2):119-141, 1992.

D. S. Milojicic, W. LaForge, and D. Chauhan. Mobile Objects and Agents
(MOA). In USENIX COOTS ’98, Santa Fe, April 1998.

[MPW92] R. Milner, J. Parrow, and D. Walker. A calculus of mobile processes, Parts

[Nee89]
[Objo7]

[PT94]

[PT97]

[Rep91]

[RH97]

[RHOS]

[Sew97a]

[Sew97b]

[Sew98]

[Sew99]

[SWP9s]

[SY97]

I + II. Information and Computation, 100(1):1-77, 1992.

R. M. Needham. Names. In S. Mullender, editor, Distributed Systems, pages
89-101. Addison-Wesley, 1989.

ObjectSpace. Voyager core technology user guide, version 2.0 beta 1. Avail-
able from http://www.objectspace.com/, 1997.

Benjamin C. Pierce and David N. Turner. Concurrent objects in a process
calculus. In Theory and Practice of Parallel Programming (TPPP), Sendai,
Japan, November 1994.

Benjamin C. Pierce and David N. Turner. Pict: A programming language
based on the pi-calculus. Technical Report CSCI 476, Computer Science
Department, Indiana University, 1997. To appear in Proof, Language and
Interaction: Essays in Honour of Robin Milner, Gordon Plotkin, Colin Stir-
ling, and Mads Tofte, editors, MIT Press.

John Reppy. CML: A higher-order concurrent language. In Programming
Language Design and Implementation, pages 293-259. SIGPLAN, ACM,
June 1991.

James Riely and Matthew Hennessy. Distributed processes and location
failures. In Proceedings of ICALP ’97. LNCS 1256, pages 471-481. Springer-
Verlag, July 1997.

James Riely and Matthew Hennessy. A typed language for distributed mobile
processes. In Proceedings of the 25th POPL, January 1998.

Peter Sewell. Global/local subtyping for a distributed m-calculus. Tech-
nical Report 435, University of Cambridge, August 1997. Available from
http://www.cl.cam.ac.uk/users/pes20/.

Peter Sewell. On implementations and semantics of a concurrent program-
ming language. In Proceedings of CONCUR ’97. LNCS 1243, pages 391-405,
1997.

Peter Sewell. Global/local subtyping and capability inference for a dis-
tributed m-calculus. In Proceedings of ICALP ’98, LNCS 1443, pages 695—
706, 1998.

Peter Sewell. A brief introduction to applied 7, January 1999. Lecture
notes for the Mathfit Instructional Meeting on Recent Advances in Semantics
and Types for Concurrency: Theory and Practice, July 1998. Available from
http://www.cl.cam.ac.uk/users/pes20/.

Peter Sewell, Pawel T. Wojciechowski, and Benjamin C. Pierce. Location
independence for mobile agents. In Workshop on Internet Programming
Languages, Chicago, May 1998.

Tatsurou Sekiguchi and Akinori Yonezawa. A calculus with code mobility.
In Howard Bowman and John Derrick, editors, Formal Methods for Open
Object-based Distributed Systems (Proceedings of FMOODS ’97), pages 21—
36. IFIP, Chapman and Hall, July 1997.

30

[TLK96]

[Tur96]

[VCos]

Bent Thomsen, Lone Leth, and Tsung-Min Kuo. A Facile tutorial. In Pro-
ceedings of CONCUR ’96. LNCS 1119, pages 278-298. Springer-Verlag, Au-
gust 1996.

David N. Turner. The Polymorphic Pi-calculus: Theory and Implementation.
PhD thesis, University of Edinburgh, 1996.

Jan Vitek and Guiseppe Castagna. Towards a calculus of mobile compu-
tations. In Workshop on Internet Programming Languages, Chicago, May
1998.

31

