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Abstrat. We study ommuniation primitives for interation between

mobile agents. They an be lassi�ed into two groups. At a low level

there are loation dependent primitives that require a programmer to

know the urrent site of a mobile agent in order to ommuniate with

it. At a high level there are loation independent primitives that allow

ommuniation with a mobile agent irrespetive of its urrent site and

of any migrations. Implementation of these requires deliate distributed

infrastruture. We propose a simple alulus of agents that allows imple-

mentations of suh distributed infrastruture algorithms to be expressed

as enodings, or ompilations, of the whole alulus into the fragment

with only loation dependent ommuniation. These enodings give exe-

utable desriptions of the algorithms, providing a lean implementation

strategy for prototype languages. The alulus is equipped with a pre-

ise semantis, providing a solid basis for understanding the algorithms

and for reasoning about their orretness and robustness. Two sample

infrastruture algorithms are presented as enodings.
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1 Introdution

Reent years have seen an explosion of interest in wide-area distributed ap-

pliations, exeuting on intranets or on the global internet. A key onept for

struturing suh appliations is mobile agents, units of exeuting ode that an

migrate between sites [CHK97℄. Mobile agent programming requires novel forms

of language and runtime support|for interation between agents, responding to

network failures and reon�gurations, binding to resoures, managing seurity,

et. In this paper we fous on the �rst of these, onsidering the design, semanti

de�nition, and implementation of ommuniation primitives by whih mobile

agents an interat.

Mobile agent ommuniation primitives an be lassi�ed into two groups. At

a low level, there are loation dependent primitives that require a programmer

to know the urrent site of a mobile agent in order to ommuniate with it.

If a party to suh ommuniations migrates, then the ommuniating program

must expliitly trak its new loation. At a high level, there are loation inde-

pendent primitives that allow ommuniation with a mobile agent irrespetive

of its urrent site and of any migrations of sender or reeiver. Loation indepen-

dent primitives may greatly simplify the development of mobile appliations,

sine they allow movement and interation to be treated as separate onerns.

Their design and implementation, however, raise several diÆult issues. A dis-

tributed infrastruture is required for traking migrations and routing messages

to migrating agents. This infrastruture must address fundamental network is-

sues suh as failures, network lateny, loality, and onurreny; the algorithms

involved are thus inherently rather deliate and annot provide perfet loation

independene. Moreover, appliations may be distributed on widely di�erent

sales (from loal to wide-area networks), may exhibit di�erent patterns of om-

muniation and migration, and may demand di�erent levels of performane and

robustness; these varying demands will lead to a multipliity of infrastrutures,

based on a variety of algorithms. These infrastruture algorithms will be ex-

posed, via their performane and behaviour under failure, to the appliation

programmer | some detailed understanding of an algorithm will be required

for the programmer to understand its robustness properties under, for example,

failure of a site.

The need for lear understanding and easy experimentation with infrastru-

ture algorithms, as well as the desire to simultaneously support multiple infras-

trutures on the same network, suggests a two-level arhiteture|a low-level

onsisting of a single set of well-understood, loation-dependent primitives, in

terms of whih a variety of high-level, loation-independent ommuniation ab-

strations may be expressed. This two-level approah enables one to have a stan-

dardized low-level runtime that is ommon to many mahines, with divergent

high-level failities hosen and installed at run time. It also failitates simple

implementation of the loation-independent primitives (f. protool staks).

For this approah to be realisti, it is essential that the low-level primitives

should be diretly implementable above standard network protools. The Inter-

net Protool (IP) supports asynhronous, unordered, point-to-point, unreliable
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paket delivery; it abstrats from routing. We hoose primitives that are diretly

implementable using asynhronous, unordered, point-to-point, reliable messages.

This abstrats away from a multitude of additional details|error orretion,

retransmission, paket fragmentation, et.|while still retaining a lear relation-

ship to the well-understood IP level. It also well suited to the proess alulus

presentation that we use below. More ontroversially, we also inlude agent mi-

gration among the low-level primitives. This requires substantial runtime support

in individual network sites, but not sophistiated distributed algorithms|only

one message need be sent per migration. By treating it as a low-level primi-

tive we fous attention more sharply on the distributed algorithms supporting

loation-independent ommuniation. We also provide low-level primitives for

agent reation, for sending messages between agents at the same site, for gener-

ating globally unique names, and for loal omputation.

Many forms of high-level ommuniation an be implemented in terms of

these low-level primitives, for example synhronous and asynhronous message

passing, remote proedure alls, multiasting to agent groups, et. For this paper

we onsider only a single representative form: an asynhronous message-passing

primitive similar to the low-level primitive for ommuniation between o-loated

agents but independent of their loations and transparent to migrations.

This two-level framework an be formulated very leanly using tehniques

from the theory of proess aluli. Suh a formulation permits a preise de�ni-

tion of both low and high levels, and allows distributed infrastruture algorithms

to be treated rigorously as translations between aluli. The operational seman-

tis of the aluli provides a preise and lear understanding of the algorithms'

behaviour, aiding design, and ultimately, one may hope, supporting proofs of

orretness and robustness. Our presentation draws on ideas �rst developed in

Milner, Parrow, and Walker's �-alulus [MPW92,Mil92℄ and extended in the

distributed join-alulus of Fournet et al [FGL

+

96℄.

To failitate experimentation, the Nomadi Pit projet is implementing

prototype mobile agent programming languages orresponding to our high-

and low-level proess aluli. The low-level language extends the ompiler and

run-time system of Pit [PT97,Tur96℄, a onurrent language based on the �-

alulus, to support our primitives for agent reation, migration, and loation-

dependent ommuniation. High-level languages, with partiular infrastrutures

for loation-independent ommuniation, an then be obtained by applying user-

supplied translations into the low-level language. In both ases, the full language

available to the user remains very lose to the proess alulus presentation, and

an be given rigorous semantis in a similar style. Analogous extensions ould be

given for other onurrent uniproessor programming languages, suh as Amber

[Car86℄, Conurrent ML [Rep91℄, and Conurrent Haskell [JGF96℄.

In the next setion we introdue the two aluli informally, disussing our

primitives in detail and giving examples of ommon programming idioms. In

x3 and x4 we then present two sample infrastruture algorithms | one using a

entralised server and one using hains of forwarding pointers | as illustrations

of the use of the aluli. The operational semantis of the aluli are de�ned
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preisely in x5, in terms of a redution semantis. We onlude with some further

disussion of related work, implementation, and future extensions. The paper

develops ideas �rst presented in [SWP98℄ | that work introdued a slightly

di�erent alulus, using it to desribe the forwarding-pointers infrastruture.

2 The Caluli

In this setion our two levels of abstration are made preise by giving two

orresponding proess aluli, the low- and high-level Nomadi �-aluli. Their

design involves a deliate trade-o� | the distributed infrastruture algorithms

that we want to express involve non-trivial loal omputation within agents, yet

for the theory to be tratable (partiularly, for operational ongruenes to have

tratable haraterisations) the aluli must be kept as simple as possible. The

primitives for agent reation, agent migration and inter-agent ommuniation

that we onsider do not suÆe to allow the required loal omputation to be

expressed learly, so we integrate them with those of an asynhronous �-alulus

[HT91,Bou92℄. The other omputational onstruts that will be needed, e.g. for

�nite maps, an then be regarded as lightweight syntati sugar for �-proesses.

The low- and high-level aluli are introdued in x2.1 and x2.2 respetively,

followed by some examples and programming idioms in x2.3. In this setion

the operational semantis of the aluli are desribed informally | the preise

redution semantis will be given in x5. For simpliity, the aluli are presented

without typing or basi values (suh as integers and booleans). Type systems

are briey disussed in x6.3.

2.1 Low-Level Calulus

We begin with an example. Below is a term of the low-level alulus showing

how an applet server an be expressed. It an reeive (on the hannel named

getApplet) requests for an applet; the requests ontain a pair (bound to a and

s) onsisting of the name of the requesting agent and the name of its site.

�getApplet?

(

a s

)

!

agent b =

migrate to s! (

h

a�s

i

ak !b jB)

in

0

When a request is reeived the server reates an applet agent with a new name

bound to b. This agent immediately migrates to site s . It then sends an a-

knowledgement to the requesting agent a (whih is assumed to also be on site s)

ontaining its name. In parallel, the body B of the applet ommenes exeution.

The example illustrates the main entities represented in the alulus: sites,

agents and hannels. Sites should be thought of as physial mahines or, more

aurately, as instantiations of the Nomadi Pit runtime system on mahines;

eah site has a unique name. This paper does not expliitly address questions of
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site failure, network failure and reon�guration, or seurity. Sites are therefore

unstrutured; neither network topology nor administrative domains are repre-

sented in the formalism. Agents are units of exeuting ode; an agent has a

unique name and a body onsisting of some term; at any moment it is loated

at a partiular site. Channels support ommuniation within agents, and also

provide targets for inter-agent ommuniation|an inter-agent message will be

sent to a partiular hannel within the destination agent. Channels also have

unique names.

The inter-agent message

h

a�s

i

ak !b is harateristi of the low-level alulus.

It is loation-dependent|if agent a is in fat on site s then the message b will

be delivered, to hannel ak in a; otherwise the message will be disarded. In an

implementation at most one inter-site message is sent.

Names As in the �-alulus, names play a key rôle. We take an in�nite set N of

names, ranged over by a; b; ; s; and x. Formally, all names are treated identially;

informally, a and b will be used for agent names,  for a hannel name, and s for

a site name. (A type system would allow these distintions to be enfored.) The

alulus allows new names (of agents and hannels) to be reated dynamially.

Names are pure, in the sense of Needham [Nee89℄; they are not assumed to

ontain any information about their reation. They an therefore be implemented

by any mehanism that allows globally-unique bit strings to be reated loally,

e.g. by appending sequene numbers to IP addresses, or by hoosing large random

numbers.

Values We allow the ommuniation of �rst-order values, onsisting of names

and tuples.

u; v ::= x name

[v

1

:: v

n

℄ tuple (n � 0)

Patterns As is the �-alulus, values are deonstruted by pattern mathing on

input. Patterns have the same form as values, with the addition of a wildard.

p ::= wildard

x name pattern

(p

1

:: p

n

) tuple pattern (n � 0, no repeated names)

Proess terms The main syntati ategory is that of proess terms, ranged over

by P;Q. We will introdue the low-level primitives in groups.

agent a = P in Q agent reation

migrate to s!P agent migration

The exeution of the onstrut agent a = P in Q spawns a new agent on the

urrent site, with body P . After the reation,Q ommenes exeution, in parallel

with the rest of the body of the spawning agent. The new agent has a unique

name whih may be referred to both in its body and in the spawning agent (i.e.
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a is binding in P and Q). Agents an migrate to named sites | the exeution

of migrate to s!P as part of an agent results in the whole agent migrating

to site s. After the migration, P ommenes exeution in parallel with the rest

of the body of the agent.

P jQ parallel omposition

0 nil

The body of an agent may onsist of many proess terms in parallel, i.e. essen-

tially of many lightweight threads. They will interat only by message passing.

new  in P new hannel name reation

!v output v on hannel  in the urrent agent

?p!P input from hannel 

�?p!P repliated input from hannel 

if u = v then P else Q value equality testing

To express omputation within an agent, while keeping a lightweight semantis,

we inlude �-alulus-style interation primitives. Exeution of new  in P re-

ates a new unique hannel name;  is binding in P . An output !v (of value v on

hannel ) and an input ?p!P in the same agent may synhronise, resulting

in P with the names in the pattern p replaed by orresponding parts of v. A

repliated input �?p!P behaves similarly exept that it persists after the syn-

hronisation, and so may reeive another value. In both ?p!P and �?p!P

the names in p are binding in P . The onditional allows any two values to be

tested for equality.

ioal

h

a

i

!v!P else Q test-and-send to agent a on urrent site

Finally, the low-level alulus inludes a single primitive for interation between

agents. The exeution of ioal

h

a

i

!v!P else Q in the body of an agent b

has two possible outomes. If agent a is on the same site as b, then the message

!v will be delivered to a (where it may later interat with an input) and P

will ommene exeution in parallel with the rest of the body of b; otherwise

the message will be disarded, and Q will exeute as part of b. The onstrut

is analogous to test-and-set operations in shared memory systems | delivering

the message and starting P , or disarding it and starting Q, atomially. It an

greatly simplify algorithms that involve ommuniation with agents that may

migrate away at any time, yet is still implementable loally, by the runtime

system on eah site.

As in the �-alulus, names an be sope-extruded | here hannel and agent

names an be sent outside the agent in whih they were reated. For example,

if the body of agent a is

agent b =

new d in

ioal

h

a

i

!d! 0 else 0

in

?x! x !

6



then hannel name d is reated in agent b. After the output message !d has

been sent from b to a (by ioal) and has interated with the input ?x! x !

there will be an output d ! in agent a.

We require a lear relationship between the semantis of the low-level alulus

and the inter-mahine messages that would be sent in an implementation. To

ahieve this we allow ommuniation between outputs and inputs on a hannel

only if they are in the same agent | messages an be sent from one agent to

another only by ioal. Intuitively, there is a distint �-alulus-style hannel

for eah hannel name in every agent. For example, if the body of agent a is

agent b =

new d in

d?! 0

j ioal

h

a

i

!d! 0 else 0

in

?x! x !

then after some redution steps a ontains an output on d and b ontains an in-

put on d, but these annot reat. At �rst sight this semantis may seem ounter-

intuitive, but it reoniles the oniting requirements of expressiveness and

simpliity of the alulus. An implementation would reate the mailbox datas-

truture | a queue of pending outputs or inputs | required to implement a

hannel as required; it ould be garbage olleted when empty.

Summarizing, the terms of the low-level alulus are:

P;Q ::= agent a = P in Q agent reation

migrate to s!P agent migration

P jQ parallel omposition

0 nil

new  in P new hannel name reation

!v output v on hannel  in the urrent agent

?p!P input from hannel 

�?p!P repliated input from hannel 

if u = v then P else Q value equality testing

ioal

h

a

i

!v!P else Q test-and-send to agent a on urrent site

Note that the only primitive whih involves network ommuniation ismigrate,

whih requires only a single message to be sent, asynhronously, between ma-

hines. Distributed implementation of the low-level alulus is therefore straight-

forward, requiring no non-trivial distributed algorithms. It ould be done either

above a reliable datagram layer or above TCP, using a lightweight layer that

opens and loses streams as required.

Two other forms of loation-dependent output will be useful in writing en-

odings, and are expressible in the alulus given.

h

a

i

!v output to agent a on the urrent site

h

a�s

i

!v output to agent a on site s
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The exeution of an output

h

a

i

!v in the body of an agent b will either deliver

the message !v to agent a, if agent b is on the same site as a, or will silently

disard the message, if not. The exeution of an output

h

a�s

i

!v in the body of

an agent will either deliver the message !v to agent a, if agent a is on site s, or

will silently disard the message, if not. We regard these as syntati sugar for

ioal

h

a

i

!v! 0 else 0

and

agent b = (migrate to s!(ioal

h

a

i

!v! 0 else 0)) in 0

(where b is fresh) respetively. In an implementation, the �rst is implementable

loally; the seond requires only one asynhronous network message. Note that

one ould optimize the ase in whih the seond is used on site s itself by trying

ioal �rst:

ioal

h

a

i

!v!

0

else

agent b = (migrate to s!(ioal

h

a

i

!v! 0 else 0)) in 0

2.2 High-Level Calulus

The high-level alulus is obtained by extending the low-level alulus with a

single loation-independent ommuniation primitive:

h

a�?

i

!v loation-independent output to agent a

The intended semantis of an output

h

a�?

i

!v is that its exeution will reliably

deliver the message !v to agent a, irrespetive of the urrent site of a and of

any migrations.

2.3 Examples and Idioms

We give some syntati sugar and programming idioms that will be used in

the translations. Most are standard �-alulus idioms; some involve distributed

ommuniation.

Syntati sugar Empty tuples and tuple patterns will generally be elided, writ-

ing ! and ?!P for ![℄ and ?

()

!P . Multiple new hannel bindings will be

oalesed, writing new ; 

0

in P for new  in new 

0

in P . Let-delarations

will be used, writing let p = v in P for new  in !v j ?p!P (where  is a

name not ourring free in v or P ).
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Proedures Within a single agent one an express `proedures' as simple repli-

ated inputs. Below is a �rst attempt at a pair-server, that reeives values x

on hannel pair and returns two opies of x on hannel result , together with a

single invoation of the server.

new pair ; result in

�pair?x! result ![x x ℄

j pair !v

j result?z! : : : z : : :

This pair-server an only be invoked sequentially|there is no assoiation be-

tween multiple requests and their orresponding results. A better idiom is below,

in whih new result hannels are used for eah invoation.

new pair in

�pair?

(

x r

)

! r ![x x ℄

j new result in pair ![v result ℄ j result?z! : : : z : : :

j new result in pair ![w result ℄ j result?z! : : : z : : :

The example an easily be lifted to remote proedure alls between agents. We

show two versions, �rstly for loation-dependent RPC between stati agents and

seondly for loation-independent RPC between agents that may be migrating.

In the �rst, the server beomes

new pair in

�pair?

(

x r b s

)

!

h

b�s

i

r ![x x ℄

whih returns the result using loation-dependent ommuniation to the agent

b on site s reeived in the request. If the server is part of agent a

1

on site s

1

it

would be invoked from agent a

2

on site s

2

by

new result in

h

a

1

�s

1

i

pair ![v result a

2

s

2

℄

j result?z! : : : z : : :

If agents a

1

or a

2

an migrate this an fail. A more robust idiom is easily

expressible in the high-level alulus|the server beomes

new pair in

�pair?

(

x r b

)

!

h

b�?

i

r ![x x ℄

whih returns the result using loation-independent ommuniation to the agent

b. If the server is part of agent a

1

it would be invoked from agent a

2

by

new result in

h

a

1

�?

i

pair ![v result a

2

℄

j result?z! : : : z : : :
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Loks, methods and objets An agent onsisting of a parallel omposition of

repliated inputs, suh as

�method1 ?arg! : : :

j �method2 ?arg! : : :

is analogous to an objet with methods method1 and method2 . Mutual exlusion

between the bodies of the methods an be enfored by using a lok hannel:

new lok in

lok !

j �method1 ?arg!

lok?!

: : :

lok !

j �method2 ?arg!

lok?!

: : :

lok !

Here the lok is free if there is an output on hannel lok and not free otherwise.

State that is shared between the methods an be onveniently kept as the value

of the output on the lok hannel:

new lok in

lok !initialState

j �method1 ?arg!

lok?state!

: : :

lok !state

0

j �method2 ?arg!

lok?state!

: : :

lok !state

00

For more detailed disussion of objet representations in proess aluli, the

reader is referred to [PT94℄.

Finite maps The algorithms given in the following two setions involve �nite

maps | in the �rst, there is a daemon maintaining a map from agent names

to site names; in the seond, there are daemons maintaining maps from agent

names to lok hannels. The translations make use of the following onstruts:

!emptymap output the empty map on hannel 

lookup a in m with look up a in map m

found

(

p

)

!P

notfound!Q

let m

0

= (m with a 7! v) in P add a new binding
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Our aluli are suÆiently expressive to allow these to be expressed diretly, in

a standard �-alulus style | we regard the onstruts as syntati sugar for

the three proess terms below. In the seond and third the names x , found , and

notfound are assumed not to our free in P , Q, or a.

!emptymap

def

= new m in

!m

j �m?(x found notfound)!notfound !

lookup : : :

def

= new found ; notfound in

m![a found notfound ℄

j found?p!P

j notfound?!Q

let : : :

def

= new m

0

in

�m

0

?(x found notfound)!

if x = a then

found !v

else

m![x found notfound ℄

j P

These represent a �nite map as a hannel on whih there is a proess that reeives

lookup requests. Requests onsist of a triple of a key and two result hannels;

the proess returns a value on the �rst if the lookup sueeds, and otherwise

signals on the seond.

3 A Simple Infrastruture Translation

In this setion and the following one we present two infrastruture algorithms, ex-

pressed as translations. The �rst is one of the simplest algorithms possible, highly

sequential and with a entralized server daemon; the seond is one step more so-

phistiated, with multiple daemons maintaining forwarding-pointer hains. The

algorithms have been hosen to illustrate our approah, and the use of the aluli

| algorithms that are widely appliable to atual mobile agent systems would

have to be yet more deliate, both for eÆieny and for robustness under partial

failure. Even the simplest of our algorithms, however, requires deliate synhro-

nization that (the authors an attest) is easy to get wrong; expressing them as

translations between well-de�ned aluli provides a solid basis for disussion and

algorithm design.

The algorithm presented in this setion involves a entral daemon that keeps

trak of the urrent sites of all agents and forwards any loation-independent

messages to them. The daemon is itself implemented as an agent whih never

migrates; the translation of a program then onsists roughly of the daemon agent

in parallel with a ompositional translation of the program. For simpliity we
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onsider only programs that are initiated as single agents, rather than many

agents initiated separately on di�erent sites. (Programs may, of ourse, begin by

reating other agents that immediately migrate). The preise de�nition is given

in Figures 1 and 2. Figure 2 de�nes a top-level translation [[ ℄℄. For eah term

P of the high-level alulus, onsidered as the body of an agent named a and

initiated at site s, the result [[P ℄℄

a;s

of the translation is a term of the low-level

alulus. The de�nition of [[ ℄℄ involves the body Daemon of the daemon agent

and an auxiliary ompositional translation [[P ℄℄

a

, de�ned phrase-by-phrase, of P

onsidered as part of the body of agent a. Both are given in Figure 1.

Let us look �rst at the daemon. It ontains three repliated inputs, on the

register , migrating , and message hannels, for reeiving messages from the en-

odings of agents. The daemon is essentially single-threaded | the hannel lok

is used to enfore mutual exlusion between the bodies of the repliated inputs,

and the ode preserves the invariant that at any time there is at most one output

on lok . The lok hannel is also used to maintain the site map | a �nite map

from agent names to site names, reording the urrent site of every agent. The

body of eah repliated input begins with an input on lok , thereby aquiring

both the lok and the site map.

Turning to the ompositional translation [[ ℄℄

a

, only three lauses are not triv-

ial | for the loation-independent output, agent reation, and agent migration

primitives. We disuss eah, together with their interations with the daemon,

in turn.

Loation-independent output A loation-independent output in an agent a is

implemented simply by using a loation-dependent output to send a request to

the daemon D, at its site SD , on its hannel message :

[[

h

b�?

i

!v ℄℄

a

=

h

D�SD

i

message ![b  v ℄

The orresponding repliated input on hannel message in the daemon

j �message?

(

a  v

)

!

lok?m!

lookup a in m with

found

(

s

)

!

h

a�s

i

deliver ![ v ℄

j dak?! lok !m

notfound! 0

�rst aquires the lok and urrent site map m, then looks up the target agent's

site in the map and sends a loation-dependent message to the deliver han-

nel of that agent. It then waits to reeive an aknowledgement (on the dak

hannel) from the agent before relinquishing the lok. This prevents the agent

migrating before the deliver message arrives. Note that the notfound branh of

the lookup will never be taken, as the algorithm ensures that all agents register

before messages an be sent to them. The inter-agent ommuniations involved
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[[

h

b�?

i

!v ℄℄

a

=

h

D�SD

i

message ![b  v ℄

[[agent b = P in Q℄℄

a

= urrentlo?s!

agent b =

�deliver?

(

 v

)

!(

h

D�SD

i

dak ! j !v)

j

h

D�SD

i

register ![b s ℄

j ak?!(

h

a�s

i

ak ! j urrentlo !s j[[P ℄℄

b

)

in

ak?!(urrentlo !s j[[Q℄℄

a

)

[[migrate to s!P ℄℄

a

= urrentlo? !

h

D�SD

i

migrating !a

j ak?!

migrate to s!

h

D�SD

i

migrated !s

j ak?!(urrentlo!s j[[P ℄℄

a

)

[[0℄℄

a

= 0

[[P jQ℄℄

a

= [[P ℄℄

a

j[[Q℄℄

a

[[?p!P ℄℄

a

= ?p![[P ℄℄

a

[[�?p!P ℄℄

a

= �?p![[P ℄℄

a

[[ioal

h

b

i

!v !P else Q℄℄

a

= ioal

h

b

i

!v ![[P ℄℄

a

else [[Q℄℄

a

[[new  in P ℄℄

a

= new  in [[P ℄℄

a

[[if u = v then P else Q℄℄

a

= if u = v then [[P ℄℄

a

else [[Q℄℄

a

Daemon = new lok in

lok !emptymap

j �register?

(

a s

)

!

lok?m!

let m

0

= (m with a 7! s) in

lok !m

0

j

h

a�s

i

ak !

j �migrating?a!

lok?m!

lookup a in m with

found

(

s

)

!

h

a�s

i

ak !

j migrated?s

0

!

let m

0

= (m with a 7! s

0

) in

lok !m

0

j

h

a�s

0

i

ak !

notfound! 0

j �message?

(

a  v

)

!

lok?m!

lookup a in m with

found

(

s

)

!

h

a�s

i

deliver ![ v ℄

j dak?! lok !m

notfound! 0

Fig. 1. A Simple Translation: the ompositional translation and the daemon
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in delivery of a single loation-independent output are illustrated below.

a D b

X

X

X

X

X

X

X

X

X

Xz

message ![b  v ℄

X

X

X

X

X

X

X

X

X

Xz

deliver ![ v ℄

�

�

�

�

�

�

�

�

�

�9

dak !

Creation In order for the daemon's site map to be kept up to date, agents must

register with the daemon, telling it their site, both when they are reated and

after they migrate. Eah agent reords its urrent site internally as an output

on its urrentlo hannel. This hannel is also used as a lok, to enfore mutual

exlusion between the enodings of all agent reation and migration ommands

within the body of the agent.

The enoding of an agent reation in an agent a

[[agent b = P in Q℄℄

a

= urrentlo?s!

agent b =

�deliver?

(

 v

)

!(

h

D�SD

i

dak ! j !v)

j

h

D�SD

i

register ![b s ℄

j ak?!(

h

a�s

i

ak ! j urrentlo!s j[[P ℄℄

b

)

in

ak?!(urrentlo!s j[[Q℄℄

a

)

�rst aquires the lok and urrent site s of a, and then reates the new agent

b. The body of b sends a register message to the daemon and waits for an

aknowledgement. It then sends an aknowledgement to a, initializes the lok

for b and allows the enoding of the body P of b to proeed. Meanwhile, in a the

lok is kept until the aknowledgement from b is reeived. The body of b is put

in parallel with the repliated input

�deliver?

(

 v

)

!(

h

D�SD

i

dak ! j !v)

whih will reeive forwarded messages for hannels in b from the daemon, send an

aknowledgement bak, and deliver the value loally to the appropriate hannel.

The repliated input on register in the daemon

j �register?

(

a s

)

!

lok?m!

let m

0

= (m with a 7! s) in

lok !m

0

j

h

a�s

i

ak !

�rst aquires the lok and urrent site map, replaes the site map with an up-

dated map, thereby relinquishing the lok, and sends an aknowledgement to

14



the registering agent. The inter-agent ommuniations involved in a single agent

reation are illustrated below.

a b D

reate

t

X

X

X

X

X

X

X

X

X

Xz

register ![b s℄

�

�

�

�

�

�

�

�

�

�9

ak !

�

�

�

�

�

�

�

�

�

�9

ak !

Migration The enoding of a migrate in agent a

[[migrate to s!P ℄℄

a

= urrentlo? !

h

D�SD

i

migrating !a

j ak?!

migrate to s!

h

D�SD

i

migrated !s

j ak?!(urrentlo!s j[[P ℄℄

a

)

�rst aquires the lok for a (disarding the urrent site data). It then sends a

migrating message to the daemon, waits for an ak , migrates to its new site s,

sends a migrated message to the daemon, waits again for an ak , and releases

the lok (with the new site s). The repliated input on migrating in the daemon

j �migrating?a!

lok?m!

lookup a in m with

found

(

s

)

!

h

a�s

i

ak !

j migrated?s

0

!

let m

0

= (m with a 7! s

0

) in

lok !m

0

j

h

a�s

0

i

ak !

notfound! 0

�rst aquires the lok and urrent site map, looks up the urrent site of a and

sends an ak to a at that site. It then waits to reeive the new site, replaes

the site map with an updated map, thereby relinquishing the lok, and sends an

aknowledgement to a at its new site. The inter-agent ommuniations involved
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in a single migration are shown below.

a D

X

X

X

X

X

X

X

X

X

Xz

migrating !a

�

�

�

�

�

�

�

�

�

�9

ak !

migrate to s

X

X

X

X

X

X

X

X

X

Xz

migrated !s

�

�

�

�

�

�

�

�

�

�9

ak !

The top level Putting the daemon and the ompositional enoding together, the

top level translation, de�ned in Figure 2, reates the daemon agent, installs the

[[P ℄℄

a;s

= new register ;migrating ;migrated ;message; dak ; deliver ; ak ; urrentlo in

agent D = Daemon in

let SD = s in

�deliver?

(

 v

)

!(

h

D�SD

i

dak ! j !v)

j

h

D�SD

i

register ![a s ℄

j ak?!(urrentlo!s j[[P ℄℄

a

)

where the new-bound names, SD , and D , do not our in P .

Fig. 2. A Simple Translation: the top level

repliated input on deliver for a, registers agent a to be at site s, initializes the

lok for a, and starts the enoding of the body [[P ℄℄

a

.

4 A Forwarding-Pointers Infrastruture Translation

In this setion we give a more distributed algorithm, in whih daemons on eah

site maintain hains of forwarding pointers for agents that have migrated. It

removes the single bottlenek of the entralised-server solution in the preeding

setion; it is thus a step loser to algorithms that may be of wide pratial use.

The algorithm is more deliate; expressing it as a translation provides a more

rigorous test of the framework.

As before, the translation onsists of a ompositional enoding of the bodies

of agents, given in Figure 3, daemons, de�ned in Figure 4, and a top-level trans-

lation putting them together, given in Figure 5. The top-level translation of a
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program, again initially a single agent, reates a daemon on eah site mentioned

by the agent. These will eah maintain a olletion of forwarding pointers for all

agents that have migrated away from their site. To keep the pointers urrent,

agents synhronize with their loal daemons on reation and migration. Loation

independent ommuniations are implemented via the daemons, using the for-

warding pointers where possible. If a daemon has no pointer for the destination

agent of a message then it will forward the message to the daemon on the site

where the destination agent was reated; to make this possible an agent name

is enoded by a triple of an agent name and the site and daemon of its reation.

Similarly, a site name is enoded by a pair of a site name and the daemon name

for that site. A typed version of the enoding would involve a translation of types

with lauses

[[Agent℄℄ = [Agent SiteAgent℄

[[Site℄℄ = [SiteAgent℄

We generally use lower ase letters for site and agent names ourring in the

soure program and upper ase letters for sites and agents introdued by its

enoding.

Looking �rst at the ompositional enoding, in Figure 3, eah agent uses a

urrentlo hannel as a lok, as before. It is now also used to store both the

site where the agent is and the name of the daemon on that site. The three

interesting lauses of the enoding, for loation-independent output, reation,

and migration, eah begin with an input on urrentlo. They are broadly similar

to those of the simple translation.

Turning to the body of a daemon, de�ned in Figure 4, it is parametri in a

pair s of the name of the site S where it is and the daemon's own name DS.

It has four repliated inputs, on its register , migrating , migrated , and message

hannels. Some partial mutual exlusion between the bodies of these inputs is

enfored by using the lok hannel. The data stored on the lok hannel now maps

the name of eah agent that has ever been on this site to a lok hannel (e.g.

Bstate) for that agent. These agent loks prevent the daemon from attempting

to forward messages to agents that may be migrating. Eah stores the site and

daemon (of that site) where the agent was last seen by this daemon | i.e. either

this site/daemon, or the site/daemon to whih it migrated to from here. The use

of agent loks makes this algorithm rather more onurrent than the previous

one | rather than simply sequentialising the entire daemon, it allows daemons

to proess inputs while agents are migrating, so many agents an be migrating

away from the same site, onurrently with eah other and with delivery of

messages to other agents at the site.

Loation-independent output A loation-independent output

h

b�?

i

!v in agent

A is implemented by requesting the loal daemon to deliver it. (Note that A

may migrate away before the request is sent to the daemon, so the request must

be of the form

h

DS�S

i

message ![b  v ℄, not of the form

h

DS

i

message ![b  v ℄.)

The message repliated input of the daemon gets the map m from agent

names to agent lok hannels. If the destination agent B is not found, the message

17



[[

h

b�?

i

!v ℄℄

A

= urrentlo?(S DS )!

h

DS�S

i

message ![b  v ℄

j urrentlo![S DS ℄

[[agent b = P in Q℄℄

A

= urrentlo?(S DS )!

agent B =

let b = [B SDS℄ in

urrentlo ![S DS ℄

j

h

DS

i

register !B

j ak?!(

h

A�S

i

ak ! j[[P ℄℄

B

)

in

let b = [B SDS℄ in

ak?!(urrentlo ![S DS ℄ j[[Q℄℄

A

)

[[migrate to u!P ℄℄

A

= urrentlo?(S DS)!

let (U DU) = u in

if [S DS ℄ = [U DU ℄ then

(urrentlo![U DU ℄ j[[P ℄℄

A

)

else

h

DS

i

migrating !A

j ak?!

migrate to U !

h

DU

i

register !A

j ak?!

h

DS�S

i

migrated ![A [U DU ℄℄

j ak?!(urrentlo ![U DU ℄ j[[P ℄℄

A

)

[[ioal

h

b

i

!v !P else Q℄℄

A

= let (B ) = b in

ioal

h

B

i

!v ![[P ℄℄

A

else [[Q℄℄

A

[[0℄℄

A

= 0

[[P jQ℄℄

A

= [[P ℄℄

A

j[[Q℄℄

A

[[?p!P ℄℄

A

= ?p![[P ℄℄

A

[[�?p!P ℄℄

A

= �?p![[P ℄℄

A

[[new  in P ℄℄

A

= new  in [[P ℄℄

A

[[if u = v then P else Q℄℄

A

= if u = v then [[P ℄℄

a

else [[Q℄℄

A

Fig. 3. A Forwarding-Pointers Translation: the ompositional translation
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Daemon

s

= let (SDS) = s in

new lok in

lok !emptymap

j �register?B! lok?m! lookup B in m with

found

(

Bstate

)

!

Bstate?

( )

!

Bstate ![S DS ℄

j lok !m

j

h

B

i

ak !

notfound!

new Bstate in

Bstate ![S DS ℄

j let m

0

= (m with B 7! Bstate) in lok !m

0

j

h

B

i

ak !

j �migrating?B ! lok?m! lookup B in m with

found

(

Bstate

)

!

Bstate?

( )

!

lok !m

j

h

B

i

ak !

notfound! 0

j �migrated?(B (U DU ))! lok?m! lookup B in m with

found

(

Bstate

)

!

lok !m

j Bstate ![U DU ℄

j

h

B�U

i

ak !

notfound! 0

j �message?((B U DU )  v)! lok?m! lookup B in m with

found

(

Bstate

)

!

lok !m

j Bstate?(RDR)!

ioal

h

B

i

!v !

Bstate ![RDR℄

else

h

DR�R

i

message ![[B U DU ℄  v ℄

j Bstate ![RDR℄

notfound!

lok !m

j

h

DU�U

i

message ![[B U DU ℄  v ℄

Fig. 4. A Forwarding-Pointers Translation: the Daemon
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is forwarded to the daemon DU on the site U where B was reated. Otherwise,

if B is found, the agent lok Bstate is grabbed, obtaining the forwarding pointer

[RDR℄ for B . Using ioal, the message is then either delivered to B , if it is

here, or to the daemon DR, otherwise. Note that the lok is released before the

agent lok is requested, so the daemon an proess other inputs even if B is

urrently migrating.

A single loation-independent output, forwarded one between daemons, in-

volves inter-agent messages as below. (Communiations that are guaranteed to

be between agents on the same site are drawn with thin arrows.)

A DS DS

0

B

X

X

X

X

X

X

X

X

X

Xz

message ![b  v ℄

X

X

X

X

X

X

X

X

X

Xz

message ![b  v ℄

X

X

X

X

X

X

X

X

X

Xz

!v

Creation The ompositional enoding for agent is similar to that of the enoding

in the previous setion. It di�ers in two main ways. Firstly the soure language

name b of the new agent must be replaed by the atual agent name B tupled

with the names S of this site and DS of the daemon on this site. Seondly, the

internal forwarder, reeiving on deliver , is no longer required: the �nal delivery of

messages from daemons to agents is now always loal to a site, and so an be done

using ioal. An expliit aknowledgement (on dak in the simple translation)

is likewise unneessary.

A single reation involves inter-agent messages as below.

A B DS

reate

t

X

X

X

X

X

X

X

X

X

Xz

register !B

�

�

�

�

�

�

�

�

�

�9

ak !

�

�

�

�

�

�

�

�

�

�9

ak !

Migration Degenerate migrations, of an agent to the site it is urrently on, must

now be identi�ed and treated speially; otherwise the Daemon an deadlok.

An agent A exeuting a non-degenerate migration now synhronises with the
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daemon DS on its starting site S, then migrates, registers with the daemon DU

on its destination site U , then synhronises again with DS. In between the �rst

and last synhronisations the agent lok for A in daemon DS is held, preventing

DS from attempting to deliver messages to A.

A single migration involves inter-agent messages as below.

DS A DU

�

�

�

�

�

�

�

�

�

�9

migrating !A

X

X

X

X

X

X

X

X

X

Xz

ak !

migrate to U

X

X

X

X

X

X

X

X

X

Xz

register !A

�

�

�

�

�

�

�

�

�

�9

ak !

�

�

�

�

�

�

�

�

�

�9

migrated ![A [U DU ℄℄

X

X

X

X

X

X

X

X

X

Xz

ak !

Loal ommuniation The translation of ioal must now extrat the real agent

name B from the triple b, but is otherwise trivial.

The top level The top-level translation of a program P , given in Figure 5, dy-

namially reates a daemon on eah site mentioned in P . Eah site name si is

re-bound to the pair [siDSi℄ of the site name together with the respetive dae-

mon name. A top-level agent A is reated and initialised; the agent name a is

re-bound to the triple [AS1DS1℄ of the low-level agent name A together with

the initial site and daemon names.

5 Redution Semantis

The informal desriptions of the primitives in x2 an be made preise by giving

them an operational semantis. We adopt a redution semantis, de�ning the

atomi state-hanges that a system of agents an undergo by redution axioms

with a strutural ongruene, following the style of [BB92,Mil92℄.

The proess terms of the aluli in x2.1,2.2 only allow the soure ode of

the body of a single agent to be expressed. During omputation, this agent may

evolve into a system of many agents, distributed over many sites. The redution

relation must be between the possible states of these systems, not simply between

terms of the soure aluli; we express suh states as on�gurations �; P . Here
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[[P ℄℄

a;s1::sn

= new register ;migrating ;migrated ;message; ak ; urrentlo; lok ;

daemondaemon; nd in

�daemondaemon?S !

agent D =

migrate to S !(Daemon

[SD℄

j

h

a�s1

i

nd ![S D ℄)

in 0

j daemondaemon !s1 j nd?s1 !

: : :

daemondaemon !sn j nd?sn!

let (S1DS1) = s1 in

agent A =

let a = [AS1DS1℄ in

urrentlo!s1

j

h

DS1

i

register !A

j ak?![[P ℄℄

A

in 0

where P is initiated on site s1, the free site names in P are s1::sn, and the new-bound

names, S1 , DS1 , and A do not our in P .

Fig. 5. A Forwarding-Pointers Translation: the top level

� is a loation ontext that gives the urrent site of any free agent names; P is

a term of the (low- or high-level) alulus extended with two new forms.

�

a

P P as part of agent a

new a�s in P new agent name a, urrently at site s

Con�gurations may involve many agents in parallel. The form �

a

P denotes

the proess term P as part of the body of agent a, so for example �

a

P j�

b

Q

denotes P as part of the body of a in parallel with Q as part of the body of b. It

will be onvenient to allow the parts of the body of an agent to be syntatially

separated, so e.g. �

a

P

1

j�

b

Q j�

a

P

2

denotes P

1

jP

2

as part of a in parallel with

Q as part of b. Con�gurations must reord the urrent sites of all agents. For

free agent names this is done by the loation ontext �; for the others, the form

new a�s in P delares a new agent name a, whih is binding in P , and reords

that agent a is urrently at site s.

We now give the detailed de�nitions. Proess terms are taken up to alpha-

onversion throughout. Strutural ongruene � inludes the axiom

�

a

(P jQ) � �

a

P j�

a

Q

allowing the parts of an agent a to be syntatially separated or brought together,

and the axiom

�

a

new  in P � new  in �

a

P if  6= a

allowing hannel binders to be extruded past �

a

. It is otherwise similar to

a standard strutural ongruene for an asynhronous �-alulus, with sope
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extrusion both for the new hannel binder new  in P and for the new agent

binder new a�s in P . In full, it is the least ongruene satisfying the following

axioms.

P � P j 0

P jQ � Q jP

P j(Q jR) � (P jQ) jR

P jnew  in Q � new  in P jQ if  not free in P

P jnew a�s in Q � new a�s in P jQ if a not free in P

�

a

(P jQ) � �

a

P j�

a

Q

�

a

new  in P � new  in �

a

P if  6= a

A on�guration is a pair �; P , where the loation ontext � is a �nite partial

funtion from N to N , intuitively giving the urrent site of any free agent names

in P , and P is a term of the (low- or high-level) extended alulus. The initial

on�guration, for a program P of the (low- or high-level) unextended alulus,

to be onsidered as the body of an agent a reated on site s, is:

fa 7! sg; �

a

P

We are onerned only with on�gurations that an arise by redution of ini-

tial on�gurations for well-typed programs. In these, any partile (i.e., agent,

migrate, output, input, if , or ioal) will be under exatly one � operator,

speifying the agent that ontains it. (In this paper we do not give a type sys-

tem, and so leave this informal.) Other on�gurations have mathematially well-

de�ned redutions but may not be easily implementable or desirable, for example

�; �

a

(?b!�

b

P )

reeives an agent name and then adds P to the body of that agent.

We de�ne a partial funtion math, taking a value and a pattern and giving

(where it is de�ned) a �nite substitution from names to values.

math(v; ) = fg

math(v; x) = fx 7! vg

math([v

1

:: v

m

℄; (p

1

:: p

m

)) = math(v

1

; p

1

) [ : : : [math(v

m

; p

m

)

math(v; (p

1

:: p

m

)) unde�ned, if v is not of the form [v

1

:: v

m

℄

The natural de�nition of the appliation of a substitution from names to values

to a proess term P is also a partial operation, as the syntax does not allow

arbitrary values in all the plaes where free names an our. We write fv=pgP for

the result of applying the substitution math(v; p) to P . This may be unde�ned

either beause math(v; p) is unde�ned, or beause math(v; p) is a substitution

but the appliation of that substitution to P is unde�ned.
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The redution axioms for the low-level alulus are as follows.

�;�

a

agent b = P in Q �! �;new b��(a) in (�

b

P j�

a

Q)

�;�

a

migrate to s!P �! (�� a 7! s);�

a

P

�;�

a

ioal

h

b

i

!v!P else Q �! �;�

b

!v j�

a

P if �(a) = �(b)

�! �;�

a

Q if �(a) 6= �(b)

�;�

a

(!v j?p!P ) �! �;�

a

fv=pgP

�;�

a

(!v j�?p!P ) �! �;�

a

(fv=pgP j�?p!P )

�;�

a

if u = v then P else Q �! �;�

a

P if u = v

�! �;�

a

Q if u 6= v

The rules mentioning potentially-unde�ned expressions �(x) or fv=pgP in their

side-ondition or onlusion have an impliit additional premise that these are

de�ned. Suh premises should be automatially satis�ed in derivations of redu-

tions of well-typed programs.

Note that the only inter-site ommuniation in an implementation will be

for the migrate redution, in whih the body of the migrating agent a must be

sent from its urrent site to site s.

The high-level alulus has the additional axiom below, for delivering

loation-independent messages to their destination agent.

�;�

a

h

b�?

i

!v �! �;�

b

!v

Redution is losed under strutural ongruene, parallel, new  in and

new a�s in , as spei�ed by the rules below.

Q � P �; P�!�

0

; P

0

P

0

� Q

0

�; Q�!�

0

; Q

0

�; P�!�

0

; P

0

�; P jQ�!�

0

; P

0

jQ

(�; a 7! s); P�!(�; a 7! s

0

); P

0

�;new a�s in P�!�

0

;new a�s

0

in P

0

�; P�!�

0

; P

0

 62 dom(�)

�;new  in P�!�

0

;new  in P

0

6 Disussion

We onlude by disussing alternative approahes for the desription of mobile

agent infrastrutures, related distributed proess aluli, implementation, and

future work.

6.1 Infrastruture Desription

In this paper we have identi�ed two levels of abstration, preisely formulated

them as proess aluli, and argued that distributed infrastruture algorithms

for mobile agents an usefully be expressed as translations between the aluli.

Suh translations should be ompared with the many other possible ways of

desribing the algorithms | we briey onsider diagrammati, pseudoode, and

automata based approahes.
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The diagrams used in x3,4 onvey basi information about the algorithms |

the messages involved in isolated transations | but they are far from omplete

desriptions and an be misleading. The orretness of the algorithms depends

on details of synhronisation and loking that are preisely de�ned by the trans-

lation but are hard to express visually.

For a psuedoode desription to provide a lear (if neessarily informal) de-

sription of an algorithm the onstruts of the psuedoode must themselves have

lear intuitive semantis. This may hold for psuedoodes based on widespread

proedural languages, suh as Pasal. Infrastruture algorithms, however, in-

volve onstruts for agent reation, migration and ommuniation. These do not

have a widespread, aepted, semantis | a number of rather di�erent seman-

ti hoies are possible | so more rigorous desriptions are required for lear

understanding.

Automata-based desriptions have been widely used for preise spei�ation

of distributed algorithms, for example in the text of Lynh [Lyn96℄. Automata

do not allow agent reation and migration to be represented diretly, so for

working with a mobile agent algorithm one would either have to use a omplex

enoding or onsider only an abstration of the algorithm | a non-exeutable

model, rather than an exeutable omplete desription.

The modelling approah has been followed by Amadio and Prasad in their

work on IP mobility [AP98℄. They onsider idealizations of protools from IPv6

proposals for mobile host support, expressed in a variant of CCS, and prove

orretness results. There is a trade-o� here: the idealizations an be expressed

in a simpler formal framework, greatly simplifying orretness proofs, but they

are further removed from implementation, inevitably inreasing the likelihood

that important details have been abstrated away.

Few urrent proposals for mobile agent systems support any form of

loation-independene. Those that do inlude the Distributed Join Language

[FGL

+

96,Joi98℄, the MOA projet of the Open Group Researh Institute

[MLC98℄, and the Voyager system of ObjetSpae [Obj97℄. The distributed join

language is at roughly the same level of abstration as the high-level Nomadi �-

alulus. It provides loation-independent ommuniation, with primitives simi-

lar to the outputs and repliated inputs used here. The MOA projet assoiates

a loating sheme to eah agent; hosen from querying a partiular site (updated

on eah migration), searhing along a pre-de�ned itinerary, and following for-

warding pointers. Voyager provides loation-independent asynhronous and syn-

hronous messages, and multiasts. Migrating objets leave trails of forwarders

behind them; entities that ommuniate with these objets are sent updated

addresses to be ahed. Forwarders are garbage-olleted; the garbage olletion

involves heartbeat messages. More preise desriptions of the algorithms used in

these systems do not appear to have been published, making it diÆult for the

appliation programmer to predit their performane and robustness.
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6.2 Related Caluli

In reent years a number of proess aluli have been introdued in order to

study some aspet of distributed and mobile agent omputation. They inlude:

{ The �

l

alulus of Amadio and Prasad [AP94℄, for modelling the failure

semantis of Faile [TLK96℄.

{ The Distributed Join Calulus of Fournet et al [FGL

+

96℄, intended as the

basis for a mobile agent language.

{ The language of loated proesses and the D� alulus of Riely and Hennessy,

used to study the semantis of failure [RH97,RH98℄ and typing for ontrol

of resoure use by mobile agents [HR98b,HR98a℄.

{ The alulus of Sekiguhi and Yonezawa [SY97℄, used to study various prim-

itives for ode and data movement.

{ The dpi alulus of Sewell [Sew97a,Sew98℄, used to study a subtyping system

for loality enforement of apabilities.

{ The Ambient alulus of Cardelli and Gordon [CG98℄, used for modelling

seurity domains.

{ The Seal alulus of Vitek and Castagna [VC98℄, foussing on protetion

mehanisms inluding revoable apabilities.

There is a large design spae of suh aluli, with very di�erent primitives being

appropriate for di�erent purposes, and with many semanti hoies. A thorough

omparison and disussion of the design spae is beyond the sope of this paper

| a brief disussion an be found in [Sew99℄; here we highlight only some of the

main design hoies:

Hierarhy We have adopted a two-level hierarhy, of agents loated on sites. One

might onsider tree-strutured mobile agents with migration of subtrees, e.g. as

in [FGL

+

96℄. The added expressiveness may be desirable from the programmer's

point of view, but it requires somewhat more omplex infrastruture algorithms

| migrations of an agent an be aused by migrations of their parents | so we

neglet it in the �rst instane.

Unique Naming The aluli of x2 ensure that agents have unique names, in on-

trast, for example, to the Ambients of [CG98℄. Inter-agent messages are therefore

guaranteed to have a unique destination.

Communiation In earlier work [SWP98℄ the inter-agent ommuniation prim-

itives were separated from the hannel primitives used for loal omputation.

The inter-agent primitives were

h

a�?

i

!v loation-independent output of v to agent a

h

a�s

i

!v loation-dependent output

?p!P input at the urrent agent

These give a oneptually simpler model, with messages sent to agents rather

than to hannels at agents, but to allow enodings to be expressed it was nees-

sary to add variants and loal hannels. This led to a rather large alulus and

somewhat awkward enodings.
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6.3 Implementation

In order to experiment with infrastruture algorithms, and with appliations that

use loation-independent ommuniation, we have implemented an experimental

programming language, Nomadi Pit. The Nomadi Pit implementation is

based on the Pit ompiler of Piere and Turner [PT97℄. It is a two-level language,

orresponding to the aluli presented in this paper. The low level extends Pit

by providing diret support for agent reation, migration and loation-dependent

ommuniation. The high level supports loation-independent ommuniation by

applying translations | the ompiler takes as input a program in the high-level

language together with an enoding of eah high-level primitive into the low-

level language. It type-heks and applies the enoding; the resulting low-level

intermediate ode an be exeuted on a relatively straightforward distributed

run-time system. The two enodings given have both been suessfully type-

heked and exeuted.

Typing In this paper the aluli have been presented without typing. The No-

madi Pit implementation inherits from Pit its rather expressive type system.

For reasoning about infrastruture enodings a simple type system for the aluli

would be desirable, with types

T ::= Site j Agent j lT j [T :: T ℄ j X j 9X:T

for site and agent names, hannels arrying values of type T , tuples, and exis-

tential polymorphism.

The aluli allow a hannel name to esape the agent in whih it is delared

and be used subsequently both for input and output within other agents. The

global/loal typing of [Sew97a,Sew98℄ ould be used to impose tighter disi-

plines on hannels that are intended to be used only loally, preventing ertain

programming errors.

Input/Output and Traders Up to this point we have onsidered only ommunia-

tions that are internal to a distributed omputation. External input and output

primitives an be leanly provided in the form of speial agent names, so that

from within the alulus inputs and outputs are treated exatly as other ommu-

niations. For example, for onsole I/O one might have a �titious onsole agent

on eah site, together with globally-known hannel names gethar and puthar .

Messages sent to these would be treated speially by the loal run-time system,

leading to idioms suh as

new a in

h

onsole

i

puthar ![ a℄ j(a?!P )

for synhronous output of a harater  to the loal onsole, and

new a in

h

onsole

i

gethar !a j(a?x!P )

for synhronous input of a harater, to be bound to x, from the loal onsole.
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In realisti systems there will be a rih olletion of input/output resoures,

di�ering from site to site, so agents may need to aquire resoures dynamially.

Moreover, in realisti systems agents will be initiated separately on many sites; if

they are to interat some mehanism must be provided for them to aquire eah

other's names dynamially. To do this in a lexially-soped manner we envisage

eah site maintaining a trader, a �nite map from strings to values that supports

registration and lookup of resoures. Agents would typially obtain the trader

name assoiated with a site at the same time as obtaining the site name. For

traders to be type-sound a type Dynami [ACPP91℄ is required.

6.4 Future Work

This paper provides only a starting point | muh additional work is required

on algorithms, semantis, and implementation.

{ The hoie of infrastruture algorithm(s) for a given appliation will depend

strongly on many harateristis of the appliation and target network, es-

peially on the expeted statistial properties of ommuniation and migra-

tion. In wide area appliations, sophistiated distributed algorithms will be

required, allowing for dynami system reon�gurations suh as adding new

sites to the system, migrating parts of the distributed omputation before

shutting down some mahines, traing loations of di�erent kinds of agents,

and implementing tolerane of partial failures. The spae of feasible algo-

rithms and the trade-o�s involved require detailed investigation.

{ Turning to semantis, in order to state orretness properties (in the absene

of failures) a theory of observational equivalene is required. Suh a theory

was developed for an idealised Pit in [Sew97b℄; it must be generalized to

the distributed setting and supported by oindutive proof tehniques.

{ Finally, to investigate the behaviour of infrastruture algorithms in pratie,

and to assess the usefulness of our high-level loation-independent primitives

in appliations, the implementation must be developed to the point where

it is possible to experiment with non-trivial appliations.

The aluli of x2 make the unrealisti assumption that ommuniations and sites

are reliable. This is implausible, even for loal area networks of moderate size,

so usable infrastruture algorithms must be robust under some level of failure.

To express suh algorithms some notion of time must be introdued into the

low-level alulus, to allow timeouts to be expressed, yet the semantis must be

kept tratable, to allow robustness properties to be stated and proved.

One might also onsider other high-level ommuniation primitives, suh as

loation-independent multiast, and agent primitives, suh as tree-strutured

agents. More speulatively, the two levels of abstration that we have identi�ed

may be a useful basis for work on seurity properties of mobile agent infrastru-

tures | to onsider whether a distributed infrastruture for mobile agents is

seure one must �rst be able to de�ne it preisely, and have a lear understand-

ing of how it is distributed on atual mahines.
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