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Abstra
t. We study 
ommuni
ation primitives for intera
tion between

mobile agents. They 
an be 
lassi�ed into two groups. At a low level

there are lo
ation dependent primitives that require a programmer to

know the 
urrent site of a mobile agent in order to 
ommuni
ate with

it. At a high level there are lo
ation independent primitives that allow


ommuni
ation with a mobile agent irrespe
tive of its 
urrent site and

of any migrations. Implementation of these requires deli
ate distributed

infrastru
ture. We propose a simple 
al
ulus of agents that allows imple-

mentations of su
h distributed infrastru
ture algorithms to be expressed

as en
odings, or 
ompilations, of the whole 
al
ulus into the fragment

with only lo
ation dependent 
ommuni
ation. These en
odings give exe-


utable des
riptions of the algorithms, providing a 
lean implementation

strategy for prototype languages. The 
al
ulus is equipped with a pre-


ise semanti
s, providing a solid basis for understanding the algorithms

and for reasoning about their 
orre
tness and robustness. Two sample

infrastru
ture algorithms are presented as en
odings.
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1 Introdu
tion

Re
ent years have seen an explosion of interest in wide-area distributed ap-

pli
ations, exe
uting on intranets or on the global internet. A key 
on
ept for

stru
turing su
h appli
ations is mobile agents, units of exe
uting 
ode that 
an

migrate between sites [CHK97℄. Mobile agent programming requires novel forms

of language and runtime support|for intera
tion between agents, responding to

network failures and re
on�gurations, binding to resour
es, managing se
urity,

et
. In this paper we fo
us on the �rst of these, 
onsidering the design, semanti


de�nition, and implementation of 
ommuni
ation primitives by whi
h mobile

agents 
an intera
t.

Mobile agent 
ommuni
ation primitives 
an be 
lassi�ed into two groups. At

a low level, there are lo
ation dependent primitives that require a programmer

to know the 
urrent site of a mobile agent in order to 
ommuni
ate with it.

If a party to su
h 
ommuni
ations migrates, then the 
ommuni
ating program

must expli
itly tra
k its new lo
ation. At a high level, there are lo
ation inde-

pendent primitives that allow 
ommuni
ation with a mobile agent irrespe
tive

of its 
urrent site and of any migrations of sender or re
eiver. Lo
ation indepen-

dent primitives may greatly simplify the development of mobile appli
ations,

sin
e they allow movement and intera
tion to be treated as separate 
on
erns.

Their design and implementation, however, raise several diÆ
ult issues. A dis-

tributed infrastru
ture is required for tra
king migrations and routing messages

to migrating agents. This infrastru
ture must address fundamental network is-

sues su
h as failures, network laten
y, lo
ality, and 
on
urren
y; the algorithms

involved are thus inherently rather deli
ate and 
annot provide perfe
t lo
ation

independen
e. Moreover, appli
ations may be distributed on widely di�erent

s
ales (from lo
al to wide-area networks), may exhibit di�erent patterns of 
om-

muni
ation and migration, and may demand di�erent levels of performan
e and

robustness; these varying demands will lead to a multipli
ity of infrastru
tures,

based on a variety of algorithms. These infrastru
ture algorithms will be ex-

posed, via their performan
e and behaviour under failure, to the appli
ation

programmer | some detailed understanding of an algorithm will be required

for the programmer to understand its robustness properties under, for example,

failure of a site.

The need for 
lear understanding and easy experimentation with infrastru
-

ture algorithms, as well as the desire to simultaneously support multiple infras-

tru
tures on the same network, suggests a two-level ar
hite
ture|a low-level


onsisting of a single set of well-understood, lo
ation-dependent primitives, in

terms of whi
h a variety of high-level, lo
ation-independent 
ommuni
ation ab-

stra
tions may be expressed. This two-level approa
h enables one to have a stan-

dardized low-level runtime that is 
ommon to many ma
hines, with divergent

high-level fa
ilities 
hosen and installed at run time. It also fa
ilitates simple

implementation of the lo
ation-independent primitives (
f. proto
ol sta
ks).

For this approa
h to be realisti
, it is essential that the low-level primitives

should be dire
tly implementable above standard network proto
ols. The Inter-

net Proto
ol (IP) supports asyn
hronous, unordered, point-to-point, unreliable
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pa
ket delivery; it abstra
ts from routing. We 
hoose primitives that are dire
tly

implementable using asyn
hronous, unordered, point-to-point, reliable messages.

This abstra
ts away from a multitude of additional details|error 
orre
tion,

retransmission, pa
ket fragmentation, et
.|while still retaining a 
lear relation-

ship to the well-understood IP level. It also well suited to the pro
ess 
al
ulus

presentation that we use below. More 
ontroversially, we also in
lude agent mi-

gration among the low-level primitives. This requires substantial runtime support

in individual network sites, but not sophisti
ated distributed algorithms|only

one message need be sent per migration. By treating it as a low-level primi-

tive we fo
us attention more sharply on the distributed algorithms supporting

lo
ation-independent 
ommuni
ation. We also provide low-level primitives for

agent 
reation, for sending messages between agents at the same site, for gener-

ating globally unique names, and for lo
al 
omputation.

Many forms of high-level 
ommuni
ation 
an be implemented in terms of

these low-level primitives, for example syn
hronous and asyn
hronous message

passing, remote pro
edure 
alls, multi
asting to agent groups, et
. For this paper

we 
onsider only a single representative form: an asyn
hronous message-passing

primitive similar to the low-level primitive for 
ommuni
ation between 
o-lo
ated

agents but independent of their lo
ations and transparent to migrations.

This two-level framework 
an be formulated very 
leanly using te
hniques

from the theory of pro
ess 
al
uli. Su
h a formulation permits a pre
ise de�ni-

tion of both low and high levels, and allows distributed infrastru
ture algorithms

to be treated rigorously as translations between 
al
uli. The operational seman-

ti
s of the 
al
uli provides a pre
ise and 
lear understanding of the algorithms'

behaviour, aiding design, and ultimately, one may hope, supporting proofs of


orre
tness and robustness. Our presentation draws on ideas �rst developed in

Milner, Parrow, and Walker's �-
al
ulus [MPW92,Mil92℄ and extended in the

distributed join-
al
ulus of Fournet et al [FGL

+

96℄.

To fa
ilitate experimentation, the Nomadi
 Pi
t proje
t is implementing

prototype mobile agent programming languages 
orresponding to our high-

and low-level pro
ess 
al
uli. The low-level language extends the 
ompiler and

run-time system of Pi
t [PT97,Tur96℄, a 
on
urrent language based on the �-


al
ulus, to support our primitives for agent 
reation, migration, and lo
ation-

dependent 
ommuni
ation. High-level languages, with parti
ular infrastru
tures

for lo
ation-independent 
ommuni
ation, 
an then be obtained by applying user-

supplied translations into the low-level language. In both 
ases, the full language

available to the user remains very 
lose to the pro
ess 
al
ulus presentation, and


an be given rigorous semanti
s in a similar style. Analogous extensions 
ould be

given for other 
on
urrent unipro
essor programming languages, su
h as Amber

[Car86℄, Con
urrent ML [Rep91℄, and Con
urrent Haskell [JGF96℄.

In the next se
tion we introdu
e the two 
al
uli informally, dis
ussing our

primitives in detail and giving examples of 
ommon programming idioms. In

x3 and x4 we then present two sample infrastru
ture algorithms | one using a


entralised server and one using 
hains of forwarding pointers | as illustrations

of the use of the 
al
uli. The operational semanti
s of the 
al
uli are de�ned
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pre
isely in x5, in terms of a redu
tion semanti
s. We 
on
lude with some further

dis
ussion of related work, implementation, and future extensions. The paper

develops ideas �rst presented in [SWP98℄ | that work introdu
ed a slightly

di�erent 
al
ulus, using it to des
ribe the forwarding-pointers infrastru
ture.

2 The Cal
uli

In this se
tion our two levels of abstra
tion are made pre
ise by giving two


orresponding pro
ess 
al
uli, the low- and high-level Nomadi
 �-
al
uli. Their

design involves a deli
ate trade-o� | the distributed infrastru
ture algorithms

that we want to express involve non-trivial lo
al 
omputation within agents, yet

for the theory to be tra
table (parti
ularly, for operational 
ongruen
es to have

tra
table 
hara
terisations) the 
al
uli must be kept as simple as possible. The

primitives for agent 
reation, agent migration and inter-agent 
ommuni
ation

that we 
onsider do not suÆ
e to allow the required lo
al 
omputation to be

expressed 
learly, so we integrate them with those of an asyn
hronous �-
al
ulus

[HT91,Bou92℄. The other 
omputational 
onstru
ts that will be needed, e.g. for

�nite maps, 
an then be regarded as lightweight synta
ti
 sugar for �-pro
esses.

The low- and high-level 
al
uli are introdu
ed in x2.1 and x2.2 respe
tively,

followed by some examples and programming idioms in x2.3. In this se
tion

the operational semanti
s of the 
al
uli are des
ribed informally | the pre
ise

redu
tion semanti
s will be given in x5. For simpli
ity, the 
al
uli are presented

without typing or basi
 values (su
h as integers and booleans). Type systems

are brie
y dis
ussed in x6.3.

2.1 Low-Level Cal
ulus

We begin with an example. Below is a term of the low-level 
al
ulus showing

how an applet server 
an be expressed. It 
an re
eive (on the 
hannel named

getApplet) requests for an applet; the requests 
ontain a pair (bound to a and

s) 
onsisting of the name of the requesting agent and the name of its site.

�getApplet?

(

a s

)

!

agent b =

migrate to s! (

h

a�s

i

a
k !b jB)

in

0

When a request is re
eived the server 
reates an applet agent with a new name

bound to b. This agent immediately migrates to site s . It then sends an a
-

knowledgement to the requesting agent a (whi
h is assumed to also be on site s)


ontaining its name. In parallel, the body B of the applet 
ommen
es exe
ution.

The example illustrates the main entities represented in the 
al
ulus: sites,

agents and 
hannels. Sites should be thought of as physi
al ma
hines or, more

a

urately, as instantiations of the Nomadi
 Pi
t runtime system on ma
hines;

ea
h site has a unique name. This paper does not expli
itly address questions of
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site failure, network failure and re
on�guration, or se
urity. Sites are therefore

unstru
tured; neither network topology nor administrative domains are repre-

sented in the formalism. Agents are units of exe
uting 
ode; an agent has a

unique name and a body 
onsisting of some term; at any moment it is lo
ated

at a parti
ular site. Channels support 
ommuni
ation within agents, and also

provide targets for inter-agent 
ommuni
ation|an inter-agent message will be

sent to a parti
ular 
hannel within the destination agent. Channels also have

unique names.

The inter-agent message

h

a�s

i

a
k !b is 
hara
teristi
 of the low-level 
al
ulus.

It is lo
ation-dependent|if agent a is in fa
t on site s then the message b will

be delivered, to 
hannel a
k in a; otherwise the message will be dis
arded. In an

implementation at most one inter-site message is sent.

Names As in the �-
al
ulus, names play a key rôle. We take an in�nite set N of

names, ranged over by a; b; 
; s; and x. Formally, all names are treated identi
ally;

informally, a and b will be used for agent names, 
 for a 
hannel name, and s for

a site name. (A type system would allow these distin
tions to be enfor
ed.) The


al
ulus allows new names (of agents and 
hannels) to be 
reated dynami
ally.

Names are pure, in the sense of Needham [Nee89℄; they are not assumed to


ontain any information about their 
reation. They 
an therefore be implemented

by any me
hanism that allows globally-unique bit strings to be 
reated lo
ally,

e.g. by appending sequen
e numbers to IP addresses, or by 
hoosing large random

numbers.

Values We allow the 
ommuni
ation of �rst-order values, 
onsisting of names

and tuples.

u; v ::= x name

[v

1

:: v

n

℄ tuple (n � 0)

Patterns As is the �-
al
ulus, values are de
onstru
ted by pattern mat
hing on

input. Patterns have the same form as values, with the addition of a wild
ard.

p ::= wild
ard

x name pattern

(p

1

:: p

n

) tuple pattern (n � 0, no repeated names)

Pro
ess terms The main synta
ti
 
ategory is that of pro
ess terms, ranged over

by P;Q. We will introdu
e the low-level primitives in groups.

agent a = P in Q agent 
reation

migrate to s!P agent migration

The exe
ution of the 
onstru
t agent a = P in Q spawns a new agent on the


urrent site, with body P . After the 
reation,Q 
ommen
es exe
ution, in parallel

with the rest of the body of the spawning agent. The new agent has a unique

name whi
h may be referred to both in its body and in the spawning agent (i.e.
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a is binding in P and Q). Agents 
an migrate to named sites | the exe
ution

of migrate to s!P as part of an agent results in the whole agent migrating

to site s. After the migration, P 
ommen
es exe
ution in parallel with the rest

of the body of the agent.

P jQ parallel 
omposition

0 nil

The body of an agent may 
onsist of many pro
ess terms in parallel, i.e. essen-

tially of many lightweight threads. They will intera
t only by message passing.

new 
 in P new 
hannel name 
reation


!v output v on 
hannel 
 in the 
urrent agent


?p!P input from 
hannel 


�
?p!P repli
ated input from 
hannel 


if u = v then P else Q value equality testing

To express 
omputation within an agent, while keeping a lightweight semanti
s,

we in
lude �-
al
ulus-style intera
tion primitives. Exe
ution of new 
 in P 
re-

ates a new unique 
hannel name; 
 is binding in P . An output 
!v (of value v on


hannel 
) and an input 
?p!P in the same agent may syn
hronise, resulting

in P with the names in the pattern p repla
ed by 
orresponding parts of v. A

repli
ated input �
?p!P behaves similarly ex
ept that it persists after the syn-


hronisation, and so may re
eive another value. In both 
?p!P and �
?p!P

the names in p are binding in P . The 
onditional allows any two values to be

tested for equality.

i
o
al

h

a

i


!v!P else Q test-and-send to agent a on 
urrent site

Finally, the low-level 
al
ulus in
ludes a single primitive for intera
tion between

agents. The exe
ution of i
o
al

h

a

i


!v!P else Q in the body of an agent b

has two possible out
omes. If agent a is on the same site as b, then the message


!v will be delivered to a (where it may later intera
t with an input) and P

will 
ommen
e exe
ution in parallel with the rest of the body of b; otherwise

the message will be dis
arded, and Q will exe
ute as part of b. The 
onstru
t

is analogous to test-and-set operations in shared memory systems | delivering

the message and starting P , or dis
arding it and starting Q, atomi
ally. It 
an

greatly simplify algorithms that involve 
ommuni
ation with agents that may

migrate away at any time, yet is still implementable lo
ally, by the runtime

system on ea
h site.

As in the �-
al
ulus, names 
an be s
ope-extruded | here 
hannel and agent

names 
an be sent outside the agent in whi
h they were 
reated. For example,

if the body of agent a is

agent b =

new d in

i
o
al

h

a

i


!d! 0 else 0

in


?x! x !
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then 
hannel name d is 
reated in agent b. After the output message 
!d has

been sent from b to a (by i
o
al) and has intera
ted with the input 
?x! x !

there will be an output d ! in agent a.

We require a 
lear relationship between the semanti
s of the low-level 
al
ulus

and the inter-ma
hine messages that would be sent in an implementation. To

a
hieve this we allow 
ommuni
ation between outputs and inputs on a 
hannel

only if they are in the same agent | messages 
an be sent from one agent to

another only by i
o
al. Intuitively, there is a distin
t �-
al
ulus-style 
hannel

for ea
h 
hannel name in every agent. For example, if the body of agent a is

agent b =

new d in

d?! 0

j i
o
al

h

a

i


!d! 0 else 0

in


?x! x !

then after some redu
tion steps a 
ontains an output on d and b 
ontains an in-

put on d, but these 
annot rea
t. At �rst sight this semanti
s may seem 
ounter-

intuitive, but it re
on
iles the 
on
i
ting requirements of expressiveness and

simpli
ity of the 
al
ulus. An implementation would 
reate the mailbox datas-

tru
ture | a queue of pending outputs or inputs | required to implement a


hannel as required; it 
ould be garbage 
olle
ted when empty.

Summarizing, the terms of the low-level 
al
ulus are:

P;Q ::= agent a = P in Q agent 
reation

migrate to s!P agent migration

P jQ parallel 
omposition

0 nil

new 
 in P new 
hannel name 
reation


!v output v on 
hannel 
 in the 
urrent agent


?p!P input from 
hannel 


�
?p!P repli
ated input from 
hannel 


if u = v then P else Q value equality testing

i
o
al

h

a

i


!v!P else Q test-and-send to agent a on 
urrent site

Note that the only primitive whi
h involves network 
ommuni
ation ismigrate,

whi
h requires only a single message to be sent, asyn
hronously, between ma-


hines. Distributed implementation of the low-level 
al
ulus is therefore straight-

forward, requiring no non-trivial distributed algorithms. It 
ould be done either

above a reliable datagram layer or above TCP, using a lightweight layer that

opens and 
loses streams as required.

Two other forms of lo
ation-dependent output will be useful in writing en-


odings, and are expressible in the 
al
ulus given.

h

a

i


!v output to agent a on the 
urrent site

h

a�s

i


!v output to agent a on site s
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The exe
ution of an output

h

a

i


!v in the body of an agent b will either deliver

the message 
!v to agent a, if agent b is on the same site as a, or will silently

dis
ard the message, if not. The exe
ution of an output

h

a�s

i


!v in the body of

an agent will either deliver the message 
!v to agent a, if agent a is on site s, or

will silently dis
ard the message, if not. We regard these as synta
ti
 sugar for

i
o
al

h

a

i


!v! 0 else 0

and

agent b = (migrate to s!(i
o
al

h

a

i


!v! 0 else 0)) in 0

(where b is fresh) respe
tively. In an implementation, the �rst is implementable

lo
ally; the se
ond requires only one asyn
hronous network message. Note that

one 
ould optimize the 
ase in whi
h the se
ond is used on site s itself by trying

i
o
al �rst:

i
o
al

h

a

i


!v!

0

else

agent b = (migrate to s!(i
o
al

h

a

i


!v! 0 else 0)) in 0

2.2 High-Level Cal
ulus

The high-level 
al
ulus is obtained by extending the low-level 
al
ulus with a

single lo
ation-independent 
ommuni
ation primitive:

h

a�?

i


!v lo
ation-independent output to agent a

The intended semanti
s of an output

h

a�?

i


!v is that its exe
ution will reliably

deliver the message 
!v to agent a, irrespe
tive of the 
urrent site of a and of

any migrations.

2.3 Examples and Idioms

We give some synta
ti
 sugar and programming idioms that will be used in

the translations. Most are standard �-
al
ulus idioms; some involve distributed


ommuni
ation.

Synta
ti
 sugar Empty tuples and tuple patterns will generally be elided, writ-

ing 
! and 
?!P for 
![℄ and 
?

()

!P . Multiple new 
hannel bindings will be


oales
ed, writing new 
; 


0

in P for new 
 in new 


0

in P . Let-de
larations

will be used, writing let p = v in P for new 
 in 
!v j 
?p!P (where 
 is a

name not o

urring free in v or P ).
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Pro
edures Within a single agent one 
an express `pro
edures' as simple repli-


ated inputs. Below is a �rst attempt at a pair-server, that re
eives values x

on 
hannel pair and returns two 
opies of x on 
hannel result , together with a

single invo
ation of the server.

new pair ; result in

�pair?x! result ![x x ℄

j pair !v

j result?z! : : : z : : :

This pair-server 
an only be invoked sequentially|there is no asso
iation be-

tween multiple requests and their 
orresponding results. A better idiom is below,

in whi
h new result 
hannels are used for ea
h invo
ation.

new pair in

�pair?

(

x r

)

! r ![x x ℄

j new result in pair ![v result ℄ j result?z! : : : z : : :

j new result in pair ![w result ℄ j result?z! : : : z : : :

The example 
an easily be lifted to remote pro
edure 
alls between agents. We

show two versions, �rstly for lo
ation-dependent RPC between stati
 agents and

se
ondly for lo
ation-independent RPC between agents that may be migrating.

In the �rst, the server be
omes

new pair in

�pair?

(

x r b s

)

!

h

b�s

i

r ![x x ℄

whi
h returns the result using lo
ation-dependent 
ommuni
ation to the agent

b on site s re
eived in the request. If the server is part of agent a

1

on site s

1

it

would be invoked from agent a

2

on site s

2

by

new result in

h

a

1

�s

1

i

pair ![v result a

2

s

2

℄

j result?z! : : : z : : :

If agents a

1

or a

2


an migrate this 
an fail. A more robust idiom is easily

expressible in the high-level 
al
ulus|the server be
omes

new pair in

�pair?

(

x r b

)

!

h

b�?

i

r ![x x ℄

whi
h returns the result using lo
ation-independent 
ommuni
ation to the agent

b. If the server is part of agent a

1

it would be invoked from agent a

2

by

new result in

h

a

1

�?

i

pair ![v result a

2

℄

j result?z! : : : z : : :

9



Lo
ks, methods and obje
ts An agent 
onsisting of a parallel 
omposition of

repli
ated inputs, su
h as

�method1 ?arg! : : :

j �method2 ?arg! : : :

is analogous to an obje
t with methods method1 and method2 . Mutual ex
lusion

between the bodies of the methods 
an be enfor
ed by using a lo
k 
hannel:

new lo
k in

lo
k !

j �method1 ?arg!

lo
k?!

: : :

lo
k !

j �method2 ?arg!

lo
k?!

: : :

lo
k !

Here the lo
k is free if there is an output on 
hannel lo
k and not free otherwise.

State that is shared between the methods 
an be 
onveniently kept as the value

of the output on the lo
k 
hannel:

new lo
k in

lo
k !initialState

j �method1 ?arg!

lo
k?state!

: : :

lo
k !state

0

j �method2 ?arg!

lo
k?state!

: : :

lo
k !state

00

For more detailed dis
ussion of obje
t representations in pro
ess 
al
uli, the

reader is referred to [PT94℄.

Finite maps The algorithms given in the following two se
tions involve �nite

maps | in the �rst, there is a daemon maintaining a map from agent names

to site names; in the se
ond, there are daemons maintaining maps from agent

names to lo
k 
hannels. The translations make use of the following 
onstru
ts:


!emptymap output the empty map on 
hannel 


lookup a in m with look up a in map m

found

(

p

)

!P

notfound!Q

let m

0

= (m with a 7! v) in P add a new binding

10



Our 
al
uli are suÆ
iently expressive to allow these to be expressed dire
tly, in

a standard �-
al
ulus style | we regard the 
onstru
ts as synta
ti
 sugar for

the three pro
ess terms below. In the se
ond and third the names x , found , and

notfound are assumed not to o

ur free in P , Q, or a.


!emptymap

def

= new m in


!m

j �m?(x found notfound)!notfound !

lookup : : :

def

= new found ; notfound in

m![a found notfound ℄

j found?p!P

j notfound?!Q

let : : :

def

= new m

0

in

�m

0

?(x found notfound)!

if x = a then

found !v

else

m![x found notfound ℄

j P

These represent a �nite map as a 
hannel on whi
h there is a pro
ess that re
eives

lookup requests. Requests 
onsist of a triple of a key and two result 
hannels;

the pro
ess returns a value on the �rst if the lookup su

eeds, and otherwise

signals on the se
ond.

3 A Simple Infrastru
ture Translation

In this se
tion and the following one we present two infrastru
ture algorithms, ex-

pressed as translations. The �rst is one of the simplest algorithms possible, highly

sequential and with a 
entralized server daemon; the se
ond is one step more so-

phisti
ated, with multiple daemons maintaining forwarding-pointer 
hains. The

algorithms have been 
hosen to illustrate our approa
h, and the use of the 
al
uli

| algorithms that are widely appli
able to a
tual mobile agent systems would

have to be yet more deli
ate, both for eÆ
ien
y and for robustness under partial

failure. Even the simplest of our algorithms, however, requires deli
ate syn
hro-

nization that (the authors 
an attest) is easy to get wrong; expressing them as

translations between well-de�ned 
al
uli provides a solid basis for dis
ussion and

algorithm design.

The algorithm presented in this se
tion involves a 
entral daemon that keeps

tra
k of the 
urrent sites of all agents and forwards any lo
ation-independent

messages to them. The daemon is itself implemented as an agent whi
h never

migrates; the translation of a program then 
onsists roughly of the daemon agent

in parallel with a 
ompositional translation of the program. For simpli
ity we

11




onsider only programs that are initiated as single agents, rather than many

agents initiated separately on di�erent sites. (Programs may, of 
ourse, begin by


reating other agents that immediately migrate). The pre
ise de�nition is given

in Figures 1 and 2. Figure 2 de�nes a top-level translation [[ ℄℄. For ea
h term

P of the high-level 
al
ulus, 
onsidered as the body of an agent named a and

initiated at site s, the result [[P ℄℄

a;s

of the translation is a term of the low-level


al
ulus. The de�nition of [[ ℄℄ involves the body Daemon of the daemon agent

and an auxiliary 
ompositional translation [[P ℄℄

a

, de�ned phrase-by-phrase, of P


onsidered as part of the body of agent a. Both are given in Figure 1.

Let us look �rst at the daemon. It 
ontains three repli
ated inputs, on the

register , migrating , and message 
hannels, for re
eiving messages from the en-


odings of agents. The daemon is essentially single-threaded | the 
hannel lo
k

is used to enfor
e mutual ex
lusion between the bodies of the repli
ated inputs,

and the 
ode preserves the invariant that at any time there is at most one output

on lo
k . The lo
k 
hannel is also used to maintain the site map | a �nite map

from agent names to site names, re
ording the 
urrent site of every agent. The

body of ea
h repli
ated input begins with an input on lo
k , thereby a
quiring

both the lo
k and the site map.

Turning to the 
ompositional translation [[ ℄℄

a

, only three 
lauses are not triv-

ial | for the lo
ation-independent output, agent 
reation, and agent migration

primitives. We dis
uss ea
h, together with their intera
tions with the daemon,

in turn.

Lo
ation-independent output A lo
ation-independent output in an agent a is

implemented simply by using a lo
ation-dependent output to send a request to

the daemon D, at its site SD , on its 
hannel message :

[[

h

b�?

i


!v ℄℄

a

=

h

D�SD

i

message ![b 
 v ℄

The 
orresponding repli
ated input on 
hannel message in the daemon

j �message?

(

a 
 v

)

!

lo
k?m!

lookup a in m with

found

(

s

)

!

h

a�s

i

deliver ![
 v ℄

j da
k?! lo
k !m

notfound! 0

�rst a
quires the lo
k and 
urrent site map m, then looks up the target agent's

site in the map and sends a lo
ation-dependent message to the deliver 
han-

nel of that agent. It then waits to re
eive an a
knowledgement (on the da
k


hannel) from the agent before relinquishing the lo
k. This prevents the agent

migrating before the deliver message arrives. Note that the notfound bran
h of

the lookup will never be taken, as the algorithm ensures that all agents register

before messages 
an be sent to them. The inter-agent 
ommuni
ations involved

12



[[

h

b�?

i


!v ℄℄

a

=

h

D�SD

i

message ![b 
 v ℄

[[agent b = P in Q℄℄

a

= 
urrentlo
?s!

agent b =

�deliver?

(


 v

)

!(

h

D�SD

i

da
k ! j 
!v)

j

h

D�SD

i

register ![b s ℄

j a
k?!(

h

a�s

i

a
k ! j 
urrentlo
 !s j[[P ℄℄

b

)

in

a
k?!(
urrentlo
 !s j[[Q℄℄

a

)

[[migrate to s!P ℄℄

a

= 
urrentlo
? !

h

D�SD

i

migrating !a

j a
k?!

migrate to s!

h

D�SD

i

migrated !s

j a
k?!(
urrentlo
!s j[[P ℄℄

a

)

[[0℄℄

a

= 0

[[P jQ℄℄

a

= [[P ℄℄

a

j[[Q℄℄

a

[[
?p!P ℄℄

a

= 
?p![[P ℄℄

a

[[�
?p!P ℄℄

a

= �
?p![[P ℄℄

a

[[i
o
al

h

b

i


!v !P else Q℄℄

a

= i
o
al

h

b

i


!v ![[P ℄℄

a

else [[Q℄℄

a

[[new 
 in P ℄℄

a

= new 
 in [[P ℄℄

a

[[if u = v then P else Q℄℄

a

= if u = v then [[P ℄℄

a

else [[Q℄℄

a

Daemon = new lo
k in

lo
k !emptymap

j �register?

(

a s

)

!

lo
k?m!

let m

0

= (m with a 7! s) in

lo
k !m

0

j

h

a�s

i

a
k !

j �migrating?a!

lo
k?m!

lookup a in m with

found

(

s

)

!

h

a�s

i

a
k !

j migrated?s

0

!

let m

0

= (m with a 7! s

0

) in

lo
k !m

0

j

h

a�s

0

i

a
k !

notfound! 0

j �message?

(

a 
 v

)

!

lo
k?m!

lookup a in m with

found

(

s

)

!

h

a�s

i

deliver ![
 v ℄

j da
k?! lo
k !m

notfound! 0

Fig. 1. A Simple Translation: the 
ompositional translation and the daemon
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in delivery of a single lo
ation-independent output are illustrated below.

a D b

X

X

X

X

X

X

X

X

X

Xz

message ![b 
 v ℄

X

X

X

X

X

X

X

X

X

Xz

deliver ![
 v ℄

�

�

�

�

�

�

�

�

�

�9

da
k !

Creation In order for the daemon's site map to be kept up to date, agents must

register with the daemon, telling it their site, both when they are 
reated and

after they migrate. Ea
h agent re
ords its 
urrent site internally as an output

on its 
urrentlo
 
hannel. This 
hannel is also used as a lo
k, to enfor
e mutual

ex
lusion between the en
odings of all agent 
reation and migration 
ommands

within the body of the agent.

The en
oding of an agent 
reation in an agent a

[[agent b = P in Q℄℄

a

= 
urrentlo
?s!

agent b =

�deliver?

(


 v

)

!(

h

D�SD

i

da
k ! j 
!v)

j

h

D�SD

i

register ![b s ℄

j a
k?!(

h

a�s

i

a
k ! j 
urrentlo
!s j[[P ℄℄

b

)

in

a
k?!(
urrentlo
!s j[[Q℄℄

a

)

�rst a
quires the lo
k and 
urrent site s of a, and then 
reates the new agent

b. The body of b sends a register message to the daemon and waits for an

a
knowledgement. It then sends an a
knowledgement to a, initializes the lo
k

for b and allows the en
oding of the body P of b to pro
eed. Meanwhile, in a the

lo
k is kept until the a
knowledgement from b is re
eived. The body of b is put

in parallel with the repli
ated input

�deliver?

(


 v

)

!(

h

D�SD

i

da
k ! j 
!v)

whi
h will re
eive forwarded messages for 
hannels in b from the daemon, send an

a
knowledgement ba
k, and deliver the value lo
ally to the appropriate 
hannel.

The repli
ated input on register in the daemon

j �register?

(

a s

)

!

lo
k?m!

let m

0

= (m with a 7! s) in

lo
k !m

0

j

h

a�s

i

a
k !

�rst a
quires the lo
k and 
urrent site map, repla
es the site map with an up-

dated map, thereby relinquishing the lo
k, and sends an a
knowledgement to

14



the registering agent. The inter-agent 
ommuni
ations involved in a single agent


reation are illustrated below.

a b D


reate

t

X

X

X

X

X

X

X

X

X

Xz

register ![b s℄

�

�

�

�

�

�

�

�

�

�9

a
k !

�

�

�

�

�

�

�

�

�

�9

a
k !

Migration The en
oding of a migrate in agent a

[[migrate to s!P ℄℄

a

= 
urrentlo
? !

h

D�SD

i

migrating !a

j a
k?!

migrate to s!

h

D�SD

i

migrated !s

j a
k?!(
urrentlo
!s j[[P ℄℄

a

)

�rst a
quires the lo
k for a (dis
arding the 
urrent site data). It then sends a

migrating message to the daemon, waits for an a
k , migrates to its new site s,

sends a migrated message to the daemon, waits again for an a
k , and releases

the lo
k (with the new site s). The repli
ated input on migrating in the daemon

j �migrating?a!

lo
k?m!

lookup a in m with

found

(

s

)

!

h

a�s

i

a
k !

j migrated?s

0

!

let m

0

= (m with a 7! s

0

) in

lo
k !m

0

j

h

a�s

0

i

a
k !

notfound! 0

�rst a
quires the lo
k and 
urrent site map, looks up the 
urrent site of a and

sends an a
k to a at that site. It then waits to re
eive the new site, repla
es

the site map with an updated map, thereby relinquishing the lo
k, and sends an

a
knowledgement to a at its new site. The inter-agent 
ommuni
ations involved

15



in a single migration are shown below.

a D

X

X

X

X

X

X

X

X

X

Xz

migrating !a

�

�

�

�

�

�

�

�

�

�9

a
k !

migrate to s

X

X

X

X

X

X

X

X

X

Xz

migrated !s

�

�

�

�

�

�

�

�

�

�9

a
k !

The top level Putting the daemon and the 
ompositional en
oding together, the

top level translation, de�ned in Figure 2, 
reates the daemon agent, installs the

[[P ℄℄

a;s

= new register ;migrating ;migrated ;message; da
k ; deliver ; a
k ; 
urrentlo
 in

agent D = Daemon in

let SD = s in

�deliver?

(


 v

)

!(

h

D�SD

i

da
k ! j 
!v)

j

h

D�SD

i

register ![a s ℄

j a
k?!(
urrentlo
!s j[[P ℄℄

a

)

where the new-bound names, SD , and D , do not o

ur in P .

Fig. 2. A Simple Translation: the top level

repli
ated input on deliver for a, registers agent a to be at site s, initializes the

lo
k for a, and starts the en
oding of the body [[P ℄℄

a

.

4 A Forwarding-Pointers Infrastru
ture Translation

In this se
tion we give a more distributed algorithm, in whi
h daemons on ea
h

site maintain 
hains of forwarding pointers for agents that have migrated. It

removes the single bottlene
k of the 
entralised-server solution in the pre
eding

se
tion; it is thus a step 
loser to algorithms that may be of wide pra
ti
al use.

The algorithm is more deli
ate; expressing it as a translation provides a more

rigorous test of the framework.

As before, the translation 
onsists of a 
ompositional en
oding of the bodies

of agents, given in Figure 3, daemons, de�ned in Figure 4, and a top-level trans-

lation putting them together, given in Figure 5. The top-level translation of a
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program, again initially a single agent, 
reates a daemon on ea
h site mentioned

by the agent. These will ea
h maintain a 
olle
tion of forwarding pointers for all

agents that have migrated away from their site. To keep the pointers 
urrent,

agents syn
hronize with their lo
al daemons on 
reation and migration. Lo
ation

independent 
ommuni
ations are implemented via the daemons, using the for-

warding pointers where possible. If a daemon has no pointer for the destination

agent of a message then it will forward the message to the daemon on the site

where the destination agent was 
reated; to make this possible an agent name

is en
oded by a triple of an agent name and the site and daemon of its 
reation.

Similarly, a site name is en
oded by a pair of a site name and the daemon name

for that site. A typed version of the en
oding would involve a translation of types

with 
lauses

[[Agent℄℄ = [Agent SiteAgent℄

[[Site℄℄ = [SiteAgent℄

We generally use lower 
ase letters for site and agent names o

urring in the

sour
e program and upper 
ase letters for sites and agents introdu
ed by its

en
oding.

Looking �rst at the 
ompositional en
oding, in Figure 3, ea
h agent uses a


urrentlo
 
hannel as a lo
k, as before. It is now also used to store both the

site where the agent is and the name of the daemon on that site. The three

interesting 
lauses of the en
oding, for lo
ation-independent output, 
reation,

and migration, ea
h begin with an input on 
urrentlo
. They are broadly similar

to those of the simple translation.

Turning to the body of a daemon, de�ned in Figure 4, it is parametri
 in a

pair s of the name of the site S where it is and the daemon's own name DS.

It has four repli
ated inputs, on its register , migrating , migrated , and message


hannels. Some partial mutual ex
lusion between the bodies of these inputs is

enfor
ed by using the lo
k 
hannel. The data stored on the lo
k 
hannel now maps

the name of ea
h agent that has ever been on this site to a lo
k 
hannel (e.g.

Bstate) for that agent. These agent lo
ks prevent the daemon from attempting

to forward messages to agents that may be migrating. Ea
h stores the site and

daemon (of that site) where the agent was last seen by this daemon | i.e. either

this site/daemon, or the site/daemon to whi
h it migrated to from here. The use

of agent lo
ks makes this algorithm rather more 
on
urrent than the previous

one | rather than simply sequentialising the entire daemon, it allows daemons

to pro
ess inputs while agents are migrating, so many agents 
an be migrating

away from the same site, 
on
urrently with ea
h other and with delivery of

messages to other agents at the site.

Lo
ation-independent output A lo
ation-independent output

h

b�?

i


!v in agent

A is implemented by requesting the lo
al daemon to deliver it. (Note that A

may migrate away before the request is sent to the daemon, so the request must

be of the form

h

DS�S

i

message ![b 
 v ℄, not of the form

h

DS

i

message ![b 
 v ℄.)

The message repli
ated input of the daemon gets the map m from agent

names to agent lo
k 
hannels. If the destination agent B is not found, the message
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[[

h

b�?

i


!v ℄℄

A

= 
urrentlo
?(S DS )!

h

DS�S

i

message ![b 
 v ℄

j 
urrentlo
![S DS ℄

[[agent b = P in Q℄℄

A

= 
urrentlo
?(S DS )!

agent B =

let b = [B SDS℄ in


urrentlo
 ![S DS ℄

j

h

DS

i

register !B

j a
k?!(

h

A�S

i

a
k ! j[[P ℄℄

B

)

in

let b = [B SDS℄ in

a
k?!(
urrentlo
 ![S DS ℄ j[[Q℄℄

A

)

[[migrate to u!P ℄℄

A

= 
urrentlo
?(S DS)!

let (U DU) = u in

if [S DS ℄ = [U DU ℄ then

(
urrentlo
![U DU ℄ j[[P ℄℄

A

)

else

h

DS

i

migrating !A

j a
k?!

migrate to U !

h

DU

i

register !A

j a
k?!

h

DS�S

i

migrated ![A [U DU ℄℄

j a
k?!(
urrentlo
 ![U DU ℄ j[[P ℄℄

A

)

[[i
o
al

h

b

i


!v !P else Q℄℄

A

= let (B ) = b in

i
o
al

h

B

i


!v ![[P ℄℄

A

else [[Q℄℄

A

[[0℄℄

A

= 0

[[P jQ℄℄

A

= [[P ℄℄

A

j[[Q℄℄

A

[[
?p!P ℄℄

A

= 
?p![[P ℄℄

A

[[�
?p!P ℄℄

A

= �
?p![[P ℄℄

A

[[new 
 in P ℄℄

A

= new 
 in [[P ℄℄

A

[[if u = v then P else Q℄℄

A

= if u = v then [[P ℄℄

a

else [[Q℄℄

A

Fig. 3. A Forwarding-Pointers Translation: the 
ompositional translation

18



Daemon

s

= let (SDS) = s in

new lo
k in

lo
k !emptymap

j �register?B! lo
k?m! lookup B in m with

found

(

Bstate

)

!

Bstate?

( )

!

Bstate ![S DS ℄

j lo
k !m

j

h

B

i

a
k !

notfound!

new Bstate in

Bstate ![S DS ℄

j let m

0

= (m with B 7! Bstate) in lo
k !m

0

j

h

B

i

a
k !

j �migrating?B ! lo
k?m! lookup B in m with

found

(

Bstate

)

!

Bstate?

( )

!

lo
k !m

j

h

B

i

a
k !

notfound! 0

j �migrated?(B (U DU ))! lo
k?m! lookup B in m with

found

(

Bstate

)

!

lo
k !m

j Bstate ![U DU ℄

j

h

B�U

i

a
k !

notfound! 0

j �message?((B U DU ) 
 v)! lo
k?m! lookup B in m with

found

(

Bstate

)

!

lo
k !m

j Bstate?(RDR)!

i
o
al

h

B

i


!v !

Bstate ![RDR℄

else

h

DR�R

i

message ![[B U DU ℄ 
 v ℄

j Bstate ![RDR℄

notfound!

lo
k !m

j

h

DU�U

i

message ![[B U DU ℄ 
 v ℄

Fig. 4. A Forwarding-Pointers Translation: the Daemon
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is forwarded to the daemon DU on the site U where B was 
reated. Otherwise,

if B is found, the agent lo
k Bstate is grabbed, obtaining the forwarding pointer

[RDR℄ for B . Using i
o
al, the message is then either delivered to B , if it is

here, or to the daemon DR, otherwise. Note that the lo
k is released before the

agent lo
k is requested, so the daemon 
an pro
ess other inputs even if B is


urrently migrating.

A single lo
ation-independent output, forwarded on
e between daemons, in-

volves inter-agent messages as below. (Communi
ations that are guaranteed to

be between agents on the same site are drawn with thin arrows.)

A DS DS

0

B

X

X

X

X

X

X

X

X

X

Xz

message ![b 
 v ℄

X

X

X

X

X

X

X

X

X

Xz

message ![b 
 v ℄

X

X

X

X

X

X

X

X

X

Xz


!v

Creation The 
ompositional en
oding for agent is similar to that of the en
oding

in the previous se
tion. It di�ers in two main ways. Firstly the sour
e language

name b of the new agent must be repla
ed by the a
tual agent name B tupled

with the names S of this site and DS of the daemon on this site. Se
ondly, the

internal forwarder, re
eiving on deliver , is no longer required: the �nal delivery of

messages from daemons to agents is now always lo
al to a site, and so 
an be done

using i
o
al. An expli
it a
knowledgement (on da
k in the simple translation)

is likewise unne
essary.

A single 
reation involves inter-agent messages as below.

A B DS


reate

t

X

X

X

X

X

X

X

X

X

Xz

register !B

�

�

�

�

�

�

�

�

�

�9

a
k !

�

�

�

�

�

�

�

�

�

�9

a
k !

Migration Degenerate migrations, of an agent to the site it is 
urrently on, must

now be identi�ed and treated spe
ially; otherwise the Daemon 
an deadlo
k.

An agent A exe
uting a non-degenerate migration now syn
hronises with the
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daemon DS on its starting site S, then migrates, registers with the daemon DU

on its destination site U , then syn
hronises again with DS. In between the �rst

and last syn
hronisations the agent lo
k for A in daemon DS is held, preventing

DS from attempting to deliver messages to A.

A single migration involves inter-agent messages as below.

DS A DU

�

�

�

�

�

�

�

�

�

�9

migrating !A

X

X

X

X

X

X

X

X

X

Xz

a
k !

migrate to U

X

X

X

X

X

X

X

X

X

Xz

register !A

�

�

�

�

�

�

�

�

�

�9

a
k !

�

�

�

�

�

�

�

�

�

�9

migrated ![A [U DU ℄℄

X

X

X

X

X

X

X

X

X

Xz

a
k !

Lo
al 
ommuni
ation The translation of i
o
al must now extra
t the real agent

name B from the triple b, but is otherwise trivial.

The top level The top-level translation of a program P , given in Figure 5, dy-

nami
ally 
reates a daemon on ea
h site mentioned in P . Ea
h site name si is

re-bound to the pair [siDSi℄ of the site name together with the respe
tive dae-

mon name. A top-level agent A is 
reated and initialised; the agent name a is

re-bound to the triple [AS1DS1℄ of the low-level agent name A together with

the initial site and daemon names.

5 Redu
tion Semanti
s

The informal des
riptions of the primitives in x2 
an be made pre
ise by giving

them an operational semanti
s. We adopt a redu
tion semanti
s, de�ning the

atomi
 state-
hanges that a system of agents 
an undergo by redu
tion axioms

with a stru
tural 
ongruen
e, following the style of [BB92,Mil92℄.

The pro
ess terms of the 
al
uli in x2.1,2.2 only allow the sour
e 
ode of

the body of a single agent to be expressed. During 
omputation, this agent may

evolve into a system of many agents, distributed over many sites. The redu
tion

relation must be between the possible states of these systems, not simply between

terms of the sour
e 
al
uli; we express su
h states as 
on�gurations �; P . Here
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[[P ℄℄

a;s1::sn

= new register ;migrating ;migrated ;message; a
k ; 
urrentlo
; lo
k ;

daemondaemon; nd in

�daemondaemon?S !

agent D =

migrate to S !(Daemon

[SD℄

j

h

a�s1

i

nd ![S D ℄)

in 0

j daemondaemon !s1 j nd?s1 !

: : :

daemondaemon !sn j nd?sn!

let (S1DS1) = s1 in

agent A =

let a = [AS1DS1℄ in


urrentlo
!s1

j

h

DS1

i

register !A

j a
k?![[P ℄℄

A

in 0

where P is initiated on site s1, the free site names in P are s1::sn, and the new-bound

names, S1 , DS1 , and A do not o

ur in P .

Fig. 5. A Forwarding-Pointers Translation: the top level

� is a lo
ation 
ontext that gives the 
urrent site of any free agent names; P is

a term of the (low- or high-level) 
al
ulus extended with two new forms.

�

a

P P as part of agent a

new a�s in P new agent name a, 
urrently at site s

Con�gurations may involve many agents in parallel. The form �

a

P denotes

the pro
ess term P as part of the body of agent a, so for example �

a

P j�

b

Q

denotes P as part of the body of a in parallel with Q as part of the body of b. It

will be 
onvenient to allow the parts of the body of an agent to be synta
ti
ally

separated, so e.g. �

a

P

1

j�

b

Q j�

a

P

2

denotes P

1

jP

2

as part of a in parallel with

Q as part of b. Con�gurations must re
ord the 
urrent sites of all agents. For

free agent names this is done by the lo
ation 
ontext �; for the others, the form

new a�s in P de
lares a new agent name a, whi
h is binding in P , and re
ords

that agent a is 
urrently at site s.

We now give the detailed de�nitions. Pro
ess terms are taken up to alpha-


onversion throughout. Stru
tural 
ongruen
e � in
ludes the axiom

�

a

(P jQ) � �

a

P j�

a

Q

allowing the parts of an agent a to be synta
ti
ally separated or brought together,

and the axiom

�

a

new 
 in P � new 
 in �

a

P if 
 6= a

allowing 
hannel binders to be extruded past �

a

. It is otherwise similar to

a standard stru
tural 
ongruen
e for an asyn
hronous �-
al
ulus, with s
ope
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extrusion both for the new 
hannel binder new 
 in P and for the new agent

binder new a�s in P . In full, it is the least 
ongruen
e satisfying the following

axioms.

P � P j 0

P jQ � Q jP

P j(Q jR) � (P jQ) jR

P jnew 
 in Q � new 
 in P jQ if 
 not free in P

P jnew a�s in Q � new a�s in P jQ if a not free in P

�

a

(P jQ) � �

a

P j�

a

Q

�

a

new 
 in P � new 
 in �

a

P if 
 6= a

A 
on�guration is a pair �; P , where the lo
ation 
ontext � is a �nite partial

fun
tion from N to N , intuitively giving the 
urrent site of any free agent names

in P , and P is a term of the (low- or high-level) extended 
al
ulus. The initial


on�guration, for a program P of the (low- or high-level) unextended 
al
ulus,

to be 
onsidered as the body of an agent a 
reated on site s, is:

fa 7! sg; �

a

P

We are 
on
erned only with 
on�gurations that 
an arise by redu
tion of ini-

tial 
on�gurations for well-typed programs. In these, any parti
le (i.e., agent,

migrate, output, input, if , or i
o
al) will be under exa
tly one � operator,

spe
ifying the agent that 
ontains it. (In this paper we do not give a type sys-

tem, and so leave this informal.) Other 
on�gurations have mathemati
ally well-

de�ned redu
tions but may not be easily implementable or desirable, for example

�; �

a

(
?b!�

b

P )

re
eives an agent name and then adds P to the body of that agent.

We de�ne a partial fun
tion mat
h, taking a value and a pattern and giving

(where it is de�ned) a �nite substitution from names to values.

mat
h(v; ) = fg

mat
h(v; x) = fx 7! vg

mat
h([v

1

:: v

m

℄; (p

1

:: p

m

)) = mat
h(v

1

; p

1

) [ : : : [mat
h(v

m

; p

m

)

mat
h(v; (p

1

:: p

m

)) unde�ned, if v is not of the form [v

1

:: v

m

℄

The natural de�nition of the appli
ation of a substitution from names to values

to a pro
ess term P is also a partial operation, as the syntax does not allow

arbitrary values in all the pla
es where free names 
an o

ur. We write fv=pgP for

the result of applying the substitution mat
h(v; p) to P . This may be unde�ned

either be
ause mat
h(v; p) is unde�ned, or be
ause mat
h(v; p) is a substitution

but the appli
ation of that substitution to P is unde�ned.
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The redu
tion axioms for the low-level 
al
ulus are as follows.

�;�

a

agent b = P in Q �! �;new b��(a) in (�

b

P j�

a

Q)

�;�

a

migrate to s!P �! (�� a 7! s);�

a

P

�;�

a

i
o
al

h

b

i


!v!P else Q �! �;�

b


!v j�

a

P if �(a) = �(b)

�! �;�

a

Q if �(a) 6= �(b)

�;�

a

(
!v j
?p!P ) �! �;�

a

fv=pgP

�;�

a

(
!v j�
?p!P ) �! �;�

a

(fv=pgP j�
?p!P )

�;�

a

if u = v then P else Q �! �;�

a

P if u = v

�! �;�

a

Q if u 6= v

The rules mentioning potentially-unde�ned expressions �(x) or fv=pgP in their

side-
ondition or 
on
lusion have an impli
it additional premise that these are

de�ned. Su
h premises should be automati
ally satis�ed in derivations of redu
-

tions of well-typed programs.

Note that the only inter-site 
ommuni
ation in an implementation will be

for the migrate redu
tion, in whi
h the body of the migrating agent a must be

sent from its 
urrent site to site s.

The high-level 
al
ulus has the additional axiom below, for delivering

lo
ation-independent messages to their destination agent.

�;�

a

h

b�?

i


!v �! �;�

b


!v

Redu
tion is 
losed under stru
tural 
ongruen
e, parallel, new 
 in and

new a�s in , as spe
i�ed by the rules below.

Q � P �; P�!�

0

; P

0

P

0

� Q

0

�; Q�!�

0

; Q

0

�; P�!�

0

; P

0

�; P jQ�!�

0

; P

0

jQ

(�; a 7! s); P�!(�; a 7! s

0

); P

0

�;new a�s in P�!�

0

;new a�s

0

in P

0

�; P�!�

0

; P

0


 62 dom(�)

�;new 
 in P�!�

0

;new 
 in P

0

6 Dis
ussion

We 
on
lude by dis
ussing alternative approa
hes for the des
ription of mobile

agent infrastru
tures, related distributed pro
ess 
al
uli, implementation, and

future work.

6.1 Infrastru
ture Des
ription

In this paper we have identi�ed two levels of abstra
tion, pre
isely formulated

them as pro
ess 
al
uli, and argued that distributed infrastru
ture algorithms

for mobile agents 
an usefully be expressed as translations between the 
al
uli.

Su
h translations should be 
ompared with the many other possible ways of

des
ribing the algorithms | we brie
y 
onsider diagrammati
, pseudo
ode, and

automata based approa
hes.
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The diagrams used in x3,4 
onvey basi
 information about the algorithms |

the messages involved in isolated transa
tions | but they are far from 
omplete

des
riptions and 
an be misleading. The 
orre
tness of the algorithms depends

on details of syn
hronisation and lo
king that are pre
isely de�ned by the trans-

lation but are hard to express visually.

For a psuedo
ode des
ription to provide a 
lear (if ne
essarily informal) de-

s
ription of an algorithm the 
onstru
ts of the psuedo
ode must themselves have


lear intuitive semanti
s. This may hold for psuedo
odes based on widespread

pro
edural languages, su
h as Pas
al. Infrastru
ture algorithms, however, in-

volve 
onstru
ts for agent 
reation, migration and 
ommuni
ation. These do not

have a widespread, a

epted, semanti
s | a number of rather di�erent seman-

ti
 
hoi
es are possible | so more rigorous des
riptions are required for 
lear

understanding.

Automata-based des
riptions have been widely used for pre
ise spe
i�
ation

of distributed algorithms, for example in the text of Lyn
h [Lyn96℄. Automata

do not allow agent 
reation and migration to be represented dire
tly, so for

working with a mobile agent algorithm one would either have to use a 
omplex

en
oding or 
onsider only an abstra
tion of the algorithm | a non-exe
utable

model, rather than an exe
utable 
omplete des
ription.

The modelling approa
h has been followed by Amadio and Prasad in their

work on IP mobility [AP98℄. They 
onsider idealizations of proto
ols from IPv6

proposals for mobile host support, expressed in a variant of CCS, and prove


orre
tness results. There is a trade-o� here: the idealizations 
an be expressed

in a simpler formal framework, greatly simplifying 
orre
tness proofs, but they

are further removed from implementation, inevitably in
reasing the likelihood

that important details have been abstra
ted away.

Few 
urrent proposals for mobile agent systems support any form of

lo
ation-independen
e. Those that do in
lude the Distributed Join Language

[FGL

+

96,Joi98℄, the MOA proje
t of the Open Group Resear
h Institute

[MLC98℄, and the Voyager system of Obje
tSpa
e [Obj97℄. The distributed join

language is at roughly the same level of abstra
tion as the high-level Nomadi
 �-


al
ulus. It provides lo
ation-independent 
ommuni
ation, with primitives simi-

lar to the outputs and repli
ated inputs used here. The MOA proje
t asso
iates

a lo
ating s
heme to ea
h agent; 
hosen from querying a parti
ular site (updated

on ea
h migration), sear
hing along a pre-de�ned itinerary, and following for-

warding pointers. Voyager provides lo
ation-independent asyn
hronous and syn-


hronous messages, and multi
asts. Migrating obje
ts leave trails of forwarders

behind them; entities that 
ommuni
ate with these obje
ts are sent updated

addresses to be 
a
hed. Forwarders are garbage-
olle
ted; the garbage 
olle
tion

involves heartbeat messages. More pre
ise des
riptions of the algorithms used in

these systems do not appear to have been published, making it diÆ
ult for the

appli
ation programmer to predi
t their performan
e and robustness.
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6.2 Related Cal
uli

In re
ent years a number of pro
ess 
al
uli have been introdu
ed in order to

study some aspe
t of distributed and mobile agent 
omputation. They in
lude:

{ The �

l


al
ulus of Amadio and Prasad [AP94℄, for modelling the failure

semanti
s of Fa
ile [TLK96℄.

{ The Distributed Join Cal
ulus of Fournet et al [FGL

+

96℄, intended as the

basis for a mobile agent language.

{ The language of lo
ated pro
esses and the D� 
al
ulus of Riely and Hennessy,

used to study the semanti
s of failure [RH97,RH98℄ and typing for 
ontrol

of resour
e use by mobile agents [HR98b,HR98a℄.

{ The 
al
ulus of Sekigu
hi and Yonezawa [SY97℄, used to study various prim-

itives for 
ode and data movement.

{ The dpi 
al
ulus of Sewell [Sew97a,Sew98℄, used to study a subtyping system

for lo
ality enfor
ement of 
apabilities.

{ The Ambient 
al
ulus of Cardelli and Gordon [CG98℄, used for modelling

se
urity domains.

{ The Seal 
al
ulus of Vitek and Castagna [VC98℄, fo
ussing on prote
tion

me
hanisms in
luding revo
able 
apabilities.

There is a large design spa
e of su
h 
al
uli, with very di�erent primitives being

appropriate for di�erent purposes, and with many semanti
 
hoi
es. A thorough


omparison and dis
ussion of the design spa
e is beyond the s
ope of this paper

| a brief dis
ussion 
an be found in [Sew99℄; here we highlight only some of the

main design 
hoi
es:

Hierar
hy We have adopted a two-level hierar
hy, of agents lo
ated on sites. One

might 
onsider tree-stru
tured mobile agents with migration of subtrees, e.g. as

in [FGL

+

96℄. The added expressiveness may be desirable from the programmer's

point of view, but it requires somewhat more 
omplex infrastru
ture algorithms

| migrations of an agent 
an be 
aused by migrations of their parents | so we

negle
t it in the �rst instan
e.

Unique Naming The 
al
uli of x2 ensure that agents have unique names, in 
on-

trast, for example, to the Ambients of [CG98℄. Inter-agent messages are therefore

guaranteed to have a unique destination.

Communi
ation In earlier work [SWP98℄ the inter-agent 
ommuni
ation prim-

itives were separated from the 
hannel primitives used for lo
al 
omputation.

The inter-agent primitives were

h

a�?

i

!v lo
ation-independent output of v to agent a

h

a�s

i

!v lo
ation-dependent output

?p!P input at the 
urrent agent

These give a 
on
eptually simpler model, with messages sent to agents rather

than to 
hannels at agents, but to allow en
odings to be expressed it was ne
es-

sary to add variants and lo
al 
hannels. This led to a rather large 
al
ulus and

somewhat awkward en
odings.
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6.3 Implementation

In order to experiment with infrastru
ture algorithms, and with appli
ations that

use lo
ation-independent 
ommuni
ation, we have implemented an experimental

programming language, Nomadi
 Pi
t. The Nomadi
 Pi
t implementation is

based on the Pi
t 
ompiler of Pier
e and Turner [PT97℄. It is a two-level language,


orresponding to the 
al
uli presented in this paper. The low level extends Pi
t

by providing dire
t support for agent 
reation, migration and lo
ation-dependent


ommuni
ation. The high level supports lo
ation-independent 
ommuni
ation by

applying translations | the 
ompiler takes as input a program in the high-level

language together with an en
oding of ea
h high-level primitive into the low-

level language. It type-
he
ks and applies the en
oding; the resulting low-level

intermediate 
ode 
an be exe
uted on a relatively straightforward distributed

run-time system. The two en
odings given have both been su

essfully type-


he
ked and exe
uted.

Typing In this paper the 
al
uli have been presented without typing. The No-

madi
 Pi
t implementation inherits from Pi
t its rather expressive type system.

For reasoning about infrastru
ture en
odings a simple type system for the 
al
uli

would be desirable, with types

T ::= Site j Agent j lT j [T :: T ℄ j X j 9X:T

for site and agent names, 
hannels 
arrying values of type T , tuples, and exis-

tential polymorphism.

The 
al
uli allow a 
hannel name to es
ape the agent in whi
h it is de
lared

and be used subsequently both for input and output within other agents. The

global/lo
al typing of [Sew97a,Sew98℄ 
ould be used to impose tighter dis
i-

plines on 
hannels that are intended to be used only lo
ally, preventing 
ertain

programming errors.

Input/Output and Traders Up to this point we have 
onsidered only 
ommuni
a-

tions that are internal to a distributed 
omputation. External input and output

primitives 
an be 
leanly provided in the form of spe
ial agent names, so that

from within the 
al
ulus inputs and outputs are treated exa
tly as other 
ommu-

ni
ations. For example, for 
onsole I/O one might have a �
titious 
onsole agent

on ea
h site, together with globally-known 
hannel names get
har and put
har .

Messages sent to these would be treated spe
ially by the lo
al run-time system,

leading to idioms su
h as

new a in

h


onsole

i

put
har ![
 a℄ j(a?!P )

for syn
hronous output of a 
hara
ter 
 to the lo
al 
onsole, and

new a in

h


onsole

i

get
har !a j(a?x!P )

for syn
hronous input of a 
hara
ter, to be bound to x, from the lo
al 
onsole.

27



In realisti
 systems there will be a ri
h 
olle
tion of input/output resour
es,

di�ering from site to site, so agents may need to a
quire resour
es dynami
ally.

Moreover, in realisti
 systems agents will be initiated separately on many sites; if

they are to intera
t some me
hanism must be provided for them to a
quire ea
h

other's names dynami
ally. To do this in a lexi
ally-s
oped manner we envisage

ea
h site maintaining a trader, a �nite map from strings to values that supports

registration and lookup of resour
es. Agents would typi
ally obtain the trader

name asso
iated with a site at the same time as obtaining the site name. For

traders to be type-sound a type Dynami
 [ACPP91℄ is required.

6.4 Future Work

This paper provides only a starting point | mu
h additional work is required

on algorithms, semanti
s, and implementation.

{ The 
hoi
e of infrastru
ture algorithm(s) for a given appli
ation will depend

strongly on many 
hara
teristi
s of the appli
ation and target network, es-

pe
ially on the expe
ted statisti
al properties of 
ommuni
ation and migra-

tion. In wide area appli
ations, sophisti
ated distributed algorithms will be

required, allowing for dynami
 system re
on�gurations su
h as adding new

sites to the system, migrating parts of the distributed 
omputation before

shutting down some ma
hines, tra
ing lo
ations of di�erent kinds of agents,

and implementing toleran
e of partial failures. The spa
e of feasible algo-

rithms and the trade-o�s involved require detailed investigation.

{ Turning to semanti
s, in order to state 
orre
tness properties (in the absen
e

of failures) a theory of observational equivalen
e is required. Su
h a theory

was developed for an idealised Pi
t in [Sew97b℄; it must be generalized to

the distributed setting and supported by 
oindu
tive proof te
hniques.

{ Finally, to investigate the behaviour of infrastru
ture algorithms in pra
ti
e,

and to assess the usefulness of our high-level lo
ation-independent primitives

in appli
ations, the implementation must be developed to the point where

it is possible to experiment with non-trivial appli
ations.

The 
al
uli of x2 make the unrealisti
 assumption that 
ommuni
ations and sites

are reliable. This is implausible, even for lo
al area networks of moderate size,

so usable infrastru
ture algorithms must be robust under some level of failure.

To express su
h algorithms some notion of time must be introdu
ed into the

low-level 
al
ulus, to allow timeouts to be expressed, yet the semanti
s must be

kept tra
table, to allow robustness properties to be stated and proved.

One might also 
onsider other high-level 
ommuni
ation primitives, su
h as

lo
ation-independent multi
ast, and agent primitives, su
h as tree-stru
tured

agents. More spe
ulatively, the two levels of abstra
tion that we have identi�ed

may be a useful basis for work on se
urity properties of mobile agent infrastru
-

tures | to 
onsider whether a distributed infrastru
ture for mobile agents is

se
ure one must �rst be able to de�ne it pre
isely, and have a 
lear understand-

ing of how it is distributed on a
tual ma
hines.
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