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Abstract

Current proposals for concurrent shared-memory languages, in-
cluding C++ and C, provide sequential consistency only for pro-
grams without data races (the DRF guarantee). While the implica-
tions of such a contract for hardware optimisations are relatively
well-understood, the correctness of compiler optimisations under
the DRF guarantee is less clear, and experience with Java shows
that this area is error-prone.

In this paper we give a rigorous study of optimisations that in-
volve both reordering and elimination of memory reads and writes,
covering many practically important optimisations. We first define
powerful classes of transformations semantically, in a language-
independent trace semantics. We prove that any composition of
these transformations is sound with respect to the DRF guarantee,
and moreover that they provide basic security guarantees (no thin-
air reads) even for programs with data races. To give a concrete
example, we apply our semantic results to a simple imperative lan-
guage and prove that several syntactic transformations are safe for
that language. We also discuss some surprising limitations of the
DRF guarantee.

Categories and Subject Descriptors D.3.3 [Language Constructs
and Features]: Concurrent programming structures; D.3.4 [Pro-
cessors]: Optimization; F.3.2 [Semantics of Programming Lan-
guages]

General Terms Languages, Reliability, Theory, Verification

Keywords Relaxed Memory Models, Semantics, Compiler Opti-
mizations

1. Introduction

Standard compiler optimisation, such as common expression elimi-
nation, violate sequentially consistent semantics for multi-threaded
programs. For example, observe that the following program cannot
print value 1 in any of its interleavings.

initially requestReady = responseReady = data = 0
Thread 1 Thread 2

data := 1 if (requestReady==1) {
requestReady := 1 data := 2
if (responseReady==1) responseReady := 1

print data }
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However, an optimising compiler propagates the constant 1 from
the data:=1 statement and replaces1 print data with print 1.
While such an optimisation would be correct for sequential pro-
grams, it is not safe for this program in the sequentially consistent
semantics because unlike the original program, the optimised pro-
gram can output 1.

Such a result is worrisome because most theoreticians and prac-
titioners assume a sequentially consistent semantics. Indeed, some
researchers believe that compilers should perform only those op-
timisations that do not break the sequentially consistent semantics
(see §7 for more details). In contrast, designers of common lan-
guages and hardware do permit and implement aggressive optimi-
sations that can exhibit surprising behaviours for multi-threaded
programs, but they provide mechanisms for recovering a sequen-
tially consistent semantics. On multi-processors, programmers can
constrain optimisations using memory fence instructions, which of-
ten have intricate semantics [3, 11, 20] and high run-time costs,
usually in the order of tens to hundreds of cycles.

In higher-level programming languages, the recent trend is to
guarantee interleaved semantics for programs without data races [6,
16]; we will call such a specification the DRF guarantee [1]. As
programming without data races is considered good practice, the
DRF guarantee is safe for well-engineered programs while validat-
ing most compilers because the possibly unintended effects of com-
mon optimisations cannot be observed without data races. How-
ever, to our knowledge, there is little rigorous evidence for this
claim. We emphasise that the DRF guarantee leaves the behaviours
of programs with races unspecified, possibly leading to executions
where values appear “out-of-thin-air” [16]. This is unacceptable for
languages that aim to give basic security guarantees for arbitrary
programs, e.g., Java applets.

Contribution. We prove the DRF guarantee and the absence of
out-of-thin-air values for a large class of compiler optimisations.
In more detail, we design a novel trace-semantic characterisation
of thread-local program transformations that is suitable for rea-
soning about validity of common optimisations of concurrent data
race free programs. Using the characterisation, we establish that
the transformations cannot introduce behaviours for race free pro-
grams and prevent out-of-thin-air values for arbitrary programs. We
demonstrate the power of the semantic technique by applying it on
several syntactic transformations, such as reorderings of indepen-
dent statements, and eliminations of redundant memory accesses
in the same block. The main advantage of the semantic approach is
its independence from syntax: it allows using the same proof tech-
niques for different languages, such as intermediate languages in
compilers. We believe that our semantic transformations are gen-
eral enough to capture most thread-local optimisations performed
by realistic compilers. We also show that, perhaps surprisingly, re-

1 For example, the gcc compiler version 4.1.2 on the x86 architecture
performs this optimisation.



dundant read introduction invalidates some optimisations that are
otherwise safe for the DRF-guarantee.

Approach. We view programs as sets of traces of its individ-
ual threads (§3); optimisations are modelled as relations on these
tracesets (§4). Our main result shows that given a finite chain of
programs, where the first program is data race free and the opti-
misation relation relates adjacent programs in the chain, the set of
behaviours of the last program is a subset of the set of behaviours
of the first program (§5), where the behaviours are sequences of
externally observable actions (input or output) of all interleavings
of the program.

To show the absence of out-of-thin-air values we observe that
all our semantic transformations preserve an important property: if
a thread writes or outputs a value then it must have read the value
before. Using this property, we prove our out-of-thin-air guarantee:
if a program does not contain constant c explicitly and there is
no way to build c (for example because c is an integer and the
program does not contain any arithmetic), then no transformation
of the program can read, write or output value c (§5).

We have carried most of our work on semantic level, but we
show how to apply our work by defining a simple imperative lan-
guage with synchronisation primitives together with several simple
syntactic transformations, and proving them safe (§6).

2. Traces, DRF and Transformations

In our examples, we use a simple C-like language. By convention,
variables with the name beginning with r are local (registers), the
remaining variables reside in distinct shared-memory locations.
Similarly to Java [10, 16] or C++0x [4–6], some locations can be
designated by the programmer as volatile (atomics in C++0x). We
make the syntax and semantics formal in §6. Intuitively, volatile
locations are intended for synchronisation between threads and for
the purposes of the DRF guarantee, data races on volatile locations
do not count as data races, i.e., a program is data race free if it
cannot perform two conflicting accesses to the same non-volatile
location at the same time. We give a formal definition of data race
freedom in §3. Technically, the set of volatile locations should be
part of a program. In our examples, all locations are non-volatile,
unless stated otherwise. We assume that all locations are zero-
initialised.

We represent programs as sets of memory action traces where
the trace is a sequence of memory actions of a single thread. We
have the following memory actions: R[l=v] is a read from location
l with value v; W[l=v] a write to l with value v, L[m] lock of
monitor m; U[m] an unlock of m; X(v) an external action (input or
output) with value v; S(e) is a thread start action with entry point
e, where the entry point is a thread identifier.

2.1 Transformations by Example

We consider four classes of program transformations and illustrate
them on simple examples. We emphasise that the syntactic exam-
ples cover only small range of all the transformations allowed by
the semantics.

Trace preserving transformations. Since our trace semantics
only includes shared-memory optimisations, many otherwise non-
trivial optimisations, such as loop unrolling or inlining, are iden-
tity optimisations in the trace semantics because they do not af-
fect memory accesses. Interestingly, the trace semantics does not
directly capture syntactic dependencies. For example, the code
snippets r:=x; if (r==0) y:=1 else y:=1 and r:=x; y:=1
have the same sets of traces—the set of all sequences of a read of x
followed by a write of 1 to y.

Thread 0 Thread 1

x:=2
y:=1
x:=1

r1:=y
print r1
r1:=x
r2:=x
print r2

Thread 0 Thread 1

y:=1
x:=1

r1:=y
print r1
r1:=x
r2:=r1
print r2

(original) (transformed)

Figure 1. Elimination example.

Elimination. The example in Fig. 1 shows an elimination of an
overwritten write to x in the first thread and an elimination of a re-
dundant read from x in the second thread. Note that such a transfor-
mation is not safe in a sequentially consistent semantics: unlike the
original program, the transformed program can output 1 followed
by 0, assuming that all memory locations are zero-initialised. This
does not violate the DRF guarantee since the program contains data
races on x and y. In the absence of data races, we show that elimi-
nations cannot introduce new behaviours (§5).

Eliminations are easy to describe on traces: intuitively, a pro-
gram is an elimination of another program if for each trace of the
transformed program there is a trace in the original program such
that we can obtain the transformed trace by eliminating some re-
dundant actions from the original trace. For example, consider the
trace t = [S(1),R[y=1],X(1),R[x=0],X(0)] of Thread 1 of the
transformed program from Fig. 1 and observe that we can obtain
t from trace [S(1),R[y=1],X(1),R[x=0],R[x=0],X(0)] of the
original program by removing the redundant read of x. We con-
sider the read redundant because there is an earlier read from the
same location of the same value. We give the precise definition of
various kinds of redundant actions and of the semantic elimination
in §4. The semantic elimination transformation is general enough
to cover optimisations that eliminate memory accesses based on
data-flow analyses, i.e., common subexpression elimination, con-
stant propagation, or even loop-invariant hoisting if combined with
loop unrolling.

Reordering. In the example in Fig. 2, we show a reordering
of a read from y with a later write to x. Again, this transforma-
tion is not safe in the interleaved semantics because the original
program cannot print 1, as opposed to the transformed program
(assuming zero-initialised memory). For semantic reordering we
only require each trace of the transformed program to be a permu-
tation of some trace of the original program with certain restric-
tions, such as preventing reordering of two conflicting accesses to
the same memory location. Note that this definition can allow re-
ordering of actions that are control dependent or falsely data de-
pendent. Using our notion of reordering, the code snippet r:=x;
if (r==1) {y:=1;z:=1}else {z:=1;y:=1} is a reordering of
y:=1;z:=1;r:=x because any trace of the latter is a permutation
of a trace of the former. We give a precise definition of the seman-
tic reordering in §4 and show its safety for DRF programs in §5.
The semantic reordering transformation covers code motion trans-
formations, which are typically employed in loop optimisations.

Introduction. It is known that write introduction (sometimes
called write speculation) generally violates the DRF guarantee be-
cause the introduced write might be seen by a different thread even
though there was no data race in the original program [6]. It is less
clear whether a redundant read introduction can violate the DRF
guarantee in practice, especially in the seemingly harmless case
where the program never uses the value obtained from the intro-
duced read. Unsurprisingly, if we introduce irrelevant reads and
execute on a sequentially consistent architecture, the reads cannot



Thread 0 Thread 1

r1:=x
y:=r1

r2:=y
x:=1
print r2

Thread 0 Thread 1

r1:=x
y:=r1

x:=1
r2:=y
print r2

(original) (transformed)

Figure 2. Reordering example.

lock m
x := 1
print y
unlock m

lock m
y := 1
print x
unlock m

r1 := y
lock m
x := 1
print y
unlock m

r2 := x
lock m
y := 1
print x
unlock m

(a) original (b) with introduced reads

r1 := y
lock m
x := 1
print r1
unlock m

r2 := x
lock m
y := 1
print r2
unlock m

(c) after read elimination

Can the program print two zeros?

Figure 3. Irrelevant read introduction.

change the behaviours. However, if combined with otherwise DRF-
friendly optimisations, we can obtain non-sequentially consistent
behaviour from programs that are data race free. For example, note
that the first program from Fig. 3 cannot print two zeros, but if
an optimiser inserts irrelevant reads and then reuses the introduced
reads to eliminate other reads, as illustrated by the programs (b)
and (c) in the figure, the resulting program can print two zeros even
on a sequentially consistent architecture.

One might find both the optimisations from Fig. 3 dubious, but
compilers (including gcc) do introduce reads when hoisting reads
from a loop. Although we have not seen the redundant read elim-
ination across synchronisation in any compiler yet, this optimisa-
tion has been proposed and implemented in gcc for the upcoming
C++0x implementation [12]. In any case, this case of redundant
read elimination is safe in the DRF guarantee (§4).

3. Trace Semantics

We begin the technical development with setting up our intuitive
trace semantics rigorously.

Actions, Traces and Interleavings. Our traces are sequences
of memory operations. In addition to the standard read, write,
thread start and synchronisation operations, the traces also include
external I/O operations, such as printing, because ultimately we
wish to reason about observable I/O behaviours.

The thread start action is always the first action of a thread. Its
purpose is to provide a connection between the identity of a thread
and its entry point. To simplify the discussion, we create threads
statically and we use thread identifiers as entry points.

We will use the following terminology to refer to classes of
actions: a memory access to location l is a read or a write to l;
a volatile memory access (resp. read, write) is a memory access
(resp. read, write) to a volatile location; a normal memory access
(resp. read, write) is an access (resp. read, write) to a non-volatile

location; an acquire action is either a lock or a volatile read; a
release action is an unlock or a volatile write; a synchronisation
action is an acquire or release action.

To work with sequences of actions we use the following nota-
tion: t++ t′ is a concatenation of lists t and t′; we write t ≤ t′

if t is prefix of t′, i.e., if there is s such that t++ s = t′. Trace t
is a strict prefix of t′ (t < t′), if t ≤ t′ and t 6= t′; |t| denotes
the length of the sequence t; ti is i-th element of the list t, in-
dices are 0-based; [a← t. P (a)] stands for the list of all actions in
list t that satisfy condition P , in functional languages, this is often
written as filter P t; we generalise the filter notation to a map-
filter notation; the expression [f(a) | a← t. P (a)] denotes the list
[a← t. P (a)] with each element transformed by function f , in
functional languages, one would write this as map f (filter P t);
t|S is a sublist of t that contains all elements with indices from S;
for example, [a, b, c, d]|{1,3} is [b, d]; dom(t) is the set of all in-
dices to t: dom(t) = {0, . . . , |t| − 1}; ldom(t) is the list of all
indices to t in the increasing order: ldom(t) = [0, . . . , |t| − 1].

Programs are represented as sets of traces, called tracesets. The
traces in a traceset do not have to be complete; their execution can
finish at any point. We model this by assuming that the set of traces
of a program is prefix-closed, i.e., for traceset T , t ≤ t′ and t′ ∈ T
implies t ∈ T . We also require the tracesets to be well locked, i.e.,
for each t ∈ T and monitor m, the number of unlocks of m in
t is not greater than the number of locks of m in t. All traces in
a traceset must be properly started meaning that if a trace is not
empty its first action must be a start action.

For example, the traceset of the first program in Fig. 2 is the
prefix closure of the following set (V is the set of values):

{[S(0),R[x=v],W[y=v]] | v ∈ V }

∪ {[S(1),R[y=v],W[x=1],X(v)] | v ∈ V }.

We should note that this notion of traceset is rather weak as it
does not enforce determinism or receptiveness. For instance, the
set of traces {[S(0)], [S(0),R[x=1]], [S(0),W[y=1]]} is a valid
traceset. Having non-determinism is useful to model underspecified
features of languages, such as the loose evaluation order in C/C++.

Interleavings and Executions. Interleavings are sequences of
thread-identifier–action pairs. For a pair p = 〈θ, a〉, we writeA(p)
to refer to the action a, and T (p) for θ. A sequence of such pairs is
an interleaving. Given an interleaving I , the trace of θ in I is the se-
quence of actions of thread θ in I , i.e., [A(p) | p← I. T (p) = θ].
In the text, we often omit the projection A(−) and write “Ii is a
read” instead of “A(Ii) is a read”. We may also omit the interleav-
ing I and write “i is a read” if I is obvious from the context.

Interleaving is an execution of traceset T that respects mutual
exclusion, its reads see the values of most recent writes and the
traces of its thread are in T . Formally, interleaving I is an interleav-
ing of traceset T if for all thread identifiers θ, the trace of θ is in
T , thread identifiers correspond to entry-points, i.e.,A(Ii) = S(θ)
implies T (Ii) = θ for all i and θ, and A(Ii) = L[m] implies that
for each thread θ 6= T (Ii) we have

|{j | j < i ∧ T (Ij) = θ ∧A(Ij) = L[m]}| =

|{j | j < i ∧ T (Ij) = θ ∧A(Ij) = U[m]}|.

We say that r ∈ dom(I) (i) sees write w if A(Ir) = R[x=v],
A(Iw) = W[x=v] for some x, v and w < r, and for all i such that
w < i < r the action Ii is not a write to l, (ii) sees default value
if Ir is a read of the default value from l (typically 0) and there is
no write i < r to location l in I , (iii) sees the most recent write if
r sees the default value or it sees some write w or r is not a read.
Interleaving I is sequentially consistent if all j ∈ dom(I) see the
most recent write in I . Sequentially consistent interleavings of T
are called executions of T .



Orders on Actions. The sequencing of actions in interleavings
imposes a total order on the execution of actions. In reality, actions
are often performed concurrently. We will model this by construct-
ing a partial happens-before order [13], which relates actions only
if they are ordered by the program code or by synchronisation.

First, we define the program order to relate actions of the same
thread in interleaving I , i.e., ≤I

po= {(i, j) | 0 ≤ i ≤ j <
|I | ∧ T (Ii) = T (Ij)}. We say that i synchronises-with j, written
i <I

sw j, if i < j < |I | andA(Ii),A(Ij) are a release-acquire pair,
where actions a and b are a release-acquire pair if a is an unlock of
monitor m and b is a lock of m, or a is a write to a volatile location
l and b is a read of l. The happens-before order of I is the transitive
closure of program order and synchronizes-with.

Note that i ≤I
po j implies i ≤ j, and i synchronises-with j

implies i < j. Hence, i ≤I
hb j implies i ≤ j. As any subset of a

total order is antisymmetric and ≤I
hb is transitive and reflexive by

construction, the happens-before order is a partial order.
A matching is a function that relates the actions in two traces

or interleavings. Formally, matching between lists I and I ′ is a
partial injective function f from dom(I) to dom(I ′) such that
Ii = I ′f(i) for all i ∈ dom(f) . The matching f is complete

if dom(f) = dom(I). We use matchings to relate actions in a
trace (resp. interleaving) of a transformed program to a trace (resp.
interleaving) of the original program.

Data Race Freedom. Two actions are conflicting if they access
the same non-volatile location and at least one of them is a write.
An interleaving has a data race if it contains two adjacent conflict-
ing actions from different threads. A traceset is data race free if
none of its executions has a data race. Equivalently, one could de-
fine data race freedom using the happens-before relation: a program
is data race free if in all its executions, all the pairs of conflicting
actions are ordered by the happens-before order of the execution
[6, 21].

The common way of ensuring data race freedom is protecting
every shared-memory location with a lock. Then there cannot be a
data race because there must be an unlock-lock pair of actions on
the same monitor between any two accesses to the same location in
any execution. Alternatively, we can use volatile locations to make
a program data race free. For example, if we mark the locations
requestReady and responseReady in the first program in §1 as
volatile, the program becomes data race free.

4. Semantic Transformations

We now define eliminations and reorderings semantically.

Eliminations. To define semantic read eliminations, we intro-
duce wildcard traces. The wildcard traces are generalisations of
ordinary traces, where each each element of a wildcard trace is ei-
ther an action or a wildcard read R[x=∗]. We use the wildcards
to express independence of the trace’s validity on the value that
the wildcard reads might read. We say that a (normal) trace t is
an instance of a wildcard trace t′, if we can obtain t by replac-
ing all wildcards in t′ with some concrete values. A wildcard trace
belongs-to traceset T if T contains all instances of the trace.

Similarly, we define wildcard interleavings to be interleavings
with some ordinary actions replaced by wildcard reads. We obtain
an instance of a wildcard interleaving by replacing each wildcard
read by a read of the same location with the value of the most recent
write to the same location, or with the default value if there is no
earlier write to the same location. As opposed to trace instances,
the instance of an interleaving is unique. We say that a wildcard
interleaving belongs-to T if for each thread θ, the (wildcard) trace
of θ belongs-to T .

For example, let T be the traceset of the following program

y:=1;
r1:=x;
print r1;

r2:=y;
x:=1;

and observe that the wildcard traces [S(0),W[y=1],R[x=∗]] and
[S(1),R[y=∗],W[x=1]] belong-to T . In contrast, the wildcard
trace [S(0),W[y=1],R[x=∗],X(1)] does not belong-to T because
some of its instances, e.g., [S(0),W[y=1],R[x=2],X(1)], are not
in T .

Our definition of eliminations on traces considers pairs of pos-
sibly non-adjacent memory accesses and identifies the conditions
on the intervening actions that enable elimination of one of the ac-
cesses. Moreover, the definition allows removal of irrelevant (wild-
card) reads and certain actions from the end of the trace. The “last-
action” eliminations are useful for reordering.

Definition 1. We say that there is a release-acquire pair between i
and j in trace t if there are r and a such that i < r < a < j, tr is a
release and ta is an acquire. Given trace t, we say that i ∈ dom(t)
is

1. redundant read after read if ti = tj = R[l=v] for some v, non-
volatile l and j < i, and there is no release-acquire pair or
write to l between j and i,

2. redundant read after write if ti = R[l=v], tj = W[l=v] for
some v, non-volatile l and j < i, and there is no release-
acquire pair or write to l between j and i,

3. irrelevant read if ti is a wildcard non-volatile read,

4. redundant write after read if ti = W[l=v], tj = R[l=v] for
some v, non-volatile l and j < i, and there is no release-
acquire pair or other access to l between j and i,

5. overwritten write if ti = W[l=v], tj = W[l=v′] for some v,
v′, non-volatile l and j < i, and there is no release-acquire
pair or other access to l between j and i,

6. redundant last write if ti is a normal write and there is no later
release action and no later memory access to the same location,

7. redundant release if ti is a release and there are no later syn-
chronisation or external actions,

8. redundant external action if ti is an external action and there
are no later synchronisation or external actions.

An index i is eliminable in t if i satisfies one of the conditions above.
Given traces t and t′, the trace t′ is an elimination of t if there is
S ⊆ dom(t) such that t′ = t|S and all i ∈ dom(t) \ S are
eliminable in t. A traceset T ′ is an elimination of a set of traces T
if each trace t′ ∈ T ′ is an elimination of some wildcard trace that
belongs-to T .

For example, in the wildcard trace

[S(0),W[x=1],R[y=∗],R[x=1],

X(1),L[m],W[x=2],W[x=1],U[m]],

the indices 2, 3, and 6 are eliminable; so its elimination could be the
trace [S(0),W[x=1],X(1),L[m],W[x=1],U[m]]. For an example
of eliminations on tracesets, observe that all traces of the traceset
of the program

x:=1; print 1; lock m; x:=1; unlock m;

are eliminations of some traces belonging-to the traceset of

x:=1; r1:=y; r2:=x; print r2;
if (r2!=0) {lock m; x:=2; x:= r2; unlock m;}

so the former traceset is an elimination of the latter.

Reordering. The reordering transformation allows changing or-
der of execution of memory actions. However, not all permutations



of actions preserve behaviours. We say that a is reorderable with
b if either (i) a is a non-volatile memory access, and b is a non-
conflicting non-volatile memory access, or an acquire action, or an
external action; or (ii) b is a non-volatile memory access, and a
is a non-conflicting non-volatile memory access, or a release, or
an external action. The following table summarises the permissi-
ble reordering in a more readable form (cf. Doug Lea’s cookbook
(author?) [14]).

b =
a = W[x=vx]

1 R[x=vy]
1 Acq Rel Ext

W[y=vy ]
1 x 6= y x 6= y X × X

R[y=vy]
1 x 6= y X X × X

Acquire × × × × ×
Release X X × × ×
External X X × × ×

Note that reorderability is not symmetric as we can reorder a write
with a later acquire, but not the opposite. The only reason for
the asymmetry is the so-called roach motel reordering [16], i.e.,
moving non-volatile memory accesses into synchronized blocks
(for example, see rules R-RL, R-UW in Fig. 11).

A traceset T ′ is a reordering of a traceset T if each trace t′ in T ′

is a permutation of some trace t from T . Moreover, the permutation
has to satisfy two conditions: (i) it may only swap reorderable
actions, (ii) if we apply the permutation to any prefix of t′, i.e.,
if we leave out from t all the actions that are not in the prefix, then
the resulting trace belongs to T .

In the rest of this section we will make this definition precise
and then we apply the definition to a simple example. Given trace
t, a bijection f : dom(t) → dom(t) is a reordering function for
t if for all i < j we have that f(j) < f(i) implies that tj is
reorderable with ti. It might seem that ti should reorderable with
tj and not the opposite, but reordering function transforms traces in
the opposite way: from traces of the transformed program to traces
of the original program.

Before lifting the notion of reordering to traces and tracesets,
we define a de-permutation of a prefix of a given trace t using
function f . Formally, for n ≤ |t| and bijection f on dom(t), the
de-permutation of t of length n, denoted by f→

<n(t), is the trace
[

tf−1(i) | i← ldom(t). f−1(i) < n
]

.

The de-permutation of t, written f→(t), is the de-permutation of t
of length |t|.

Note f is a complete matching between t and f→(t). Now we
lift the notion of reordering to tracesets: Given a set of traces T
and trace t′, function f : dom(t′) → dom(t′) de-permutes t′ to
T if f is a reordering function for t′ and for any n ≤ |t′| we have
f→
<n(t) ∈ T . A set of traces T ′ is a reordering of a set of traces T

if for each t′ ∈ T ′ there is a function that de-permutes t′ into T .
We will demonstrate the application of the reordering definition

on the example from Fig. 2. The tracesets of the program on the left
is the prefix closure of the set

T ={[S(0),R[x=v],W[y=v]] | v ∈ N}∪

{[S(1),R[y=v],W[x=1],X(v)] | v ∈ N}.

The traceset of the transformed program is the prefix closure of

T ′ ={[S(0),R[x=v],W[y=v]] | v ∈ N}∪

{[S(1),W[x=1],R[y=v],X(v)] | v ∈ N}.

Ideally, we would like to show that T ′ is a reordering of T , i.e., that
for any trace t′ ∈ T ′ there is permutation function de-permuting
t′ to T . However, this is not the case, because none of the two

1 Locations x and y are not volatile.

permutations of the trace [S(0),W[x=1]] belongs to T . Therefore,
traceset T ′ cannot be a reordering of T .

This is where the eliminations become useful: we can obtain
the trace [S(0),W[x=1]] by eliminating the irrelevant read from y
from the wildcard trace [S(0),R[y=∗],W[x=1]], which belongs-

to T . More precisely, let T̂ = T ∪ [S(0),W[x=1]] and note that T̂
is an elimination of T . It remains to check that T ′ is a reordering

of T̂ . Let us illustrate this on t′ = [S(0),W[x=1],R[y=1],X(1)].
Let

f = {〈0, 0〉 , 〈1, 2〉 , 〈2, 1〉 , 〈3, 3〉} tn = f→
<n(t

′)

The meaning of tn is the following: for n = |t′|, tn is obtained
from t′ by applying the function f so that t′i = tnf(i) or, equiva-

lently, t′
f−1(i) = tni for all i ∈ dom(t′). If n < |t′|, then we use

the transformation only on the prefix of t′ of length n. For illustra-

tion, see Figure 4. Since tn ∈ T̂ for any n ≤ |t′| = 4, we satisfy

the definition of reordering and f reorders T̂ to t′. Similarly, for all

other traces t′ from T ′ there is a function that de-permutes t′ to T̂ .
We should note that most of the complexity here is required only

to cover the roach-motel reorderings, i.e., reordering with synchro-
nisation. In the absence of roach-motel reordering, we could dis-
pense with the de-permutations of prefixes.

5. Safety of Transformations

Here we sketch the main idea of our safety proof. The full details
can be found in the author’s PhD thesis [21]. We establish that both
the elimination and reordering transformations have the following
properties: (i) any execution of the transformed traceset has the
same behaviour as some execution of the original traceset, provided
that the original program was data race free; (ii) the transformations
preserve data race freedom; (iii) the transformations cannot intro-
duce values out-of-thin-air.

To prove (i) and (ii), we take an arbitrary execution of the trans-
formed program and construct an execution of the original program
that has the same behaviour. For both the elimination and the re-
ordering transformations, we decompose the execution of the trans-
formed program into traces for each thread, use the definitions of
transformed tracesets from the previous section to obtain untrans-
formed traces of the original traceset and then we compose the un-
transformed traces back into an untransformed interleaving so that
the order of the external and synchronisation actions is preserved.
Then we prove that either the constructed interleaving is an exe-
cution of the original traceset or there must have been a data race.
Moreover, we show that the transformed program is data race free
as the happens-before order of the constructed execution between
two actions on the same variable implies happens-before ordering
in the execution of the transformed program. We establish (iii) by
showing that the transformations cannot introduce origins of values
in tracesets, where a trace is an origin for v if there is a trace that
contains a write of v or an output of v without any preceding read
of v. The rest of this section describes the main proof ideas in more
detail.

Elimination. We can prove sequential consistency for untrans-
formed execution of an eliminated traceset directly because the
untransformation of elimination embeds the happens-before order
on each location. The main technical difficulty in the proof lies in
showing that the extra actions introduced by the untransformation
of elimination do not break sequential consistency.

Here we show that given a data race free traceset T , its elimina-
tion T ′, and an execution of T ′, we can untransform the execution
so that the untransformation is an execution of T with the same
behaviour as the execution of T ′. The first step is the definition of
the untransformation by lifting the definition of eliminations (Defi-



(a) n = 4 (b) n = 3 (c) n = 2 (d) n = 1 (e) n = 0

Figure 4. Example of reordering traces.

nition 1) to interleavings. A naı̈ve definition would require that the
eliminated interleaving is just a sublist with some eliminable ac-
tions left out. However, this does not guarantee sequential consis-
tency for volatile locations in the untransformed interleaving, be-
cause the untransformation might introduce a volatile write action.
Instead we will allow the untransformation to swap some actions
while preserving the program order and the order of synchronisa-
tion and external actions. Moreover, all the release and external
actions introduced by the untransformation must be ordered after
the release and external actions from the interleaving of the trans-
formed program.

The precise definition follows. An index i is eliminable in an
interleaving I if the corresponding index in the trace of T (Ii),
i.e., the index |{j | j < i ∧ T (Ii) = T (Ij)}|, is eliminable in
the trace of T (Ii) in I . Function f is an unelimination function
from interleaving I ′ to wildcard interleaving I if f is a complete
matching between I ′ and I such that (i) if i < j ∈ dom(I ′) and
T (I ′i) = T (I ′j) then f(i) < f(j), (ii) if i < j ∈ dom(I ′)
and A(I ′i), A(I

′
j) are synchronisation or external actions then

f(i) < f(j), (iii) if i ∈ rng(f), j ∈ dom(I) \ rng(f) and A(Ii),
A(Ij) are synchronisation or external actions, then i < j, (iv) if
i ∈ dom(I) \ rng(f), then i is eliminable in I .

Lemma 1. Let traceset T ′ be an elimination of traceset T and
I ′ an interleaving of T ′. Then there is a wildcard interleaving I
belonging-to T and an unelimination function f from I ′ to I .

We construct the function f and the uneliminated interleaving
in three steps: we decompose the interleaving I ′ into individual
threads, then we obtain ‘uneliminated’ traces for each thread, and
finally we interleave the ‘uneliminated’ traces of the threads so
that we preserve the order of synchronisation and external actions
from I ′ while ordering all introduced synchronisation and external
actions after the synchronisation and external actions from I ′.

For example, consider the program (v is volatile)

v:=1;
y:=1;

r1:=x;
r2:=v;print r2;

By our definition of elimination on tracesets, we can eliminate the
last release v:=1 in the first thread and the irrelevant read r1:=x in
the second thread:

y:=1; r2:=v;print r2;

Consider the following execution of the program:

I ′ = [〈0, S(0)〉 , 〈1, S(1)〉 , 〈0,W[y=1]〉 , 〈1,R[v=0]〉 , 〈1,X(0)〉]

Figure 5 shows one possible construction of unelimination I of
I ′. The unelimination function is a composition of the functions
fI′ , fe and fI . For example, the unelimination function maps 2 to
6, i.e., it moves the second action of I ′ to the last position in I .
Note that we cannot just insert the eliminated actions back into I ′

to get the unelimination because we would have to insert the write
W[v=1] between the start of thread 0 and the write to y and this
would break sequential consistency for the read of v.

Uneliminations have an important property: any unelimination
of an execution is also an execution if the eliminated execution con-
tained at most one data race. More precisely, let us have a data race
free traceset T , its elimination T ′, an execution I ′ of T ′, a wild-

Figure 5. Unelimination construction.

card interleaving I belonging-to T and an unelimination function
from I ′ to I , and let all strict prefixes of I ′ be data race free. Then
the instance of I is an execution of T . Moreover, uneliminations
preserve data races. These properties are not obvious. We refer the
reader to (author?) [21] for a full proof. Consequently, elimination
preserves data race freedom: suppose that an elimination of a data
race free traceset was not data race free. Then we take the short-
est execution I of the eliminated traceset with a data race. By the
properties of unelimination, the uneliminated interleaving of I is
an execution with a data race. This contradicts data race freedom
of the original traceset. Thus, we conclude:

Theorem 1. Let traceset T ′ be an elimination of a data free
traceset T . Then T ′ is data race free and any execution of T ′ has

the same behaviour as some execution of T .

Reordering. Since the reordering untransformation does not pre-
serve happens-before order in general, we cannot use the same di-
rect proof we used for elimination. Instead, we prove the safety by
induction on the size of the interleaving of the transformed pro-
gram.

Just like with eliminations, we lift the notion of reordering to
interleavings—we define an unordering function describing how
to permute the actions in the transformed interleaving to get an
interleaving of the original program. We require that whenever
restricting an unordering on an interleaving to actions of one thread
yields a reordering function on traces, as defined in §4.

Given traceset T and interleaving I ′, we say that complete
matching f : dom(I ′) → dom(I ′) is an unordering from I ′

to T if we have: (i) if i < j ∈ dom(I ′), T (I ′i) = T (I ′j)
and A(I ′j),A(I

′
i) are not reorderable, then f(i) < f(j), (ii) if

i < j ∈ dom(I ′) andA(I ′i),A(I
′
j) are synchronisation or external

actions, then f(i) < f(j), (iii) for each thread θ, the permutation
f restricted to actions of θ de-permutes the trace of θ in I ′ into T .

Using a similar construction to unelimination, unordering al-
ways exists. Unlike in the elimination safety proof, we establish
the safety by induction on the size of the execution of the reordered
traceset. To do that, we observe that restricting a reordering func-
tion for an execution to the prefix of the execution without the last
element yields a valid reordering function. This allows us to prove
by induction on the size of I ′ that for any unordering function f
from an execution I ′ to a data race free traceset T , the interleav-
ing I = f→(I ′) is an execution of T . The technical details of this



proof can be found in (author?) [21]. The DRF guarantee directly
follows.

Theorem 2. Suppose that traceset T ′ is a reordering of a data race
free traceset T . Then any execution of T ′ has the same behaviour
as some execution of T . Moreover, T ′ is data race free.

The data race freedom of T ′ follows from reordering function
being order-reflecting for happens-before order restricted to any
individual memory location.

Out-of-thin-air. So far we have seen that the transformations
provide an intuitive semantics for programs without data races. But
what happens if there are data races in a program? Is anything
possible? This would be unacceptable for languages that aim to
give security guarantees for arbitrary programs, such as Java with
sand-boxing. For an illustration of undesirable behaviours, consider
the program

Initially, x = y = 0.

r1:=x;
y:=r1;

r2:=y;
x:=r2;
print r2;

Since the program does not contain value 42 nor any arithmetic that
could create it, no transformation of the program should output 42.

Although our transformations do not give sequential consis-
tency for programs with data races, we can show that out-of-thin-air
behaviours, such as the one above, are impossible. More specifi-
cally, we will establish that for each output action of some value
from an execution of a transformed program there is a statement
in the original program that must have created that value. In a lan-
guage without arithmetic, such as the one introduced in §6, this
might mean that if a transformed program outputs value v, then v
must be a default value, or the original program must have con-
tained v in its program text as a constant. In a language with dy-
namic object allocation, we might use similar technique to show
that if a program cannot allocate objects of a certain class in any
thread, then in no transformed program the reference to such an
object appears out-of-thin-air.

The guarantee is based on a simple observation: Let v be a
value that is different from the default values. If a program without
arithmetic does not contain v as a constant in the source code then
in each trace, each write of the value v and each external action
with the value v must be preceded by a read of the value v.

Formally, we say that trace t is an origin for value v if there is
i ∈ dom(t) such that ti is a write of v or an external action with
the value v, and there is no j < i such that tj is a read of the value
v. Later, in §6.1, we show an application of this semantic property
for a simple language.

Lemma 2. Let traceset T ′ be a reordering or an elimination of
traceset T and suppose that no trace in T is an origin for v. Let us
assume that no location has a singleton type with value v. Then no
trace in T ′ is an origin for v.

Finally, observe that if T does not contain an origin for a value,
no execution of T can output that value:

Lemma 3. Suppose that v is a value, that is not a default value
for any type, T is a traceset, and no t in T is an origin for v. Then
there is no execution of T that contains a read, write or external
action with the value v.

6. Connecting Syntax and Semantics

So far we have referred to an intuitive understanding of the relation-
ship between programs and traces. To illustrate the transformations
on a concrete syntax, we define a simple concurrent language and

several simple but illustrative syntactic program transformations.
Then we show that the syntactic transformations correspond to the
semantic transformations and thus satisfy the DRF and out-of-thin-
air guarantees. It is easy to add more language features, such as
pointers, rich expression language and functions, without funda-
mental changes to the proofs because these features do not have
any memory side-effects.

The syntax of our language is given in Fig. 6. The grammar uses
distinct identifiers for thread-local register names, ranged over by r
or r1, r2 in examples, natural numbers ranged over by i, location
names (also called variables) ranged over by l, in examples x, y, z,
monitor names ranged over by m, in examples m1, m2.

We use a labellised small-step semantics to define the meaning
of programs in the language introduced. A thread-local configura-
tion is a triple 〈Λ, σ, C〉, where monitor state Λ is a function that
maps monitor names to the nesting level of locks, local state σ maps
register names to values, i.e., natural numbers, and C is a code frag-
ment, which is either S or L or P from the syntax in Fig. 6. The
only purpose of the monitor state is to prevent threads from issuing
more unlocks than locks on each monitor.

The small-step relation 〈Λ, σ, C〉
a
−→ 〈Λ′, σ′, C′〉 takes a code

fragment C in state Λ, σ to a code fragment C′ and states Λ′,
σ′ while issuing shared-memory action a. The action a may be
empty, denoted by τ . Fig. 7 contains an inductive definition of the
small step relation. We use the term Val(σ,E) for the value of the
expression E in the environment σ, i.e., Val(σ, i) = i for any value
i ∈ N, Val(σ, r) = σ(r) for register name r, Val(σ, r1==r2) (resp.
Val(σ, r1!=r2)) is tt if Val(σ, r1) = Val(σ, r2) (resp. Val(σ, r1) =
Val(σ, r2)) or ff otherwise. We write f [a 7→ b] for a function
update, i.e., f [a 7→ b](a) = b and f [a 7→ b](x) = f(x) for x 6= a.

We will write 〈Λ, σ, C〉
t

=⇒
n
〈Λ′, σ′, C′〉 for a sequence

of n transitions, as defined in Fig. 8; notation 〈Λ, σ, C〉
t

=⇒

〈Λ′, σ′, C′〉 stands for a finite number of transition, i.e., it is a

shorthand for ∃n. 〈Λ, σ, C〉
t

=⇒
n
〈Λ′, σ′, C′〉. A configuration

〈Λ, σ, C〉 may issue trace t, written 〈Λ, σ, C〉 ⇓ t, if there are Λ′,

σ′ and C′ such that 〈Λ, σ, C〉
t

=⇒ 〈Λ′, σ′, C′〉. The meaning of a

code fragment C in thread-local state Λ, σ is the set of all traces
that it may issue, i.e., [[C]]Λ,σ = {t | 〈Λ, σ, C〉 ⇓ t} The meaning
of program P , written [[P ]], is the set of traces [[P ]]Λ0 ,σ0

where Λ0

maps all monitor names to 0 and σ maps all locations to 0. Observe
that [[P ]] is a traceset.

6.1 Transformations: From Syntax to Semantics

Our basic template for local transformation t is given in Fig. 9.
Observe that the rules for t cannot perform any transformations yet,

i.e., for any P , we have P
t
 P (by induction on the structure of

P ) and if P
t
 P ′ then P = P ′ (by induction on the derivation

of P
t
 P ′). To allow some interesting transformations, we need

to add some additional base rules.

Elimination. In Fig. 10, we give the additional base rules for

our elimination transformation. Technically, the
e
 relation is de-

fined inductively using the rules from Fig. 10 in addition to the

rules from Fig. 9 with
t
 replaced by

e
 . The elimination trans-

formation removes redundant (shared-memory) reads and writes.
The term fv(S) stands for all shared-memory locations contained
in S. Statement S is sync-free if it does not contain any lock or
unlock statements or accesses to volatile locations. Rule E-RAR
(resp. E-RAW) removes redundant read if the value of the location
is known from a previous read (resp. write). Rule E-WAR removes
a write that follows a read of the same value in the same location.
Overwritten writes can be eliminated by rule E-WBW. Rule E-IR



ri ::= r | i

T ::= ri == ri | ri != ri

S ::= l := r; | r := l; | r := ri; | lock m; | unlock m; | skip;

| print r; | {L} | if (T) S else S | while (T) S

L ::= S | S L

P ::= L || L || . . . || L

Figure 6. A simple concurrent language – syntax.

〈Λ, σ, r:=ri;〉
τ
−→ 〈Λ, σ[r 7→ Val(σ, ri)], skip;〉 (REGS)

〈Λ, σ, x:=r;〉
W[x=σ(r)]
−−−−−−−→ 〈Λ, σ, skip;〉 (WRITE)

〈Λ, σ, r:=x;〉
R[x=v]
−−−−→ 〈Λ, σ[r 7→ v], skip;〉 where v ∈ τ (x) (READ)

〈Λ, σ, lockm;〉
L[m]
−−−→ 〈Λ[m 7→ Λ(m) + 1], σ, skip;〉 (LOCK)

〈Λ, σ, unlock m;〉
U[m]
−−−→ 〈Λ[m 7→ Λ(m)− 1], σ, skip;〉 where Λ(m) > 0 (ULK)

〈Λ, σ, unlock m;〉
τ
−→ 〈Λ, σ, skip;〉 where Λ(m) = 0 (E-ULK)

〈Λ, σ, print r;〉
X(σ(r))
−−−−−→ 〈Λ, σ, skip;〉 (EXT)

〈Λ, σ, if (T) S1 else S2〉
τ
−→ 〈Λ, σ, S1〉 if Val(σ, T ) = tt (COND-T)

〈Λ, σ, if (T) S1 else S2〉
τ
−→ 〈Λ, σ, S2〉 if Val(σ, T ) = ff (COND-F)

〈Λ, σ, while (T) S〉
τ
−→ 〈Λ, σ, S;while (T) S〉 if Val(σ, T ) = tt (LOOP-T)

〈Λ, σ, while (T) S〉
τ
−→ 〈Λ, σ, skip;〉 if Val(σ, T ) = ff (LOOP-F)

〈Λ, σ, skip;L〉
τ
−→ 〈Λ, σ, L〉 (SEQ)

〈Λ, σ, {skip;}〉
τ
−→ 〈Λ, σ, skip;〉 (BLOCK)

〈Λ, σ, L0 || . . . || Ln〉
S(i)
−−→ 〈Λ, σ, Li〉 where 0 ≤ i ≤ n (PAR)

〈Λ, σ, S〉
a
−→ 〈Λ′, σ′, S′〉

〈Λ, σ, S L〉
a
−→ 〈Λ′, σ′, S′L〉

(EV-SEQ)
Λ, σ, L

a
−→ Λ′, σ′, L′

〈Λ, σ, {L}〉
a
−→ 〈Λ′, σ′, {L′}〉

(EV-BLOCK)

Figure 7. Small-step Trace Semantics.

〈Λ, σ, C〉
[]

=⇒
0
〈Λ, σ, C〉

(TR-ID)
〈Λ, σ, C〉

τ
−→ 〈Λ′′, σ′′, C′′〉 〈Λ′′, σ′′, C′′〉

α
=⇒
n
〈Λ′, σ′, C′〉

〈Λ, σ, C〉
α

=⇒
n+1
〈Λ′, σ′, C′〉

(TR-SEQT)

〈Λ, σ, C〉
a
−→ 〈Λ′′, σ′′, C′′〉 a 6= τ 〈Λ′′, σ′′, C′′〉

α
=⇒
n
〈Λ′, σ′, C′〉

〈Λ, σ, C〉
a::α
=⇒
n+1
〈Λ′, σ′, C′〉

(TR-SEQA)

Figure 8. Multi-step Trace Semantics.

S
t
 S

(T-ID)
L

t
 L′

{L}
t
 {L′}

(T-BLOCK)
S1

t
 S′

1 L2
t
 L′

2

S1 L2
t
 S′

1 L′
2

(T-SEQ)

S1
t
 S′

1 S2
t
 S′

2

if (T) then S1 else S2
t
 if (T) then S′

1 else S′
2

(T-IF)

S
t
 S′

while (T) S
t
 while (T) S′

(T-WHILE)
∀i ∈ {0, . . . , n}. Si

t
 S′

i

S0 || . . . || Sn
t
 S′

0 || . . . || S
′
n

(T-PAR)

Figure 9. Transformation template.



x not volatile r1, r2, x /∈ fv(S) S sync-free

r1:=x; S; r2:=x
e
 r1:=x; S; r2:=r1

(E-RAR)
x not volatile r1, r2, x /∈ fv(S) S sync-free

x:=r1; S; r2:=x
e
 x:=r1; S; r2:=r1

(E-RAW)

x not volatile r, x /∈ fv(S) S sync-free

r:=x; S; x:=r
e
 r:=x; S;

(E-WAR)
x not volatile r1, r2, x /∈ fv(S) S sync-free

x:=r1; S; x:=r2
e
 S; x:=r2

(E-WBW)

x not volatile

r:=x; r:=i
e
 r:=i

(E-IR)

Figure 10. Additional rules for syntactic elimination.

removes irrelevant reads which cannot affect the rest of the program
because their value is thrown away.

Our definition of syntactic eliminations (Figure 10) does not
include last action eliminations because they are not composable in
the sense that trace t′1 being a (last action) elimination of t1 and t′2
being an elimination of t2 does not necessarily imply that t′1 ++ t′2 is
an elimination of t1 ++ t2. To recover compositionality, we will call
index i properly eliminable in a wildcard trace t if i is a redundant
read after read, or a redundant read after write, or an irrelevant read,
or a redundant write after read or an overwritten write. Given traces
t and t′, the trace t′ is a proper elimination of t if there is S such
that t′ = t|S and all i ∈ dom(t) \ S are properly eliminable in t.
We denote the proper elimination by t→e t′.

The following lemma clarifies the relationship between the syn-
tactic elimination and the semantic elimination from §4.

Lemma 4. Let C be a code fragment and C
e
 C′. Then for any

monitor states Λ,Λ′, register states σ, σ′ and trace t′ we have:

• If 〈Λ, σ, C′〉 ⇓ t′ then there is a wildcard trace t such that

t→e t′ and for any instance t̂ of t we have 〈Λ, σ, C〉 ⇓ t̂.

• If 〈Λ, σ, C′〉
t′

=⇒ 〈Λ′, σ′, skip;〉 then there is a wildcard

trace t such that t →e t′ and for any instance t̂ of t we have

〈Λ, σ, C〉
t̂

=⇒ 〈Λ′, σ′, skip;〉.

As a consequence, if P
e
 P ′ for some programs P and P ′,

then [[P ′]] is an elimination of [[P ]]. Combining this observation
with the results for the semantic elimination (Theorem 1) gives us
a compositional DRF guarantee for syntactic elimination:

Theorem 3. Suppose that P
e
 P ′ and [[P ]] is data race free.

Then [[P ′]] is data race free, and any execution of [[P ′]] has the
same behaviour as some execution of [[P ]].

Reordering. Fig. 11 shows additional rules for reordering. Sim-

ilarly to the elimination transformations, the relation
r
 is defined

inductively using the rules from Fig. 11 and relabelled rules from
Fig. 9. We capture reordering of independent non-volatile memory
accesses in rules R-RW, R-RR, R-WR and R-WW. Rules R-WL,
R-RL, R-UW and R-UR allow moving non-volatile memory ac-
cesses inside synchronised blocks. Note that the R-RR, R-WR and
R-WW rules allow limited reordering of accesses to volatile loca-
tions with non-volatile accesses.

The relationship between the syntactic and semantic reordering
is more involved in our framework because syntactic reordering
corresponds to semantic elimination followed by semantic reorder-
ing; for an illustration, see the example in §4. The following lemma
formalises the relationship between the syntactic reordering and the
trace semantics.

Lemma 5. Assume that C
r
 C′. Then for each Λ and σ there

is a prefix closed set of traces T satisfying these conditions: (i) the
set of traces [[C]]Λ,σ is a subset of T , (ii) each trace from T is an

elimination of some wildcard trace that belongs-to [[C]]Λ,σ , (iii) for
each trace t′, if 〈Λ, σ, C′〉 ⇓ t′ holds then there is a function that
de-permutes t′ into T , (iv) for each trace t′, if there are Λ′ and σ′

such that 〈Λ, σ, C′〉
t′

=⇒ 〈Λ′, σ′, skip;〉 then there is a function f

that de-permutes t′ into T and 〈Λ, σ, C〉
f→(t′)
=⇒ 〈Λ′, σ′, skip;〉.

Together with the semantic DRF guarantees from §5, we obtain
the compositional DRF guarantee for syntactic reordering.

Theorem 4. Suppose that P
r
 P ′ and [[P ]] is data race free.

Then [[P ′]] is data race free, and any execution of [[P ′]] has the
same behaviour as some execution of [[P ]].

Out-of-thin-air. To establish the out-of-thin-air-guarantee for
our simple language, we first observe that if a program does not
contain constant c then the program is not an origin for c:

Lemma 6. Let v be a value such that v is not a default value for
any location, i.e., v 6= 0. Let P be a program without any statement
of the form r:=v, where r is a register name. Then no trace in the
traceset of P is an origin for the value v.

This observation allows us to use our semantic observations
from §5 and state the syntactic counterpart of the out-of-thin-air
guarantee.

Theorem 5. Suppose that c is a constant different from 0, and P
a program that does not contain a statement of the form r := c,
where r is a register. Let P ′ be a program obtained from P by
any composition of syntactic reorderings or eliminations. Then P ′

cannot output c.

7. Related Work

The existing research on compiler optimisations for shared-memory
concurrency concentrates mainly on maintaining sequential con-
sistency for all programs, starting with the foundational work of
Shasha and Snir (author?) [24], where they take a sequentially
consistent execution of a straight line program and describe a set of
reordering constraints that preserve sequential consistency. Build-
ing on these foundations, papers (author?) [15, 17, 26] describe
whole program analyses that determine allowable reorderings in
multi-threaded programs and compilers that preserve behaviours of
arbitrary programs. The emphasis of that line of work is different
from ours: while they design a restricted compiler that guarantees
(an illusion of) sequential consistency for all programs, we show
that commonly used program transformations maintain an illusion
of sequential consistency for correctly synchronised programs. We
are not aware of any such work in the context of compilers.

Correctness of optimisations is closely related to weak memory
models for programming languages and hardware. In fact, validity
of common optimisations was the main motivation for designing
the Java Memory Model [16]. Despite this, Java does not allow



r1 6= r2 x not volatile

r1:=x; r2:=y;
r
 r2:=y; r1:=x;

(R-RR)
x 6= y y not volatile

x:=r1; y:=r2;
r
 y:=r2; x:=r1;

(R-WW)

r1 6= r2 x 6= y x or y not volatile

x:=r1; r2:=y;
r
 r2:=y; x:=r1;

(R-WR)
r1 6= r2 x 6= y x, y not volatile

r1:=x; y:=r2;
r
 y:=r2; r1:=x;;

(R-RW)

x not volatile

x:=r; lock m;
r
 lock m; x:=r;

(R-WL)
x not volatile

r:=x; lock m;
r
 lock m; r:=x;

(R-RL)

x not volatile

unlock m;x:=r;
r
 x:=r;unlock m;

(R-UW)
x not volatile

unlock m;r:=x;
r
 r:=x;unlock m;

(R-UR)

r1 6= r2 x not volatile

print r1;r2:=x;
r
! r2:=x;print r1;

(R-XR)
x not volatile

print r1;x:=r2;
r
! x:=r2;print r1;

(R-XW)

Figure 11. Additional rules for syntactic reordering.

several common optimisations [9, 23], and even the reference im-
plementation of Java Virtual Machine does not conform with the
specification [22]. The situation does not seem to be much better
in Microsoft Common Language Infrastructure (CLI): the official
specification is in informal prose without any clear guarantees for
programmers. In practice, the CLI virtual machine seems to be very
conservative, and it appears that it conforms to a much stronger
unofficial model (author?) [18]. There have been several other
suggestions for weak memory models for high-level languages,
but none of these addressed validity of compiler transformations
[9, 19]. Hardware memory models or hardware-inspired memory
models, such as (author?) [2, 7, 8], do not seem to be suitable
for higher languages because they are either too prohibitive and do
not allow reordering of reads with later independent writes/reads
at all, or they rely on syntactic notions of dependency for reorder-
ing, which can be often removed by optimising compilers. We hope
that our work will serve as a basis for a formal weak memory model
defined in terms of permissible transformations.

8. Conclusion

We have proved that two large classes of compiler optimisations,
elimination and reordering, are safe in the DRF guarantee, i.e.,
they cannot introduce new behaviours for data race free programs.
Since our transformations preserve data race freedom, arbitrary
composition of the transformations is also safe.

As reasoning about multi-threading is notoriously error-prone,
we mechanised the definitions and difficult parts of the semantic
elimination safety proof (such as Lemma 1) in the Isabelle/HOL
proof assistant. The mechanisation has about ten thousand lines
of proof script. The current development snapshot is available at
http://www.cl.cam.ac.uk/~js861/transafety/mm-traces.

In our work, we assume that the transformed program always
runs sequentially consistently. This might seem to be a severe lim-
itation because few modern processors guarantee sequential con-
sistency. However, it is well-understood how to ensure the DRF
guarantee on hardware and all our transformations preserve data
race freedom, so we can safely assume sequential consistency in
hardware. Unfortunately, we cannot easily recover the out-of-thin-
air guarantee without deeper understanding of the processor mem-
ory models. Therefore, we started investigating extensions of our
techniques to cover hardware memory models. Our first results are
encouraging—we can explain the Sun TSO memory model [25],
used by most SPARC processors with our semantic transforma-
tions. We believe that there similar results can be achieved for other
processor memory models.
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[22] J. Ševčı́k. The Sun Hotspot JVM does not conform with the Java
memory model. Technical Report EDI-INF-RR-1252, School of In-
formatics, University of Edinburgh, 2008.
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