True Concurrency?

(not quite yet)

Peter Sewell

Computer Laboratory
University of Cambridge

Susmit Sarkar, Scott Owens, Tom Ridge, Magnus Myreen (U.Cambridge)
Francesco Zappa Nardelli, Jade Alglave, Thomas Braibant, Luc Maranget (INRIA)

Samin Ishtiag (MSR)
Concurrency Theory Workshop, Jan. 2009

Relaxed Memory

Usually assume concurrent threads operate on a single shared memory
(in language semantics, algorithms, program logics, model checking,...).

But for low-level programming of real multiprocessors, that’s just not true:
* |local write buffers
 pipelines with speculative execution and shadow register files

e hierarchies of cache

Also not true for high-level languages (C,C++,Java):.

e concurrency-oblivious compiler optimisations

Relaxed Memory — a Simple Example

Shared x and vy, initially O.

Po Py

X «— 1|y +«— 1

o «<— Y I — X

Experimentally:

On an 8-core POWERS5: we see rp=r;=0 196/2000 times
On an Intel Core 2 Duo: similar

Relaxed Memory — a Simple Example

Shared x and vy, initially O.

Po Py

I

X «— 1 vy

o <« Y I «— X

Experimentally:

On an 8-core POWERS5: we see rp=r;=0 196/2000 times
On an Intel Core 2 Duo: similar

We can’t think about these systems in terms of global time

Actual Processors

particular h/w designs, e.g. Intel Core 2 Duo E6300
can run programs on them
may change quickly from design to design

iInternally well-defined and well-understood (but secret)

“Architectures”

descriptions of what programmers should rely on
— Power ISA Version 2.05

— Intel 64 and IA-32 Architectures SDM rev.28

— AMDG64 Architecture Programmer’s Manual rev.3.14

— ARM Architecture Reference Manual, ARMv7-A and ARMv7-R edition
claimed to cover a range of past (and future?) actual processors
Informal prose documents (+litmus tests)

tension: reveal enough for programmers, but without constraining
future design or exposing to liability

“Architectures”

» descriptions of what programmers should rely on
But:
* the guarantees are typically very subtle, and differ radically

 the informal prose makes it impossible to understand them precisely

(informal prose is particularly bad for such very loose specs)
— can’t run programs on them

— can’t use as criterion for internal testing
* they may be incomplete (too weak to program above)

* they may be unsound (too strong w.r.t. actual processors)

So how does anything work? Architectures are typically supposed to be ok(?) for
well-synchronised(?) programs.

Plan

Establish semantics for multiprocessors

Should be sound w.r.t. processors and strong enough for reasoning
about racy code

Use that for metatheory: DRF, algorithm verification,...

Current State

x86-CC model [POPL09]. But Intel and AMD architecture docs
turned out to be unsound and/or too weak — replacement Iin
progress

preliminary POWER and ARM model [DAMPQ9].

Xx86-CC

Pre-IWP

IWP/Rev 26—-28/AMD3.14

Xx86-CC

Nov 2006

Aug 2007
Sep 2007

Intel manuals, rev 22

Intel white paper v1.0
AMD manual, rev 3.14

us

Memory model and (core) instruction semantics in HOL

Key issue: interpret “causality” in informal specs

Testing: single-instruction and memory model

Metatheory: data-race freedom, niceness, abstract machine

Rev 29

(x86-TSO)

Nov 2008

(In progress)

Intel manuals, rev 29

(us)

POWER and ARM

Draft memory model and instruction semantics in HOL and Coq

The memory model is an axiomatisation of the legal executions (as
usual).

Much weaker (and more complex) than x86-CC or x86-TSO.

Everything not forbidden —no matter how bizarre— is permitted

Basic Types

event_structure ={ events : ('reg event)set;
intra_causality_data : ('reg event)reln;
intra_causality_control : ('reg event)reln;
atomicity : ('reg event)set set;
arch : architecture;

granule_size_exponent : num))

type_abbrev view_orders : proc — ('reg event)reln

A view order for processor p is a strict linear order over all its events and
other processor's memory writes.

execution_witness =
(initial_state : ("reg state_constraint);
vo : ("reg view_orders);

write_serialization : ('reg event reln))

Read Values

Any read event reads from the most recent (in that processor’s view
order) write to that register or memory location, or the initial state.

Coherence

For any memory location, all processors see all writes to that location in
the same order.

Instructions vs Events: intra-instruction data and control
causality

eiid:0 (of lwz GPR2,0,GPR1)
iiid: (proc:0;po:0)

_ R 0:GPR1=100

ppc-lwz proc:0
poi:0 lwz GPR2,0,GPR1 S oo data
nitlal state: 0:GPR1= 100;
100]=5 ¢iid:1 (of lwz GPR2,0,GPR1)

iiid: (proc:0;po:0)

R [100]=5

lico_data

eiid:2 (of lwz GPR2,0,GPR1)
iiid: (proc:0;po:0)
W 0:GPR2=5

Instructions vs Events: intra-instruction data and control

causality

ARM-Idrne proc:0
poi.0 LDRNE R1, [R10]

Either reads non-zero flag:

¢iid:0 (of LDRNE R1, [R10])
iiid: (proc:0;po:0)
R 0:EQ=1

ARM-Idrne: (event structure 2)

or reads a zero flag value, with an intra-
Instruction-causality-control relation to
the read of R10:

¢iid:0 (of LDRNE R1, [R10])
iiid: (proc:0;po:0)
R 0:EQ=0

lico_control

¢iid:1 (of LDRNE R1, [R10])
iiid: (proc:0;po:0)

R 0:R10=100
l iico_data

¢iid:2 (of LDRNE R1, [R10])
iiid: (proc:0;po:0)

R [100]=5
l iico_data

¢iid:3 (of LDRNE R1, [R10])
iiid: (proc:0;po:0)
W 0:R1=5

ARM-1ldrne: (event structure 1)

Local Register Data Dependency

ARM-depend-A proc:0

LDR R1, [RO]
LDR R2, [R1]

poi.0

poi:1l

eiid:0 (of LDR R1, [RO])
iiid: (proc:0;po:0)
R 0:R0=200

l iico_data

eiid:1 (of LDR R1, [RO])
iiid: (proc:0;po:0)
R [200]=100

l lico_data

¢iid:2 (of LDR R1, [R0])
iiid: (proc:0;po:0)
W 0:R1=100

eiid:3 (of LDR R2, [R1])
iiid: (proc:0;po:1)

R 0:R1=0
l iico_data

eiid:4 (of LDR R2, [R1])
iiid: (proc:0;po:1)

R [0]=0
l iico_data

¢iid:5 (of LDR R2, [R1])
iiid: (proc:0;po:1)
W 0:R2=0

ARM-depend-A: (event structure 1)

address_or_data_dependency_load_load

Dependencies from a memory load to a memory load, in program order,
by the same processor (though perhaps to different addresses):

local register data dependency and intra-instruction data causality,
transitively (not intra-instruction control).

For example, here the LDRNE instruction is conditional on the EQ flag.

ARM-nodep proc:0
poi:0 LDR R1, [R4]
poi:1l CMP R1, #1
P0I:2 LDRNE R2, [R5]

but even if the value read from that flag is O, there is no

address_or_data_dependency_load_load from the first memory load to the
memory load of the LDRNE.

address_or_data_dependency_load_load

However, here there is, even though it’'s a “false” dependency:

ARM-depend-B proc:0
poi:0 LDR R1, [RO]
poi:1l AND R1, R1, #0
POI:2 LDR R2, [R3,R1]

address_or_data_or_control_dependency_load_store

Dependencies from a memory load to a memory store are similar,
except that here both intra-instruction relations are included:

Here the execution (or not) of the memory store depends on the value
returned by the memory load.

ARM-depend-C proc:0
poi:0 LDR R1, [RO]
poi:1 CMP R1, #55
POI:2 STRNE R2, [R3]

Preserved Program Order

preserved_program_order E p =
{(e1,e2) | (e1, e2) € E.intra_causality_data N

(proc e1 = p) A (proc es = p)} U
{(e1,e2) | (e1, e2) € E.intra_causality_control A

(proc e; = p) A (proc es = p)} U
address_or_data_dependency_load_load £ p U
address_or_data_or_control_dependency_load_store £ p U

preserved_program_order_mem_loc F p

(the last condition orders all p’'s memory accesses to the same location)

No global order on register accesses(!)

Barriers

Power: sync, lwsync, eieio

ARM: DMB

A Glimpse of the Informal Specs

The Power specification says the ordering provided by a barrier is
“‘cumulative’, I.e.

“It also orders storage accesses that are performed by
processors and mechanisms other than P1, as follows.

- Aincludes all applicable storage accesses by any such
processor or mechanism that have been performed with
respect to P1 before the memory barrier is created.

- B includes all applicable storage accesses by any such
processor or mechanism that are performed after a load
Instruction executed by that processor or mechanism has
returned the value stored by a store that is in B.”

Here “performed” is defined informally as follows:

"A load or instruction fetch by a processor or mechanism
(P1) is performed with respect to any processor or mechanism
(P2) when the value to be returned by the load or instruction
fetch can no longer be changed by a store by P2.

A store by P1 is performed with respect to P2 when a load by
P2 from the location accessed by the store will return the value
stored (or a value stored subsequently). [...] The preceding
definitions apply regardless of whether P1 and P2 are the same
entity."

Not This (though maybe something like it)

check_sync_power_2_05 E vos =
Ves € (E.events).(es.action = BARRIER SYNC) —
let group_A ={e | ((e,es) € po EV (e, es) € vos(proc es)) A mem_access e} in
let group_B_base = {e | (es,e) € po E A mem_access e} in
let group_B_ind By =
{e | mem_access e A
(=(proc e = proc es)) A
Jer.mem_load er A (er,e) € vos(proc er) A (proc er = proc e) A
Jew. mem_store ew A ew € By A (ew,er) € wvos(proc er) A (loc er =loc ew) A
(=(Few'.(ew, ew’) € wvos(proc er) A (ew’, er) € wvos(proc er) A
(loc ew” =loc er) A mem_store ew’))} in
let group_B = FIX group_B_ind group_B_base in
Vp € (procs FE).Nea € group_ANeb € group_B.(ea € viewed_events E p A eb € viewed_events E p) —>
if (p = es.iiid. proc) then ((ea, es) € vos p A (es, eb) € vos p) else (ea, eb) € wvos p

Reservations

Power: lwarx/stwcx
ARM: LDREX/STREX

more plumbing...

Valid Executions

valid_execution F X =
view_orders_well_formed E X.vo A
read_most_recent_value F X.initial_state X.vo A
X .write_serialization € write_serialization_candidates FE A
(Vp € (procs E).
preserved_coherence_order F p C X.write_serialization N
X.write_serialization C X.vo p A
preserved_program_order £ p C X.vo p A
(*no intervening writes in local register data dependency*)
local_register_data_dependency £ p C X.vo p A
(V(e1, e2) € (local_register_data_dependency FE p).
—(Jdes.(e1,e3) € X.vopA(es,e3) € X.vop A
(loc e3 =loc eg) Astore e3))) A
(*no intervening writes before a reg read from initial state*)
(Ve € (E.events).(reg_load e A
(—(Jeg.(eg, €) € po_iico_both E A reg_store ey A
(loc eg =loc e)))) =
(=(Jep.(eg, €) € X.vo(proc e) Areg_store ey A
(loc eg =loc €)))) A
(*no intervening writes after a reg write to the final state*)
(Ve € (E.events).(reg_store e A
(—(Jey.(e, e1) € po_iico_both E Areg_store e; A
(loc e; =loc e)))) =
(=(Jer.(e, e1) € X.vo(proc e) Areg_store e; A
(loc e; =loc €)))) A

Example Valid Execution

ppc3.1 proc:0

proc:1

poi:0 stw GPR3,0,GPR4

poi:1l lwz GPR1,0,GPR5

stw GPR3,0,GPR5
lwz GPR2,0,GPR4

Initial state: 0:GPR3=
0:GPR4= 200;
1:GPR3= 1;

1.GPR5= 100 (elsewhere 0)

1;

0:GPR5= 100:
1:GPR4= 200:;

Allowed: 0:GPR1=0
1:GPR2=0

A\

vo:0

ciid:0 (of stw GPR3,0,GPR4)
iiid: (proc:0;po:0)
R 0:GPR3=1

/ vo:0
»
ciid:1 (of stw GPR3,0,GPR4)
iiid: (proc:0;po:0)
R 0:GPR4=200

\“\ vo 1\i‘icodata
R

iico_data,

eiid:2 (of stw GPR3,0,GPR4)
jiid: (proc:03po:0)
W [200)=1

ciid:3 (of lwz GPR1,0,GPRS5) \
iiid: (proc:0;po:1)
R 0:GPR5=100

Ku UJ iico_data

eiid:4 (of lwz GPR1,0,GPR5)
iiid: (proc:0;po:1)
R [100]=0

\)

\

‘;) vo:1 iico,(lataj\u 0
Y y

eiid:7 (of stw GPR3,0,GPR5) eiid:5 (of lwz GPR1,0,GPR5)
jiid: (proci1;po:0) jiid: (proc:0;po:1)
R 1:GPR5=100 W 0:GPR1=0

\vo: \‘iimdam w0
e
\ s

ciid:8 (of stw GPR3,0,GPR5)
iiid: (proc:1;p0:0)
W [100]=1

vo:l

eiid:6 (of stw GPR3,0,GPR5)
iiid: (proc:13po:0)
R 1:GPR3=1

iico_data

Nwvoil
\\
L.\
eiid:9 (of lwz GPR2,0,GPR4)
iiid: (proc:1;po:l) |
R 1:GPR4=200 /
N
iico_data \vo:1 /
|
eiid:10 (of lwz GPR2,0,GPR4)
iiid: (proc:1;po:1)
R [200]=0

\i(:udam /

/

eiid:11 (of lwz GPR2,0,GPR4)
iiid: (proc:13po:1)
W 1:GPR2=0

ppe3.1: (event structure 1)

Other Things

Litmus tool.
Memevents tool.
Instruction Semantics — for reasonable subsets. Monadicised.

Metatheory — single-processor conjecture (in progress)

Conclusion

Towards precise and accurate semantics for real multiprocessors

(necessary foundation for any verification of low-level code)

Broader Moral: don’t believe any memory model, unless (at least!):
e it's formalised (preferably mechanised)

e it's mechanically run on many litmus examples

It's extensively tested against actual processors

there’s (preferably mechanised) metatheory

there’s extensive programming above the model

