
True Concurrency?

(not quite yet)

Peter Sewell

Computer Laboratory
University of Cambridge

Susmit Sarkar, Scott Owens, Tom Ridge, Magnus Myreen (U.Cambridge)
Francesco Zappa Nardelli, Jade Alglave, Thomas Braibant, Luc Maranget (INRIA)

Samin Ishtiaq (MSR)

Concurrency Theory Workshop, Jan. 2009

Relaxed Memory

Usually assume concurrent threads operate on a single shared memory
(in language semantics, algorithms, program logics, model checking,...).

But for low-level programming of real multiprocessors, that’s just not true:

• local write buffers

• pipelines with speculative execution and shadow register files

• hierarchies of cache

• ...

Also not true for high-level languages (C,C++,Java):

• concurrency-oblivious compiler optimisations

Relaxed Memory — a Simple Example

Shared x and y, initially 0.

P0 P1

x ← 1 y ← 1

r0 ← y r1 ← x

Experimentally:

On an 8-core POWER5: we see r0=r1=0 196/2000 times
On an Intel Core 2 Duo: similar

Relaxed Memory — a Simple Example

Shared x and y, initially 0.

P0 P1

x ← 1 y ← 1

r0 ← y r1 ← x

Experimentally:

On an 8-core POWER5: we see r0=r1=0 196/2000 times
On an Intel Core 2 Duo: similar

We can’t think about these systems in terms of global time

Actual Processors

• particular h/w designs, e.g. Intel Core 2 Duo E6300

• can run programs on them

• may change quickly from design to design

• internally well-defined and well-understood (but secret)

“Architectures”

• descriptions of what programmers should rely on

– Power ISA Version 2.05

– Intel 64 and IA-32 Architectures SDM rev.28

– AMD64 Architecture Programmer’s Manual rev.3.14

– ARM Architecture Reference Manual, ARMv7-A and ARMv7-R edition

• claimed to cover a range of past (and future?) actual processors

• informal prose documents (+litmus tests)

• tension: reveal enough for programmers, but without constraining
future design or exposing to liability

“Architectures”

• descriptions of what programmers should rely on

But:

• the guarantees are typically very subtle, and differ radically

• the informal prose makes it impossible to understand them precisely

(informal prose is particularly bad for such very loose specs)

– can’t run programs on them

– can’t use as criterion for internal testing

• they may be incomplete (too weak to program above)

• they may be unsound (too strong w.r.t. actual processors)

So how does anything work? Architectures are typically supposed to be ok(?) for
well-synchronised(?) programs.

Plan

• Establish semantics for multiprocessors

• Should be sound w.r.t. processors and strong enough for reasoning
about racy code

• Use that for metatheory: DRF, algorithm verification,...

Current State

• x86-CC model [POPL09]. But Intel and AMD architecture docs
turned out to be unsound and/or too weak — replacement in
progress

• preliminary POWER and ARM model [DAMP09].

x86-CC

Pre-IWP Nov 2006 Intel manuals, rev 22

IWP/Rev 26–28/AMD3.14 Aug 2007 Intel white paper v1.0

Sep 2007 AMD manual, rev 3.14

x86-CC us

• Memory model and (core) instruction semantics in HOL

• Key issue: interpret “causality” in informal specs

• Testing: single-instruction and memory model

• Metatheory: data-race freedom, niceness, abstract machine

Rev 29 Nov 2008 Intel manuals, rev 29

(x86-TSO) (in progress) (us)

POWER and ARM

Draft memory model and instruction semantics in HOL and Coq

The memory model is an axiomatisation of the legal executions (as
usual).

Much weaker (and more complex) than x86-CC or x86-TSO.

Everything not forbidden —no matter how bizarre— is permitted

Basic Types

event structure =〈[events : (′reg event)set;

intra causality data : (′reg event)reln;

intra causality control : (′reg event)reln;

atomicity : (′reg event)set set;

arch : architecture;

granule size exponent : num]〉

type abbrev view orders : proc→ (′reg event)reln

A view order for processor p is a strict linear order over all its events and
other processor’s memory writes.

execution witness =

〈[initial state : (′reg state constraint);

vo : (′reg view orders);

write serialization : (′reg event reln)]〉

Read Values

Any read event reads from the most recent (in that processor’s view
order) write to that register or memory location, or the initial state.

Coherence

For any memory location, all processors see all writes to that location in
the same order.

Instructions vs Events: intra-instruction data and control
causality

ppc-lwz proc:0

poi:0 lwz GPR2,0,GPR1
Initial state: 0:GPR1= 100;
[100]= 5

ppc-lwz: (event structure 1)

eiid:0 (of lwz GPR2,0,GPR1)

iiid: 〈proc:0;po:0〉

R 0:GPR1=100

eiid:1 (of lwz GPR2,0,GPR1)

iiid: 〈proc:0;po:0〉

R [100]=5

eiid:2 (of lwz GPR2,0,GPR1)

iiid: 〈proc:0;po:0〉

W 0:GPR2=5

iico data

iico data

Instructions vs Events: intra-instruction data and control
causality

ARM-ldrne proc:0

poi:0 LDRNE R1, [R10]

Either reads non-zero flag:

ARM-ldrne: (event structure 2)

eiid:0 (of LDRNE R1, [R10])

iiid: 〈proc:0;po:0〉

R 0:EQ=1

or reads a zero flag value, with an intra-
instruction-causality-control relation to
the read of R10:

ARM-ldrne: (event structure 1)

eiid:0 (of LDRNE R1, [R10])

iiid: 〈proc:0;po:0〉

R 0:EQ=0

eiid:1 (of LDRNE R1, [R10])

iiid: 〈proc:0;po:0〉

R 0:R10=100

eiid:2 (of LDRNE R1, [R10])

iiid: 〈proc:0;po:0〉

R [100]=5

eiid:3 (of LDRNE R1, [R10])

iiid: 〈proc:0;po:0〉

W 0:R1=5

iico control

iico data

iico data

Local Register Data Dependency

ARM-depend-A proc:0

poi:0 LDR R1, [R0]

poi:1 LDR R2, [R1]

ARM-depend-A: (event structure 1)

eiid:0 (of LDR R1, [R0])

iiid: 〈proc:0;po:0〉

R 0:R0=200

eiid:1 (of LDR R1, [R0])

iiid: 〈proc:0;po:0〉

R [200]=100

eiid:2 (of LDR R1, [R0])

iiid: 〈proc:0;po:0〉

W 0:R1=100

eiid:3 (of LDR R2, [R1])

iiid: 〈proc:0;po:1〉

R 0:R1=0

eiid:4 (of LDR R2, [R1])

iiid: 〈proc:0;po:1〉

R [0]=0

eiid:5 (of LDR R2, [R1])

iiid: 〈proc:0;po:1〉

W 0:R2=0

iico data

iico data

iico data

iico data

lrd
d

address or data dependency load load

Dependencies from a memory load to a memory load, in program order,
by the same processor (though perhaps to different addresses):

local register data dependency and intra-instruction data causality,
transitively (not intra-instruction control).

For example, here the LDRNE instruction is conditional on the EQ flag.

ARM-nodep proc:0

poi:0 LDR R1, [R4]

poi:1 CMP R1, #1

poi:2 LDRNE R2, [R5]

but even if the value read from that flag is 0, there is no
address or data dependency load load from the first memory load to the
memory load of the LDRNE.

address or data dependency load load

However, here there is, even though it’s a “false” dependency:

ARM-depend-B proc:0

poi:0 LDR R1, [R0]

poi:1 AND R1, R1, #0

poi:2 LDR R2, [R3,R1]

address or data or control dependency load store

Dependencies from a memory load to a memory store are similar,
except that here both intra-instruction relations are included:

Here the execution (or not) of the memory store depends on the value
returned by the memory load.

ARM-depend-C proc:0

poi:0 LDR R1, [R0]

poi:1 CMP R1, #55

poi:2 STRNE R2, [R3]

Preserved Program Order

preserved program order E p =

{(e1, e2) | (e1, e2) ∈ E .intra causality data ∧

(proc e1 = p) ∧ (proc e2 = p)} ∪

{(e1, e2) | (e1, e2) ∈ E .intra causality control ∧

(proc e1 = p) ∧ (proc e2 = p)} ∪

address or data dependency load load E p ∪

address or data or control dependency load store E p ∪

preserved program order mem loc E p

(the last condition orders all p’s memory accesses to the same location)

No global order on register accesses(!)

Barriers

Power: sync, lwsync, eieio

ARM: DMB

A Glimpse of the Informal Specs

The Power specification says the ordering provided by a barrier is
“cumulative”, i.e.

“it also orders storage accesses that are performed by
processors and mechanisms other than P1, as follows.

- A includes all applicable storage accesses by any such
processor or mechanism that have been performed with
respect to P1 before the memory barrier is created.

- B includes all applicable storage accesses by any such
processor or mechanism that are performed after a load
instruction executed by that processor or mechanism has
returned the value stored by a store that is in B.”

Here “performed” is defined informally as follows:

"A load or instruction fetch by a processor or mechanism
(P1) is performed with respect to any processor or mechanism
(P2) when the value to be returned by the load or instruction
fetch can no longer be changed by a store by P2.

A store by P1 is performed with respect to P2 when a load by
P2 from the location accessed by the store will return the value
stored (or a value stored subsequently). [...] The preceding
definitions apply regardless of whether P1 and P2 are the same
entity."

Not This (though maybe something like it)
check sync power 2 05 E vos =

∀es ∈ (E .events).(es.action = BARRIER SYNC) =⇒

let group A = {e | ((e, es) ∈ po E ∨ (e, es) ∈ vos(proc es)) ∧mem access e} in
let group B base = {e | (es, e) ∈ po E ∧mem access e} in
let group B ind B0 =

{e | mem access e ∧

(¬(proc e = proc es)) ∧

∃er .mem load er ∧ (er , e) ∈ vos(proc er) ∧ (proc er = proc e) ∧

∃ew .mem store ew ∧ ew ∈ B0 ∧ (ew , er) ∈ vos(proc er) ∧ (loc er = loc ew) ∧

(¬(∃ew ′
.(ew , ew ′) ∈ vos(proc er) ∧ (ew ′

, er) ∈ vos(proc er) ∧

(loc ew ′ = loc er) ∧mem store ew ′))} in
let group B = FIX group B ind group B base in
∀p ∈ (procs E).∀ea ∈ group A.∀eb ∈ group B .(ea ∈ viewed events E p ∧ eb ∈ viewed events E p) =⇒

if (p = es.iiid .proc) then ((ea, es) ∈ vos p ∧ (es, eb) ∈ vos p) else (ea, eb) ∈ vos p

Reservations

Power: lwarx/stwcx

ARM: LDREX/STREX

more plumbing...

Valid Executions
valid execution E X =

view orders well formed E X .vo ∧

read most recent value E X .initial state X .vo ∧

X .write serialization ∈ write serialization candidates E ∧

(∀p ∈ (procs E).

preserved coherence order E p ⊆ X .write serialization ∧

X .write serialization ⊆ X .vo p ∧

preserved program order E p ⊆ X .vo p ∧

(*no intervening writes in local register data dependency*)

local register data dependency E p ⊆ X .vo p ∧

(∀(e1, e2) ∈ (local register data dependency E p).

¬(∃e3.(e1, e3) ∈ X .vo p ∧ (e3, e2) ∈ X .vo p ∧

(loc e3 = loc e1) ∧ store e3))) ∧

(*no intervening writes before a reg read from initial state*)

(∀e ∈ (E .events).(reg load e ∧

(¬(∃e0.(e0, e) ∈ po iico both E ∧ reg store e0 ∧

(loc e0 = loc e)))) =⇒

(¬(∃e0.(e0, e) ∈ X .vo(proc e) ∧ reg store e0 ∧

(loc e0 = loc e)))) ∧

(*no intervening writes after a reg write to the final state*)

(∀e ∈ (E .events).(reg store e ∧

(¬(∃e1.(e, e1) ∈ po iico both E ∧ reg store e1 ∧

(loc e1 = loc e)))) =⇒

(¬(∃e1.(e, e1) ∈ X .vo(proc e) ∧ reg store e1 ∧

(loc e1 = loc e)))) ∧

Example Valid Execution

ppc3.1 proc:0 proc:1

poi:0 stw GPR3,0,GPR4 stw GPR3,0,GPR5

poi:1 lwz GPR1,0,GPR5 lwz GPR2,0,GPR4
Initial state: 0:GPR3= 1;
0:GPR4= 200; 0:GPR5= 100;
1:GPR3= 1; 1:GPR4= 200;
1:GPR5= 100 (elsewhere 0)
Allowed: 0:GPR1=0 ∧

1:GPR2=0

ppc3.1: (event structure 1)

eiid:0 (of stw GPR3,0,GPR4)

iiid: 〈proc:0;po:0〉

R 0:GPR3=1

eiid:1 (of stw GPR3,0,GPR4)

iiid: 〈proc:0;po:0〉

R 0:GPR4=200

eiid:2 (of stw GPR3,0,GPR4)

iiid: 〈proc:0;po:0〉

W [200]=1

eiid:3 (of lwz GPR1,0,GPR5)

iiid: 〈proc:0;po:1〉

R 0:GPR5=100

eiid:11 (of lwz GPR2,0,GPR4)

iiid: 〈proc:1;po:1〉

W 1:GPR2=0

eiid:4 (of lwz GPR1,0,GPR5)

iiid: 〈proc:0;po:1〉

R [100]=0

eiid:5 (of lwz GPR1,0,GPR5)

iiid: 〈proc:0;po:1〉

W 0:GPR1=0

eiid:8 (of stw GPR3,0,GPR5)

iiid: 〈proc:1;po:0〉

W [100]=1

eiid:6 (of stw GPR3,0,GPR5)

iiid: 〈proc:1;po:0〉

R 1:GPR3=1

eiid:7 (of stw GPR3,0,GPR5)

iiid: 〈proc:1;po:0〉

R 1:GPR5=100

eiid:9 (of lwz GPR2,0,GPR4)

iiid: 〈proc:1;po:1〉

R 1:GPR4=200

eiid:10 (of lwz GPR2,0,GPR4)

iiid: 〈proc:1;po:1〉

R [200]=0

vo:0

iico data

iico datavo:0

vo:0

vo:1

vo:0 iico data

vo:0iico data

vo:0

vo:1

iico data

vo:1 iico data

vo:1

vo:1iico data

vo:1

iico data

vo:0

vo:1

Other Things

Litmus tool.

Memevents tool.

Instruction Semantics — for reasonable subsets. Monadicised.

Metatheory — single-processor conjecture (in progress)

Conclusion

Towards precise and accurate semantics for real multiprocessors

(necessary foundation for any verification of low-level code)

Broader Moral: don’t believe any memory model, unless (at least!):

• it’s formalised (preferably mechanised)

• it’s mechanically run on many litmus examples

• it’s extensively tested against actual processors

• there’s (preferably mechanised) metatheory

• there’s extensive programming above the model

