
Memory, an Elusive Abstraction

Peter Sewell
University of Cambridge

http://www.cl.cam.ac.uk/users/pes20/weakmemory

Abstract
Multiprocessors are now ubiquitous. They provide an abstraction
of shared memory, accessible by concurrently executing threads,
which supports a wide range of software. However, exactly what
this key abstraction is —what the hardware designers implement,
and what programmers can depend on— is surprisingly elusive. In
1979, when articulating the notion of sequential consistency (SC),
Lamport wrote “For some applications, achieving sequential con-
sistency may not be worth the price of slowing down the proces-
sors.” [7], and indeed most major multiprocessor families, includ-
ing Alpha, ARM, Itanium, Power, Sparc, and x86, do not provide
the abstraction of SC memory. Internally, they incorporate a range
of sophisticated optimisations which have various programmer-
visible effects. For some (such as Sparc) these effects are cap-
tured in a well-defined relaxed memory model, making it possible
(if challenging) to reason with confidence about the behaviour of
concurrent programs. For others, however, it has been very unclear
what a reasonable model is, despite extensive research over the last
three decades. In this talk, I will reflect on the experience of my
colleagues and I in trying to establish usable models for x86 mul-
tiprocessors, where it appears that our x86-TSO model suffices for
common-case code [1–4], and for Power and ARM multiproces-
sors, where we have models that capture some but not all aspects
of their behaviour [5, 6]. The underlying causes of these difficulties
are complex, including:

• The programmer-observable relaxed-memory behaviour of a
multiprocessor is a whole-system property that arises from the
interaction between many complex aspects of the processor
implementation: speculative execution, store buffering, cache
protocol, and so forth.

• Programs are executed (and tested) on specific multiprocessor
implementations, but processor vendors attempt to document
loose specifications to cover a range of possible (past and fu-
ture) implementations.

• Multiprocessor implementation details are typically confiden-
tial and may change radically from one implementation to an-
other.

• Vendor specifications suffer from the tension between the need
for loose specification, to preserve freedom for such changes,
and the need for tight specification, to give strong properties to
properties.

Copyright is held by the author/owner(s).

ISMM’10, June 5–6, 2010, Toronto, Ontario, Canada.
ACM 978-1-4503-0054-4/10/06.

• All too often, loose specification has been achieved by vague
specification, using informal prose. When it comes to subtle
concurrent properties this is almost inevitably ambiguous; it
also makes it impossible (even in principle) to test conformance
between a processor implementation and such a specification,
let alone to verify such a correspondence or to reason about
concurrent programs.

Categories and Subject Descriptors C.1.2 [Multiple Data Stream
Architectures (Multiprocessors)]: Parallel processors; D.1.3 [Con-
current Programming]: Parallel programming; F.3.1 [Specifying
and Verifying and Reasoning about Programs]

General Terms Documentation, Reliability, Standardization,
Theory, Verification

Keywords Relaxed Memory Models, Semantics

Acknowledgements This is based on joint work with colleagues
in Cambridge and INRIA Rocquencourt. I acknowledge funding
from EPSRC grants EP/F036345 and EP/H005633.

References
[1] S. Sarkar, P. Sewell, F. Zappa Nardelli, S. Owens, T. Ridge, T. Braibant,

M. Myreen, and J. Alglave. The semantics of x86-CC multiprocessor
machine code. InProc. POPL 2009, January 2009.

[2] Scott Owens, Susmit Sarkar, and Peter Sewell. A better x86memory
model: x86-TSO. InProc. TPHOLs, LNCS 5674, pages 391–407, 2009.

[3] Scott Owens. Reasoning about the implementation of concurrency
abstractions on x86-TSO. InProc. ECOOP, 2010. To appear.

[4] Peter Sewell, Susmit Sarkar, Scott Owens, Francesco Zappa Nardelli,
and Magnus Myreen. x86-TSO: A rigorous and usable programmer’s
model for x86 multiprocessors.Communications of the ACM, 2010. To
appear.

[5] J. Alglave, A. Fox, S. Ishtiaq, M. Myreen, S. Sarkar, P. Sewell, and
F. Zappa Nardelli. The semantics of Power and ARM multiprocessor
machine code. InProc. DAMP 2009, January 2009.

[6] Jade Alglave, Luc Maranget, Susmit Sarkar, and Peter Sewell. Fences
in weak memory models. InProceedings of CAV, 2010. To appear.

[7] L. Lamport. How to make a multiprocessor computer that correctly
executes multiprocess programs.IEEE Trans. Comput., C-28(9):690–
691, 1979.


