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Abstract. With the rise of multi-core processors, shared-memory con-
currency has become a widespread feature of computation, from hard-
ware, to operating systems, to programming languages such as C++
and Java. However, none of these provide sequentially consistent shared
memory; instead they have relaxed memory models, which make con-
current programs even more challenging to understand. Programming
language implementations run on hardware memory models, so VM and
run-time system implementors must reason at both levels. Of particu-
lar interest are the low-level implementations of the abstractions that
support language-level concurrency—especially because they invariably
contain data races.
In this paper, we develop a novel principle for reasoning about assembly
programs on our previous x86-TSO memory model, and we use it to an-
alyze five concurrency abstraction implementations: two spinlocks (from
Linux); a non-blocking write protocol; the double-checked locking idiom;
and java.util.concurrent’s Parker. Our principle, called triangular-
race freedom, strengthens the usual data-race freedom style of reasoning.

1 Introduction

Most techniques for reasoning about concurrent shared-memory programs as-
sume sequential consistency (SC): accesses by multiple threads to the shared
memory occur in a global-time linear order that corresponds to an interleaving
of their constituent statements [21]. Real multi-core and multiprocessor systems,
however, incorporate performance optimizations that have observable non-SC
consequences for the behavior of multithreaded concurrent programs. These pro-
cessors are said to have relaxed memory models [1].

Figure 1 provides an example of relaxed memory behavior on modern Intel
or AMD x86 processors: given two memory locations x and y (initially holding
0), if two threads labeled p and q respectively write 1 to x and y and then read
from y and x, it is possible for both to read 0 in the same execution. It is easy
to check that this result cannot arise from any interleaving of the two threads.

Programming languages, notably C++ and Java, also have relaxed memory
models [16, 18] made necessary both by the relaxed memory models of the un-
derlying hardware and by visible compiler optimizations. Such memory models
are difficult to specify and subtle to implement, as evidenced by the flaws that



Initial: [x] = 0 ∧ [y] = 0 ∧ x 6= y

p q

1a: mov [x]←1 1c: mov [y]←1
1b: mov eax←[y] (0) 1d: mov ebx←[x] (0)

Allow: eax = 0 ∧ ebx = 0

Syntax: Throughout the paper we use Intel syntax for x86 assembly programs
in a san serif font. For emphasis, we separate operands with “←” instead of “,”
when the left operand is assigned to. The eax, ebx, etc. are register names,
and [x] denotes the contents of memory location x, where x is a meta-variable.
Thus, mov [y]←1 stores the value 1 to the memory location y, and mov eax←[y]
reads the value at memory location y, and stores it in register eax. We use the
labels (1a: etc.) to identify instructions in the text. We sometimes indicate the
result of a memory read in parentheses to the right of the instruction, when
we are interested in a particular execution.

Fig. 1. An x86 program that exhibits relaxed behavior

have been discovered in Java’s memory model from time to time [29, 35], but
they are critical to supporting robust and efficient programs.

The peculiarities of a particular hardware memory model directly affect the
implementation of language memory models. For example, Dice has observed
that, at one point, Intel and AMD revised their x86 manuals to apparently al-
low some relaxed behaviors (the so called “independent reads of independent
writes”) that were previously thought to be forbidden [11]. Such behavior on
the hardware would lead directly to Java-language-level behavior that violates
Java’s memory model. Solutions either required revising Java’s memory model
to allow the new behavior, or required the compiler to insert additional x86 syn-
chronization primitives, harming performance. (Recent Intel and AMD manuals
more explicitly forbid the behavior in question, and the actual processors did not
allow it anyway.) Thus, a solid understanding of hardware memory models, both
what they are and how to reason about them, is necessary for implementing con-
current languages, and for verifying such implementations: their compiler, their
VM/runtime, and their concurrency libraries.

In this paper, we develop a principle, that we call triangular-race freedom
(TRF), for reasoning about programs run on relaxed memory models that are
similar to SPARC’s total store ordering (TSO) [34], including our x86-TSO mem-
ory model (see Sect. 3). We apply TRF to five example idioms that are typical
of the low-level concurrency abstractions used to build support for higher-level
memory models in language runtime systems, virtual machines, and operating
systems:

– a simple spinlock, taken from the Linux kernel (Sects. 2 and 7),
– a ticketed spinlock, based on a newer Linux kernel (Sect. 7),
– a non-blocking write protocol [19], also known as “SeqLocks” [20] (Sect. 8),
– the double-checked locking idiom [32] (Sect. 8), and



– the implementation of blocking synchronization in the HotSpot JVM (the
parker for java.util.concurrent.locks.LockSupport) [12] (Sect. 9).

Our TRF principle relies on particular features of TSO architectures to
strengthen existing data-race freedom (DRF) [2] principles. (We explain DRF
in Sections 2 and 5.) Thus, it applies to a wider class of programs that can con-
tain data-races, including the idioms above. TRF also precisely characterizes the
programs whose shared memory accesses are the same on TSO and SC memory
models.

We first (Sect. 2) explain the intuition behind TRF and informally explain
how it applies to our first spinlock example before moving on to the mathematical
development of TRF, which begins with a presentation of x86-TSO, our model
of the x86 architecture [27] (Sect. 3).

In summary, our contributions are:

– a DRF principle for x86-TSO (Sect. 5);
– our TRF principle, which precisely characterizes the programs with identical

x86-TSO and sequentially consistent shared memory accesses (Sect. 6); and
– the application of TRF-based reasoning to the five examples mentioned

above.

A sketch of the proof of our main theorem is in the appendix; for a full proof see
http://www.cl.cam.ac.uk/~so294/ecoop2010/.

2 Using Triangular-race Freedom, Informally

Intuitively, a data race occurs whenever two threads access the same memory
address, one of them is writing, and the two accesses are not separated by some
synchronization operation (we refine this and make it precise in Sect. 5). For
example, in Fig. 1 there are data races on both x and y. If none of a program’s
executions can encounter a data race, then the program is data-race free. One
common idiom for ensuring data-race freedom is to put all shared memory ac-
cesses in critical sections.

Based on the observation that most programs should be DRF, relaxed mem-
ory models are often designed to guarantee that DRF programs have no ob-
servable, non-sequentially consistent behaviors. Saraswat et al. [30] call this the
“fundamental property” of a memory model, and it has been proved to hold for a
variety of relaxed models for both hardware and languages [2, 3, 5, 7, 14, 23]. For
DRF programs on such models, existing verification technology, such as model
checking [36] and concurrent separation logic [8, 26], can be applied soundly, and
informal reasoning can be based entirely on sequentially consistent interleaving.

Crucially, the definition of data-race freedom uses a sequentially consistent
memory model, so the relaxed model is not required in order to establish that
a program is DRF. One need only check that no SC execution has a race to
get a guarantee that any relaxed execution is equivalent to some SC execution.
Furthermore, when proving the absence of races, one can rely on any facts es-
tablished by existing SC-based reasoning techniques.



; The address of spinlock, x, is stored in register eax, and
; the value of the spinlock ([x]) is 1 iff it is unlocked.

acquire: lock dec [eax] ; atomic (tmp := [x]− 1
; [x] := tmp
; flag := tmp ≥ 0
; flush local write buffer)

jns enter ; if flag then goto enter
spin: cmp [eax],0 ; flag := [x] ≤ 0

jle spin ; if flag then goto spin
jmp acquire ; goto acquire

enter: ; the critical section starts here

release: mov [eax]←1 ; [x] := 1

Fig. 2. An x86 spinlock from Linux v2.6.24.7 (pseudocode to the right of ;)

Informally, we define a triangular race to be a data race between a read
and write operation (we can exclude write-write data races) where the read
operation is preceded by another write operation on the same thread, and there
are no intervening hardware synchronization primitives (such as a barrier or
atomic compare and exchange instruction). We prove that a program with no
triangular races has only SC observable behaviors when run on a TSO memory
model. Just as for data-race freedom, we need to check for triangular races only
on an SC semantics for the program.

2.1 Application to a Spinlock

User-level programs are often intended to be well-synchronized : accesses to
shared memory locations are protected by a mutual exclusion mechanism. How-
ever, the x86, like most processors, does not directly provide any mutual exclu-
sion primitives; instead they must be implemented as part of the program (e.g.,
in a library of lock operations). Their implementations often contain data races,
rendering a traditional DRF principle inapplicable. Here, we present a mutual
exclusion implementation taken from Linux, and show how TRF-based reasoning
can be applied to it. (Section 7 goes through this reasoning more formally.)

The Linux kernel, version 2.6.24.7, implements basic mutual exclusion with
a spinlock (Fig. 21). The spinlock is represented by a signed integer which is 1 if
the lock is free and 0 or less if the lock is held. To acquire the lock, a hardware
thread atomically decrements the integer. The lock prefix on the dec instruction
ensures that the decrement executes atomically (see Sect. 3 for more details);
locked instructions are also considered to be synchronization primitives in the
definition of triangular races. (Furthermore, locked instructions are not to be
confused with mutual exclusion locks such as the spinlock here.)

If the spinlock was free before the decrement, it is now held and the thread
can proceed to the critical section. If it was held, the thread loops waiting for

1 Section 3 will explain the flush that appears in the pseudo-code.



it to become free. Because there might be multiple threads waiting for the lock,
once it is freed, the thread must again attempt to enter through the atomic
decrement. To release the lock, the thread simply sets its value to 1.

In a previous version of the kernel, the releasing instruction (in this version,
the mov) also had the lock prefix, as a defensive measure against possible relaxed
memory behaviors (because it acts as a memory synchronization primitive). Its
removal was suggested as a significant performance improvement, but at the time
there was no clear picture of the semantics of x86 multiprocessors. After much
discussion, and input from an Intel engineer, its removal was agreed [22]. The
2.6.24.7 spinlock without the additional lock is TRF, and hence exhibits only SC
behaviors. Thus, the removal of the lock prefix was justified in this case.

We reason informally as follows. Suppose there was a triangular race that
included the read at the spin line as one of the racing instructions. There would
need to be a prior write on the spinning thread without a synchronization op-
eration in between. However, any path to the spinning read must pass through
the locked decrement, a synchronization operation. Because there are no writes
between those two operations, this is not a triangular race. The only other read
that could participate in a triangular race is from the locked decrement. How-
ever, we shall see that locked reads can never be part of a triangular race. Note
that the release write and the spin read can participate in an ordinary data race.

2.2 Other Examples

In each of the other examples (Sects. 7–9), just as in the spinlock above, threads
communicate by polling locations in shared memory. None of them are DRF
because the notifying writes race with the reads that are polling for them. In each
case, we apply the TRF principle by first identifying the potential data races. We
then consider the possible executions of the reading thread starting from the most
recent hardware synchronization primitive (e.g., a barrier or atomic compare and
exchange). If a memory write can occur in-between, we have located a triangular
race, and have reason to consider adding additional synchronization operations.
Otherwise, we conclude that the program has no relaxed-memory-related bugs.

3 The x86-TSO Memory Model

Context Recently, we have formally described two memory models for the x86
architecture. Our first attempt, x86-CC (for causal consistency) [31], captured
the then-current Intel and AMD documentation [4, 15], but it turned out to
forbid some observed behaviors and also to permit other unobserved behaviors
that could significantly complicate programming and reasoning (independent
reads of independent writes, or IRIW [6]). In response to this, and to changes
in Intel’s documentation, we created a TSO based model, x86-TSO [27]. It is
consistent with the concrete examples (called litmus tests) in Intel’s and AMD’s
latest documentation [15, rev. 32, Sept. 2009] [4, rev. 3.15, Nov. 2009], with
our observations of processor behavior, and with our knowledge of x86 folklore,
programmer needs, and vendor intentions.
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Fig. 3. x86-TSO block diagram

Scope We intend the x86-TSO model to capture the x86’s programmer-visible
architecture, and so it is significantly abstracted from any hardware implementa-
tion details. Furthermore, it covers typical user code and most kernel code (i.e.,
programs using coherent write-back memory), but we have made no attempt to
cover exceptions, misaligned or mixed-size accesses, ‘non-temporal’ operations
(e.g. movnti), self-modifying code, page-table changes, or device memory.

Exceptions and mixed-size accesses do occur in user code, so their absence
somewhat limits the applicability of our TRF principle in its current form. Our
hope is that these features can be fit into the TSO framework, and that the TRF
principle can be extended to cover them. In contrast, the TRF principle would
not extend to non-TSO memory types (e.g., write combining) that are used for
things other than main memory.

The x86-TSO abstract machine We split the semantics of x86 programs into
two parts: the instruction semantics and the memory model. The instruction
semantics describes the local behavior of each stream of instruction execution
in a system: the hardware threads at the top of Fig. 3.2 The memory model
describes the behavior of shared memory accesses in terms of the components in
the lower, boxed part of Fig. 3.3 Each of the two parts is modeled as a labeled
transition system with labels drawn from events (Fig. 4). The semantics of the
entire system is expressed as a CCS-style parallel composition of the two parts,
synchronizing on non-τ labels.

To illustrate, consider the instruction add [56]←eax which adds the value
of memory location 56 to the value of register eax, then stores the result back

2 We use the term “hardware thread” to distinguish both from operating system level
threads, and from physical processors, which could be executing multiple hardware
threads in parallel.

3 Our previously published models included register reads and writes in the memory
model, but we omit them from this paper to avoid cluttering the presentation. Their
behavior is entirely straightforward in x86, and they pose no technical challenges.



event (e, f) ::= 〈Wi
p[x]v〉 (a write of value v to address x by thread p)

| 〈Ri
p[x]v〉 (a read of v from x by p)

| 〈Bi
p〉 (an mfence memory barrier by p)

| 〈Li
p〉 (the start of an instruction with lock prefix by p)

| 〈Ui
p〉 (the end of an instruction with lock prefix by p)

| 〈τ ip[x]v〉 (an internal action of the storage subsystem, moving v
from the write buffer on p to x in shared memory)

where i and j are issue indices, p and q identify hardware threads, x and y are memory
addresses, and v and w are machine words.

Fig. 4. Events

to [56]. Supposing that 1 is stored at [56] and 2 in eax, an execution of this
instruction comprises an event 〈Ri

p[56]1〉 followed by 〈Wj
p[56]3〉. The instruction

semantics is internally responsible for specifying how the sum is calculated and
for specifying which reads and writes to do. It also tags each event with the
originating processor p and an issue index i, which together uniquely identify
the event.4 The memory model is responsible for supplying the values read from
memory locations.

Because the overall semantics is split across the event interface, we are able to
investigate the meta-theory of the memory model in this paper without becoming
ensnared in complications arising from the x86 instruction set. See our previous
work [31] for further details on the instruction semantics.

Turning to the memory model in detail, on a write event it records the written
address and value in a FIFO write buffer associated with the writing hardware
thread. At any time, the memory model can remove the oldest write from the
buffer and store it to the shared memory. This action is indicated with a silent
transition 〈τ ip[x]v〉 which is ignored by the instruction semantics (the p, i, x, and
v values are taken from the corresponding write event). On a read event the
memory model first checks the corresponding thread’s write buffer. If the buffer
contains a write to the address read from, then the memory model uses the most
recently buffered value for that address; otherwise it uses the value currently
stored in the shared main memory. Each individual write to a buffer, write from
a buffer to shared memory, or read (from a buffer or memory) occurs atomically,
represented by a single event.

Returning to the introductory example (Fig. 1), both threads’ writes (from
instructions 1a and 1c) can be placed in their respective write buffers and not
sent to main memory until after both processors have done their reads (1b and
1d). While the write to x is in p’s buffer, q reads the value of x from shared
memory, and likewise for y in q’s buffer.

There are two kinds of events besides reads and writes. First, a barrier event
〈Bi

p〉 forces the issuing hardware thread’s write buffer to be emptied before pro-
ceeding to the next instruction. Barrier events are generated by mfence instruc-

4 The issue index is used only to distinguish otherwise identical events on the same
thread. We elide it when convenient.



Read from memory

not blocked(s, p) ∧ (s.M (x ) = Some(v)) ∧ no pending(s.B(p), x )

s
〈Ri

p[x]v〉
−−−−−−→ s

Read from write buffer

not blocked(s, p) ∧
(∃b1b2j .(s.B(p) = b1 ++[(x , v , j)] ++b2) ∧ no pending(b1, x ))

s
〈Ri

p[x]v〉
−−−−−−→ s

Write to write buffer

s
〈Wi

p[x]v〉
−−−−−−−→ s ⊕ 〈[B := s.B(p 7→ ([(x , v , i)] ++s.B(p)))]〉

Write from write buffer to memory

not blocked(s, p) ∧ (s.B(p) = b ++[(x , v , i)])

s
〈τ ip[x]v〉
−−−−−−→ s ⊕ 〈[M := s.M (x 7→ Some(v))]〉 ⊕ 〈[B := s.B(p 7→ b)]〉

Lock

(s.L = None) ∧ (s.B(p) = [ ])

s
〈Li

p〉−−−→ s ⊕ 〈[L :=Some(p)]〉
Unlock

(s.L = Some(p)) ∧ (s.B(p) = [ ])

s
〈Ui

p〉−−−→ s ⊕ 〈[L :=None]〉

Barrier

s.B(p) = [ ]

s
〈Bi

p〉−−−→ s

Notation: Some and None construct optional values, (·, ·) builds tuples, [ ] builds
lists, ++ appends lists, · ⊕ 〈[· := ·]〉 updates records, and ·(· 7→ ·) updates functions.

Fig. 5. The x86-TSO memory model

tions. Second, a processor can lock (〈Lip〉) or unlock (〈Ui
p〉) the memory system;

while the memory system is locked by a particular processor, no other processor
can read from or write to memory. Locks and unlocks are used by the instruction
semantics to implement locked instructions (including atomic increment lock inc,
compare and exchange cmpxchg, and a limited set of others) which ensure that
all memory accesses by the locked instruction happen together, atomically in the
system. Lock and unlock events also function as barriers.

Figure 5 presents the transition rules for the memory model formally, where
a state s is of the following record type (addr is the type of memory addresses,
tid is the type of thread identifiers, and idx is the type of issue indices):

〈[M : addr→ (value option); B : tid→ (addr× value× idx) list; L : tid option]〉



The rules use two auxiliary definitions: p is not blocked in machine state s if
either it holds the lock or the lock is not held, and there are no pending writes in
a buffer b for address x if there are no (x, v, i) elements in b. We also impose the
following progress condition: each write put into a write buffer must eventually
leave it.

4 Sequentially Consistent Programs

Section 3 presented an abstract machine for x86-TSO, our model of the ob-
servable memory behavior of x86 processors. Here, we define x86-SC, a simple
model of the sequentially consistent memory behavior that one might wish x86
multiprocessors had, and that they do have for DRF and TRF programs.

The x86-SC abstract machine (below) separates the instruction semantics
and memory model in exactly the same way as the x86-TSO abstract machine
(Fig. 3). In fact, both memory models use the same instruction semantics. The
only difference between the two is that the x86-SC abstract machine has no
write buffers. Writes propagate to shared memory immediately upon execution,
and all reads consult shared memory. We model this by requiring each 〈Wi

p[x]v〉
event to be immediately followed by the corresponding 〈τ ip[x]v〉 event. Thus,
formally, an x86-SC execution is an x86-TSO execution where every write to a
buffer is immediately flushed. However, when writing down x86-SC traces, we
often omit the τ labels for clarity. Barrier events have no effect on x86-SC, but
locked instructions still ensure that their constituent events happen atomically
using lock and unlock events, just as in x86-TSO.

H/W thread

Lock Shared RAM

H/W thread

Our main goal is to characterize a class of programs to which we can apply
reasoning techniques, both formal and informal, that are based on sequentially
consistent semantics. The following defines one such class.

Definition 1 (resultSC). A program is result-sequentially-consistent (re-
sultSC) iff for every x86-TSO execution there exists an x86-SC execution with
the same result. By same result we mean that, if the x86-TSO execution diverges,
then the x86-SC one does too; and if the the x86-TSO execution converges, then
the x86-SC one does too, with the same shared memory final state, where all
write buffers must be empty in an x86-TSO final state.

Result sequential consistency captures programs that, during x86-TSO exe-
cution, might have behaviors which are not equivalent to x86-SC behaviors, but



where that the final result does not depend upon the difference. However, our
TRF approach is not powerful enough to detect such situations. To precisely
characterize our approach, we define a notion of memory equivalence which ad-
ditionally considers memory writes to be observable.

Two memory equivalent traces must have the same memory writes in the
same order, and their corresponding read events must not only have the same
values, but those values must have been put in place by the same write event.
Traditional DRF principles ensure that every execution on a relaxed machine has
a memory equivalent sequentially consistent trace. As we shall see (Sect. 6), TRF
exactly characterizes the class of programs in which every x86-TSO execution
has a memory equivalent x86-SC one.

To define memory equivalence, we first define the write that a read event
reads from.

Definition 2 (Reads from). Let ≺ order events according to a given execu-
tion trace. A read event 〈Ri

p[x]v〉 reads from the preceding write that most re-

cently wrote to x. It is the maximal element in {〈Wj
p[x]w〉|〈Wj

p[x]w〉 ≺ 〈Ri
p[x]v〉∧

〈τ jp [x]w〉 6≺ 〈Ri
p[x]v〉} (the set of writes in p’s buffer, which is always empty in an

x86-SC execution) if this set is nonempty. Otherwise, it is the maximal element
in {〈τ jq [x]w〉|〈τ jq [x]w〉 ≺ 〈Ri

p[x]v〉}. If there is no such event, then the read reads
from the initial state.

Definition 3 (Memory equivalence). Two executions traces are memory
equivalent iff they have the same subsequence of writes to shared memory (τ
events), and there exists a bijection between the read events of each trace such
that corresponding read events read from the same write event/initial state.

Definition 4 (memorySC). A program is memory sequentially consistent
(memorySC) iff for each of its possible executions on x86-TSO, there exists a
memory equivalent execution on x86-SC.

In Sect. 8 we explore the gap between resultSC and memorySC.

5 Data Races

Although the details vary in the literature, data races are typically defined
roughly as follows [1–3, 5–7, 14, 23, 30]. Two operations on different threads com-
pete if they access the same memory address and one of them is a write, and
two operations are concurrent if there is no temporal relationship between them.
Rigorous definitions of when two events are concurrent take several forms, such
as being unrelated by a happens-before relation [21], or adjacent in an SC execu-
tion trace—depending on the underlying formalism. A data race is then a pair of
competing, concurrent operations. Synchronization primitives are handled by ei-
ther ignoring certain races on them, or by augmenting the temporal information
(e.g., happens before) with dependencies between synchronization primitives.

For example, if a program can reach a point where the next event could be
either 〈Wp[x]v1〉 or 〈Rq[x]v2〉 (with p 6= q), then it has a data race. However,



if both accesses of x are in critical sections, then this point cannot be reached
because both p and q cannot be in the critical section simultaneously.

Many relaxed memory models satisfy the“fundamental property”of Saraswat
et al. [30] that DRF programs exhibit only sequentially consistent behavior. The
key insight is that whenever there is a visible temporal dependency between
two operations, if the memory model ensures that the dependency is respected
throughout the system, then the entire system must have a consistent view of
their ordering (i.e., the one prescribed by the dependency). Data-race freedom
requires everything that could potentially observe system-wide inconsistencies
(i.e., competing operations) to have a temporal dependency, thus rendering any
internal inconsistencies unobservable.

Here, we focus on a single model, x86-TSO, and so we customize our notion
of data race specifically for it. Firstly, we need not consider two competing,
concurrent write events to be a data race. Because foreign writes are visible
to a hardware thread only through a single global shared memory, the system
intrinsically maintains global consistency for the ordering of writes—the program
does not need to.

Secondly, we address synchronization by ignoring potential data races whose
read events come from a locked instruction. Because the hardware thread’s write
buffer will be flushed at the end of the locked instruction, the reading thread’s
local perception of shared memory will be reflected in global memory before
any other thread can access memory. (Note that the preceding reasoning does
not apply to read events followed by barrier events, since other threads’ events
could observe memory in between the execution of the read and the barrier.)
This is more general than some formulations of data races because a concurrent,
competing write does not also need to be locked to avoid a data race.

Formally, we define a data race to be a prefix of an x86-SC execution, using
the intuition that adjacent events from different threads in an execution trace
could have occurred in the opposite order. We take care to ensure that a locked
write and unlocked read can form a data race.

Definition 5 (Data race). A data race is a prefix of an x86-SC execution with
either of the following two shapes:
e1. . . en〈Rq[x]v〉〈Wp[x]w〉 or e1. . . en〈Rq[x]v〉〈Lp〉f1. . . fm〈Wp[x]w〉
where p 6= q and none of the fi are unlocks.

For example, two threads p and q attempting to increment x, which is initially
0, have a data race (matching the first shape): 〈Rq[x]0〉〈Rp[x]0〉〈Wq[x]1〉. If one
increment is locked, say on p, there is still a race (matching the second shape):
〈Rq[x]0〉〈Lp〉〈Rp[x]0〉〈Wp[x]1〉. However, if both increments are locked, there is
no race. There are only two sequential executions (the other is achieved by
swapping p and q): 〈Lp〉〈Rp[x]0〉〈Wp[x]1〉〈Up〉〈Lq〉〈Rq[x]1〉〈Wq[x]2〉〈Uq〉. Neither
of them match the shapes in Definition 5.

For a second example, consider a simple parallel prime sieve [17]. One pro-
cessor writes to a shared array at indices that are multiples of 2 (greater than
2), another writes for 3, and so on. Although there are indices (e.g., 6) with



Initial: [x] = 0 ∧ [y] = 0 ∧ x 6= y

p q

6a: mov [x]←1 6b: mov [y]←1
6c: mov eax←[x] (0)

Fig. 6. A simple triangular race

competing, concurrent events, they are not data races because both events are
writes.

As a corollary to our main theorem (Theorem 1 in Sect. 6) we have the
following, which is stronger than traditional DRF principles because we do not
consider write-write data races.

Corollary 1 (DRF theorem). Every DRF x86 program is memorySC.

The converse does not hold, as the two instruction program that reads x on
one processor and writes x on another is not DRF, but is memorySC.

6 Triangular Races

If a read event occurs while its hardware thread’s write buffer is empty, then the
local perception of the state of shared memory must coincide with the global
one. We use this idea to further strengthen our notion of a data race into a
triangular race. A triangular race comprises a data race between 〈Rq[x]v1〉 and
〈Wp[x]v2〉 (where p 6= q) along with a preceding write event 〈Wq[y]w〉 on the
reading thread that could be in the local write buffer when the read happens.
Thus, q issues no locks, unlocks, or barriers between 〈Wq[y]w〉 and 〈Rq[x]v1〉.

Returning to the initial example (Fig. 1), when a data race is encountered—
suppose that 1a has executed, and there is now a race on y—the write to x could
still be in p’s write buffer. In contrast, if we add an mfence (barrier) instruction
after each write, the buffers will be empty whenever a race is encountered, and
the program will be memorySC.

To see how a triangular race can lead to non-sequentially consistent behavior,
consider the simple triangular race in Fig. 6 which can perform the following
sequence of actions on the x86-TSO machine.

1. 〈W1
q [y]1〉 buffer the write of 1 to y (6b)

2. 〈R2
q[x]0〉 read x from main memory (6c)

3. 〈Wp[x]1〉 buffer the write of 1 to x (6a)
4. 〈τp[x]1〉 write 1 to x in shared memory (6a)
5. 〈τq[y]1〉 write 1 to y in shared memory (6b)

Suppose we wish to construct a memory equivalent x86-SC trace. #1 must
immediately precede #5, and #3 must immediately precede #4 in an x86-SC
execution. Furthermore, #3 must precede #1 to maintain memory equivalence
(the writes of 6a to shared memory before those of 6b). Thus, the trace must



Initial: [x] = 0 ∧ [y] = 0 ∧ x 6= y

p q q′

7a: mov [x]←1 7b: mov [y]←1 7d: mov ecx←[x] (1)
7c: mov ebx←[x] (0) 7e: mov edx←[y] (0)

Allow: ebx = 0 ∧ ecx = 1 ∧ edx = 0 ∧ ecx = 1 ∧ edx = 0

Fig. 7. Observing write ordering leads to relaxed behavior

be #3#4#1#5 with #2 inserted at the start, between #4 and #1, or at the
end. Only at the first does the read get value 0, and not 1. However, in that
execution a read from instruction 6c precedes a write from 6b—out of program
order. The instruction semantics does not permit this, and so this program is
not memorySC.

It is resultSC, as the ordering #1#5#2#3#4, or simply 6b6c6a, demon-
strates. The difference is that program’s result is not affected by the shared
memory ordering of these writes. However, the program can be extended to one
whose result is; in Fig. 7 the indicated result can be reached only if the 7a write
is sent to shared memory before the 7b one is, and since this is visible in the
result, this program is not resultSC.

Our formal definition of a triangular race follows that of a data race. Note
that a triangular race is also a data race.

Definition 6 (Triangular race). A triangular race is a prefix of an x86-SC
execution with either of the following two shapes:
e1. . . em〈Wq[y]v1〉〈Rq[z1]w1〉. . . 〈Rq[zn]wn〉〈Rq[x]v2〉〈Wp[x]v3〉 or
e1. . . em〈Wq[y]v1〉〈Rq[z1]w1〉. . . 〈Rq[zn]wn〉〈Rq[x]v2〉〈Lp〉f1. . . fo〈Wp[x]v3〉
where x 6= y and p 6= q and x /∈ {z1 . . . zn} and none of the fi are unlocks.

We can now state our main theorem, whose proof we defer until the ap-
pendix.5

Theorem 1 (TRF theorem). An x86 program is memorySC iff it is TRF.

Because Theorem 1 is an equivalence, any extension of TRF must necessarily
admit some programs with x86-TSO executions that are not memory equivalent
to any x86-SC executions. We return to this point in Sect. 8.

7 Locking Primitives

We now return to the spinlock of Fig. 2 and use Theorem 1 to prove that it
works; then we address a more sophisticated variant. For this section, we assume
that some set of addresses is distinguished as holding spinlocks.

5 Theorem 1 relies on some facts about the x86 instruction semantics, including that
locked instructions cannot access multiple different addresses.



We first define when a program is using a spinlock properly, as follows.

Definition 7 (Spinlock well-synchronized). A program is spinlock well-
synchronized with respect to a particular spinlock implementation iff for every
x86-SC execution, and for every pair of competing events that are not on a spin-
lock, there is a spinlock that is released and then acquired between them.

We omit mention of which threads the release and acquire are on in Defi-
nition 7. Because a spinlock well-synchronized program must have a lock and
unlock between competing events on every execution, the unlock must necessar-
ily be on the thread of the first competing event, and the lock must necessarily
be on the second. Otherwise, there would be another execution that has the
lock/unlock and competing event in the opposite order, and so not between the
two competing events. We use the assumption of spinlock well-synchronization
exclusively to apply the following lemma.

Lemma 1. In a spinlock well-synchronized program, any data race is on a spin-
lock’s address.

Proof. Using the contrapositive, suppose there is a data race
. . . 〈Rp[y]v〉〈Wq[y]w〉 (or . . . 〈Rp[y]v〉〈Lq〉 . . . 〈Wq[y]w〉) where y is not the
address of a spinlock. Then there are two competing events 〈Rp[y]v〉〈Wq[y]w〉
without a spinlock release and the acquire in between, and so the program is
not well-synchronized. ut

Theorem 2. If an x86 program is spinlock well-synchronized (with respect to
the spinlock in Fig. 2) and the locations of spinlocks are only accessed by the
code in Fig. 2, then it is memorySC.

Proof. By Theorem 1 it suffices to show that there are no triangular races. Since
a triangular race is a data race, by Lemma 1 and by assumption, we only need to
analyze the possible data races on a spinlock x that involve only code in Fig. 2
and show that none can be triangular. The instruction semantics guarantees that
the trace of a thread after entering acquire or release is included in the following
(using regular expression notation):
acquire: (〈Lp〉〈Rp[x]w1〉〈Wp[x]w2〉〈Up〉〈Rp[x]v1〉 . . . 〈Rp[x]vn〉〈Rp[x]1〉)∗

(〈Lp〉〈Rp[x]1〉〈Wp[x]0〉〈Up〉|ε)
release: 〈Wp[x]1〉

Any race must include a 〈Rp[x]w〉 event from acquire. Every such event is
immediately preceded by either 〈Lp〉, 〈Up〉, or 〈Rp[x]w′〉, none of which are per-
mitted by a triangular race (nor are events from other threads permitted). ut

7.1 A Ticketed Spinlock

Recently, the Linux kernel changed from the spinlock in Fig. 2 to a fairer, tick-
eted spinlock (Fig. 8).6 To acquire the lock, a thread first atomically increments

6 Figure 8 differs from the Linux version by storing the two fields that comprise the
lock in separate words, instead of in the lower and upper halves of the same word.



; The address of the next ticket to give out, y, is stored in register ebx, and
; the address of the ticket currently being served, x, is stored in register eax.

acquire: mov ecx←1 ; tkt := 1
lock xadd [ebx]←ecx ; atomic (tkt := [y]

; [y] := tkt + 1
; flush local write buffer)

spin: cmp [eax],ecx ; flag := ([x] = tkt)
je enter ; if flag then goto enter
jmp spin ; goto spin

enter: ; the critical section starts here

release: inc [eax] ; [x] := [x] + 1

Fig. 8. A ticketed x86 spinlock inspired by Linux v2.6.31

the ticket using a locked instruction, and then loops until its ticket is ready to
be served. To release the lock, it increments the ticket being served. The key dif-
ference from the previous spinlock is that the release instruction both reads and
writes. It does not need to be atomic, because two threads cannot be attempting
to simultaneously release the spinlock (assuming that threads only try to release
spinlocks that they hold).

To show that this lock guarantees sequential consistency, we will need to
know that it ensures mutual exclusion on x86-SC.

Definition 8 (Correctly locked). A program is correctly locked if each of its
x86-SC execution traces satisfies the following properties.

1. The locations of spinlocks are only accessed by the code in Fig. 8.
2. For each hardware thread p, control only enters release on p to release a lock
〈x, y〉 when previously, control left acquire on p to acquire 〈x, y〉, without
another release of 〈x, y〉 on p in between (i.e., threads only release locks they
hold).

Lemma 2 (Spinlock mutual exclusion). In a correctly locked x86 program,
if a hardware thread reaches the enter line of a spinlock, no other thread can
reach the enter line until the first thread completes the increment from release.

Proof outline. By standard sequentially consistent reasoning techniques; we do
not go into detail here. The difference in the next ticket and the currently served
ticket is the number of threads that have entered acquire, but not finished release.
We assume there are fewer than 232 hardware threads.

Theorem 3. If a correctly locked x86 program is spinlock well-synchronized
(with respect to Fig. 8), then it is memorySC.

Proof. As in the proof of Theorem 2, we analyze the possible data races on the
spinlock’s data and show that none of them can be triangular.
acquire: 〈Lp〉〈Rp[y]w1〉〈Wp[y]w2〉〈Up〉〈Rp[x]v1〉 . . . 〈Rp[x]vn〉
release: 〈Rp[x]v1〉〈Wp[x]v2〉



No race involving 〈Rp[y]w〉 can be a triangular race, because this event is
always immediately preceded by 〈Lp〉. Neither can a race involving 〈Rp[x]w〉
from acquire because it is immediately preceded by either 〈Up〉 or 〈Rp[x]w′〉. The
〈Rp[x]v〉 in release might be preceded by appropriate events from the critical
section to be a triangular race. There are no writes to x in in acquire to race with,
so the race must be on another processor doing a release. Thus, any potential
triangular race must be as follows:
. . . 〈Rq[x]v1〉 . . . e1 . . . en〈Rp[x]v2〉〈Wq[x]v3〉
where the ei are all on thread p, p 6= q, and there are no events on q between
the given read and write (i.e., assume this is the read event from the same inc
instruction as the write).

Because the program is correctly locked, p and q both acquire x before
〈Rp[x]v2〉, although p’s acquire might occur before or after 〈Rq[x]v1〉, and there
are no releases in between. Thus, both threads have acquired the lock before
either thread has finished releasing the lock, contradicting Lemma 2. ut

8 Examples with Potential Triangular Races

In this section, we investigate two examples that are not well-synchronized. In
both cases, barriers can be added to ensure triangular-race freedom, but at a
performance cost. The examples also illustrate the difference between memorySC
and resultSC programs (Sect. 4). We argue, reasoning directly with x86-TSO,
that without barriers they are resultSC in some contexts, but not in others. We
then comment on how our examples illustrate a general publication idiom.

Non-Blocking Write Protocol Figure 9 presents a non-blocking write proto-
col [19] similar to Linux’s SeqLocks [20]. In this instance, two memory addresses
y1 and y2 make up a conceptual register that a single hardware thread can write
to, and any number of other threads can attempt to read from. A version num-
ber is stored at x. The writing thread maintains the invariant that the version
number is odd during writing by incrementing it before the start of and after
the finish of writing. A reader checks that the version number is even before at-
tempting to read (otherwise it could see an inconsistent result by reading while
y1 and y2 are being written). After reading, the reader checks that the version
has not changed, thereby ensuring that no write has overlapped the read.

We want to see how a triangular race could occur in a program using this
protocol. Notice that the Reader code does not write to memory. Thus, a pro-
gram where the reading processors only access memory via the code at Reader
is trivially TRF. However, there are data races between the writer and a reader
on x, y1, and y2, and if the reading processor has written to memory before
initiating the read, these become triangular races.

If we are concerned with memory sequential consistency, then there is no
choice but to prefix the entry to the read operation with a barrier to prevent
any preceding writes from taking part in a triangular race. However, it might
be that even without the barrier, the whole program is resultSC. For example,



; The address of the current version x is stored in register eax, and
; its contents at y1 and y2.
; The version, [x], is odd while the writer is writing, and even otherwise.

Writer: mov ebx←1 ; tmp := 1
xadd [eax]←ebx ; tmp := [x]

; [x] := tmp + 1
mov [y1]←v1 ; [y1] := v1
mov [y2]←v2 ; [y2] := v2
inc ebx ; tmp := tmp + 1
mov [eax]←ebx ; [x] := tmp

Reader: mov ebx←[eax] ; tmp := [x]
mov ecx←ebx ; tmp2 := tmp
and ecx←1 ; tmp2 := tmp2&1
cmp ecx,0 ; flag := (tmp2 6= 0)
jne read ; if flag then goto Reader
mov ecx←[y1] ; result1 := [y1]
mov edx←[y2] ; result2 := [y2]
cmp [eax],ebx ; flag := ([x] 6= tmp)
jne read ; if flag then goto Reader

Fig. 9. A versioning non-blocking write protocol

consider the following illustrative pseudocode where the readers communicate
with each other using spinlock-based (Fig. 2) synchronization. Recall that the
release operation does not contain a barrier.

p1 p2 p3
Writer acquire spinlock y Reader

mov [x]←eax acquire spinlock y
release spinlock y mov ebx ←[x]
Reader release spinlock y

This is essentially the same pattern as the Fig. 7 example with locks added.
As there, we can observe non-sequentially consistent behavior if p2’s reads do
not observe p1’s writes, but p3’s read does, as follows on x86-TSO (reading from
top to bottom):
1. acquire spinlock y
2. write to x put into buffer
3. spinlock release y into buf.
4. Reader gets old value
5. Writer writes and flushes
6. Reader read new value
7. start acquire spinlock y

After 7, p3 will loop trying to acquire the lock until p2 releases it by flushing
the buffered unlocking write to y to shared memory. However, the write to x must
be flushed first, and thus p3’s read from x will see the new value. This behavior
can be accounted for on x86-SC if p2 runs all of its instructions, followed by p1,



; The address of the object x is stored in memory at location [eax].
; An uninitialized object is represented by the address 0.

ensureinit: cmp [eax],0 ; flag := x is initialized
jne initialized ; if flag then goto initialized
———————————– ; acquire a spinlock
cmp [eax],0 ; flag := x is initialized
jne unlock ; if flag then goto initialized
———————————– ; writes to initialize the object,

; leaving its address in ebx
mov [eax]←ebx ; x := initialized value

unlock: ———————————– ; release the spinlock
initialized: ; Now the object can be used

Fig. 10. Double-checked Locking

and finally p3. The difference is that on the x86-TSO trace, all of p1’s writes
reach shared memory before p2’s write to x, whereas that does not happen in
the x86-SC trace.

If the final result might depend on the ordering of p1’s and p2’s writes as well
as the values read by p2 and p3, then the program might not be resultSC. In
this case, a barrier after p2 releases the spinlock would be required to maintain
sequentially consistent reasoning.

Double-checked Locking Double-checked locking [32] is an optimization id-
iom for objects whose one-time initialization must occur in a critical section, but
further accesses are not restricted. It is famously unsound in Java and C++ [13,
24] due to compiler re-orderings, exceptions, etc.; however, it does work on many
processors, including x86. Figure 10 presents the idiom; an object x is never ac-
cessed without first ensuring that it has been initialized with ensureinit.

On x86-SC, one of three things can happen when ensuring initialization.

1. Read x, finding it initialized; proceed to use x.
2. Read x, finding it un-initialized; lock; read x, finding it initialized; unlock;

proceed to use x.
3. Read x, finding it un-initialized; lock; read x, finding un-initialized; write to

initialize; write to x; unlock; proceed to use x.

For correct operation, the third option should happen at most once (i.e., the
object should not be initialized multiple times), and whenever the object is found
to be initialized (options 1 and 2), it should actually be initialized. It works on
x86-SC, since the second and subsequent entrants to the critical section will see
the initialized pointer.

Turning to whether it is TRF, the write to x by a thread in the third case
can race against the first read from x by another thread in one of the first two
cases. (Note that the initializing writes cannot be part of a race because no other
thread can read them until after they read the initializing thread’s write to x.)
Just as with the non-blocking writer above, this race is triangular if, and only



if, the read is preceded by a write, but not a barrier or locked instruction. Thus,
double-checked locking works for x86-TSO if a barrier is always executed before
attempting the read.

We conjecture that typical uses of double-checked locking without the barrier
are resultSC. Suppose that the initializing write to x is in p’s write buffer, and
another processor q reads the un-initialized value of x. It will try to acquire the
lock, and once acquired x will be seen to be initialized, following similar reasoning
to the unlock in the non-blocking writer example above. So even though its
local behavior may differ (taking the lock, whereas it would not on x86-SC),
this should not affect the result. However, this is by no means guaranteed, and
establishing it might require fully general x86-TSO reasoning. For example, if
p can re-acquire the spinlock from some other point in the code (perhaps it is
protecting more than one object) before q enters, then we must prove that p will
eventually release the lock.

Publication Idioms The unlocking write from the spinlocks and the initializing
write to x in the double-checked locking example both demonstrate a general
publication idiom. To publish local changes, a hardware thread writes to a single
shared location that other threads can observe. Once another thread sees the
write, it has permission to view the new data (in the spinlock’s case, the data is
whatever was written in the critical section). Before the write, the other threads
wait for the data, either directly, as in the spinlock, or indirectly, as in the double-
checked locking idiom (by subsequently waiting for a spinlock). Our analysis of
these examples indicates that such publication idioms need careful, potentially
TSO-specific analysis, unless the reads that detect publication are preceded by
barriers.

9 A JVM Bug Due to a Triangular Race

A recent blog posting by Dice [12] discusses his discovery of the cause of a con-
currency bug in the HotSpot JVM’s implementation of blocking synchronization
for java.util.concurrent. On a certain fast-path through the Parker::park

method, a missing mfence instruction allowed a wake-up call to be lost, leading
to the possibility of hung threads. The blog post explains the bug with 7 care-
fully chosen execution steps which are directly in terms of write buffers, using
an x86-TSO-like model. These steps span two calls to the park method on one
thread and a call to the unpark method on the other.

Here we briefly present the bug, we explain why the buggy program contains
a triangular race, and we explain why the addition of mfence instructions to
repair the bug also removes the triangular race.

Figure 11 presents a simplified version of the Parker. A thread calls the park
method when it wants to wait for some condition to hold. Other threads call the
unpark method after they make the condition hold, waking the first thread.
However, unlike a semaphore, the thread waiting in park can awaken and return



class Parker {

volatile int _counter = 0;

pthread_mutex_t _mutex [1]; pthread_cond_t _cond [1];

};

void Parker::park() {

if (_counter > 0) {

_counter = 0;

// mfence needed here

return;

}

if (pthread_mutex_trylock(_mutex) != 0) return;

if (_counter > 0) { // no wait needed

_counter = 0;

pthread_mutex_unlock(_mutex);

return;

}

pthread_cond_wait(_cond, _mutex);

_counter = 0;

pthread_mutex_unlock(_mutex);

}

void Parker::unpark() {

pthread_mutex_lock(_mutex);

int s = _counter;

_counter = 1;

pthread_mutex_unlock(_mutex);

if (s < 1) pthread_cond_signal(_cond);

}

Fig. 11. A simplified Parker from HotSpot (written in C++) taken from [12]

without any corresponding call to unpark. Thus, the parked thread must, upon
awakening, check that the condition holds, and call park again if it does not.

For example, if thread p is awaiting the condition x == 0, and has a parker
pk, the parker would be used as follows:

while !(x == 0) pk.park();

Another thread q would signal the first thread thus:

x = 0; mfence(); pk.unpark();

In terms of read and write events, p does the following, assuming that
pk._counter and x start at 1 (perhaps some other thread has already set x

to 0, called unpark, and then set x to 1). It first reads from the location of x,
then, in the call to park, reads from the location of pk._counter (suppose it is
at address y). It next writes to the location of pk._counter and returns, reading
the location of x again. In event notation: 〈Ri

p[x]1〉〈Rp[y]1〉〈Wp[y]0〉〈Rj
p[x]1〉.



Suppose thread q unparks p with the following sequence: 〈Wq[x]0〉〈Bq〉 . . .
(eliding the events from the call to unpark). Then the following interleaving
(where q simply follows p) has a triangular race:
. . . 〈Ri

p[x]1〉〈Rp[y]1〉〈Wp[y]0〉〈Rj
p[x]1〉〈Wq[x]0〉〈Bq〉 . . .

The bug is made manifest when the subsequent call to park happens after
the call to unpark is completed. However, finding the triangular race does not
require looking into the internals of unpark or considering multiple calls to park.
In general, the presence of a triangular race does not guarantee that a bug has
been found, but in this instance there would be good reason for suspicion since
the ordering of writes to x and y (the locations in the triangular race) are key
to the correct functioning of the algorithm.

A direct way to spot the triangular race is to notice the data race on x and
then to check for preceding writes on the same thread as the read part of the data
race. A call to park can precede the read from x, and it can write to _counter

and immediately exit, forming a triangular race. In fact the write _counter, read
x pattern on p combined with the write x, mfence, read _counter pattern on q
(looking into the implementation of unpark) is analogous to Fig. 1, but with a
single mfence.

With an additional mfence added to the park method, immediately following
the write to _counter, the sequence becomes:
. . . 〈Ri

p[x]1〉〈Rp[y]1〉〈Wp[y]0〉〈Bp〉〈Rj
p[x]v〉〈Wq[x]0〉〈Bq〉 . . .

This is not a triangular race, but it is a data race. In fact, the corrected code is
TRF (as long as pthread_mutex_unlock contains an mfence or an instruction
with the lock prefix, or mfences are added after those writes to _counter as well).
We argue this informally, but we cannot formally prove it without a model of
the pthreads primitives.

Any triangular race must contain a data race where the reading operation is
preceded on the same thread by a write without an intervening mfence or lock.
The only read on an unparking thread is from _counter and that is immediately
preceded by an mfence before the call. Hence, the racing read must be on the
parking thread. The reads from x and _counter on the parking thread, with one
exception, are only preceded by writes from a previous call to park in the loop,
and those writes are now all followed by mfence instructions. The exception is a
data race on x, where the read is the first one on entry into the while loop, and
the preceding write occurs before the while loop on p. This is exactly the sort of
triangular race discussed in Sect. 8.

10 Related work

Burkhardt and Musuvathi [9] characterize“store buffer safety”for TSO programs
in terms of sequentially consistent traces by explicitly building the happens-
before relation of both SC and TSO memory models at every step (using vector
clocks). Thus, although only SC executions are considered, the relaxed memory
model cannot be ignored, as it can in our approach. We conjecture that their store
buffer safety property is in-between our memorySC and resultSC properties. It



allows the ordering memory writes to vary when unobserved, but everything else
must be the same (e.g., reads must read from the same writes).

Cohen and Schirmer [10] have proposed a programming discipline to ensure
sequential consistency for TSO programs. Like us, they do not consider any syn-
chronization operations beyond what the hardware provides, and their discipline
captures the same intuition as our triangular races regarding the write buffer be-
ing empty when reading. Their discipline is based on ownership (e.g., writes to
locally owned, unshared memory do not need to be flushed before a read), and so
notions of ownership and ghost operations pervade their programs and memory
model semantics. However, the ordering of writes to locally owned memory loca-
tions cannot be observed by other threads, so ownership information gives them
an approach to verifying resultSC for some programs which are not memorySC.

Park and Dill [28] verify programs by model checking them directly on the
semantics of TSO, and the related-but-more-relaxed PSO and RMO. Shasha
and Snir [33] show how to transform a program so that it has only sequentially
consistent executions on a relaxed memory architecture.

11 Future Work and Conclusion

Our focus in this paper has been on creating a semantic foundation for reason-
ing about programs above TSO-like relaxed memory models. We have demon-
strated the usefulness of our TRF principle on a variety of low-level concurrency
algorithms that are important to the implementors of languages that support
shared memory concurrency. However, formal reasoning directly on traces can
be tedious, so a program logic or sound static analyzer specialized to proving
triangular-race freedom might make the application of TRF more convenient.

Currently, DRF-style principles, including TRF, can be applied only to pro-
grams are globally DRF (or TRF). If a small piece contains a race, then the entire
program must be reasoned about with relaxed-memory-specific techniques. Ide-
ally, this relaxed reasoning could be applied to the (small) part of the program
that requires it (such as we did in Sect. 8), and SC-reasoning used for the rest.
To support this approach, a compositional DRF principle would be invaluable.

Our work has illustrated the importance of considering how relaxed execu-
tions are equivalent to sequentially consistent ones. We hope a careful study of
which equivalences support which kinds of reasoning will be a fruitful direction
for creating new DRF-style principles.
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A Proof Sketches for Theorem 1

See http://www.cl.cam.ac.uk/~so294/ecoop2010/ for complete proofs. First we
prove the completeness of TRF with respect to memorySC.

Lemma 3. If a program has a triangular race, then it is not memorySC.

Proof. Given a triangular race without lock:
e1 . . . em〈Wi

q[y]v1〉〈τ iq [y]v1〉〈Rq[z1]w1〉 . . . 〈Rq[zn]wn〉〈Rj′
q [x]v2〉〈Wj

p[x]v3〉〈τ jp [x]v3〉 where
x 6= y and p 6= q and x /∈ {z1 . . . zn}, move the τ i event to the end, giving

e1 . . . em〈Wi
q[y]v1〉〈Rq[z1]w′

1〉 . . . 〈Rq[zn]w′
n〉〈Rj′

q [x]v2〉〈Wj
p[x]v3〉〈τ jp [x]v3〉〈τ iq [y]v1〉. This

is a valid x86-TSO execution because if any of the z1 . . . zn equal y, their value will
be read from the write buffer. Any memory equivalent x86-SC execution must perform
p’s write to x before q’s write to y. Respecting the program order of the instruction
semantics, and this constraint requires us to move 〈Wj

p[x]v3〉 to before q’s write to y.
But now the read from x must read from this write event, whereas it could not have
before (the write event cannot be pushed back before the one that it used to read from
without violating memory equivalence). The case where 〈Wj

p[x]v3〉 is locked is similar,
but 〈τ iq [y]v1〉 must appear after the unlock. To place the it after the entire locked in-
struction, we rely on the fact that there is no read from y in it, which is guaranteed by
the instruction semantics: a locked event can only read and write a single address (x
here). ut

Due to space constraints, we do not present our axiomatic model, but refer the
reader to our previous work [27]. We write ≺X and ≺E to indicate memory order and
program order of an execution witness and event structure, respectively. The following
lemma says there is a sequentially consistent counterpart for any valid execution that
satisfies an axiomatic version of TRF.

Definition 9 (Axiomatic TR). An execution witness X has an axiomatic TR
is there are events that satisfy the following: p 6= q ∧ x 6= y ∧ (〈Wq[y]v2〉 ≺E

〈Rq[x]v3〉) ∧ (〈Wp[x]v1〉 ≺X 〈Wq[y]v2〉) ∧ (〈Wp[x]v1〉 6≺X 〈Rq[x]v3〉) ∧ (∀〈Wq[x]v4〉 ∈
E. (〈Wq[x]v4〉 ≺E 〈Rq[x]v3〉)⇒ (〈Wp[x]v1〉 6≺X 〈Wq[x]v4〉)).

Lemma 4. Suppose that E is a well-formed event structure; that X is a valid execu-
tion for E; and that X has no axiomatic TR. Then, there exists a valid sequentially
consistent execution X ′ with the same reads-from map, initial state, and write ordering
as X.

Proof sketch. We have mechanically verified this lemma in the HOL-4 proof as-
sistant [25]. The proof comprises 4 phases. First, we construct a equivalent no-
tion of valid execution that that is less strict about memory ordering dependen-
cies on locked events. Second, we show that the subset of these valid executions
where 〈Wp[x]v〉 ≺E 〈Rp[y]w〉 ⇒ 〈Wp[x]v〉 ≺X 〈Rp[y]w〉 are exactly the sequentially
consistent executions. Third, given X we construct a transitive memory ordering
≺X′= (≺X|writes ∪ ≺E ∪ X.rfmap)+. Fourth, we complete ≺X′ for locked accesses.
For example, if e1 ≺X e2 and e1 and e3 are in the same locked instruction, then we
add e3 ≺X e2 and enough other dependencies to maintain transitivity. We then prove
that X ′ is a valid execution, relying on the axiomatic TRF assumption to show that it
satisfies X’s reads-from map.



Now we prove the soundness of TRF for memorySC.

Lemma 5. If a program is not memorySC, then it has a triangular race.

Proof sketch. Let e . . . be an x86-TSO trace with no memory equivalent x86-SC trace.
By Theorem 3 from [27], there exists a valid execution X. By the contrapositive of
Lemma 4 (noting that memory equivalence implies that the reads-from map and write
ordering of corresponding execution witnesses is the same) there is an axiomatic TR.
Consider the ≺E- and ≺X - closed prefix of the events mentioned in the axiomatic TR.
This is a finite valid execution, so we can proceed by induction, trying to show that if a
valid execution contains an axiomatic TR, then it has a triangular race. Remove from
the execution the read event in the TR; if there is still a TR, we are done. Otherwise
there are none, and by Lemma 4, we can build a sequential execution, and add the read
back at the end (it could read from a different write, but that does not matter since
we consider no subsequent events on q). Thus, we have an x86-SC execution (with the
same write ordering and rfmap, save for i3): . . . 〈Wi1

p [x]v1〉. . . 〈Wi2
q [y]v2〉 . . . 〈Ri3

q [x]v4〉
where x 6= y and p 6= q. Remove all events between i1 and i3 that are not on q (leaving
any of i1’s fellow locked events in place, if any). The result is still an execution unless
one of q’s remaining reads read from one of the removed writes. However, in that case,
the removed write is ≺X q’s read, and so i1 ≺X i3, and there is no TR. Any remaining
lock, unlock or barrier events between i2 and i3 would have caused i1 ≺X i3, so there
are none. There are no remaining writes to x between i1 and i3, or else there not would
have been a TR. Hence there are no reads from x, or else i1 ≺X i3. Thus, we can
move i1, along with any potential fellow locked events to after i3 (again relying on the
instruction property mentioned in Lemma 3’s proof if i1 is locked).
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