
Why are computers so @#!*, and what can
we do about it?

Peter Sewell

University of Cambridge

August 2014

EMF, somewhere near Bletchley

– p. 1

Things I Know About Computers

– p. 2

Things I Know About Computers

1. there are a lot of them

– p. 2

Things I Know About Computers

1. there are a lot of them

2. they go wrong a lot

– p. 2

[Ariane 501, $500 million]

– p. 3

– p. 4

– p. 5

– p. 6

Bak in the 19

th

Century...

– p. 7

Beautiful Railway Bridge of the Silvery Tay!

With your numerous arhes and pillars in so grand array

– p. 8

– p. 9

– p. 10

– p. 11

Now

100 years later: decent mechanical and civil engineering

– p. 12

Now

100 years later: decent mechanical and civil engineering

What does that mean?

enough thermodynamics, materials science, quality control,
etc. to model designs well enough to predict whether they’ll
do what we want

– p. 12

Now

100 years later: decent mechanical and civil engineering

What does that mean?

enough thermodynamics, materials science, quality control,
etc. to model designs well enough to predict whether they’ll
do what we want

And for Computing?

– p. 12

Why is it so hard?

– p. 13

Too Much Code

[from www.informationisbeautiful.net]

– p. 14

– p. 15

– p. 16

But computer systems are built by

smart people

in big groups

subject to commercial pressures

using the best components and tools they know....

– p. 17

– p. 18

– p. 19

How do we build those pieces?

1. (sometimes, at best) specify in prose

2. write code

3. write some ad hoc tests

4. test-and-fix-and-extend until marketable

5. test-and-fix-and-extend until no longer marketable

6. use until too bitrotted, device breaks, or obsolete

– p. 20

How do we build those pieces?

1. (sometimes, at best) specify in prose

2. write code

3. write some ad hoc tests

4. test-and-fix-and-extend until marketable

5. test-and-fix-and-extend until no longer marketable

6. use until too bitrotted, device breaks, or obsolete

– p. 20

Too Many...

Execution paths
... scales (at least!) exponentially with code size

States
... scales exponentially with amount of data

Possible inputs

– p. 21

Discrete Systems

– p. 22

What can we do?

– p. 23

1: improve s/w engineering processes

more unit+system testing, more assertions, better
coordination...

– p. 24

2: use 1980s languages instead of 1970s

expressive type systems

guarantees of type- and memory-safety

enforcement of abstraction boundaries

user-defined inductive types, pattern matching,
functions, ...

In 2014? No excuse...

– p. 25

2b: use languages that have been designed

– p. 26

2b: use languages that have been designed

(we can now precisely define the intended semantics of
real-world PLs...)

– p. 26

4: prove correctness

– p. 27

4: prove correctness

CompCert verified compiler from C-like language to
assembly

CompCertTSO ...plus concurrency

CakeML verified compiler from core ML to binary

Vellvm verified LLVM optimisation passes

RockSalt verified SFI

seL4 verified hypervisor

– p. 27

3: specify+test behaviour of key interfaces

– p. 28

– p. 29

3: specify+test behaviour of key interfaces

TCP and Sockets API

x86, ARM, and IBM Power multiprocessor behaviour

C/C++11 concurrency models (+ gcc/clang testing)

OCaml core language

C language

TLS stack

– p. 30

Multiprocessors

Processor 1 Processor N

Shared Memory

– p. 31

The GhoĆ of MultiproceĄorŊ PaĆ
BURROUGHS D825, 1962

“Outstanding features include truly modular hardware

with parallel processing throughout”

FUTURE PLANS

The complement of compiling languages is to be

expanded.

– p. 32

Example 1 (SB)
Initial shared memory values: x=0 and y=0

Thread 0 Thread 1
write x := 1 write y := 1
read y read x

Might expect x=1,y=1, x=1,y=0, or x=0,y=1.

– p. 33

Example 1 (SB)
Initial shared memory values: x=0 and y=0

Thread 0 Thread 1
write x := 1 write y := 1
read y read x

Might expect x=1,y=1, x=1,y=0, or x=0,y=1.

Experimentally, on x86 (Intel Core i7):

x=1, y=1 79
x=1, y=0 499683
x=0, y=1 499889
x=0, y=0 349

– p. 33

Example 2 (MP, Message Passing)
Initial shared memory values: x=0 and y=0

Thread 0 Thread 1
write x := 1 read y // until gets 1
write y := 1 read x

Might expect to always see x=1

– p. 34

Example 2 (MP, Message Passing)
Initial shared memory values: x=0 and y=0

Thread 0 Thread 1
write x := 1 read y // until gets 1
write y := 1 read x

Might expect to always see x=1

Experimentally:

x86 x=1
ARM x=0 and x=1
IBM Power x=0 and x=1

Programmer must enforce ordering with memory barriers

– p. 34

How are architectures expressed?
In prose:

For each applicable pair ai,bj the memory barrier ensures that
ai will be performed with respect to any processor or mecha-
nism, to the extent required by the associated Memory Coher-
ence Required attributes, before bj is performed with respect
to that processor or mechanism.

A includes all applicable storage accesses by any such
processor or mechanism that have been performed with
respect to P1 before the memory barrier is created.

B includes all applicable storage accesses by any such
processor or mechanism that are performed after a Load
instruction executed by that processor or mechanism has
returned the value stored by a store that is in B.

– p. 35

How are architectures expressed?
In prose:

For each applicable pair ai,bj the memory barrier ensures that
ai will be performed with respect to any processor or mecha-
nism, to the extent required by the associated Memory Coher-
ence Required attributes, before bj is performed with respect
to that processor or mechanism.

A includes all applicable storage accesses by any such
processor or mechanism that have been performed with
respect to P1 before the memory barrier is created.

B includes all applicable storage accesses by any such
processor or mechanism that are performed after a Load
instruction executed by that processor or mechanism has
returned the value stored by a store that is in B.

l

– p. 35

How are architectures expressed?

“all that horrible horribly incomprehensible and
confusing [...] text that no-one can parse or reason
with — not even the people who wrote it”

Anonymous Processor Architect, 2011

– p. 36

Architectural Fiction
Architecture texts (and mainstream language standards
too): informal prose attempts at subtle loose specifications.

We pretend programmers can “write to the spec” — but we
develop software by testing.

Fundamental problem: prose specifications cannot be used

to test programs against, or

to test processor implementations, or

to prove properties of either, or even

to communicate precisely.

In a real sense, the specs don’t exist

– p. 37

Empirical Science to the Rescue!

– p. 38

Empirical Science to the Rescue!
1. invent mathematically precise model of multiprocessor

behaviour

(but abstract, avoiding microarchitectural detail)

– p. 38

Empirical Science to the Rescue!
1. invent mathematically precise model of multiprocessor

behaviour

(but abstract, avoiding microarchitectural detail)

2. make tool to find all model-allowed behaviour of tests

(and interactive web interface)

– p. 38

Empirical Science to the Rescue!
1. invent mathematically precise model of multiprocessor

behaviour

(but abstract, avoiding microarchitectural detail)

2. make tool to find all model-allowed behaviour of tests

(and interactive web interface)

3. compare against experimental data from production h/w
(fixing model and finding h/w bugs)

– p. 38

Empirical Science to the Rescue!
1. invent mathematically precise model of multiprocessor

behaviour

(but abstract, avoiding microarchitectural detail)

2. make tool to find all model-allowed behaviour of tests

(and interactive web interface)

3. compare against experimental data from production h/w
(fixing model and finding h/w bugs)

4. discuss with architects

– p. 38

Empirical Science to the Rescue!
1. invent mathematically precise model of multiprocessor

behaviour

(but abstract, avoiding microarchitectural detail)

2. make tool to find all model-allowed behaviour of tests

(and interactive web interface)

3. compare against experimental data from production h/w
(fixing model and finding h/w bugs)

4. discuss with architects

5. prove correctness of C/C++11 concurrency compilation
scheme

– p. 38

Empirical Science to the Rescue!
1. invent mathematically precise model of multiprocessor

behaviour

(but abstract, avoiding microarchitectural detail)

2. make tool to find all model-allowed behaviour of tests

(and interactive web interface)

3. compare against experimental data from production h/w
(fixing model and finding h/w bugs)

4. discuss with architects

5. prove correctness of C/C++11 concurrency compilation
scheme

6. goto 1

– p. 38

Rocket Science?

– p. 39

Rocket Science?

specifying the intended behaviour of a system

in some precise and clear language

– p. 39

Rocket Science?

specifying the intended behaviour of a system

in some precise and clear language

in a form that is

executable as a test oracle

to decide whether some experimentally observed
behaviour is allowed by the model

– p. 39

Rocket Science?

specifying the intended behaviour of a system

in some precise and clear language

in a form that is

executable as a test oracle

to decide whether some experimentally observed
behaviour is allowed by the model

Key Question: any nondeterminism or loose specification?

– p. 39

Not appropriate for everything — but for key infrastructure,
yes!

– p. 40

Conclusion

Reasons why building robust systems is hard

Things we can do about it:

use better PL tools

specify for test

work towards full verification

– p. 41

Conclusion

Reasons why building robust systems is hard

Things we can do about it:

use better PL tools

specify for test

work towards full verification

Cautious optimism?

– p. 41

Conclusion

Reasons why building robust systems is hard

Things we can do about it:

use better PL tools

specify for test

work towards full verification

Cautious optimism?

or we’re doomed!

– p. 41

The End

– p. 42

	Things I Know About Computers
	Things I Know About Computers
	Things I Know About Computers

	Now
	Now
	Now

	Too Much Code
	How do we build those pieces?
	How do we build those pieces?

	Too Many...
	Discrete Systems
	1: improve s/w engineering processes
	2: use 1980s languages instead of 1970s
	2b: use languages that have been emph {designed}
	2b: use languages that have been emph {designed}

	4: prove correctness
	4: prove correctness

	3: specify+test behaviour of key interfaces
	3: specify+test behaviour of key interfaces
	Multiprocessors
	�ontfamily {yfrak}selectfont Large {}color {black}The Ghost of Multiprocessors Past
	Example 1 (SB)
	Example 1 (SB)

	Example 2 (MP, Message Passing)
	Example 2 (MP, Message Passing)

	How are architectures expressed?
	How are architectures expressed?

	How are architectures expressed?
	Architectural Fiction
	Empirical Science to the Rescue!
	Empirical Science to the Rescue!
	Empirical Science to the Rescue!
	Empirical Science to the Rescue!
	Empirical Science to the Rescue!
	Empirical Science to the Rescue!
	Empirical Science to the Rescue!

	Rocket Science?
	Rocket Science?
	Rocket Science?
	Rocket Science?

	Conclusion
	Conclusion
	Conclusion

