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Abstract: Processor instruction set architectures (ISAs) are typically specified using a mixture of prose and
pseudocode. We present ongoing work on expressing such specifications rigorously and automatically trans-
lating them to interactive theorem prover definitions, making them amenable to mechanised proof. Our ISA
descriptions are written in Sail—a custom ISA specification language designed to support idioms from var-
ious processor vendor’s pseudocode, with lightweight dependent typing for bitvectors, targeting a variety of
use cases including sequential and concurrent ISA semantics. From Sail we aim to portably generate usable
theorem prover definitions for multiple provers, including Isabelle, HOL4, and Coq. We are focusing on the
full ARMv8.3-A specification, CHERI-MIPS, and RISC-V, together with fragments of IBM POWER and x86.

1 Introduction

Instruction Set Architectures are extremely complex, with
specifications in manuals containing thousands of pages. In
the last decade, there has been significant progress in mak-
ing ISA specifications amenable to formal reasoning, in-
cluding a model of a substantial fragment of the ARM ISA,
hand-written by Fox in his L3 language [2] and used for for-
mal verification of seL4 [5] and CakeML [9], and the x86
model of Goel et al. [3].

A notable recent industry effort is ARM’s public release
of its full ARM v8-A specification in machine-readable
form, in their internal ASL language [8]. This vendor-
provided ISA specification is attractive because it is sig-
nificantly more detailed, complete, and authoritative than
existing models.

To enable theorem proving using this model, ASL has to
be translated to the prover of choice. We present a transla-
tion to multiple provers, currently Isabelle/HOL and HOL4,
via our Sail ISA specification language [4]. Sail aims to
support many different uses, including connecting ISA se-
mantics to analysis and exploration tools for relaxed mem-
ory models [7]. In ongoing work, we have recently im-
proved several aspects of Sail such as the type system, the
generation of efficient emulator code, and the generation of
portable theorem prover definitions. We are focusing on the
full ARMv8.3-A specification generated from ASL, and are
also using Sail for MIPS, CHERI-MIPS, RISC-V, parts of
IBM POWER and x86, and a simplified ARM fragment.

2 Structure of an ISA specification in Sail

Sail aims to provide a engineer-friendly, vendor-
pseudocode-like language for describing instruction

semantics. It is a straightforward imperative language with
dependent typing for numeric types and bitvector lengths,
checked using Z3, so that ubiquitous bitvector manipu-
lations in ISA specifications can be checked for length
and bounds errors. These lengths can be dynamically
computed, as in the following example from ARMv8-A:

val FPZero : forall 'n , 'n in {16, 32, 64}.
bits(1) → bits( 'n )

function FPZero sign = {
let exponent as 'e =

(if 'n == 16 then 5 else if 'n == 32 then 8
else 11) : {|5, 8, 11|};

F = 'n - exponent - 1;
exp = Zeros(exponent);
frac = Zeros(F);
return sign @ exp @ frac

}

This returns either a 16, 32, or 64-bit floating point value,
depending on the calling context. The exponent length is
dynamically derived from the length of the return bitvec-
tor, and given a type variable 'e for its size. We then create
bitvectors involving 'e and the return length 'n, and the type-
checker can check that they all are of the required length.

A key aim of this typing information is to generate
prover code that does not force the user to constantly
prove side conditions involving bitvector indexing: for non-
dependently-typed provers, we can use our type informa-
tion to monomorphise definitions as needed.

3 ARM v8.3-A in Sail

We have a complete translation of all the 64-bit instruc-
tions in ARM’s publicly available v8.3-A specification [8].
ARM’s specification is written in their own ASL specifica-



tion language, and we have developed a tool for converting
ASL specifications into Sail automatically. Hand-written
specifications tend to focus on small subsets of the archi-
tecture, while the ASL-derived Sail specification includes
many aspects which are often omitted, such as floating-
point support, vector extensions, and system and hypervisor
modes. ASL has been used extensively for testing within
ARM, giving us confidence that we are accurately mod-
elling the full behaviour allowed by the architecture. Work
on validating our translation remains ongoing.

The Sail ARM v8.3-A specification is about 30 000 lines.
Despite the ASL specification itself being public, much of
the tooling required to easily make use of it is not. By con-
verting it into Sail, we aim to provide open-source tooling
for working with the actual v8.3-A specification. A single
instruction can often call several hundred auxiliary helper
functions, so reasoning about this specification in an inter-
active theorem prover will be challenging, and a great deal
of automation will be needed.

4 Generating Theorem Prover Definitions

We generate theorem prover definitions by first translating
Sail specifications to Lem [6], which then provides trans-
lations to Isabelle/HOL and HOL4. In principle, Lem also
supports translation to Coq, but a direct translation from
Sail is likely to produce more idiomatic Coq definitions,
allowing us to preserve Sail’s dependent types for bitvector
lengths. For the translation to Lem, turning these dependent
types into the simpler constant-or-parameter form allowed
by Lem and theorem provers such as Isabelle/HOL is one
of the more intensive transformations we perform. In Lem
our example becomes:

val FPZero : forall ’N . Size ’N =>
integer → mword ty1 → M (mword ’N)

let FPZero (N : integer) sign =
if (eq N 16) then

let (F : integer) = 16 - 5 - 1 in
let (exp : bits ty5) =

Zeros (mk_itself 5 : itself ty5) in
let (frac : bits ty10) =
Zeros (mk_itself F : itself ty10) in

return (bitvector_cast (concat
(concat sign exp : mword ty6)
frac) : mword ’N)

else if (eq N 32) ...
else fail "FPZero: constraints unsatisfied"

An extra argument N has been added corresponding to 'n ,
and an automated dependency analysis has detected that it
needs to be a concrete value, generating a case split. Con-
stant propagation fills in concrete values for lengths. Type-
level information about lengths has been passed to Zeros
by changing integer arguments into the singleton itself
type, giving a function compatible with Lem’s type system.
While this transformation of dependent types would not be
necessary for Coq, a Coq backend would share many of the
other parts of the translation pipeline with Lem, such as the
translation of imperative code into monadic expressions.

In addition to targeting different provers, we aim to sup-
port different use cases. For reasoning in a purely sequen-
tial setting, a state monad can be used. In a concurrent
setting, we need to be more fine-grained. Modern proces-
sors typically execute many instructions simultaneously, re-
ordering their memory and register accesses for increased
performance. We support this by using a free monad of an
effect datatype. A monadic expression evaluates either to a
pure value or to an effect and a continuation (or an excep-
tion without continuation). This gives us the fine-grained
effect information needed to reason about multiple instruc-
tions concurrently; the monad is suitable as an interface to
connect the ISA semantics with a relaxed memory model.
We recover a purely sequential model using a lifting to the
state monad. Isabelle automation for this lifting is provided
by simplification rules relating the primitive operations of
the monads, allowing us to seamlessly reason about the se-
quential behaviour of instructions, e.g. using a Hoare logic.

5 Conclusion

We plan to continue improving both Sail, e.g. by adding a
Coq backend, and the ISA models. The tool and models
are available online [1] under an open-source license. We
plan to put the models to actual use in theorem provers, and
invite other projects to consider using them as well.
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