Fast Run-time Type Checking of Unsafe Code

Stephen Kell

Computer Laboratory, University of Cambridge
15 JJ Thomson Avenue
Cambridge CB3 OFD
United Kingdom

firstname.lastname@cl.cam.ac.uk

Abstract

Existing approaches for detecting type errors in unsafe lan-
guages work by changing the toolchain’s source- and/or
binary-level contracts, or by imposing up-front proof obli-
gations. While these techniques permit some degree of
compile-time checking, they hinder use of libraries and are
not amenable to gradual adoption. This paper describes
libcrunch, a system for binary-compatible run-time type
checking of unmodified unsafe code using a simple yet flex-
ible language-independent design. Using a series of experi-
ments and case studies, we show our prototype implemen-
tation to have acceptably low run-time overhead , and to be
easily applicable to real applications written in C without
source-level modification.

1. Introduction

C, C+ and other unsafe languages remain widely used. “Un-
safe” means that the language does not enforce memory-
or type-correctness invariants, such as “all pointer use will
respect the bounds of the object from whose address the
pointer derives” (spatial memory-correctness), “an object
is only reclaimed once no live pointers into it remain in
circulation” (temporal memory-correctness) or “reads (and
writes) to an object will select interpretations (resp. repre-
sentations) consistent with the object’s associated data type”
(type-correctness).'

I'Readers will note that this is a narrower notion than the concept of
“type” as originating in symbolic logic and often applied to programming
languages. We make no reference to this notion; rather, we are concerned
only with “data types”, and our definition is somewhat modelled on that of
Saraswat [1997]. We elaborate on these distinctions in §8.1.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

Copyright © ACM [to be supplied]. .. $10.00

In return, unsafe languages offer several benefits: avoid-
ance of certain run-time overheads; a wide range of possi-
ble optimisations; enough control of binary interfaces for
efficient communication with the operating system or re-
mote processes. These are valid trades, but have so far come
at a high price: of having no machine-assisted checking of
type- or memory-correctness beyond the limited efforts of
the compiler. Various tools have been developed to offer
stronger checks, but have invariably done so by abandon-
ing one or more of unsafe languages’ strengths. Existing dy-
namic analyses [Burrows et al. 2003; ?] offer high run-time
overhead, while tools based on conservative static analy-
ses [?] are unduly restrictive. Hybrid static/dynamic systems
offering low-to-moderate run-time overhead [??] invariably
sacrifice compatibility with existing code at either source
level (entailing porting effort) or binary level (precluding
use of pre-built libraries). The most practically compelling
tools [Nagarakatte et al. 2009; Seward and Nethercote 2005;
?] have focused on memory correctness and do not offer any
checks over data types.

This paper describes a run-time system which enables dy-
namic type checking within unsafe code, while maintaining
full binary compatibility (for easy use of libraries), requiring
no source-level changes (as we demonstrate in the C front-
end to our system), and offering sufficiently low overheads
that it can comfortably be left enabled “by default” during
development. Our research contributions are:

* a language-independent model of allocations and data
types which captures the essential aspects of program
behaviour while integrating conveniently into existing
toolchains;

* the design of a C front-end, dealing pragmatically with
C’s untyped heap allocation, imprecisions in common
programming styles, and other subtleties;

* an efficient implementation based around novel disjoint
metadata techniques;

* benchmark results and case-study experiences substanti-
ating our claims that our system offers good performance

if (obj<—type == OBJ_COMMIT) {
if (process commit(walker, (struct commit *)obj))
return -1;
return O;

}

if (obj<——type == OBJ_COMMIT) {
if (process commit(walker,
assert (__is_a(obj, "struct,commit")),
(struct commit *)obj))
return -1;
return 0;

}

Figure 1. A typical pointer cast in C code (from the git
version control system). The programmer believes that obj’s
target can be interpreted as a commit, but no check is done.

properties, is easy to apply to real codebases, and yields
useful feedback to programmers.

2. Approach

Our approach is a pragmatic one, informed by several ob-
servations about practical software development, as we now
outline.

Checks as assertions Similar to the perspective of ?, we
interpret source code as containing latent specifications; our
tool simply lifts these into something explicit which can be
checked. Fig. 2 shows a real code fragment (from git?> which
could benefit from our tool, and Fig. 1 shows an expositional
view of how it is treated by our tool.

Toolchain extension An essential philosophy of unsafe
languages is that the core language is deliberately liberal,
and the programmer is responsible for finding (or build-
ing) whatever restrictions, including coding practices and
tool-imposed policies, that are appropriate to the task at
hand. Such programmers are accustomed to deploying a
selection of tools over and above what is provided by a ba-
sic compiler and runtime. Many such tools for debugging
memory errors are widely used, including Purify [?], Mem-
check [Seward and Nethercote 2005], mudflap? or other
Jones & Kelly-style checkers [?], Address Sanitizer [?] and
so on. Our tool offers a similar user experience to these,
while checking type-based properties, and with generally
much lower run-time overheads.

Access to source code Unlike certain memory properties,
type-based properties benefit from access to source code,
since useful source-level information is compiled away
early. We will exploit this in our C front-end (§5) where
the programmer’s use of the sizeof operator is a key input.

No modifications to source code Practical adoption of a
tool is greatly eased when its use does not require the pro-
grammer to annotate or modify their source code. FIXME:
can reference something about this? Although our imple-
mentation will make use of some source-to-source transla-
tion, this is fully automatic and used only to the extent that

2FIXME:git
3http://gcc.gnu.org/wiki/Mudflap_Pointer Debugging

Figure 2. A sketch (for exposition purposes; not illustrative
of our implementation) of how the git example pointer cast
is treated by libcrunch and crunchcc

it is necessary; we also employ various link-time and run-
time techniques to insert our checking into the program; we
prefer since they are less invasive and less language-specific.

Partial programs and binary compatibility Practical adop-
tion of a tool is also eased by avoiding any requirement
to recompile the whole program—particularly libraries. A
corollary of this requirement is that binary interfaces of code
compiled with and without the tool should not differ. This
allows any combination of “with”- and “without”-compiled
code to be linked together as normal. We consider the conse-
quences of various combinations of instrumented and unin-
strumented code (§4.3).

Distinguish type- from memory-correctness We focus our
tool solely on the problem of checking type correctness.
This owes partly to the fact that whereas various memory
checkers are widely used, we know of no particularly us-
able tool for checking type correctness. Meanwhile, since
memory-incorrectness risks arbitrary state corruption, we
in effect check type-correct execution assuming execution
has so far been memory-correct, expecting that the program-
mer will use one of the previously cited memory check-
ers in combination with our tool. This separation allows
us to produce a much lower-overhead tool than a precise
(subobject-sensitive) memory checker, since the latter is
forced to track per-pointer metadata, whereas we only re-
quire per-allocation metadata. We can also opportunistically
catch some memory errors, since memory-incorrect code is
often type-incorrect. (We will sketch, albeit only as future
work, how one could combine both kinds of checking in a
way that shares work where possible.) FIXME: mention any
data on opportunism if/when we have any.

Low overhead, “on by default” Our tool has low enough
overhead (at most 20% of execution time except in rare
cases, often lower, and with similarly low memory over-
heads) that it can be enabled by the developer as a matter
of routine without any incurring noticeable slowdowns in
workflow.

Bug-finding over hard guarantees Since much of the pro-
gram may have been compiled out of sight of our tool, we
cannot rule out misbehaviour of that code, and so cannot

guarantee whole-program invariants. Put differently, our fo-
cus on ease of adoption, leading us to ref has the trade-off
that we must relax any attempt to provide guarantees; our
tool is primarily a bug-finding aid rather than a run-time ver-
ification of the strength desired for safety-critical or high-
security applications. (Nevertheless we will consider, infor-
mally, what guarantees are available the special case where
all code in a process has been instrumented in a particular
fashion—§5.1.)

De-emphasise language semantics On the (somewhat
philosophical) issue of “when should a check fail?”, we take
our lead from what large population of programs do, rather
than by slavishly adhering to any one language specifica-
tion (say, the C language). For example, the C standard’s
notion of “effective type” is approximately the same notion
as the one we attach to memory, but there are some impor-
tant differences (§5.6) which reflect real (albeit technically
incorrect) C coding practices.

Mechanism over policy We seek to provide general, ef-
ficient mechanisms while leaving policy somewhat user-
customisable. This is reflected in how our system is factored
into a run-time library, libcrunch, providing the mechanisms—
which we consider the primary value of the system—
whereas per-language front-ends, such as crunchcc, which
are concerned more with policy, and are kept simple and
separate, with the intention of being customisable.

Language-independence Our design has an ulterior mo-
tive: to form part of an infrastructure which can provide a
range of run-time services, not just type checks, and which
can underlie not only unsafe code, but all code in the user-
level software stack, of which the unsafe case is general (and
hard) case. We therefore pursue a language-independent de-
sign for libcrunch, where any language-specific code is min-
imised and isolated. We intend future iterations of our in-
farstructure to be useful to implementors of other languages,
as a foundation for efficient multi-language runtime environ-
ments (whose languages would include, but not be limited
to, unsafe languages such as C and C+) and multi-language
tools (including debuggers, profilers and the like). This con-
trasts with the status quo, in which cross-language devel-
opment is painful for a variety of reasons, and where even
on supposedly multi-language platforms such as the CLR,
JVM and so on, C and other unsafe languages receive lim-
ited support—despite the huge investment constituted by the
collection of code written in these languages.

Compile-time assistance We assume that the compiler
prevents type errors in data movements contained within a
single function activation’s actual parameters, local variables
and temporaries. For example, given a local which might be
declared in C as int and another as float, we assume that the
compiler does not blindly allow a floating point bit-pattern
to be copied into the integer—that it will insert a conversion
or insist on the user inserting one. The other data movements

are precisely those that require storage to be address-taken.
This assumption allows us to focus entirely on use of point-
ers (including pointers to functions), since those accesses
which may reach storage that the compiler cannot reason
locally about are precisely those that necessitate the use of
pointer values at run time.

3. Design overview

In this section we summarise the key insights behind our de-
sign, and explain how it extends a conventioanl compilation
toolchain.

3.1 Insights

Our design is based on three insights, each of which covered
in a subsequent section of the paper.

Allocation sites —we observe that when suitably defined,
these necessarily tell us what data type(s) a given piece
of memory may be interpreted as, and can therefore be
the basis of a dynamic analysis associating memory with
data types. More specifically, we find that a hierarchical
model of allocation is necessary (§4.1).

Debugging information —we observe that debugging in-
formation offers a ready-made language-independent no-
tion of data types which can conveniently be augmented
with allocation site information to describe a whole pro-
gram’s view(s) of its data (§4.2).

Mechanism—policy split —the language-specific parts of
such a system are surprisingly easy to isolate. A language-
independent run-time and toolchain extensions provide
the important mechanisms supporting a variety of policy
decisions, mainly concerning what to check and when to
do so, can be taken on a per-language basis. Our C front-
end explores a variety underneath “C” exists considerable
variation in programming style—strict versus sloppy use
of abstractions, procedural- versus indirection-heavy “O-
O”-style code, etc. (§5).

Disjoint metadata schemes —when tailored to different
levels in the allocation hierarchy, and combined with
similar structures for stack and static storage, these can
be used to efficiently index the entire program’s address
space. Our disjoint metadata schemes have much in com-
mon with existing “shadow space” implementations us-
ing virtual memory, but build on these techniques by
combining a large linear mapping with bucket structures
reminiscent of a hash table. These structures allow us
to achieve simultaneous efficiency in time, memory and
virtual address space usage (§6).

3.2 Toolchain extension

Fig. 3 shows an end-to-end view of how a C program is
compiled, linked and executed in our libcrunch-enabled
toolchain. The top-level input is unmodified C source code,
and the compiler output is binary-compatible with what an

source tree
identify allocation functions °

LIBCRUNCH_ ALLOC_FNS=xmalloc (Z)p °
hello.c _j

[dump allocation sites

[instrument pointer casts |
—

language-dependent phase

(pre-compilation)
reify data types
and relink
NN

hello.o
(debug
info)

hello.cil.c

N
compile |

N

hello.0 link-time

link & wrap allocation functions\

_ Y
[merge allocation site info |

dump data types

& stack frames deployment

(debugging info
no longer needed)

libcrunch hello- hello-
.80 types.so allocs.so

\/_/
[load, link and run (id.so)] loaded
\L dynamically

program image

heap_index

lookup] [allcst, et execution
Oxdeadbeef, “Widget"? fin

we . 1S @ jound UNigtypes

Figure 3. How libcrunch extends the toolchain. Metadata
processing is on the right, with grey arrows, and the “nor-
mal” compile-link-run path is on the left with black ar-
rows. Only the orange-background part is language-specific.
FIXME: highlight the libcrunch extensions in colour some-
how. FIXME: use a simplified view of this figure here, then
repeat the full one later

ordinary C compiler would output. Metadata processing is
on the right, with grey arrows, and the “normal” compile-
link-run path is on the left with black arrows. Only the
orange-background part is language-specific. Relative to a
conventional compiler run, key differences are the gather-
ing of allocation site information, based on specifications
of which functions are allocation functions. These are the
primary guidance which the programmer must supply to
libcrunch over and above the source code, but are simple
enough that they can be maintained outside the source tree
(we tend to store them in Makefiles and/or shrc-style shell
mini-scripts).

Builds using our toolchain must always initially gener-
ate debugging information, since this is used in intermediate
processing stages, but this can be stripped before deploy-
ment. The additional deployment-time artifacts, aside from
the libcrunch library itself, are allocation site and types bi-
naries consisting of program metadata in efficient represen-
tations ready for run-time consumption by libcrunch (which
loads them in as shared libraries). We discuss these in the
following section.

3.3 User’s view

Fig. 4 shows what a user of libcrunch might see at their
terminal when compiling and running a mildly buggy pro-
gram under libcrunch. The compiler output can be run
without libcrunch, and runs normally with negligible run-
time overhead: all checks are diverted into a “no-op” stub
libcrunch in which they always succeed. Alternatively, the
same binary can be run with libcrunch loaded (here using
the LD _PRELOAD option for ELF-based dynamic linkers)
which will generate check messages (as the program exe-
cutes) and summary statistics (at the end).

Several of our design decisions have practical benefits:
the system is very debuggable because checks and data types
are reified as ordinary code. Programmers can put break-
points on check functions, watch suspect variables inspect
the definitions of data types at run time to understand why
an error was provoked. FIXME: any more points to make
along these lines? Want to talk about the libcrunch API as a
debugging helper?

4. Data types and allocations

Our system necessarily maintains a run-time model mapping
pieces of allocated memory onto the data types of which they
store instances. We consider these somewhat intertwined
issues in this section, starting with allocations.

4.1 Allocations

Static, stack and heap We divide allocations in the pro-
gram into the usual three categories: static, stack and heap.
Static allocations hold data of whole-program lifetime* If
we assume a modern Unix-like operating system, static al-
locations are parts of the program binaries mapped into the
address space using mmap(), and their contents are described
by the binaries’ debugging information (which including the
locations and signatures of functions, and the locations and
data types of variables and constants, down to the details of
their field layout and bitwise representation). Stack memory
is allocated implicitly by changes to the stack pointer, but in
exactly the same way that a debugger uses the stack frame’s
program counter to understands its layout, we may also walk
the stack at run-time and use debugging information to un-

41In the presence of dynamic loading and unloading, this lifetime is instead
equal to the duration for which the containing object is loaded. This makes
no practical difference for our purposes.

$ crunchcc -o myprog myprog.c util.c ...
$./myprog # runs normally
$ LD_PRELOAD=1libcrunch.so ./myprog # does checks

myprog: Failed check __is_a_internal (0x5a1220, 0x413560
a.k.a. "uint$32") at Ox40dade, allocation was a heap
block of int$32 originating at Ox40daal

libcrunch summary:

checks begun: 19203
checks aborted for bad typename: 0
checks aborted for unknown storage: 0
checks remaining 19203
checks handled by static case: 0
checks handled by stack case: 0
checks handled by heap case: 19203

of which did lazy heap type assignment 0

checks aborted for unindexed heap: 0
checks aborted for unknown heap allocsite: 0
checks aborted for unknown stackframes: 0
checks aborted for unknown static obj: 0
checks failed inside allocation functions: 0
checks failed otherwise: 1
checks nontrivially passed: 19202

Figure 4. A user’s-eye view of libcrunch using the C front-
end (crunchcc). Readers who have used Valgrind’s Mem-
check tool [Seward and Nethercote 2005] are likely to find
this user experience familiar.

mmap(), sbrk()

. custom heap (e.g.
libc malloc() custom malloc() Hotspot GC)
A A \ A
obstack slice
(+ malloc) &
A A
client code client code client code client code client code

Figure 5. An allocator tree as might be found in a large
C/C++/Java program

derstand its contents; we describe an implementation of this
in §6.3.

The heap difficulty The remaining case of heap allocations
is the most challenging, because of the variety of schemes by
which this memory is allocated, by the fact that debugging
information tells us nothing about it, and by the fact that the
data types instantiated in heap memory are often recorded
only implicitly, as with C’s malloc() function which takes
only a size. Logically speaking, we extend debugging infor-
mation with information about allocation sites which allo-
cate a particular data type. Not all allocation sites allocate
a particular data type, but we can combine our knowledge
of the ones that do so to track all heap-allocated data type
instances in the program, as we now explain.

Allocator trees The collection of heap allocators in a pro-
gram can be arranged in a tree, where an allocator B is a

child of A if B calls A to obtain the memory that it parcels
out to its clients. At the top of the tree are the operating sys-
tem mechanisms—on Unix these are mmap() and sbrk(),
which are interchangeable for our purposes. We assume for
the moment that each allocator is procedurally abstracted.
Fig. 5 shows the different heap allocators that might be
present in some reasonably large C and/or C+ program; for
variety we also suppose that it contains an instance of a Java
Virtual Machine, such as Hotspot. Client code can request al-
locations at various levels in the tree: from malloc(), or from
an allocator layered over malloc() such as the C library’s
obstack allocator® perhaps direct from mmap(), or from a
garbage-collecting allocator such as that in Hotspot, and so
on. An allocation event in a program’s execution is a call
into an allocator—either from client code or from another
allocator. We observe that branch-level allocators size the
allocations they request (from their parent) according to per-
formance characteristics (what the typical sizes and lifetimes
of allocation are, the cost of an mmap(), the page size, hence
expected losses due to fragmentation, etc.). Meanwhile, leaf-
level allocations must be sized according to what data type
they are to hold. The points in execution where memory ac-
quires a data type are the returns from leaf-level allocation
calls. (Memory which has been allocated by a branch-level
allocation call but not yet by a leaf-level allocation call is
not an instance of any data type. Note also that we cannot
talk about “leaf-level allocators”—the same allocator might
be used directly by client code, such as a client calling mal-
loc(sizeof(foo)), or by a nested allocator; in the former case
malloc() is operating at leaf level, and in the latter at branch
level. Leafness or branchness is a property of an allocation
site, not an allocator.)

(One complication is that allocators operating at all lev-

_.els typically embed their own bookkeeping data structures,

which are instances of data types, into the memory they re-
quest from their parent allocator. For the moment we do
not attempt to check type-correctness of the allocator code
manipulating these structures, because it is hard to distin-
guish from operations on untyped memory and would com-
plicate our metadata implementation; allocators are in effect
“trusted code”. However, we consider some refinements that
would allow this in §9.)

Unusual allocation functions This formulation is surpris-
ingly robust, but it can lead to some unexpected code being
deemed “allocation functions” in unusual cases. If a function
re-uses some memory, it becomes an allocation function.
Alternatively, consider a function which allocates using an
overapproximate size, in order to hold variable-length piece
of data whose length is bounded but not yet known at allo-
cation time. In this case, still, domain knowledge of the data
is used to size the allocation; typically, such could would
subsequently leave the remaining (over-estimated) portion

3 Obstacks can use arbitrary higher-level allocator, so more properly we

»

should talk about “obstacks layered over malloc()”.

of the allocation unused. If the code instead finds some way
to re-use it, then it is itself an allocation function! In prac-
tice, whole-object re-use is somewhat common, but the lat-
ter kind of opportunistic re-use is highly unusual, because it
constrains the lifetimes of the two objects to be identical.

User-supplied hints In summary, leaf-level allocation sites
represent the points where a unit of heap storage acquires a
particular meaning—that is, a particular data type. We re-
quire the user to help us infer the allocation tree for their
program, by telling us what allocator wrappers and what
sub-allocators it contains. However, note that the user only
needs supply information about allocators over and above
the “standard” allocators such as malloc()—knowledge of
which is supplied by the per-language front-ends (using es-
sentially the same mechanism). Moreover, the user needs
only provide signatures for each function; the actual struc-
ture of the tree, in the sense of which allocators nest inside
which others, is inferred dynamically from the containment
of allocations inside other allocations.

Allocator wrappers A further complication is of allocator
wrappers. These have the appearance of custom allocators,
but do not actually do their own (nested) allocation. Rather,
they simply delegate to a particular underlying allocator,
with some change to its interface semantics. For example,
many C programs define xmalloc() which delegate sto mal-
loc() but terminates the program on failure, thereby relieving
the caller of handling the NULL return value. We similarly
require the user to identify these wrappers. This is because it
is the caller of a wrapper who sizes the allocation, hence de-
termines the data type; wrappers are effectively a (simpler)
special case of sub-allocators.

Allocation sites Allocation sites are simply addresses of
instructions in a compiled binary. These are invariably call
instructions (as a consequence of our “procedurally ab-
stracted” assumption, which is borne out very consistently
in practice). Our allocation site metadata is simply a map-
ping from these allocation sites to the data type they allocate.
Language-specific techniques are in general necessary to de-
termine this type, so it is the role of the language front-end
to supply this information. For languages with typed allo-
cation primitives (such as C+’s new) this is manifest in the
source code, and sometimes also in the binary code. In other
cases, we are not so lucky; we describe how it is done in the
particularly tricky case of C in §5.2.

Allocation site information as debug info Logically, we
consider allocation site information to belong in debugging
information. Allocation, as an event, is something that a de-
bugger user might want to be informed about, to set break
points on, and so on. Moreover, tracking the allocation sites
of memory objects, much as libcrunch does, could be use-
fully done inside a debugger too, or inside other consumers
of debugging information—particularly profilers. As such,
our allocation site information would more properly be out-

my_ellipse
maj 1.0 struct ellipse {
= double maj;
min 1.5 double min;
struct point {
or x| -1 double x, y;
8 } ctr;
Y }

Figure 6. A simple ellipse data type in C and diagrammati-
cally

put by the compiler rather than by our libcrunch front-ends.
e note that many compilers already include foundations
for this support, such as gcc’s ~ malloc_ attribute and
__alloc_size attribute (the latter signposts allocation
function signatures; the former denotes that the pointer re-
turned is unaliased). Therefore, while our prototype imple-
mentation creates allocation site metadata in our own format,
outside the compiler, in the future we hope to engage with
the DWARF debugging standards body and compiler authors
to generate this information where it logically belongs.

4.2 Data types in debugging information

If allocation sites are denoted simply by addresses, how are
data types denoted? We observe that a ready-made, flex-
ible and language-independent model of data types is al-
ready available in debugging information formats. We fo-
cus on DWAREF, the de facto standard on contemporary Unix
platforms. Fig. 6 shows a simple ellipse data type in C.
Fig. 7 shows its representation in (a textual rendering of)
DWARF. Important observations are that the layout is de-
scribed right down to the binary level, and that every related
source-level data type is included. This goes right down to
the size and encoding of primitive data (here float meaning
the architecture-native floating-point encoding). A stack ma-
chine language is used to encode the location of fields rela-
tive to the base address of the containing object (here simple
offsets).

DWARF is not optimised for speed of access. It is also
not deduplicated, in the sense that each compilation unit in-
cludes its own copy of any data types that it may have in
common with other compilation units. (Some facilities for
deduplicating are provided by the format, but they are not
consistently used.) We postprocess debugging information
to generate records called unigtypes, of which the gener-
ated by our ellipse are shown in Fig. 8. The important fea-
tures are that a simple, fast in-memory representation is used
(each unigtype is an instance of a C struct unigtype, com-
piled into a shared library), irrelevant details are discarded
(while retaining important relationships between different
types, which in this example include containment and field
offsets—note how ellipse refers to point, which both refer to
double, and field offsets are stored next to these references),
and that identical data types are merged. This allows a sim-
ple “exact match” test on two types to be a simple pointer

2d: DW_TAG_structure type

DW_AT name : point
39: DW_TAG_member

DW_AT_name X

DW AT type 1 <0x52>

DW_AT location: (DW_OP plus uconst: 0)
45: DW_ TAG member T N

DW_KT_naTne Ty

DW_AT_type : <0x52>

DW AT location: (DW_OP plus uconst: 8)
52: DW_TAG_ base type

DW_AT _byte_size : 8
DW _AT encoding : 4 (float)
DW_AT name double
59: DW_ TAG structure type
DW_AT name . ellipse
DW_AT _byte_ size ;32
61: DW_TAG_member
DW_AT _name : maj
DW ATitype : <0x52>

DW _ AT location: (DW_OP plus uconst: 0)
6f: DW_TAG_member

DW_AT _name : min

DW AT type 1 <0x52>

DW AT location: (DW _ OP plus uconst: 8)
7d: DVViiTAéimember - N -

DW_AT _name toctr

DW_AT _type T <0x2d>

DW AT location: (DW_OP_ plus uconst: 16)

Figure 7. DWARF debugging information for a simple el-
lipse data type

“int’
“double”

0 16
__uniqtype_ellipse “ellipse” | 32

__unigtype__int
__unigtype__double

__unigtype__anon0x123

w|nv|o|o

Figure 8. Our run-time representation (slightly simplified)
of the ellipse data types and those it uses: pointer arcs rep-
resent containment, and the fields preceding pointers are the
offsets of the contained subobject. FIXME: point, not anon.

comparison. We will discuss various implementation details
in §6.2.

Our reification is pushed right down to the object code
level: each data type is a named symbol definition, using
a simple human-readable naming convention (albeit one
where collisions are theoretically possible). This means it
is possible to look up reified data types by name at run time
(using dlsym()) or from a debugger (using the debugger’s
unmodified symbol lookup). Data type synonyms (typedefs
in C) are rendered as alias symbols, so all synonyms for a
data type, and the data type’s symbol name itself, reference
the same object in memory. Each symbol name includes a
“digest code” which is computed from the data type’s defi-
nition, allowing disambiguation of name collisions.

DWARF contains information on the stack frames of a
function, but unfortunately does not unify these with de-
scription of data types. Rather, each function (or “subpro-
gram” in DWARF terminology) contains descriptions of
where its actual parameters and local variables are located,

program image

__is_a(Oxdeadbeec, “Widget")? lookup(“Widget” libdl
= p(*Widget")

&__unigtype_Widge
«~

lookup(Oxdeadbeec)

heap_index
allocsite: 0x8901234,
. offset: Oxc
_Is_a
lookup(0x8901234)
allocsites
&__unigtype_Window
%
find(
&__uniqtype_Window,
&__uniqtype_Widget,

) 5 unigtypes

rue found

Figure 9. A high-level view of the check dispatch process
in libcrunch. FIXME: change to match git example, not
widget/window. Get rid of libdl.

in the form of stack machine expressions in terms of the
virtual address and the logical “frame base” (an arbitrary
stack address stable for the duration of the function activa-
tion). We postprocess this information into uniqtypes so that
pointers into the stack can be handled as uniformly as pos-
sible with other cases. Each subprogram yields zero or more
uniqtypes, each valid for a certain range of addresses in its
code; this reflects how use of the stack varies as variables
come in and out of scope (and as a consequence of compiler
optimisations). Some functions’ arguments and locals live
entirely in registers, in which case the function will generate
no unigqtypes—but since registers are not address-takeable,
we will never be asked to dispatch a check on a register
located value. We describe some details of this process in
§?2.

4.3 Outline of libcrunch execution

Returning to the example code in Fig. 1, we can now piece
together how checks are dispatched by libcrunch, as sum-
marised by Fig. 9. Each check arrives as a call to a query
function, typically __is_a, with two arguments: the object
to check, and the “tested-for” data type which it is expected
to match (where the precise semantics of “match” depend
on the query function). Rather than the string representa-
tion of data types shown in Fig. 1, the function is passed
a pointer to a unigtype. We do a case split on the pointer to
discover information about its allocation: is it in static, stack
or heap storage? A collection of index data structures map
different storage regions to different; Fig. 9 shows the heap
case, but each case is similar: the index returns the base ad-
dress a value representing the entire allocation (here its al-
location site, i.e. the address of the call instruction which
made the leaf-level allocation invocation). A second map
translates the allocation site into the uniqtype for the whole
allocation; logically these could be merged, and an optimi-
sation in fact does so (§6.3), but logically they remain sepa-

rate. Finally, the ~ is_a implementation searches through
the unigtypes, starting from the allocation’s uniqtype, for
an instance of the tested-for data type at the relevant off-
set. If found, the check succeeds, else it returns failure to the
caller. Although assert() is one possible reaction to a failed
check, in practice we have found it more useful to warn and
continue execution, much like Memcheck and similar tools;
we describe the instrumentation done by our C front-end in
more detail shortly (§5.1).

Note that in cases where only part of the program has
been compiled using libcrunch’s toolchain, we might have
to abort some checks because we find that certain addresses
cannot be classified (typically because we lack allocation-
site metadata for those addresses). This happens particularly
in cases where pointers flow from an (uninstrumented) li-
brary to a client which attempts checks on those pointers.
These failures are counted and summarised at the end of ex-
ecution, but do not generate any warnings as they occur.

5. Dealing with peculiarities of C

Our C front-end consists of a compiler wrapper, crunchcc,
written using the CIL framework [?]. It contains two distinct
passes: one to dump the information about heap allocation
sites outlined in §4.1, and another to instrument code with
calls to libcrunch to check for type-correctexecution. We
begin with the latter.

5.1 What to check?

Our C front-end checks pointer casts, by default using
libcrunch’s is_a test: the pointer points to an instance
of (nominally) the given data type. We discard type quali-
fiers (const and volatile) and check only unqualified (“con-
crete”, in our terminology) target type. Largely this is be-
cause const in C is not a property of allocations, but ha sa
more fine-grained use: to restrict what access rights a par-
ticular pointer confers on its user. We discuss type qualifiers
further (§8.1).

C also allows implicit strengthenings of void *, which we
instrument just as if a cast had been inserted.

We choose not to instrument operations such as pointer
arithmetic and indexing, since these are the domain of
memory-correctness tools, which we deliberately choose
not to duplicate (§8.1). We mentioned earlier (§2) that we
attempt to provide “type-correctness assuming memory-
correctness”.

We believe that instrumenting casts and implicit strength-

enings is sufficient to provide the guarantee of “type-correctness

assuming memory-correctness”. The reason is that a C pro-
gram without pointer casts (or implicit strengthenings) could
only perform type-incorrect access following a memory vi-
olation or following an incorrect use of unions. We discuss
unions shortly. (We are working on a semantics of C that
will allow us to state and verify this property more formally,
but for the moment this remains future work.)

len = sizeof (struct dirent);

entryp = malloc(len);

Figure 10. An occurrence of sizeof distant from the alloca-
tion

5.2 From untyped to typed allocations

As described in §4.1, allocation sites are those places in code
which select a data type and call an allocator (at leaf level)
to hold one or more instances of it. In C code these are either
calls to allocation functions or calls to wrappers of allocation
function (like xmalloc()).

We inspect source-level allocation sites to find out which
data type they are making space for, by analysing their use
of sizeof. In simple cases this amounts simply to observ-
ing what data type provides the argument to the sizeof op-
erator inside the allocation function’s size argument. Allo-
cation functions are specified in an environment variable
LIBCRUNCH ALLOC_FNS (seen in Fig. ??) with a sim-
ple signature descriptor which distinguishes the size argu-
ment.

(The signature is also used to generate stubs at link time
to interpose on these allocation function; see §6.1.)

To deal with code like that in Fig. 10, where the size com-
putation is not done directly in the argument expression to
the allocation call, our front-end performs an intraprocedu-
ral flow-insensitive analysis on each function containing an
allocation site: a sizeof expression propagates its sizeofness
(i.e. the data type whose size it denotes) to other expres-
sions computed from it by arithmetic. The sizeofness which
reaches the allocation function call’s size argument deter-
mines the data type associated with the allocation site. (Re-
call that if the caller computes the size, then the caller is an
allocator wrapper, so we would be doing this analysis in the
caller. Hence an intraprocedural analysis suffices, except in
the rare case of size helpers which we consider in §5.6.)

This sizeofness propagation is effectively a special case
of dimensional analysis; we can think of a value’s sizeofness
as denoting its “unit” much like a physical dimension. The
arithmetic done on sizes is usually multiplication, to create
arrays. Addition of (dimensionless) padding bytes also oc-
curs; this does not affect the dimension. Addition of another
sizeof value also sometimes occurs; this amounts to creat-
ing a composite data type, effectively an implicit struct. We
can handle this so long as the order of addition reflects the
order of layout of the elements in memory (even though the
reverse operand order could be used for the size calculation,
since addition is commutative, but this would be very con-
fusing for other programmers to read). FIXME: implement
this bit.

More properly we should also analyse use of offsetof, to
deal with examples such as that in Fig. 11 which is taken
from the Linux manual page for readdir(), where the last

len = offsetof (struct dirent, d_name) +
pathconf(dirpath, PC NAME MAX) + 1
entryp = malloc(len);

Figure 11. Using offsetof plus padding to simulate a stati-
cally unknown sizeof

void *p = ...; // acquire a pointer-to-void somehow
*(charxx)p = "Hello, world!";

Figure 12. A multiply-indirect cast

float *pi;

void *p = π // acquire a pointer-to-void somehow

*(charxx)p = "Hello, world!"; // if we tolerate this write ...
float j = *pi; // ... this line makes a type error without a cast!

// -- will read pointer bits as float bits

Figure 13. A multiply-indirect cast

structure element, a character array, is resized according
to the value returned by pathconf(). FIXME: implement
this, then say as much. NOTE that we need to mark it as
a variable-length singleton, to avoid confusion if length
reaches twice the struct size or more.

5.3 Storage invariants and multiple indirection

We claimed at the start of this section that after ruling out
memory bugs and misuse of unions, instrumenting casts is
sufficient to catch type errors. Multiple indirection brings
some cases in which it is difficult to see, at first glance,
whether this is true. Fig. 14 shows a simple piece of code.
When should the cast to char** succeed, and when should it
fail?

We take a deliberately strict approach: this cast should
succeed if and only if the memory pointed at by p was
allocated as a pointer to char. If it was allocated as some
other kind of pointer, our inserted __is_a() check will fail.
(Note that “allocated as” is the usual meaning of __is_a();
here we are simply noting that there is no special relaxation
for pointers.)

The rationale is that by enforcing the declared contract
of a pointer in this way, we maintain the property that type
errors can only occur at cast sites (or following previously
check-failing casts), so instrumentation of other pointer ac-
cesses is superfluous. If we were to allow a greater degree
of sloppiness into what pointers could be written into what
storage, a subsequent read or write not using a cast might
nevertheless cause a type error, and we would be forced to
check all uses of pointers, greatly increasing run-time over-
head. Fig. 14 shows an expanded fragment based on the pre-
vious example and exhibiting this behaviour.

It turns out that we observe surprisingly few violations
of multiply-indirect pointer contracts in real code, and the
overwhelming majority of the legitimate (non-buggy) ones

fall into a small number of special cases which can be han-
dled individually. We consider three such special cases in the
next subsection. Moreover, violations of the rule are almost
always invalid C, at least under C99 and later standards, ow-
ing to the aliasing rules based on “effective type”, which we
discuss in §5.6.

5.4 Tolerating sloppiness

Some styles of C programming are sloppier than others—
including, as we just saw, regarding how strictly pointer
values are contained within appropriately-typed storage.

These are all policy issues which remain isolated from
the core of libcrunch, but our front-end provides some
programmer-facing flexibility for eliminating false posi-
tives which would otherwise originate from certain common
sloppy usages.

Equi-sized types Sometimes when allocating heap objects,
the programmer applies sizeof not to the data type that will
actually be stored, but to a data type which (he believes) has
the same size. A common case is allocating an array of point-
ers using n * sizeof(void*) even when the pointers will be
used as int* or some other type. (This is, strictly speaking,
an invalid practice, since void* is not obliged to have the
same width as any other pointer type.) We let the program-
mer work around this by specifying lazy heap types: the type
of an allocation may be overridden by the first libcrunch-
dispatched check on that object. In other words, the type
of the allocation may be changed, once, at the time of the
first check; after that it must be consistent. Typically this
first check happens immediately after the allocation (e.g.
int **p = malloc(n*sizeof(void*));, where our front-end in-
struments the implicit strengthening occurring immediately
before the assignment).

Structural matching using __like_a Some data types are
designed to be treated structurally. For example, the Berke-
ley sockets API’s generic sockaddr includes padding bytes
which specific networks’ address structures, like IPv4’s
sockaddr_in, can “fill in” without changing the structure’s
length. Use of these padded structures tends to accom-
pany equi-sizing: one might heap-allocate an array of sock-
addr_ins using sizeof (sockaddr). In order to go backwards,
however, i.e. to cast a sockaddr_in * to a sockaddr *, we
cannot use __is_a, but must resort to a different style of
checking: _like a. The user can request this by setting
LIBCRUNCH USE LIKE A FOR_TYPES=sockaddr

in their environment, meaning all casts whose target type
is sockaddr * use the more relaxed __like a check. This
“unwraps” the allocation data type and checks that each cor-
responding pair of fields satisfies ___is_a. Fields typed as
char arrays are treated as padding. Note that this unwrap-
ping process goes down only only one level in the subob-
ject containment tree: __is_a on the constituent elements,
modulo tolerating padding. A “full unwrapping” would be
physical matching [?] (i.e. checking only the leaves in the

struct foo;

void get foo ptr(struct foo *x*fp);

/e

void *p; // client only uses it opaquely, so declare a weak type
get_foo ptr((struct foo %x) &p); // cast fails __is_a!

Figure 14. A castyielding a write-correct but read-incorrect
pointer: the cast yields a pointer which is safe to write any
pointer through, but which is not safe to read from

subobject trees). We have not currently implemented this
style of checking, since we suspect is more permissive than
any real application needs. Again, we note that even the use
of sockaddr involves aliasing that is not permitted by the C
standard; to avoid compiler optimisations taking advantage
of this undefined behaviour, such code must be compiled
with special options such as -fno-strict-aliasing.

Read- or write-correct pointers Consider the code in
Fig. 14. Since the pointer p was not allocated as struct foo *,
the cast will fail, even though the code is perfectly cor-
rect. This is a rare example of a contract-violating multiply-
indirect cast, and arises because the pointer will only be
written through (and any pointer is a void*, so may be writ-
ten correctly), and not safely read from (since the storage
may contain any pointer, not only struct foo *).

We do not currently implement a relaxation which would
help in this case, but one approach would be to specula-
tively tolerated strengthenings of void*-allocated pointers
for writing only, by issuing (from the cast) a piece of no-
access memory onto which reads would generate a failure
and writes would propagate to the underlying pointer. Man-
aging the lifetime of this extra piece of memory is tricky: it
must last at least as long as the underlying pointer object,
so in the case of stack memory would probably need to be
freed by hooking the on-stack return address of the contain-
ing frame.

The apparent dual case involving read-safe, write-unsafe
pointers turns out to be even less common, because of the
distinction between rvalues and lvalues in C. An allocation
of one or more int*s, say, would not need to be address-
taken and cast to void** in order for a distant function to
read a single void* from it; in most cases one would simply
pass a void* directly. We might still see a cast in the case
of an allocation of multiple int*s being address-taken and
cast to void** for reading multiple opaque pointers, in which
case a dual technique could be applied. However, again we
note that void* and int* may have different representations,
so doing these casts at the deeper level of indirection is not
valid C; standard-compliant code must instead convert each
pointer to and from void* individually.

Signed and unsigned slop It is common sloppiness in C
to access values using signed and unsigned variants of the
same-width integer type. In most implementations, half of
the bit-patterns shared between these types have identical

/* (generic) library code x/
void register callback (void *(xfn)(void x));
void trigger callbacks (void xarg);

/* client code x/
int xf(double xarg) { printf ("Saw_%Id\n", xarg); }

/7

double myval = 42,
trigger _callback (&myval); // f receives a doublex

Figure 15. C code casting a callback pointer to a more
generic argument type

meanings (the nonnegative half), so this is not necessarily
incorrect. By default we consider this mix-and-match to
be a likely bug or at least a “code smell”, so we leave
such casts to fail. However, the programmer can request
to disable this, either altogether or only in the context of
__like_a checks (which are naturally sloppier) using an
environment variable. Our data type representation (refer
back to Fig. 8) includes in each signed or unsigned integer
data type a pointer to its signedness-complement, making it
efficient to match them interchangeably. FIXME: implement
the option to enable this.

5.5 Casting function pointers

Casts of function pointers raise a similar problem to multiply-
indirect pointers: a cast to a function pointer creates a capa-
bility on which future accesses can proceed without further
cast operations. Therefore, since we check only casts, certain
reasonable and necessary casts of function pointers might
cause future type errors to occur without checks in place to
detect them.

Consider the code in Fig. 15. A client wants to register a
callback, which will later be called with a pointer argument
of the client’s choosing. This pattern is very common in C
code. Since the client will supply the argument, it can be
any type he chooses; he selects a function which expects a
pointer to double. However, the choice of argument type is
not known to the (generic) registration code, so this must
accept the more liberal type of void*, meaning that buggy
generic code might subsequently cause any pointer to be
passed on the call through the function pointer, without a
cast being there to check this.

The most precise solution would be to generate wrap-
per functions for each (static instance of) casts of function
pointers, to do the necessary checks on argument and/or re-
turn values. For example, we would instrument the code in
Fig. 15 by passing instead the wrapper function, shown in
Fig. 16.

In order to be compositional, this requires closure cre-
ation, since the wrapped function pointer might not be
the statically-known &f but might be some other function
pointer (perhaps the address of another wrapper, and so on).
A further complication is identity: if the wrapper pointer is

register _callback ((voidx(x)(voidx))&f); // cast to more-generic type

// to be returned from a cast (voidx(*)(void*))&f
void *f wrapper(void *arg)

{
assert (__is_a(arg, "double"));
int xret = f((doublex)arg);
// no return check is necessary
// -- caller -side weakening is okay
return ret;
}

Figure 16. C code casting a callback pointer to a more
generic argument type

// depending on input, can generate various datatypes
// ... so returns void
void *generate(void *input);

// specialised code wants a generator of ints
void do_with generator(int *(x)(int *arg));

// client casts
do_ with _generator((intx(x)(intx)) &generate);

// instrumentation must pass a wrapper
int *generate wrapper(int xinput)

{
// we always get an int*, so no argument check needed
void xret = generate(input);
assert (__is_a(ret, "int"));
return (intx) ret;
}

Figure 17. C code casting a callback pointer to a more
generic argument type

cast back to its accurate type, it should compare equal with
a pointer to the unwrapped function. We therefore need to
detect that a function pointer is a wrapper, and “unwrap it” if
a sequence of casts has turned it back into its original type.

A similar case occurs with casts which strengthen the
return type of a function pointer: a wrapper needs to be
inserted which checks the return type. Fig. 17 shows an
example of a polymorphic generator function being passed
to a client which wants to generate integers only. Passing it
to the client entails a cast which strengthens the return type

Our implementation doesn’t currently implement these
wrappers. Rather, we work around the problem by a slightly
less efficient means: we check all function pointers at use
time, checking that each pointer argument satisfies __is_a
for the argment type specified in the actual pointed-to func-
tion’s signature, and similarly for the return type. FIXME:
implement this bit too.

5.6 Compromise cases

Difficult-to-find sizeof Our intraprocedural sizeofness
analysis is incapable of classifying allocation sites which
use helper functions to compute the allocation size. (Note
that this refers only to the case where an allocating func-
tion calls a helper to compute the size, but not to perform

the allocation—if the latter were the case, this would be
an allocation wrapper, and is handled in the usual way.) In
our experience, size-helper functions are rare; our prototype
does not handle them. In our experience, helper macros are
much more common than helper functions, and these are
handled naturally since our sizeofness analysis happens af-
ter preprocessing.

Reified type descriptors A second possibility is that the
size is computed at compile time and stored somewhere, then
read (perhaps indirectly) at allocation time. This is a rare pat-
tern in C code, but does occasionally emerge (one instance
being the perl codebase, to be discussed in §7.1.1). The ob-
ject into which the size is stored is We handle only the case
in which these objects are statically allocated (which seems
likely in general, and matches the one case we have seen in
practice) and serve as some kind of descriptor of the data
type whose size they embed—typically contining a virtual
function table. In other words, these objects are run-time
reification of data types. Our approach is to allow the pro-
grammer to specify the mapping from these reified data type
objects to our wn reified data type objects, using an environ-
ment variable containing pairs of symbol names. This gen-
erally also requires the user to reclassify one or more higher
functions on the stack to be allocation functions, such that
the top-level allocation wrapper function is one which re-
ceives not a size but a descriptor pointer. For example,
PASTE PERL EXAMPLE HERE

Unions Our front-end includes only a very liberal kind of
checking on unions: it considers a union instance to simulta-
neously be an instance of each of its arms’ data types, such
that is a will pass for any of these types. This contrasts
with the C standard, which states that “when a value is stored
in a member of an object of union type, the bytes of the ob-
ject representation that do not correspond to that member
but do correspond to other members take unspecified val-
ues”. Therefore, it may be incorrect to access a larger mem-
ber, and in general we would need to track which member
of the union had last been written. However, it does not con-
trast with all uses of the union construct in C. We are aware
of three cases. The first is where a union is discriminated
explicitly by a value stored somewhere, invariably nearby,
such as a field in an enclosing struct (as in BSD’s getifad-
drs() call, whose arguments include such a union-containing
struct, ifaddrs) or an accompanying argument (as in POSIX’s
sigqueue() call). We could potentially model these discrim-
inants in our uniqtypes and write a checking function that
was aware of them (noting that DWARF can express discrimi-
nants even though C cannot, using features intended for vari-
ant records in Pascal-like languages). The second is where a
union is discriminated temporally, such that the surrounding
program knows which arm of the union is valid at which
points in the union instance’s lifecycle. One example is the
int86 call in some C libraries on x86 platforms, in which in-
put registers and output registers are passed in a union such

that the input arm is valid before the call and the output arm
is valid afterwards. This is harder to deal with, but could be
done by instrumenting the client code directly. The third is
where all arms are valid simultaneously; one version of this
is the infamous “fast inverse square root” function, which,
when translated to modern C [Eberly 2010], uses a union of
float and int to provide access to a floating-point number’s
bit-pattern simultaneously as an ordinary float value and as
a 32-bit int. Note that address-taken union arms are a par-
ticular problem, since they stymie attempts at union-specific
source-level instrumentation (by making it statically unde-
cidable whether a points into a union). A proper treatment
would force us to dynamically check every pointer use, in
case it pointed into a union at a currently-invalid member’s
type. However, use of address-taken union members violates
modern C’s strict aliasing rules (the fast inverse square root’s
“modern C” rewrite accounts for this, by instead taking the
address of the whole union) and is rare in any case.

The ambiguity of char We don’t check casts to char. The
reason is that char is the data type used for bytewise access
to opaque, uninterpreted (“untyped”) memory, and the data
type used for access to character data. Checking that all such
memory really was allocated as char would introduce a large
number of false positives. It is unfortunate that C does not
provide a distinct data type for uninterpreted bytes, since this
would allow us to perform additional checks, but the change
would be highly disruptive to library interfaces.

Effective types When designing high-performance instru-
mentation, it is very desirable not to interpose on memory
accesses, since this brings high run-time overheads. Unfor-
tunately, the C standard is specified such that were we to
follow it precisely, we would be forced to do so.

The effective type of an object for an access to its
stored value is the declared type of the object, if any. If
a value is stored into an object having no declared type
through an lvalue having a type that is not a character
type, then the type of the lvalue becomes the effective
type of the object for that access and for subsequent
accesses that do not modify the stored value.

In other words, a C programmer is allowed to write to
a heap object (stack and static objects have declared types)
using any lvalue, and the memory will take on the type
of that lvalue. Our allocation-based model is stricter: the
type of a heap object is decided at its allocation®, and can-
not be changed except by reallocating the memory. This
stricter model allows our analysis to avoid trapping mem-
ory accesses, but does not create false positives in real (non-
pathological) C code.” Another example of how we are more

6 .. or soon thereafter, in the case of the relaxation we described in §??

7 One could imagine a libcrunch front-end which did intercept such writes,
either using memory protection traps or dynamic recompilation or by writ-
ing a handler for failed __is_a checks. Such a handler could reallocate the

restrictive than the standard’s “effective types” is the treat-
ment of interchange of signed and unsigned integer types
mentioned previously (§5.4): whereas the C standard says
that this is allowed, we treat is as an error unless explicitly
requested.

memcpy(), memmove() and characterwise copying The
C standard states that an object’s effective type is propa-
gated as the bytes are copied around (into memory with no
declared type).

If a value is copied into an object having no de-
clared type using memcpy or memmove, or is copied
as an array of character type, then the effective type of
the modified object for that access and for subsequent
accesses that do not modify the value is the effective
type of the object from which the value is copied, if it
has one. For all other accesses to an object having no
declared type, the effective type of the object is simply
the type of the Ivalue used for the access.

Supporting this propagation in our system is possible in
the case of memcpy() and memmove()—we reassign the
target heap chunk with a new data type originating with the
copied-from memory. In general, however, doing so might
require us to synthesise new uniqtypes at run time, since we
are allowed to copy only part of an object, which may span
adjoining subobjects but stop short of including the whole
of the parent object.® In the case of characterwise copies,
since these are very difficult to detect dynamically, and to
propagate effective types on every characterwise write to the
heap would be inefficient, we choose to force the user to
refactor their code to use memcpy().

6. Implementation

Our implementation is for Unix machines, currently limited
to GNU/Linux running on the x86-64 architecture, but with-
out particular obstacle to ports to other Unix platforms or
other architectures.

It consists of three parts:

* language front-ends, currently only CRUNCHCC;

* generic compile- and link-time tools to support allocation
and data-type metadata;

* the libcrunch runtime itself.

We describe each of these in turn.

memory and continue, using a special allocation function but much like any
other allocator described to libcrunch. Quite apart from additional over-
head, we consider such “on-the-fly” re-typing of an allocation, even though
it is strictly speaking valid C, to be a very likely indicator of a bug!

8A defect report made against an earlier version of
the standard clarified that this behaviour is expected.
http://www.open-std.org/jtcl/sc22 /wgld/www/docs/dr 219.htm

6.1 crunchcc

crunchcc is a simple Python script which runs the host C
compiler. Our analysis and instrumentation passes are writ-
ten in CIL [?], so we delegate to CIL’s cilly compiler wrapper
for actually running the compiler.

We somehat modify the command-line compiler options,
to enable subsequent parts of the toolchain. In particular, we
enable debugging, enable break pointers (which speeds up
unwinding), and always emit functions in their own section,
by passing -ffunction-sections to gcc (to help ensure inter-
posability of allocation functions even in awkward cases).

We run two CIL passes: the first doing allocation site
analysis and the second doing instrmentation of pointer
casts.

The allocation site analysis proceeds broadly as described
in §5.2. We output a plain text file for each compilation
unit, consisting of records describing the line and column
number of each allocation site (i.e. call to a named allocation
function) and the type that our analysis inferred was being
allocated. In order to classify indirect calls to allocation
functions, we also output such a record for an indirect call
site whose signature matched an allocation function.

Each instrumented cast is replaced by a call to an inline
check function, then the original cast itself. The inline check
function (usually _ is_aU) handles common trivial cases
of pointer casts, such as checks on null pointers. Casts to
char* or void* are not instrumented since they would always
succeed. The main check function, __is_a_internal(), is
defined in libcrunch (see §6.3.

To support the optional usage of libcrunch, in which
checks only occur if libcrunch is loaded, we also subtly mod-
ify the linker options on the compiler command line. When
building shared libraries, we link a no-op stub implementa-
tion of our check functions. When building executables, we
simply add a dynamic linker dependency (DT_NEEDED in
ELF terminology) on libcrunch to the output object. (The
no-op stub approach is more transparent, and we would use
it for executables too, but unfortunately preloaded libraries
do not override definitions in the executable, unlike defini-
tions in later-loaded shared libraries.)

A challenge in the C front-end is that during instrumen-
tation, we cannot yet map source-level C data types to their
binary-level unigtypes by name. The reason is that the com-
piler has not yet run, so has not yet selected the represen-
tation of the data types concerned. Among other things, this
means that the digest code (§4.2) and hence symbol names fo
C-level data types are not yet known. There is also complex-
ity from the fact that in C, many names exist for the same
primitive type (signed int, int, etc.), but the exact equiva-
lence classes between these are copmiler- and architecture-
dependent (e.g. long int and long long int are the same on
some architectures but different on others). To circumvent
this, we force compilation to proceed via intermediate relo-
catable object files (.0), even if the original command line

was a “one shot” compile-and-link invocation. The instru-
mented code declares its reified data types as extern, using
a source-level name, generating additional undefined refer-
ences in these output objects. These source-level names are
also visible in the debugging information generated by the
compiler, which, crucially, also includes the definitions for
the various like-named data types (i.e. the information which
was not available at instrumentation time). After each object
file is generated, we fix up these undefined references using
a separate language-agnostic link-used-types tool (described
in §6.2).

Link-time intervention All allocation functions mentioned
by the user or known to the language front-end are subject to
stub-generation and link-time interposition. We use the sig-
nature information for each allocation function to generate
a wrapper which sets some thread-local variables describing
the allocation site (primarily the return address, but also the
size being allocated), then calls the original allocation func-
tion. These wrappers are inserted using the GNU linker’s —
wrap option. Some complications emerge when doing this
interposition within a single object file, in which scope the
allocation function is a defined symbol that is also referenced
from other places in the object file. The —wrap is not effec-
tive since it only alters how undefined symbols are resolved.
We use a specially patched GNU objcopy® to unbind the def-
inition from its references, at which point references are un-
defined symbols which can be wrapped in the usual way.
We also “globalize” allocation functions, since in some rare
cases they are realised static functions, for similar reasons.'?
We also have to interpose on deallocation (free()-like) func-
tions for sub-allocators, so that metadata can be unindexed
at the right level (see §6.3).

6.2 Allocation utilities

We generate and propagate metadata as code is compiled and
linked.

objdumpallocs and merging The language front-end
generates a text file alongside each preprocessed source file
containing allocation site information inferred from the pre-
processed source code (§5.2). We merge this with binary-
level information extracted by disassembling the output bi-
nary searching for calls to allocation functions and (all) in-
direct calls. Using the debugging information (which the
language front-end ensures is generated, e.g. by enabling it
in the compiler options), we map these instructions to their
source file, line and column numbers, hence locating the
source-level allocation information. The source- and binary-
level analyses do not always agree precisely on which source
line a given allocation call occurs on, so our binary-level
analysis outputs a pair of source code lines denoting the in-
terval in which the call instruction lies. From this we found

% from binutils, http://www.gnu.org/software/binutils/
10 EIXME: mention -ffunction-sections?

it straightforward to robustly merge the source- and binary-
level information. Indirect calls observed in the binary but
which did not have allocator-like signatures (hence gener-
ated no record during source-level analysis) are naturally
discarded during this merge. From the merged information
we generate a binary allocation metadata file in the form of
a shared library. with a single data section. This contains an
array of fixed-length allocation site records, include a sym-
bolic reference to the uniqtype being allocated. This refer-
ence is satisfied by data-type definitions in the types library
which is generated separately.

dumptypes and friends The tool dumptypes is run after
a linked binary is produced, simply generates a re-encoding
of its DWARF information into our in-memory uniqtype for-
mat, in the form of a C output file which is then compiled
into a shared library. A uniqtype is a C stucture consisting
of a name, size and a variable-length array of contained sub-
objects (offsets and pointer to their unigtypes). Slight vari-
ations on this are used to encode base types (which embed
a pointer to their signedness complement, if any, instead of
subobject types), arrays (which embed their element type),
pointer types and so on. A variation on the same tool is link-
used-types, which is called by language front-ends to fix up
undefined references in object files; this emits only the used
data types and those they depend on, then invokes the linker
(in relocatable-output mode) to produce a single object file.
We dump the binary’s stack frame layouts at the same time,
along with a table describing the range of program counter
values for which each layout is valid. Since most working
storage is kept in registers, including many local variables
and actual parameters, we found that most functions gener-
ate only one frame layout or a small handful, but a few large
functions have been observed to generate between 50 and
250 (typically as a result of inlining).

Keeping uniqtypes unique We produce -types.so objects
recording every data type in each output binary. We also link
(in link-used-types) the same information into instrumented
user binaries, since they wish to refer to these in checks.!!
We use two linker techniques to ensure that despite this ap-
parent duplication, a unique definition for the same data type
is used at run time. The first is “comdat” linking, as used
for linking out-of-line copies of C+ inline functions. Each
uniqtype is output in a separate ELF section marked with
the COMDAT flag and tagged with the uniqtype’s symbol
name. If multiple sections with the same tag are linked by
the compile-time linker, all but one will be discarded.This al-
lows link-used-types to insert a copy of any referenced uniqg-
type into each object, without fear of causing multiple def-
inition errors at link time. (Note that this choice of section-
rather than symbol-level uniquing is a quirk of ELF.) The

'We cannot let those references dangle until loading of the -types.so
object because of how dynamic loading works: previously-loaded objects
are not searched for references to newly-defined symbols.

second is the usual dynamic linker behaviour of global sym-
bols: only a single definition of a global symbol can be ac-
tive in a dynamically linked program, so if a -types.so ob-
ject file is loaded containing uniqtypes that have already
been loaded (say, because the executable uses struct stat
but so does a library), all references to the uniqgtypes (in-
cluding references internal to the just-loaded -types.so ob-
ject will use the already existing definition). This does lead
to some “dead spaces” in the mapped library files, where
uniqtype records are left unused because they duplicate one
loaded earlier. (FIXME: could optimise memory by clump-
ing likely-duplicates together! i.e. reordering uniqtypes) A
consequence of this is that dynamic loading falls out nicely:
loading new libraries at run time (and subsequently loading
their unigtypes, which we do automatically) does not risk
duplicating existing uniqtypes nor require any special work
to merge them.

Computing reliable stack layouts We found that the way
some on-stack allocations were recorded in DWARF infor-
mation was problematic. To compute the stack frame layout,
we need the address of each actual parameter and local vari-
able as an offset (positive or negative) from the logical frame
base address. This is simply an arbitrary stack location con-
stant for the whole function’s activation (i.e. the compiler is
free to choose its position relative to any on-stack storage;
it is often, but not always, the value of the stack pointer on
function entry). We found that occasionally an actual or lo-
cal which was stored in a stable stack position (over some
interval program counter values) had been described by the
compiler not in terms of the activation’s frame base, but in
terms of some other register (say “rbp + 8”) which happened
to be holding a stack address (over the same interval). This
is fine for a debugger, which can query for the actual register
values during execution, and hence locate the value in mem-
ory. But it is not fine for us, because our metadata needs to
describe stack frame layouts independently of the program’s
address bindings on any given run. We fixed this by merg-
ing the DWARF .debug info information (the information
typically used to locate variables), with additional informa-
tion from the .debug_ frame section (typically used to walk
the stack). The frame information describes how one regis-
ter’s value at a given point in a function’s execution can be
reconstructed in terms of other registers’ values. Interpret-
ing fixed-offset relationships as weighted edges in a graph,
we used graph reachability to rewrite the .debug info infor-
mation for every local and actual to be expressed as a fixed
offset from the frame base (i.e. a sum of edge weights) wher-
ever it could be expressed in this way (i.e. wherever such a
path existed in the graph, possibly over multiple hops de-
scribing how register A is a fixed offset from register B, and
SO on).

Stack frame coverage We lack information on on-stack
temporaries, since the compiler does not generate debugging
information for these. Fortunately, in the case of C, tempo-

raries never have thei address-taken so cannot be subject to
casts. (This is not true of C+, so we would need to force
the compiler to generate information for temporaries if we
wished to support full stack coverage for C+ code.) We also
have no information on on-stack variadic actual parameters;
these are rarely address-taken. FIXME: say about how to fix
with compiler annotations?

Metadata hierarchy 'We maintain our metadata in a sepa-

rate filesystem hierarchy (/usr/lib/allocsites) using make [Feldma

1979], so that the metadata for rebuilt binaries can be rebuilt
with a single command.

Aliased uniqtypes A surprising amount of complexity is
involved in ensuring that different names for the same unig-
type are handled correctly. In general we create aliases for
typedefs and similar aliasing features, and also for prim-
itive types having multiple names (e.g. int, signed int,
etc.). Since each symbol name also includes a ‘“digest
code” computed from the content of each definition, we
can avoid unintended aliasing among like-named definitions
that are nevertheless different. We also, however, create
“codeless’ alias symbols where this is unambiguous, e.g.
so that __ uniqtype _ signed int denotes the signed 32-
bit integer in most binaries (those not defining a conflict-
ing signed int data type) where it is an alias of __ uniqg-
type 05042024 signed int (its full name including the
digest code). This helps users wanting to look up a data type
by its symbol name.

6.3 The libcrunch runtime

The role of the libcrunch runtime is to respond to incoming
queries, such as __is_a(p, u) (“is pointer p pointing at an
instance of data type u?”) as quickly as possible. To do so, it
must

* maintain a map of the address space sufficient to classify
any address as static, stack or heap;

* for the heap case, maintain a fast index of heap memory
modelling our hierarchical view of allocations (§4.1) and
mapping arbitrary heap addresses to their leaf-level allo-
cation sites;

* for all cases, not only the heap case, support fast map-
pings from static data addresses, stack addresses and
heap allocation site addresses to their uniqtype informa-
tion.

‘We cover each of these in turn.

Address classification Given a query __is_a(p, u), we
perform some quick tests on p which can classify common
cases extremely quickly, and then fall back to a more general
(and still very fast) method. The quick tests check the pointer
against the bounds of the current stack, the executable’s data
segment and the sbrk()-managed heap. In many cases this
is sufficient to yield a positive classification (as stack, static

and heap respectively). For other cases we must resort to a
structure which maps the address space at page granularity,
called the level-0 index. Logically speaking, this associates
page numbers (i.e. virtual addresses right-shifted by n bits,
where n = 12 for 4kB pages) to a mapping which is a
contiguous region of memory recorded as being stack, static
or heap, and corresponds roughly to the structure exposed by
Linux’s /proc/ <pid>/maps file [?]. We preallocate a fixed-
size array of mapping records (currently 1024 of them) in
Pbcrunch’s data segment.

Maintaining the level-0 index Rather than continually re-
reading from /proc, we exploit the fact that libcrunch is a
preloaded library to interpose on C library operations which
change the map, namely memory mapping and dynamic
loading calls. In some circumstances, mappings change
without our seeing them, because our preloaded mmap()
does not catch all calls—particularly those internal to the C
library. Fortunately, this is limited to anonymous mappings
made by malloc(), which we hook using a different mecha-
nism (discussed below). To save space, we merge adjacent
mappings of the same file that differ only by permissions,
unlike /proc/<pid>/maps. However, we split anonymous
regions more finely than /proc/ <pid>/maps, as explained
shortly.

Virtual memory Our lookup from page numbers to map-
ping records is implemented using a virtual memory tech-
nique. We map, but do not reserve (i.e. we use Linux’s
MAP_NORESERVE flag to mmap()), a large array of 16-
bit integers—one for every page in the lower 47-bits’ worth
of address space.!> Only those parts of the array correspond-
ing to used portions of the address space will actually be
committed by the operating system. When a mapping of n
pages is created, we grab an unused mapping record from the
array in libcrunch and write its index into the n correspond-
ing contiguous locations in the array. Similarly, mapping in-
dex O denotes “not mapped” and is used when mappings are
deleted. This is similar to existing applications of unreserved
virtual memory for fast linear lookups [Nagarakatte et al.
2009; ?; ?]. Fig 18 shows this arrangement diagrammati-
cally. We will see some more complex uses of virtual mem-
ory for heap metadata shortly.

Indexing the malloc() heap Whereas the level-0 index
maintains page-granularity mappings, the C library’s mal-
loc() manages objects from a few bytes to gigabytes, so we
require a different index for these objects (which we call
heap chunks). We use the GNU C library’s malloc() hooks
mechanism to receive upcalls on each malloc()-family API
call.’® The goal of our malloc() index is to map from heap

120n the x86-64 architecture, addresses are 64 bits wide, but only 48 of
them are defined. User-level addresses lie in the bottom half, and kernel-
level addresses in the top half. By indexing the bottom 47 bits’ worth, we
index all user addresses.

131n principle, other hook techniques could be used here on other systems,
such as link-time interposition, PLT rewriting, etc..

index by high-order bits of
virtual address (page number)

vel-0 index region, . ‘ ‘
cated using mmap()

tatically allocated
table
324 mapping records

invalid |
+ _STATIC: Justbinihello J
HEAP
STACK: base 0x800000000000

=4, “STATIC. libiborunchso
HEAP: allocsite Oxdeadbeef
44 _free

s free

4 _free

index by high-order bits of interior pointer lookups may

require backward search

memtable region,
cated using mmap()

3ap region managed
/allocator, allocated
ing sbrk() or mmap()

& a
i« acl
o (—
use trailers to search a
short list for chunk
overlapping looked-up
address

Figure 18. Our level-0 index structure using a large linear
lookup in virtual memory

addresses—not necessarily the start address of a heap allo-
cation but any address inside a leaf-level allocation—to their
allocation sites. Fortunately, in the case of very large ob-
jects (over the “mmap() threshold”), malloc() delegates to
mmap(); we detect occurrences of this by inspecting the ad-
dress returned by mmap(), and push the allocation site meta-
data directly into the level-0 index’s mapping records. (This
might require splitting the mapping record currently describ-
ing the anonymous region containing the allocation.) To deal
with smaller allocations, for sizes between a few bytes and a
few hundred kilobytes, we use a novel arrangement called a
heap-threaded memtable which combines aspects of hash ta-
bles and the “large linear lookup” virtual memory technique
of the level-0 index.

Heap-threaded memtables Since we need to map from ar-
bitrary heap addresses to their allocation sites, our map must
handle range queries of the form “what allocation overlaps
address p?”. We restrict ourselves to the case where allo-
cations (unioned with unallocated space) form a flat parti-
tion of heap memory; separate data structure will deal with
the case of sub-allocated heap regions (below). A hash table
is unsuitable for answering range queries, and also destroys
locality (since the hash function’s role is to spread nearby
keys across the whole hash space). A large linear lookup
on its own is unsuitable since any 8- or 16-byte aligned ad-
dress might begin a heap chunk; and allocating even a single
byte for each such address would use up a large fraction of
the available virtual address space. Instead we use a hybrid
scheme: we group heap chunks in small buckets, through
which we thread a doubly-linked list by adding padding to
incoming malloc() calls, i.e. by incrementing the requested
size. We find that adding an 8-byte trailer to each chunk is
sufficient to record both the list pointers and our allocation
site metadata (a 48-bit address), since we can use a com-
pact pointer representation.'* Each bucket covers a particu-

14 Trailers are more robust than headers in practice, since they do not alter
the alignment of the returned memory. For example, given a caller using
memalign() to allocate a 2k _byte-aligned heap region, we would have to
allocate a chunk of 2511 bytes, i.e. double the size, be sure of having space

Figure 19. Our heap-threaded memtable indexing the mal-
loc() heap

lar small range of chunk start addresses—512 bytes in our
case. This means that pointers within a bucket’s range can
be encoded in only a few bits (5 or 6 bits respectively for 8-
or 16-byte chunk alignment). We then index the collection of
buckets using a large linear lookup in virtual memory, with
one byte for every 512-byte heap region. This avoids using
too much virtual address space, but remains fast, since buck-
ets are small (at most 32 chunks for tpical malloc() imple-
mentations, and typically much less for typical client code,
where chunk sizes average 80 bytes). It also has good lo-
cality, since each bucket resides within the same 512-byte
heap region (a few cache lines). Crucially, it supports range
queries: we can search backwards for an object overlapping
address p by starting at the heap bucket containing p (found
via the linear lookup) then considering preceding buckets in
the linear lookup. Since this structure only contains objects
of size below the allocator’s mmap() threshold, we never
have to search back very far even if the lookup fails (e.g. a
128kB mmap() threshold would mean scanning at most 256
bytes of the linear lookup). Fig. 19 shows our heap-threaded
memtable diagrammatically.

Advantages over placement-based approaches Another
family of approaches to associating metadata with heap al-
locations is based on placement: the allocator uses the allo-
cated address to encode its metadata. The “big bag of pages”
allocator [?] partitions the heap virtual address space into re-
gions based on the allocation’s size or data type, such that a
chunk’s address suffices to infer its metadata. Our approach
is more compositional, more flexible and tends to use less
virtual address space. Placement inherently brings a “domi-
nant decomposition” phenomenon since only one placement
policy can be used at one time. By contrast, multiple heap-
threaded indexes can index the same set of chunks in differ-
ent ways (by composing trailers and using a separate linear

for a header and at least the caller-requested amount of in-chunk space at
the right alignment. In this case the header must also encode the “real” start
of the chunk somehow, to be able to to correctly free() it. A side-effect of
using trailers is that we expect the malloc() implementation to provide the
common but non-standard call malloc__usable _size().

lookup). Encoding a large space of metadata values means
using a very large virtual address region. Our scheme can
index the whole virtual address space using only 5% of the
available virtual addresses, and can attach arbitrary amounts
of metadata to each allocation. Even our 48 bits (represent-
ing the allocation site) would be impossible to encode in a
placement-based approach on our chosen CPU architecture.

Indexing deeper allocations We use an alternative scheme
to index “deep” allocations—that is, heap allocations “sub-
allocated” out of a malloc()- or mmap()-backed allocation,
or (recursively) under other such allocations. We are still
gathering experience with nested allocators, so have not opti-
mised this case to the same extent as the usual malloc() and
mmap() cases. However, we note some points about when
and why an application would contain a custom allocator.
Programmers tend to use nested allocators to allocate very
small objects and/or fixed-size objects, neither of which are
handled optimally by a malloc() (although programmer intu-
ition is often wrong about whether savings can be had over
a modern malloc() by doing so [?]). Certain properties of
a malloc()-like interface which our heap-threaded approach
relied—arbitrary sizes, relatively coarse alignments and the
ability to infer a chunk’s size from its base pointer'>—are
no longer properties we can rely on. As a consequence, we
may no longer thread or embed our metadata; we must keep
it separate. However, we can expect a relatively more consis-
tent use pattern, since a more specialised allocator will not
be shared program-wide in the same way that a malloc() is.
We use a simple array of metadata records (each currently
16 bytes in our case) sized according to two parameters:
the minimum alignment of chunks issued by the suballoca-
tor, and a “compression factor” chosen according to the ex-
pected average size of allocations in the region. FIXME: is
this definitely slower/worse tha the heap-threaded case? It’s
a little worse for locality and performs worse, not better, for
larger objects, but would be good to investigate in practice.
FIXME: revisit this section once I've done more with perl-
bench. FIXME: mention Java: can get away with one bit per
object start, because metadata is encoded into data.

Piggy-backing the deep index We allow a relatively small
number of “deep allocated” heap regions (currently 63), i.e.
regions managed by nested allocators. We piggy-back these
onto the memtable by storing a bit-pattern into the linear
index that would not be used for a normal bucket pointer
(we reserve 63 such values). When we see such a value, we
have to consult the deep index instead of walking a heap-
threaded bucket. We allocate a fixed-size array (of 63 entries)
of records describing deep regions, including their start and
length. Each in-use deep region also has a linear virtual
memory area associated with it, which logically holds its
array of allocation metadata records.

5For example, we note that our use of trailers depends on the mal-
loc_usable size() call to locate the trailer at the end of the chunk.

tically allocated table
63 “deep-allocated”
heap regions

free

free
start=0x69105000, length=16777216
free

search backward because of
carlier start address or
contention fr slots

index by “upper bound” offset
proportional to query address:
highest slot that can index p

Jeep index region, . ‘
scated using mmap()

Figure 20. A “deep-level” index structure

Placement in the deep index region We constrain the
placement of an allocation’s record in a scheme reminis-
cent of open hashing, but again preserving locality. Given
the start address of a deep-allocated chunk as an offset in its
containing deep region, we say its “natural” metadata record
index is computed by scaling its offset by the alignment
and the compression factor. So, for a four byte alignment
and compression factor 8, an allocation at offset byte offset
1024 would naturally be indexed at metadata record position
32 (1024 right-shifted three times for the compression fac-
tor and twice for the alignment). However, compression has
created contention: any allocation up to offset 1056 would
would share the same natural index, so might already have
taken that metadata record slot. We solve this by searching
down the index space for a free metadata record slot. To
handle the case of contention around offset zero, we “wrap
around” to the high end of the array. If we chose the com-
pression ratio based on a true (under-)estimate of the average
allocation size, we will find a free index in a small number of
steps. The expected number of positions we have to seek is
proportional to the compression factor (the frequency of un-
used entries is inversely proportional). Controlling the com-
pression factor therefore allows us to adjust a time-memory
trade-off.

Search in the deep index region Our use of upper bound-
ing to place metadata records also allows us to do the neces-
sary range queries. Recall that we wish to search for objects
beginning at or before an address. We start out search at the
natural location, which is the upper bound both for an object
starting at our query address, and for objects starting before
it. On a per-region basis we store the “maximum displace-
ment from natural” at which we’ve stored a metadata record,
which gives us a bound on how far to search before giving
up. Fig. 20 shows the arrangement diagrammatically.

Other indexes We also maintain three similar tables for
allocation site records: to map code addresses to their stack
frame layout, to map from allocation sites to their allocated
uniqtype, and to map static data addresses to their data types.
Each kind of allocation site record is output in the same
format in the metadata shared libraries (§6.2), with space
for threading a linked list through each record. We then
use threaded memtables for these lookups too. As with the
heap index, we require the ability to do range queries, so
memtables a preferable to hash tables. They are also simple,

fast and avoid dependency on any part of the C library
except the mmap() system call wrapper. We fill in the bucket
structures when loading the metadata libraries. Each bucket
must span no more than 4kB, to maintain the property that
buckets don’t span different program binaries (which our
initialization logic assumes). Currently each bucket spans
256 bytes (making these memtables’ linear lookups rather
larger than the malloc() memtable’s).

Handling stack and static pointers We use libunwind to
walk the stack up to a frame containing the target pointer,
then use the (saved) program counter of the stack frame to
index the allocation site table, yielding a uniqtype represent-
ing the frame layout. Static pointers are even easier: we can
look up the allocation directly in the stack allocation sites
table.

Isolation Currently libcrunch uses the host C library.
When building codebases with libcrunch, we instrument
only that codebase, and not the C library it links with. A
better approach would be to link libcrunch statically against
a minimal C library, of which only a handful of used rou-
tines would be linked in; this would then allow the C library
itself to be instrumented to use libcrunch. (This requires care
to ensure that two C libraries can peacefully coexist in the
same process.)

Caching optimisation The whole system is very amenable
to caching. Once a heap chunk’s allocation site has been
mapped to a uniqtype, we write the address of that uniqtype
directly into the chunk metadata, hence avoiding repeated
lookups. FIXME: others once I've done them.

6.4 Implementation status

All the features of libcrunch that we describe in the paper are
implemented and working at the time of writing, except for
the handful which we have already noted clearly at various
points in the text. Our source code is available online at the
time of writing.'®

Thread-safety is the major to-do item in the runtime;
we have not yet applied it to multi-threaded programs, al-
though we have had this requirement in mind. Our data struc-
tures are simple and very amenable to lock-free program-
ming. For example, our heap-threaded memtable for index-
ing malloc()-managed heaps reserves the extra bit per list
node necessary to implement Harris’s lock-free list algo-
rithm [?], while our level-0 and deep-level index records can
be grabbed and released using compare-and-swap.

7. Evaluation

Since the SPEC benchmarks constitute real codebases of
considerable size (FIXME: size numbers), the process of
compiling and running the benchmarks was one which

yielded considerable practical experience of applying libcrunch

to a variety of codebases.

16 http: //github.com /stephenrkell

We also include details of our experiences with a few still-
larger codebases as further case studies.

7.1 SPEC CPU2006 benchmarks as case studies

We took the twelve SPEC CPU2006 benchmarks written in
C9

7.1.1 perlbench

perlbench was by far the most challenging codebase to
which to apply libcrunch. It is written in a very liberal style,
includes its own allocators, and uses a “stored sizeof” ap-
proach (§5.6) in which certain subsystems are described
with run-time descriptors embedding the size of their pri-
vate data structures (much like class descriptors in a JVM or
similar runtime).

7.12 bzip2

bzip2 was mostly straightforward but uncovered some sub-
tleties in our link-time interposition on allocation functions.
The code uses address-taken allocation functions, which
they are both address-taken (used) and called (defined) in the
same file. This yields object files in which references to a de-
fined symbol, ans so the linker’s —wrap option has no effect
(it only affects undefined symbols) and we could not wrap
the allocations. We resorted to producing a patch for GNU
objcopy which could “unbind” the references from the defi-
nition of a symbol specified on the command line, by dupli-
cating the symbol into __ref and __ def “halves”. We
could then wrap the __ ref symbol and then use renaming
to remove the special names. This logic is in crunchcc and
is applied whenever such cases are detected (by inspection
of symbol tables).

gcc

mcf This FIXME simulation allocates huge arrays, so
placed particular emphasis on our level-0 memory index

(§6.3).

milc
gobmk
hmmer
sjeng
libquantum
h264ref
Ibm
sphinx3

7.2 SPEC CPU2006 performance results

shamelessly drafty figures for now

‘ name ‘ crunch-time | nocrunch-time | %slower | #checks ‘
bzip2 1.80 1.80 0 1933
mcf 2.71 2.50 8.4 8250423
milc 25.21 9.00 180 84121769
gobmk | 11.66 9.82 19 3277616
hmmer | 2.32 2.18 6.4 118
sjeng 3.13 3.25 =37 | 40

7.3 Additional case studies
7.3.1 git

mapped files — would be great to treat these as just another
allocation, using DWARF descriptions of their format to
capture their layout... but we ignore these for now

8. Discussion and related work
8.1 Discussion

At this point we take a moment to reflect on the relationship
between our system and others with which the reader may
be familiar.

Relationship to memory correctness The property that our
system is intended to check can be thought of as a comple-
ment to memory correctness.

We borrow the design of Memcheck

It also has a hierarchical notion of allocation, in the sense
that it supports memory pools . Memcheck’s support for
memory pools requires hints (“client requests”) to be com-
piled in to the program. We can get away without requir-
ing this because we use link-time interposition to insert our
wrappers.

Relationship to type checkers The most visible speci-
fication mechanisms in unsafe languages are static type-
checking systems (henceforth “type systems”), often tightly
coupled with a language’s semantics. (Note that a language’s
data abstraction mechanisms, including the language of data
types that it can express, is logically separate from its “type
system”, despite much terminological confusion suggesting
otherwise.) Unsafe languages usually have type systems, be-
cause static reasoning, when assisted by the programmer,
allows elimination of run-time overheads and indirections,
such as object headers, packed multidimensional arrays,
pointers to on-stack objects, and so on.!” A key problem
in C is that its type language is not expressive enough to
specify common invariants. For example, a popular example
is the use of generic pointers within embedded linked data
structures [??]. Here, a lack of polymorphism in the types
which may be assigned to the link pointers forces the use of
underspecified void pointers. However, even in C+, whose
type system offers a form of parametric polymorphism, casts
are frequently necessary, because yet more complex invari-
ants are a common feature of real programs. For example,
consider a simple length-affixed buffer, perhaps implement-
ing character strings. The invariant relating the length of the

I7BCPL [?] is a notable example of an unsafe language with no type
system—and is perhaps unique, aside for assembly languages.

buffer to the value of the length field cannot be expressed
even using C+’s parametric polymorphism (without stati-
cally determining the length of each buffer instance).

Relationship to “type safety” We have so far deliberately
avoided using the phrase “type safety”, since we consider it
to have no widely-agreed meaning, and its use usually causes
more confusion than clarity. In particular, it can mean a run-
time property —one which our system exists to check—
but can also refer to statically verified assurance that type
errors will not emerge at run time. FIXME: rant some more?
Mention Saraswat again

something about guaranteeing safety under (hypothetical)
full instrumentation and memory correct execution, mod-
ulo policy. What policy? For C, we believe that checking
casts (and implicit strengthenings) is sufficient (backref). We
plan to formalise this in future work. Policy is inherently
language-dependent (or, for multi-language compositions, a
lower-common-denominator is needed).

Relationship to polymorphic or generic data types The
combination of generic programming and static type check-
ing, whether by C+ templates [Stroustrup 1997], Java-style
generics [?], Hindley-Milner style systems such as in Stan-
dard ML [?] or Haskell [Jones 2003] has led to a param-
eterised notion of data type in contemporary programming
languages. Code which uses such notions is called polymor-
phic. Our system is naturally amenable to checking poly-
morphic code—indeed, the primary purpose of void* in C is
to accommodate polymorphism. However, our checks tend
to occur relatively “late”: they show the proximate cause
of a failure rather than the root cause. For example, cur-
rently a C programmer using our system might be able to
check that a list node was a ListNode but not distinguish
a ListNode-ofint from a ListNode of double, say. Rather,
this “payload-level” type error would occur later, when the
pointer to the element data was downcast incorrectly. How-
ever, there is nothing in our design to prevent these kinds
of checks. We noted in §4.2 how our reified representa-
tion encodes relationships between data types. The class of
abstraction—concretion relationships which relates, for ex-
ample, a generic ListNode with a specialised ListNode-of-
string are very much something that can be encoded in our
metadata. Template-based C+ code already generates dis-
tinct DWARF information for these two cases, so accommo-
dating the right checks is simply a matter of writing the right
checking functions. (Abstraction—concretion already arises
in C, in the case of arrays—which may be of known or un-
known length, the latter case abstracting former—and point-
ers.)

Relationship to type qualifiers Adding yet more powerful
type systems promises potential solutions. Deputy has added
dependent types to C [?]. CQUAL adds user-specified nomi-
nal dimensions to existing types, and be checked according
to user-supplied proof rules [?]. [?] extends this approach

with a check that typability under the proof rules correctly
entail preservation of the intended invariant. Similar systems
exist in other languages, such as X10 [?] and Xanadu [?].
Applying powerful static reasoning to unsafe code seems
like a good fit, since static reasoning need not impact run-
time performance. However, this comes at a cost: stronger
static reasoning can only be achieved when stronger type an-
notations are applied throughout a program. This entails not
only annotation effort, but also, some degree of refactoring
work to ensure that the program’s dynamic behaviour (e.g.
the sets of arguments and return values passed and returned
at a given function) projects cleanly enough onto its static
features (e.g. the function’s identity) that a precise annota-
tion (e.g. a function signature) may be used to describe each.
Even simple extensions to type systems have this “transitive
changes” property, as has long been familiar to C program-
mers since C90’s introduction of the const qualifier: “const
poisoning” refers to the chains of modifications that are de-
manded by the type checker once the const type qualifier
is introduced in some (possibly distant) piece of code [?].!8
FIXME: mention typestate? type refinements?

Type qualifiers are another way of producing more re-
fined specifications given a data type definition. Certain uses
of type qualifiers translate to libcrunch because they apply
to allocations. Those that apply to particular uses of a value
require care, but could be rendered into a slightly modified
form. For example, a C function taking an argument using
the qualified type const char * does not mean that its tar-
get must have been allocated const; rather, it promises not
to mutate the target data, regardless of whether other code
might be permitted to do so.

FIXME: mention volatile.

Currently, type qualifiers check the local side of the
bargain—that the code which consumes the pointer sticks
to its no-mutation policy—whereas the flip side, that what-
ever the client code does wish to do is supported by the
allocation. We might witness this in a hypothetical converse
case where we could declare an argument as defining muta-
ble char *. We could then use libcrunch, extended to reify
mutable-qualified data types, to check that the characters re-
ceived do come from an allocation supporting the ability to
mutate them, e.g. that it is not passed a pointer to an alloca-
tion in a read-only segment. (In this case, memory protection
hardware already catches violations, but we could imagine
similar properties not enforced by hardware.) However, this
is fundamentally different from the per-allocation property:
what is allowed depends not only on the object, but on which
code is asking.

There is also the issue of flow of permissions: use of
qualifiers is enforced as values are communicated (through

8 The addition of const qualifiers to the C type system (as opposed
to the set of storage class specifiers) is considered a mistake by some
commentators. See lan Lance Taylor’s piece on “const”, available at
http://www.airs.com/blog/archives /428 (retrieved on 2011-12-17).

arguments and return values, or by writes to shared storage)
from one piece of code to another, intuitively following a
“narrowing rule” where the recipient is allowed to demand
the same of weaker permission as the sender, but no stronger.

The counterpoint to this is that type qualifiers are no-
toriously burdensome on the programmer—the “virality of
const” was remarked on when it was introduced to C,

In practice, “casting away const” is commonplace in
complex C codebases. The “correctness” of such a cast is
difficult to define. We could define it only using allocation-
level properties, in which case libcrunch would be well-
placed to check such casts. We might also decide a more
precise style of specification to be more effective: perhaps
elaborating on exactly which objects could be mutated by
which code (but remaining more relaxed on how they ob-
tained a reference—the key inflexibility we just noted about
compiler-enforced qualifiers).

In short, our infrastructure is suited for the coarser style
of per-allocation specification, tending to yield properties
which are checkable with little or no added work by the
programmer, but not as fine-grained as is sometimes desired.

FIXME: cite CQual, flow-sensitive and flow-insensitive
papers, Chin / Millstein

8.2 Other related work

SAFECode SAFECode [?] is a system which instruments
C code with dynamic checks to enforce a very particular
property: that the program stays within the bounds computed
by a (whole-program) pointer analysis ahead of time, or the
program terminates cleanly. This property is effectively a
kind of sandboxing, useful in combination with static anal-
yses which consume the outputs of the pointer analysis.
It is therefore not, by itself, a dynamic analysis compara-
ble to ours (Our checks occupy a role similar to the static
analysis—both assume a kind of memory correctness.) A
run-time partitioning of the heap is used to enforce type-
based properties for a subset of heap locations. The extent
of these properties depends on the pointer analysis. As de-
scribed earlier (§6.3), our system retains flexibility by avoid-
ing partitioning the heap. Moreover, unlike SAFECode, our
system is designed expressly to avoid any whole-program
analysis; we are free to compile as much or as little of the
system using libcrunch as is required and/or convenient.

Wright—"'practical soft typing'' thesis; actually mostly
theoretical

Loginov & Reps Loginov... Reps—"Debugging via run-
time type checking"

—uses a four-bits-per-byte shadowing scheme

—much more heavyweight

—treatment of malloc() is to say "block type is undefined
until written to"

—slowdown is 10x—157x

—definitely "for C"

Shen et al, "Securing C programs by dynamic type check-
ing", IPSEC *06

Burrows et al, Hobbes — big slowdown

Hackett & Aiken FSE’11 "inferring data polymorphism..."

Steffen "adding run-time checking to the portable C com-
piler" — memory only again

S. C. Kendall, “Bee: runtime checking for C programs”.
USENIX Toronto 1983 Summer Conference Proceedings,
USENIX Association, El Cerrito, CA 1983.

claim in Yong & Horwitz RV *02 "Reducing the Over-
head of Dynamic Analysis", that "certain valid program be-
havior, such as storing the address of a stack variable in a
global variable, or storing a pointer value in an integer, cast-
ing it back, and dereferencing it, will cause a runtime check
to fail"

Runtime Verification community "parameterised moni-
tors"

Variants of C CCured [?] is an extension of the C lan-
guage which supports run-time type- and memory-safety
properties— enforced dynamically but performing a large
proportion of its reasoning statically in most cases. CCured
provides strong guarantees, but at the expense of imposing
on the programmer far more than in our approach. It require
source-level modifications (FIXME), only provides binary
compatibility given modifications to the original program
(to turn “WILD” pointers into a more restricted kind) re-
quires “wrapper” specifications for calls to external libraries
enforces use of a conservative garbage collector,

CCured also uses an inflexible notion of type compatibil-
ity (physical subtyping)

New language designs inspired by unsafe languages,
including and Cyclone [?] offer languages with similar
feature-sets to C but with stronger safety guarantees (re-
spectively FIXME and FIXME). However, they do so at
the expense of at least some of the favourable properties
of unsafe languages (mentioned in the Introduction): they
impose greater run-time overhead, and limit the idiomatic
flexibility available to the programmer (examples please).
Jekyll [?] and BitC [?] push a similar strategy further to-
wards “modern” language designs influenced by functional
programming, but offer the same problems. New languages
often have merit, but require an investment of effort to adopt,
so suffer bootstrapping problems. We will prefer solutions
which do not constrain the source language.

Optional & gradual typing 1t is not only performance but
also flexibility which drives the continued popularity of un-
safe languages. Adding a complex type system in a manda-
tory fashion greatly impacts flexibility. As noted by other au-
thors [Bracha 2004; Wrigstad et al. 2010; ?; ?], more com-
plex types create a more onerous obligation on programmers
to prove properties of their program, making code slower
to write and more brittle to maintain. Moreover, the conser-
vative application of decidable proof languages necessarily
rule out programs which are nevertheless correct (i.e. ones

in which no type error will occur dynamically). Extending a
type system while holding to the usual contract of a type sys-
tem —that the programmer is obliged to produce a program
that type checks (modulo use of any escape hatches such as
casts or other unsafe builtins'® brings a problem of dimin-
ishing returns. This has motivated work on gradual [?] and
“hybrid” [?] type systems that support annotations spanning
a spectrum of strengths, where static assurances are enabled
by stronger annotations, but on occasions where the annota-
tions are too weak to prove a given property, dynamic checks
are inserted. So far, however, this work has not yet consid-
ered unsafe languages—instead assuming a language with
built-in dynamic checking. We consider this line of work
complementary to our own: we are extending unsafe lan-
guages such that they could be amenable to the properties
enabled by gradual or optional typing systems. One possible
step along this path, using symbolic execution techniques, is
outlined in the next section.
liquid types?

9. Future work
9.1 Combining with symbolic execution

Reifying dynamic checks as assertions makes them “generic
properties” of a kind which generic program analysis tool
can reason about. One particularly relevant class of tools
is symbolic execution engines like KLEE. Our toolchain
extensions naturally allow KLEE to search for type errors in
addition to the usual (memory, arithmetic, assertion-failure)
errors that it searches for.

9.2 Polymorphic types and other abstract checks

As detailed in §4.2, it would be a relatively small extension
to add additional relations among data types into our reified
representation. Doing so could allow additional checks to
be expressed. For example, a typical requirement in Java-
style generic types is to check type parameters, either exactly
or using “wildcards” with bounds. For example, to check
on a linked list that the precise T for which List<T> was
instantiated is exactly X, or perhaps that it “is a” X. We
might want to check the converse: that it is “at most a”
X. Doing so efficiently means including a “contained by”
relation into our reified representation. This requires some
amount of link-time processing, s that when new data types
are linked in

An interesting question is how “smart” the reified types
should (or must) be, versus how smart the checking logic
should be.

A likely path would be to assume that all instantiations of
generic data types come with a contract

Much like a C compiler erases sizeof, so a Java compiler
erases these contracts, and in both cases we must preserve
this information by out-of-band means. This fits neatly into

19 An example of an unsafe builtin other than casts is Haskell’s unsafePer-
formlO.

our existing model of attaching metadata to allocation sites.
Whereas the bytecode might allocate a List, our metadata
would record that the user allocated a List<String>, say.
Fortunately, Java class files record this information, so no
more sophisticated analysis (such as our sizeofness analysis
in §5.2) is necessary.

9.3 Combining with memory checks

Integrating libcrunch with Jones & Kelly-style spatial mem-
ory checking is an obvious next step. A likely pragmatic ap-
proach would be to treat arithmetic or indexing operations
like casts when they first occur on a given pointer within
a given function. Since libcrunch must necessarily discover
the allocation bounds (including subobject bounds) when
checking this cast, it can return the bounds to the caller.
As new pointers are derived from the initial pointer, their
bounds will be easily computed from this inisial bound; this
can then be used to perform subsequent checks locally and
to optimise away redundant checks using the usual compiler
optimisation.

Temporal memory safety is harder, because if done
naively it requires invalidation of type and bound informa-
tion which may be dispersed through the process image.
One likely avenue is to employ a partitioning-based scheme
(similar to that of SAFECode [?], but with a different parti-
tioning criteria) which limits this dispersal by grouping heap
objects according to whether their lifetimes may overlap.
However, this has at least two down-sides we have so far
been avoiding: the requirement of whole-program analysis
at compile time, and the requirement of heap partitioning
at run time. Conservative garbage collection is another ap-
proach but with the usual risk of leaks

9.4 Dynamic language opportunities

What we have built, in libcrunch, is effectively a runtime
which can identify what lies on the end of a pointer, and
can do so reasonably quickly. It is very much the intention
that this be used as a basis for dynamic language implemen-
tation. The ideas behind libcrunch arose in the context of
DwarfPython [Kell and Irwin 2011], and we plan to rebase
the latter onto our infrastructure, with the goal of producing
a competitively-performing implementation of Python with
much more seamless integration with native code and whole-
program debuggers.

9.5 Tool-building opportunities

For the same reasons

9.6 Information hiding and levels of abstraction

What we are not doing is “type structure” in the sense of
Reynolds: we are not enforcing levels of abstraction. (This
is also “information hiding” in the sense of Parnas. Maybe
don’t bring Reynolds into it?)

For example, our __is_a check will pass for any non-
erroneous interpretation of the data residing at the target

address, regardless of whether interpreting the memory this
way would be an abstraction violation from the perspective
of information hiding. We ideally instead want to restrict
different callers to different abstract views of a given piece
of state. Instead of whether p _ is_a X, clients should
really ask whether p __is_visibly a X, i.e. accounting for
information hiding constraints. In general this depends not
only on the data type, but who instantiated it (and context-
sensitively, i.e. on whose behalf). For example, the details of
a specific linked list data type might be visible to client Z for
its own list of widgets, but the presence of the same linked
list data type used from deep inside the C library, say, ought
to be hidden from Z.

A special case of this which our system’s own internals
exposes concerns “meta-levels” of execution [?]. In general,
instrumentation-based programs ought to be isolated from
the programs they observe, but unavoidably share the same
underlying execution environment. This makes abstraction
violations particularly easy to construct. Our treatment of
allocations presents (at least) two ways in which meta-levels
are confused. One is how we insert trailers into heap chunks
(86.3), but are unable to ask libcrunch to verify that a pointer
indeed points to a trailer. Another is how a nested allocator
(A third might be how the char** free-list trick of one of
the SPEC benchmarks isn’t handled gracefully. A fourth
might be how we resort to using mmap() to manage our own
dynamic memory, and can’t answer queries like is_a
about our own allocations. We should just have a well-
founded hierarchy meaning that we index our own mmap’d
regions, and it all terminates nicely

)

10. Conclusions

Acknowledgments
REMS. Oxford Martin School. Doug Lea

References

G. Bracha. Pluggable type systems. In OOPSLA Workshop on
Revival of Dynamic Languages, 2004.

M. Burrows, S. N. Freund, and J. L. Wiener. Run-time type
checking for binary programs. In CC’03: Proceedings of the
12th international conference on Compiler construction, pages
90-105, Berlin, Heidelberg, 2003. Springer-Verlag. ISBN 3-
540-00904-3.

D. Eberly. Fast inverse square root (re-
visited). ‘Web note, 2010. URL

http://www.geometrictools.com/Documentation /FastInverseSqrt.pdf.

Retrieved on 2014/3/15.

S. I. Feldman. Make: a program for maintaining computer pro-
grams. Softw: Pract. Exper., 9, 1979. ISSN 1097-024X. doi:
10.1002/spe.4380090402.

S. Jones. Haskell 98 language and libraries: the revised report.
Cambridge University Press, 2003. ISBN 0521826144.

S. Kell and C. Irwin. Virtual machines should be invisi-
ble. In Proceedings of the compilation of the co-located
workshops on DSM’11, TMC’11, AGERE!’l1l, AOOPES’I1],
NEAT’11, & VMIL 11, SPLASH ’11 Workshops, pages
289-296, New York, NY, USA, 2011. ACM. ISBN 978-
1-4503-1183-0. doi: 10.1145/2095050.2095099. URL
http://doi.acm.org/10.1145/2095050.2095099.

S. Nagarakatte, J. Zhao, M. M. Martin, and S. Zdancewic. Soft-
bound: highly compatible and complete spatial memory safety
for c. In Proceedings of the 2009 ACM SIGPLAN conference
on Programming language design and implementation, PLDI
’09, pages 245-258, New York, NY, USA, 2009. ACM. ISBN
978-1-60558-392-1. doi: 10.1145/1542476.1542504. URL
http://doi.acm.org/10.1145/1542476.1542504.

V. Saraswat. Java is not type-safe. Web note, 1997.

J. Seward and N. Nethercote. Using Valgrind to detect undefined
value errors with bit-precision. In ATEC "05: Proceedings of the
annual conference on USENIX Annual Technical Conference,
Berkeley, CA, USA, 2005. USENIX Association.

B. Stroustrup. The C++ programming language. Addison-Wesley,
1997.

T. Wrigstad, F. Z. Nardelli, S. Lebresne, J. Ostlund, and J. Vitek.
Integrating typed and untyped code in a scripting language. In
POPL ’10: Proceedings of the 37th annual ACM SIGPLAN-
SIGACT symposium on Principles of programming languages,
pages 377-388, New York, NY, USA, 2010. ACM. ISBN
978-1-60558-479-9. doi: http://doi.acm.org/10.1145/1706299.
1706343.

