
C
o
n
si
st

en
t *
Complete

*
W
e
ll
D
o
cu
m
ented*Easyt

o
Re

u
se
* *

E
valuated

*

O
O
P
S
L
A
*

Ar
tifact

*
A
E
C

An Operational Semantics for C/C++11 Concurrency

Kyndylan Nienhuis Kayvan Memarian Peter Sewell

University of Cambridge
United Kingdom

first.last@cl.cam.ac.uk

Abstract

The C/C++11 concurrency model balances two goals: it is
relaxed enough to be efficiently implementable and (leaving
aside the “thin-air” problem) it is strong enough to give use-
ful guarantees to programmers. It is mathematically precise
and has been used in verification research and compiler test-
ing. However, the model is expressed in an axiomatic style,
as predicates on complete candidate executions. This suf-
fices for computing the set of allowed executions of a small
litmus test, but it does not directly support the incremental
construction of executions of larger programs. It is also at
odds with conventional operational semantics, as used im-
plicitly in the rest of the C/C++ standards.

Our main contribution is the development of an opera-
tional model for C/C++11 concurrency. This covers all the
features of the previous formalised axiomatic model, and we
have a mechanised proof that the two are equivalent, in Is-
abelle/HOL. We also integrate this semantics with an opera-
tional semantics for sequential C (described elsewhere); the
combined semantics can incrementally execute programs in
a small fragment of C.

Doing this uncovered several new aspects of the C/C++11
model: we show that one cannot build an equivalent opera-
tional model that simply follows program order, sequential
consistent order, or the synchronises-with order. The first
negative result is forced by hardware-observable behaviour,
but the latter two are not, and so might be ameliorated by
changing C/C++11. More generally, we hope that this work,
with its focus on incremental construction of executions, will
inform the future design of new concurrency models.

Categories and Subject Descriptors F.3.2 [Semantics of

Programming Languages]

Keywords C/C++, Concurrency

1. Introduction

C and C++ have been used for concurrent programming
for decades, and concurrency became an official part of
the ISO language standards in C/C++11 [8, 28, 29]1. Batty
et al. contributed to this standardisation process, resulting
in a mathematical model in close correspondence with the
standard prose [6].

Extensionally, the C/C++11 design is broadly satisfac-
tory, allowing the right observable behaviour for many pro-
grams. On the one hand, the semantics is relaxed enough to
allow efficient implementation on all major hardware plat-
forms [5, 6], and on the other hand, the design provides a
flexible range of synchronisation primitives, with semantics
strong enough to support both sequentially consistent (SC)
programming and fine-grained concurrency. It has been used
in research on compiler testing, optimisation, library abstrac-
tion, program logics, and model-checking [3, 17, 19, 23, 25,
26].

Intensionally, however, the C/C+11 model (in the ISO
text and the formalisation) is in an “axiomatic” style, quite
different from a conventional small-step operational seman-
tics. A conventional operational semantics builds executions
incrementally, starting from an initial state and following the
permitted transitions of a transition relation. This incremen-
tal structure broadly mirrors the way in which conventional
implementations produce executions. To calculate the se-
mantically allowed behaviours of a program, one can calcu-
late the set of all allowed behaviours by an exhaustive search
of all paths (up to some depth if necessary), and one can find
single paths (for testing) by making pseudorandom choices
of which transition to take from each state. The incremental
structure also supports proofs by induction on paths, as in
typical type preservation proofs, and dynamic analysis and
model-checking tools.

In contrast, an axiomatic concurrency model defines the
set of all allowed behaviours of a program in a quite differ-
ent and more global fashion: it defines a notion of candidate

execution, the set of memory actions in a putative complete
execution (together with various relations over them), and a

1 C++14 concurrency [30] is essentially the same as C++11 concurrency.
The most notable change is that the attempt to forbid “thin-air”, previously
known to be unsatisfactory, has been removed [31].

consistency predicate that picks out the candidate executions
allowed by the concurrency model; the conjuncts of this are
the axioms of the axiomatic model. Executions must also
be permitted by the threadwise semantics of the program,
though this is often left implicit in the relaxed-memory liter-
ature (for C/C++11, one additionally needs to check whether
any consistent execution exhibits a race). With this structure,
to calculate the set of all allowed behaviours of a program,
in principle one first has to calculate the set of all its control-
flow unfoldings, then for each of these consider all the possi-
ble choices of arbitrary values for each memory read (using
the threadwise semantics to determine the resulting values
of memory writes), and then consider all the possible arbi-
trary choices of the relations (the reads-from relation, co-
herence order, etc.). This gives a set of candidate executions
which one can filter by the consistency predicate (and then
apply a race check to each). This is viable for small litmus
tests, and it is essentially what is done by the cppmem [6]
and herd [1] tools. It intrinsically scales badly, however: the
number of candidate executions increases rapidly with pro-
gram size, and the fraction of consistent executions among
them becomes vanishingly small.

The fundamental problem The fundamental difficulty
with calculating behaviour in the axiomatic concurrency
model is that one has to construct candidates with no knowl-
edge of whether the choices of control-flow unfolding and
memory read values are actually compatible with the con-
currency model; the vast majority of them will not be.

Our approach To solve the above problem we construct
an equivalent operational concurrency model, and incremen-
tally generate executions by taking both this concurrency
model and the threadwise semantics into account at each
step.

First contribution: negative results Our first contribution
is a negative result: we show that one cannot build an equiva-
lent operational concurrency model for C/C++11 that simply
follows program order, SC order, or the synchronises-with
order (§3). The axiomatic model allows executions with cer-
tain cycles in the union of program order, the reads-from
relation, coherence order, SC order and synchronises-with
order (we recall these relations in §2). In a sequentially con-
sistent semantics, each of the latter relations are consistent
with program order: as one builds an execution path incre-
mentally, each read is from a write that is earlier in the path,
each write is a coherence-successor of a write that is earlier
in the path, and so on. For a relaxed-memory semantics, that
is not always the case, and so in order to be complete with
respect to the axiomatic model the transitions of our opera-
tional semantics must be able to generate those cycles and
can therefore not simply follow all the above relations.

The first negative result (one cannot build an equivalent
operational model that follows program order) is not origi-
nal, but the latter two (about SC order and synchronises-with

order) are. Furthermore, the first negative result is forced by
hardware-observable behaviour, but the latter two are not,
and so might be ameliorated by changing C/C++11. The
changes we propose (§3.1, §3.3 and §3.4) are original.

Main contribution: an equivalent operational concurrency

model We show that the axiomatic model does behave in-
crementally under a particular execution order, we develop
an operational concurrency model following that order, and
prove this model equivalent to the axiomatic model of Batty
et al. [6], with a mechanised Isabelle/HOL proof (§4–6).
We do all this for the full C/C++11 model as formalised by
Batty et al. [6], including non-atomic accesses, all the atomic
memory orders (sequentially consistent, release/acquire, re-
lease/consume, and relaxed), read-modify-write operations,
locks, and fences.

Our operational semantics is not in an “abstract machine”
style—with an internal structure of buffers and suchlike—
that has a very concrete operational intuition. That might
be desirable in principle, but the C/C++11 model is an ab-
straction invented to be sound with respect to multiple quite
different implementations, covering compiler and hardware
optimisations; it is unclear whether an equivalent abstract-
machine model is feasible. Instead, the operational seman-
tics is defined using the axioms of the axiomatic model.

We are also deliberately not addressing the “thin-air”
problem: the C/C++11 model permits certain executions that
are widely agreed to be pathological, but which are hard to
characterise [4]. Here we are aiming to be provably equiv-
alent to that model, and those executions are therefore also
permitted by our operational model. Instead we are solving
an orthogonal problem: the cyclic executions presented in §3
that are the main reasons why developing an operational se-
mantics is difficult are not out-of-thin-air executions. There
may be scope for combining this work with proposals for
thin-air-free models for the relaxed and non-atomic fragment
of C/C++11 [21].

Third contribution: integration with a sequential seman-

tics We integrate our operational concurrency model with
a sequential operational semantics (§7). That sequential se-
mantics, covering a substantial fragment of C, is described
in detail elsewhere [16]; it is not itself a contribution of this
paper.

The integration supports integers (of any kind), atomics,
fences, conditional statements, loops, function calls, and par-
allel composition. Supporting non-scalar types such as ar-
rays and structs is outside the scope of this work: the ax-
iomatic concurrency model does not support them and the
intention of the standard is not clear.

The integration is executable and can be used to pseudo-
randomly explore single paths of programs. It is, however,
not intended to be an efficient tool: the size of the state and
the time to compute the next transition grow during execu-
tion. Rather, the integration solves the fundamental prob-
lem we described above: we can find out whether choices

of control-flow unfolding and memory read values are com-
patible with the concurrency model during the execution.

Mechanisation For such an intricate area, mechanisation
has major advantages over hand proofs, but it also comes
at a significant cost. The total development amounts to
7 305 lines of Isabelle/HOL script (excluding comments
and whitespace), together with 2 676 lines of Isabelle/HOL
script for the original axiomatic model. We use Lem [18] to
generate the latter from its Lem source, which was previ-
ously used for HOL4 proof. In the paper we only state the
most important theorems and definitions; the proofs and the
rest of the theorems and definitions are available online at
http://www.cl.cam.ac.uk/~pes20/cpp_op/.

2. The C/C++11 Axiomatic Concurrency

Model

We begin by recalling the C/C++11 concurrency primitives
and axiomatic model, referring to previous work [2, 6, 8] for
the full details. In §2.8 we illustrate the fundamental problem
with the axiomatic model that we aim to solve.

2.1 Atomics

We introduce atomics by contrasting them with normal non-

atomic accesses using the example program below. The first
thread of the program sets data to a value and then signals
the other thread by setting flag to 1; the second thread reads
flag in a loop until it sees 1, and then uses data for some
other computation. The syntax {-{T1|||T2 }-} is short for
creating two threads that execute T1 and T2 and then joining
them; it avoids the extra memory actions from library-based
thread creation.

int main(void) {

int data = 0;

int flag = 0;

int result;

{-{ { data = 1;

flag = 1; }

||| { while(flag != 1) {};

result = data; }

}-};

return result;

}

Figure 1. The message passing program with non-atomics.
This program has undefined behaviour.

One might expect that this program always returns 1,
but the standard gives the program undefined behaviour,
which means that any outcome is allowed. The reason is
that the program contains a data race: the second thread
might read flag while the first thread writes to it (we define
data races more precisely in §2.7). The fact that a data
race leads to undefined behaviour allows for more compiler
optimisations. For example, the writes of the first thread can

#include <stdatomic.h>

int main(void) {

int data = 0;

_Atomic(int) flag = ATOMIC_VAR_INIT(0);

int result;

{-{ { data = 1;

atomic_store(&flag, 1); }

||| { while(atomic_load(&flag) != 1) {};

result = data; }

}-};

return result;

}

Figure 2. The message passing program with atomics. This
program has defined behaviour; it will always return 1.

be reordered, because if there are no concurrent accesses to
data and flag then the reordering cannot be observed, and if
there are concurrent accesses then the program is undefined.

To remove these data races one could protect the con-
current accesses by locks, but that might be undesirable for
performance or progress reasons. As an alternative C/C++11
introduces atomics, which can provide synchronisation and
which can be concurrently used without creating data races.
In Figure 2 we see the message passing program that uses
atomics (note that the type of flag and its accesses changed).
This program does not have a data race: the accesses to flag

do not race because they are atomic, and the accesses to data

do not race because the last read of flag in the loop of the
second thread synchronises with the write to flag of the first
thread (we define when actions synchronise in §2.5).

Besides the atomic store and atomic load seen in the
program above, there are various read-modify-write (RMW)
operations, including atomic increments and compare-and-
swap operations.

2.2 Memory Orders

Atomic accesses without an explicit memory order annota-
tion are sequentially consistent (SC), which means they are
guaranteed to appear in a global total order. Because their
implementation on relaxed hardware requires relatively ex-
pensive synchronisation, the standard introduces the follow-
ing other memory orders.

• Write-release and read-acquire atomics are cheaper than
SC but weaker: they do not appear in a global total order,
but they guarantee (amongst other things) that if a write-
release is read from by a read-acquire, then memory
accesses program-order-after the latter are guaranteed to
see those program-order-before the former.

• Read-consume is a still weaker variant of read-acquire,
implementable on some relaxed hardware simply using
the fact that those architectures guarantee that some de-
pendencies are preserved. The status of read-consume
is in flux, as McKenney et al. describe [15]: it is diffi-

#include <stdatomic.h>

int main(void) {

int data = 0;

_Atomic(int) flag = ATOMIC_VAR_INIT(0);

int result;

{-{ { data = 1;

atomic_store_explicit(&flag, 1,

memory_order_release); }

||| { while(atomic_load_explicit(&flag,

memory_order_relaxed) != 1) {};

atomic_thread_fence(memory_order_acquire);

result = data; }

}-};

return result;

}

Figure 3. The message passing program using weak mem-
ory orders. The program always returns 1.

cult to implement in full generality in existing compilers
(where standard optimisations may remove source-code
syntactic dependencies), but the basic facility it provides
is widely used, e.g. in the Linux kernel. All this notwith-
standing, our operational model captures its behaviour as
specified in the formal C/C++11 axiomatic concurrency
model.

• Relaxed atomics are the weakest of all, guaranteeing co-
herence but weak enough to require no hardware fences
in their implementation on common architectures [22].

The program in Figure 2 can be optimised by changing
the atomic SC store of the first thread by an atomic write-
release, and the atomic SC load of the second thread by
an atomic read-acquire. These memory orders are strong
enough to ensure that the read of flag that reads 1 still
synchronises with the write of flag of the first thread. We can
transform this program further: the reads of flag that read 0
do not need to synchronise with anything, so they could be
implemented as relaxed reads. We change the memory order
of the read in the loop to relaxed, but now the read that reads
1 also does not synchronise anymore. To restore that, we add
an acquire fence after the loop (in §2.5 we explain why this
restores synchronisation). The resulting program is given in
Figure 3.

2.3 The C/C++11 Semantics

The semantics of C/C++11 is factored into a threadwise

semantics and a concurrency semantics. Broadly speaking,
the concurrency semantics determines whether a program
contains a race and which values can be read from memory,
and the threadwise semantics determines everything else.
With these two parts one can compute the behaviour of a
program as follows.

• First the threadwise semantics generates the pre-

executions of the program (§2.4). Each pre-execution cor-

responds to a particular complete control-flow unfolding
of the program and an arbitrary choice of the values read
from memory.

• Then, one extends each pre-execution with all possible
execution witnesses. A pre-execution combined with one
of its execution witnesses forms a candidate execution

(§2.5).
• The axiomatic concurrency semantics defines a consis-

tency predicate that can be used to determine which of
the candidate executions are consistent (§2.6).

• The axiomatic concurrency semantics also defines a race

predicate (§2.7). If any of the consistent executions satis-
fies the race predicate, then the behaviour of the program
is undefined. Otherwise, the behaviour is the set of con-
sistent executions.

To see that the concurrency semantics (and not the thread-
wise semantics) determines which values can be read from
memory, recall that in pre-executions values read from mem-
ory are arbitrary, and that these values can be actually read if
and only if there exists an execution witness that makes the
pre-execution consistent.

2.4 Pre-executions

A pre-execution is represented as a graph, whose nodes are
memory actions. A node label such as a:Wna x=0 consists
of:

•
a, the identifier of the action, unique within the pre-
execution.

•
W, the type of the action, in this case a store. Other types
are loads (R), read-modify-writes (RMW), fences (F),
locks (L) and unlocks (U).

•
na, specifying that this action is non-atomic. For atomic
actions, the memory order (§2.2) is specified here: se-
quential consistent (s
), release (rel), acquire (a
q),
acquire-release (a/r), consume (
on) or relaxed (rlx).
Locks and unlocks do not have a memory order.

•
x, the location of the action. Fences do not have a loca-
tion.

•
0, the value written (for stores). Load actions similarly
contain the value read (recall that pre-execution contains
arbitrary values for the return values of loads). For read-
modify-writes a pair such as 2/3 specifies that 2 has been
read, and 3 has been written.

The edges between the nodes denote various relations:
the sequenced-before relation sb captures program order,
and the additional synchronises-with relation asw captures
thread creation and termination, both from the syntactic
control-flow unfolding. In Table 1 we give an overview of
the acronyms used.

In Figure 4 we see a pre-execution of the message pass-
ing program where the arbitrary values α, β, γ and δ are
read from memory, and where the condition of the loop is
executed twice: actions f and g both correspond to the same

a:Wna data= 0

b:Wna �ag= 0

:Rna result= δ

d:Wna data= 1 f:Rrlx �ag= α

e:Wrel �ag= 1 g:Rrlx �ag= β

h:Fa
q

i:Rna data= γ

j:Wna result= γ

sb

sb

sb

asw

sb

sb

sb

sb

asw asw

asw

Figure 4. A pre-execution of the message passing program
in Figure 3. The choice of control-flow unfolding constrains
the values read: α 6= 1 and β = 1. We omit transitive sb

edges from all figures.

sb Program order (or sequenced-before relation)
asw Thread creation/termination (or additional sw)
rf The reads-from relation
mo The coherence (or modification) order
sc The sequential consistent order
lo The lock order
sw The synchronises-with order
hb The happens-before order
vse The visible side effects order

Table 1. The acronyms used in execution graphs

instruction. The values read from memory have to agree with
the choice of control flow in this pre-execution: since the
condition of the loop was true the first time and false the
second time, we have α 6= 1 and β = 1; the values written
to memory are determined by the threadwise semantics. The
program has infinitely many other pre-executions: each time
the condition of the loop is executed the value read is arbi-
trary, so the loop can be executed an indefinite number of
times. The program also has pre-executions of infinite size
where the loop is never exited.

2.5 Candidate Executions

To obtain a candidate execution from a pre-execution, we
first extend it with an execution witness, which consists
of the following relations over memory actions: the reads-
from relation rf , the coherence order mo, the sequential

a:Wna data= 0

b:Wna �ag= 0

:Rna result= δ

d:Wna data= 1 f:Rrlx �ag= α

e:Wrel �ag= 1 g:Rrlx �ag= β

h:Fa
q

i:Rna data= γ

j:Wna result= γ

sb

lo

sb sb

sb

sb

sb

asw

asw

asw, rf

sb

rf

asw

mo

Figure 5. An (inconsistent) candidate execution that ex-
tends the pre-execution in Figure 4

consistent order sc, and the lock order lo. Then we derive
the following relations from the pre-execution and execution
witness.

• The synchronises-with relation sw . It contains thread
synchronisation (the asw relation), synchronising
unlock-lock pairs ((a, b) ∈ lo with a an unlock and b a
lock), synchronising release-acquire pairs ((a, b) ∈ rf

with a a write-release and b a read-acquire), and varia-
tions of the latter. These variations involve fences and
release sequences which we introduce later.

• The happens-before relation hb. In the absence of the
memory order consume, we have that hb = (sb ∪ sw)+

where ·+ is the transitive closure.
• The visible side effects relation vse, with (a, b) ∈ vse if
a is a write and b a read to the same location, (a, b) ∈ hb,
and there does not exists a write c to the same location
that is between a and b in hb.

In principle every pre-execution can be extended by every
execution witness; it is the next step (determining which
candidate executions are consistent) that gives meaning to
the relations defined above. To illustrate this, consider the
execution in Figure 5. This is a candidate execution, despite
the fact that there are writes (namely a and d) in the lock
order lo.

To illustrate the derived relations, consider Figure 6. The
sw edge (e, h) arises from a variant of a release-acquire
pair: the relaxed read g reads from the release write e (see
Figure 5), and because the acquire fence h is sb after g, we
have that e and h synchronise. The other sw edges arise from

a:Wna data= 0

d:Wna data= 1 f:Rrlx �ag= α

:Rna result= δ

e:Wrel �ag= 1

h:Fa
q

g:Rrlx �ag= β

i:Rna data= γ

j:Wna result= γ

b:Wna �ag= 0

hb

hb

sw

sw, hb

hb

hb

hb

hb

sw, hbsw, hb

sw, hb

Figure 6. The relations sw and hb derived from the candi-
date execution in Figure 5. Transitive hb edges are not shown
(for example (b, c) and (e, c)).

asw edges present in the pre-execution. Since there are no
consume memory orders, the hb relation is then given by
(sb ∪ sw)+.

2.6 Consistency

In order to determine whether a candidate execution is con-
sistent or not, the axiomatic concurrency model defines a
consistency predicate. The consistency predicate consists of
several conjuncts, which are called the axioms of the model.
Some of those axioms give the relations of the execution wit-
ness their intuitive meaning:

• well_formed_rf requires (amongst other things) that for
each (w, r) ∈ rf we have that w and r are actions of
the pre-execution, w is a write, and r a read to the same
location that reads the value written by w.

• consistent_mo requires that mo is a total order over all
atomic writes to the same location.

• consistent_sc requires that sc is a total order over all
actions with a sequential consistent memory order.

• consistent_lo requires that lo is a total order over all locks
and unlocks to the same location.

The other axioms define the more subtle properties that are
the real substance of the C/C++11 model.

Before we introduce the other axioms, observe that the
candidate execution in Figure 5 does not satisfy consis-

tent_lo and is therefore inconsistent. The candidate execu-
tion in Figure 7, on the other hand, is consistent because it
does satisfy all axioms. Note that there is only one choice for

a:Wna data= 0

:Rna result= 1

d:Wna data= 1

e:Wrel �ag= 1

f:Rrlx �ag= 0

i:Rna data= 1

g:Rrlx �ag= 1

h:Fa
q

j:Wna result= 1

b:Wna �ag= 0

sb

sb

asw

sb

sb

sb

sb

rf

asw

asw,

mo

asw,

sb

rf

rf

rf

Figure 7. A consistent execution that extends the pre-
execution in Figure 4 of the message passing program in
Figure 3

the arbitrary values α, β, γ and δ of the pre-execution that
makes the candidate execution consistent. The whole set of
consistent executions of the program consists of one execu-
tion where the loop executes n times for every n, and one
infinite execution where the loop is never exited.

In the rest of the paper we refer to the following two
axioms that determine whether and where non-atomic loads
can read from.

• det_read determines whether a load r should read from
somewhere: it requires that ∃w.(w, r) ∈ rf if and only if
∃w′.(w′, r) ∈ vse.

• consistent_non_atomic_rf requires that if a non-atomic

load r reads from a write w we must have (w, r) ∈ vse.

The following other axioms are needed to understand why
the examples in §3 are consistent and to understand the
equivalence proof (which is included in the supplementary
material). It is however not necessary to understand these
axioms in order to understand how the operational semantics
works and why it solves the fundamental problem mentioned
in the introduction.

• consistent_atomic_rf forbids atomic loads to read from
hb later writes.

• rmw_atomicity requires for each RMW r that it reads
from a write w if and only if w is an immediate mo

predecessor of r. Note that in consistent executions there
can be at most one immediate mo predecessor, because
consistent_mo requires mo to be a total order over atomic
writes.

• sc_reads_restricted further restricts sequentially consis-
tent (SC) loads and RMWs r: if r reads from an SC write
w, then we must have (w, r) ∈ sc and there cannot be a
write w′ to the same location that is between w and r in
sc. If r reads from a non-SC write w, then there cannot
be a write w′ to the same location with (w,w′) ∈ hb and
(w′, r) ∈ sc.

• coherent_memory_use forbids certain coherence shapes,
which force mo in a certain direction: if (w,w′) ∈ hb

then (w′, w) /∈ mo; or which restrict rf : if (w′, w) ∈ mo

and (w, r) ∈ hb, then (w′, r) /∈ rf ; if (r, w) ∈ hb and
(w,w′) ∈ mo, then (w′, r) /∈ rf ; and if (w, r) ∈ rf ,
(w′, w) ∈ mo and (r, r′) ∈ hb, then (w′, r′) /∈ rf .

• consistent_hb requires that hb is acyclic and has finite
pre-fixes.

• locks_only_consistent_locks requires that for every two
successful locks l and l′ with (l, l′) ∈ lo there exists an
unlock u which is between l and l′ in lo.

• sc_fenced_sc_fences_heeded forbids certain shapes in-
volving SC fences, such as (w′, f) ∈ sb, (f, w) ∈ sc

and (w,w′) ∈ mo with f a fence.
• well_formed_threads and assumptions require certain ba-

sic properties such as sb and asw are relations over the
actions of the pre-execution, sb relates actions of the
same thread and asw of different threads, all relations
of the pre-execution and witness have finite pre-fixes,
etcetera.

2.7 Races

Besides a consistency predicate the axiomatic concurrency
model defines a race predicate. If one of the consistent exe-
cutions contains a race according to this predicate, the whole
program is undefined; otherwise the program is defined and
the behaviour is the set of consistent executions. An exam-
ple of a race is a data race: two actions, at least one a write
and at least one non-atomic, that are of different threads, not
happens-before related, but to the same location.

All the consistent executions of the message passing pro-
gram in Figure 3 are race free. In particular, the actions d
and i in Figure 7 do not race with each other because e and
h synchronise (for the same reason why the actions e and
h in Figure 6 synchronise). Without the acquire fence this
would not be true, and the program would be undefined.

2.8 The Fundamental Problem

Having introduced the axiomatic model we can now illus-
trate the fundamental problem we mentioned in the intro-
duction. The program in Figure 8 uses message passing to
send the value of data to the other thread. Suppose we are
generating a pre-execution of this program where the first
thread wrote x to data and the second thread reads α from
data . With the axiomatic model we only find out that α has
to be x after we have generated the complete pre-execution.

int data = 0;

_Atomic(int) flag = ATOMIC_VAR_INIT(0);

{-{ { // Some code that does not change ‘flag’

// Set ‘data’ to some value

atomic_store_explicit(&flag, 1,

memory_order_release); }

||| { while(atomic_load_explicit(&flag,

memory_order_relaxed) != 1) {};

atomic_thread_fence(memory_order_acquire);

// Read ‘data’ and use it

// Some more code

}

}-};

Figure 8. Message passing within a larger program

This means we have to explore all the paths where α 6= x
although none of them are consistent.

3. Incrementalising the Axiomatic Model:

The Problems

We develop our operational semantics in stages: in the first
two stages we develop an operational concurrency model

that assumes a complete pre-execution given up-front (just
like the axiomatic model), and incrementally generates ex-
ecution witnesses; in the third stage we also incrementally
generate the pre-execution (see §4 for a complete descrip-
tion of the stages). In this section we consider the challenges
of the first stages, namely how to develop an operational con-
currency model that is equivalent to the axiomatic model.

Before we discuss those challenges we introduce some
terminology. With committing action a we mean adding ex-
ecution witness relations (rf , mo, lo or sc; see Table 1 for an
explanation of the acronyms) between previously committed
actions and a. With following or respecting a certain order r
we mean that we commit actions in a way that agrees with
r: let com be the commitment order (that is, (a, b) ∈ com if
a has been committed before b), we say that we follow r if
for all (a, b) ∈ com we have (b, a) /∈ r. For example, if we
would commit the actions of the left side of Figure 10 in the
order a, b, c, . . . , f then we would not respect rf because the
edge (f, c) ∈ rf goes against this order.

A requirement that follows from later sections is that we
should follow rf . In a complete pre-execution all the reads
have a concrete value (that is arbitrarily chosen), but later
we want the concurrency model to determine which value
is read. Since rf relates reads to the write they read from,
this means that the concurrency model has to establish an
rf -edge to the read when it commits the read; in other words
it has to follow rf .

The first problem we face is that hb edges (happens-
before edges) between previously committed actions might
disappear when committing new actions. This is conceptu-

ally very strange and it has undesirable consequences, which
we discuss in §3.1. In the same section we show that if we
follow mo then this problem does not occur.

The other problems follow from the existence of consis-
tent executions with particular cycles. In §3.2 we show that
we cannot follow sb (the program order), in §3.3 that we
cannot follow sc (the sequential consistent order) and in §3.4
that we cannot follow sw (the synchronises-with order). In
§3.1, §3.3 and §3.4 we suggest possible changes to future
versions of the C/C++11 model.

3.1 Disappearing Synchronisation

Most kinds of synchronisation are not affected by adding
new actions. For example, a synchronising release-acquire
pair will be synchronised no matter which or how many
new actions are added to the execution, and similarly for a
synchronising unlock-lock pair. However, this is not true for
types of synchronisations that depend on release sequences,
as can be seen in Figure 9.

:Ra
q x= 2

a:Wrel x= 1

b:Wrlx x= 2

hb

rf

sb,

mo

:Ra
q x= 2

d:Wrlx x= 3

a:Wrel x= 1

b:Wrlx x= 2

rf

mo

mo

no hb

sb

Figure 9. Disappearing synchronisation. On the left side a
and b form a release sequence, and because c reads from a
part of the release sequence it synchronises with a. On the
right side a and b no longer form a release sequence, and
therefore c does not synchronise with a anymore.

The rationale behind release sequences is that write-
releases are typically implemented by a memory barrier just
before the machine write. Independent of whether the read
c on the left side of Figure 9 reads from a or b, the barrier
of the write-release a needs to be propagated to c’s thread
first, which means c will synchronise with a in either case.
Release sequences are defined to capture this without refer-
ring to implementations: a release sequence starts at a write-
release w and extends to all mo later writes w′ such that w′

is either a RWM or to the same thread as w, and such that
all writes between w and w′ in mo are also either RMWs or
to the same thread as w. Then the synchronises-with relation
(§2.5) includes pairs (w, r) with r a read-acquire that reads
from a write w′ in the release sequence of w.

Such a release sequence can be broken by executing a
new action, as illustrated in Figure 9. In the execution on
the left, the writes a and b are part of a release sequence, and
because the read c reads from a write in this sequence, it syn-
chronises with the first write in the sequence. In the second
execution, however, a new write d is inserted in modifica-

a:Wna x=0

b:Wna y=0

f:Wrlx x=42

:Rrlx x=42

d:Wrlx y=42

e:Rrlx y=42

sb

mo

sb

rf

rf

asw asw

sb

mo

a:Wrlx y=2

b:Wrlx x=1

f:Rrlx y=2
:Rrlx x=2

d:Wrlx x=2

e:Wrlx y=1

sb

rf rf

mo

sb

mo

sb

sb

Figure 10. On the left a consistent execution with a cycle in
rf ∪ sb and on the right one with a cycle in mo ∪ sb

tion order between the existing writes a and b, which breaks
the release sequence. Therefore, there is no synchronisation
between the read c and write a anymore.

Such disappearing hb edges make it difficult to construct
an operational concurrency model that generates all consis-
tent executions. An hb edge restricts consistent executions
in many ways: for example, it restricts the set of writes that
a read can read from, and it forces modification order in
certain directions. If the concurrency model took those re-
strictions into consideration but at a later step the hb edge
disappeared, the concurrency model would have to recon-
sider all earlier steps. If on the other hand the concurrency
model already took into account that an hb edge might dis-
appear when it encounters an hb edge, the number of pos-
sibilities would blow up, and furthermore many executions
would turn out to be inconsistent when the hb edge does not
disappear after all.

Our solution to prevent disappearing synchronisation is
to follow mo when committing actions. We prove that this
suffices in a later section, in Theorem 5.5. Another solution
would be to change the axiomatic model (and the C/C++
ISO standards) by allowing the release sequence to extend
to sb-later writes in the same thread irrespective of whether
the write is immediately following in mo order. We believe
that this matches hardware behaviour, so this change would
not invalidate current implementations of C/C++11.

3.2 Abandoning Program Order

There are two kinds of cycles that show that we cannot
follow program order. For the first, recall that the operational
concurrency model has to follow rf to determine the return
values of reads. Then the cycle in rf ∪ sb in the execution on
the left of Figure 10 shows that we cannot follow program
order (sb) at the same time. This execution has to be allowed
in C/C++ because it is allowed on POWER and ARM, and
observable on current ARM hardware.

For the second, observe that the execution on the right
of Figure 10 has a cycle in mo ∪ sb. As described in the
previous subsection, we follow mo, so the existence of this
cycle is another reason we cannot follow program order. This
execution is also allowed on POWER and ARM so it has to
be allowed in C/C++.

3.3 Abandoning Sequential-Consistent Order

Recall from §2.2 that C/C++11 introduces sequential con-
sistent atomics that are guaranteed to appear in a global total
order. When all accesses to atomics have this SC memory or-
der annotation, programs that have no non-atomic races be-
have as if memory is sequentially consistent (Batty [2, 4]).
It is therefore surprising that the concurrency model cannot
follow the sc relation when other memory orders are present.

Our argument is as follows. The execution in Figure 11
contains a cycle in mo ∪ rf ∪ sc, so we cannot follow all
three relations together. We saw before that we have to fol-
low both rf and mo, hence we cannot follow sc. To the best
of our knowledge, this execution is not observable on POW-
ER/ARM, so this suggests another possible strengthening of
C/C++11, which would allow an operational model to follow
sc by disallowing mo ∪ rf ∪ sc cycles.

a:Ws
 x= 1

b:Wrlx x= 2
:Rs
 x= 2

mo

rf

s

Figure 11. A consistent execution with a cycle in mo∪rf ∪
sc (omitting initialisation)

3.4 Abandoning Synchronises-with Order

Just as disappearing synchronisation makes it hard to de-
velop an operational semantics, new synchronisation to pre-
viously committed actions makes it equally hard.

To see this consider the situation where there was no
hb edge between a write w and a load r when the load
was committed, but committing a new action a creates a hb

edge between w and r. The consistency predicate consis-

tent_non_atomic_rf requires that a non-atomic read r reads
from a write that happens before it2 (§2.6, observing that

2 The requirement that non-atomic reads can only read from happens-before
writes holds for all consistent executions, so also for racy executions. This
seems counterintuitive: it could potentially make all racy executions of a
program inconsistent, which would mean that the program does not have
a race according to C11. In fact, there are some out-of-thin-air programs
where that happens (Vafeiadis et al. [26] use it to prove certain compiler
optimisations unsound), but the good news is that the predicate does not re-
move any races that occur in mainstream hardware: the proof that the com-
pilation scheme to POWER is sound [5] explains how one can construct
a consistent racy C11 execution from a racy POWER execution, and we
expect that the soundness proofs of the compilation schemes to ARM and
x86 do the same. However, all this is essentially irrelevant for our semantics:

vse ⊆ hb). When committing r we either have to consider
w and discard the execution when there never appears a hb

edge, or we do not consider it, but then we have to reconsider
the execution of r as soon as there does appear a hb edge.
Similarly, the consistency predicate det_read requires that r
(regardless of whether it is atomic or not) is indeterminate if
there does not happen a write before it (§2.6, again observing
that vse ⊆ hb), so the same problems applies here.

The hb relation is a superset of the synchronises-with
(sw) relation, that arises from thread creation, synchronising
locks and synchronising release-acquire atomics or fences.
If we would have been able to follow sw , it would have been
easier to prevent new synchronisation between previously
committed actions. However, the execution in Figure 12
has a cycle in sw ∪ rf , and since we follow rf we can
therefore not follow sw . This execution is not observable
on POWER/ARM, so again one might conceivably forbid
sw ∪ rf cycles to allow the operational semantics to follow
the sw order.

4. Constructing an Operational Model:

Overview

In the rest of the paper we construct the operational seman-
tics in the following three stages.

Stage 1 The incremental concurrency model In §5 we
present an order r that can be used to incrementally generate
all consistent executions, in contrast to the orders presented
in the previous section. The crucial property of the order r is
the following: an r-prefix of a consistent execution is again

a consistent execution.
We use this order to define the incremental concurrency

model in the following way. We assume for now that a com-
plete pre-execution is given (in a later stage we remove this
assumption). We define a notion of state that contains a par-
tially generated execution witness, and we allow a transition
from state s1 to s2 if s2 extends s1 with one action, and s2
is consistent.

To prove completeness (for finite executions), we exploit
that consistency is closed under r-prefixes: let ex be a con-
sistent execution with n actions, define the states s0, . . . , sn
where si is the r-prefix of ex with i actions. Then the incre-
mental model can transition from si to si+1 and therefore it
can incrementally generate the consistent execution ex .

Limitations To actually compute a next state s2 from a
state s1 one would have to enumerate all possible execu-
tion witnesses and filter them according to the criteria “s2
extends s1 with one action, and s2 is consistent”. Comput-
ing behaviour this way is even less efficient than with the
axiomatic model itself, since there one would only need to

C11 requires consistent executions to satisfy consistent_non_atomic_rf, and
defines races only for those, and therefore we require the same. Because ex-
haustive exploration with our operational semantics generates all consistent
executions, exhaustive exploration will find all C11 races.

a:RMWrel y= 2/3

b:Wrlx y= 4

d:Fa/r

:Rrlx y= 4

e:Wrlx x= 1 f:RMWa
q x= 1/2

k:RMWrel x= 2/3

g:RMWa
q y= 1/2

h:Rrlx x= 4

i:Fa/r

j:Wrlx y= 1

l:Wrlx x= 4

sb

rf, mo

rf, mo

sb

swsw

sw sw

sb,mo

rf, mo rf, mo

sb

sb

rf

sb, mo

rf

Figure 12. A consistent execution with a cycle in sw ∪ rf (omitting initialisation)

enumerate the witnesses once while here for every transition.
This limitation is precisely what we solve in the next stage.

Stage 2 The executable concurrency model In §6 we
present the executable concurrency model. This is similar
to the incremental model: it also assumes a complete pre-
execution, it has the same notion of states, and it can transi-
tion from a state s1 to s2 if and only if the incremental model
can. The difference is that the executable model defines tran-
sitions using a function that given a state s1 returns the set
of all states where s1 can transition to. This makes it feasible
to compute transitions.

We develop this transition function by examining how the
relations rf , mo, sc and lo (that together form the execution
witness) can change during a transition of the incremental
model.

Limitations The transition function internally still enu-
merates some candidates and filters them using some of the
conjuncts of the axiomatic consistency predicate. We believe
that the set of a priori possible candidates can be further re-
duced when we know exactly how hb changes during a tran-
sition (instead of the general results stated in Theorem 5.5
and Theorem 5.6); we leave this, which is an implementa-
tion optimisation, for future work. The point is that we have
to enumerate significantly fewer candidates than in the in-
cremental model: the executable model enumerates at most
n2 candidates where n is the number of actions in the partial
witness, while the incremental model enumerates all possi-
bilities for four partial orders over n actions.

The remaining limitation is that the executable model still
assumes a complete pre-execution given up-front. This is
what we solve in the next stage.

Stage 3 The operational semantics In §7 we integrate
the executable concurrency model with an operational model
for the sequential aspects of a substantial fragment of C.
Here the latter incrementally builds a pre-execution while
the concurrency model incrementally builds a witness, syn-
chronising between the two as necessary.

The main obstacle we had to overcome was the fact that
the executable concurrency model cannot follow program
order (as explained in §3), but the sequential semantics does.
Our solution is to allow the sequential semantics and the
concurrency model to transition independently of each other:
the former generates actions in program order, and at every
step the concurrency model commits zero, one or more of the
generated actions.

A consequence of the independent transitions is that when
the sequential semantics generates a read, the concurrency
semantics might not immediately commit that read and re-
turn the value. In that case the sequential semantics has to
be able to continue its execution without the return value.
Our solution is to make the sequential semantics symbolic:
for all reads we use fresh symbols for the return values, and
whenever the concurrency model commits a read we resolve
the symbol with the value actually read.

When a control operator with a symbolic condition is en-
countered the sequential semantics non-deterministically ex-
plores both branches, adding the corresponding constraints
to a constraint set. In some cases the semantics explores a
path that leads to an inconsistent constraint set, in which case
the execution is terminated. A production tool would need
to backtrack or explore a different path at such points, and it
would be critical to resolve constraints as early as possible.

The semantics can detect C/C++11 races on the path it
explores, but, as for any non-exhaustive semantics, it cannot
detect races on other paths.

5. The Incremental Model

In the light of the non-approaches of §3, we now show
how one can, given a complete pre-execution (with concrete
values for all the reads), incrementally generate witnesses
in such a way that every consistent witness over the pre-
execution can be generated.

Let ex be a finite consistent execution whose witness
we want to incrementally generate. The first step is to find
an order a1, . . . , an of the actions of ex in which we plan
the generate the witness; we define this order in §5.1 and

prove that it is acyclic, in contrast to the candidate orders
considered in §3.

Then we define the partial executions ex 1, . . . , exn we
plan to generate when committing the actions a1, . . . , an,
see §5.2. In §5.3 we prove that hb edges do not disappear
during a transition from ex i to ex i+1, and neither do there
appear new hb edges between previously committed writes
and reads (in respectively §3.1 and §3.4 we discussed why
we need those properties).

Then in §5.4 we prove that the partial executions
ex 1, . . . , exn are all consistent if ex is consistent, and, based
on that, we define a transition relation in §5.5. Finally, we
define the incremental model in §5.6 and prove equivalence
with the axiomatic model for finite executions.

Notation Recall from §2 that an execution consists of a
pre-execution, an execution witness and derived relations.
The function that derives those relation is get_rel , so ex =
(pre,wit , get_rel(pre,wit)).

We use the notation pre.sb and wit .rf to refer to parts
of pre-executions and execution witnesses. For brevity, we
abuse this notation by writing ex .sb when we should actu-
ally write “let ex = (pre,wit , rel), consider pre.sb” and
likewise for the parts of the witness (such as ex .rf) and de-
rived relations (such as ex .hb).

5.1 The Commitment Order

Recall that the operational concurrency model has to follow
rf to determine the return values of reads, and it has to
follow mo in order to preserve earlier synchronisation (see
§3.1). To prevent the situation described in §3.4 regarding
the predicates consistent_non_atomic_rf and det_read, it is
enough to prevent new synchronisation appearing between
previously committed writes and loads. To achieve this, we
also follow {(a, b) ∈ hb | is_load(b)}.

This order satisfies all the properties we would need to in-
crementalise the axiomatic model, but it leaves many actions
unordered, which means that the transition relation would be
very non-deterministic. To reduce this non-determinism as
much as possible, we include as much of hb as we can. Be-
cause we cannot follow program order (see §3.2) we know
that we cannot include all of hb.

We decided to leave out hb edges to atomic writes, and
include all hb edges to other types of actions. (For locks
and unlocks there is a choice whether to include hb edges
to locks and unlocks, or to follow the lock-order lo, but one
cannot include both since there can be a cycle in their union.
We did not see any compelling argument in favour of either
of the two, and we chose to follow the former.) In other
words, this order allows us to speculate writes, and forces
us to commit all other actions in hb order.

Definition 5.1 (Commitment order). Let ex be a candidate
execution. First define ex .almost_hb =

{(a, b) ∈ ex .hb | ¬ (is_write(b) ∧ is_atomic(b))}.

a:Wna x=0

b:Wna y=0

f:Wrlx x=42

:Rrlx x=42

d:Wrlx y=42

e:Rrlx y=42

a:Wrlx y=2

f:Rrlx y=2

b:Wrlx x=1

:Rrlx x=2

d:Wrlx x=2

e:Wrlx y=1

Figure 13. The commitment orders of the executions in
Figure 10. Note that these are strict partial orders and do
not contain any cycles.

Then define ex .com = (ex .rf ∪ ex .mo ∪ ex .almost_hb)
+

where ·+ is the transitive closure.

Theorem 5.2. Let ex be consistent. Then the relation

ex .com defined above is a strict partial order.

The proof, like all our work, has been mechanised in
Isabelle/HOL and is included in the supplementary material.

5.2 States

A state s consists of a set of actions s.committed denoting
the actions that have been committed so far, and an execution
witness s.wit denoting the execution witness built up so far.
Note that the pre-execution is not part of the state, since it is
given up-front.

Let ex be the execution that we want to incrementally
generate, and a1, . . . , an the actions of that execution in
some order that agrees with ex .com defined in the previ-
ous subsection. We want the states s1, . . . , sn to reflect the
witness built up so far, and an obvious thing to do is to define
si.committed to be the actions a1, . . . , ai that are commit-
ted so far, and si.wit as the restriction of ex .wit to those
actions. The initial state s0 is always the same (regardless
of the given pre-execution) because s0.committed = ∅ and
s0.wit the empty witness.

Definition 5.3. Let pre be a pre-execution, and S a set of
actions. Then preRestrict(pre, S) is defined by

preRestrict(pre, S).actions = pre.actions ∩ S

preRestrict(pre, S).sb = pre.sb ∩ S × S

preRestrict(pre, S).asw = pre.asw ∩ S × S

Similarly, with wit an execution witness, witRestrict is
defined by restricting rf , mo, sc and lo to S × S, as in

witRestrict(wit , S).rf = wit .rf ∩ S × S

And finally, with ex = (pre,wit , rel) an execution,
exRestrict is defined by

pre ′ = preRestrict(pre, S)

wit ′ = witRestrict(wit , S)

exRestrict(ex , S) = (pre ′,wit ′, get_rel(pre ′,wit ′))

The partial executions ex i mentioned in the intro of
this section are then given by exRestrict(ex , Ai) where
Ai = {a1, . . . , ai}. Note that we have also restricted the
pre-execution to the set of actions committed, although the
complete pre-execution is fixed during the generation of the
witness. We have two reasons for that: one is that otherwise
the partial execution would be inconsistent (since the actions
in the pre-execution that have not been committed yet have
no mo, rf , etc. edges to and from them, while this is in some
cases required to be consistent). And the second reason is
that when we integrate with the operational threadwise se-
mantics, the pre-execution is no longer fixed.

a:Wna x=0

b:Wna y=0

d:Wrlx y=42

e:Rrlx y=42

sb

mo

rf

asw

b:Wrlx x=1

:Rrlx x=2

d:Wrlx x=2

e:Wrlx y=1

sb

mo

rf

sb

Figure 14. On the left exRestrict(ex ℓ, {a, b, d, e}) and on
the right exRestrict(ex r, {b, c, d, e}) where ex ℓ and ex r are
respectively the executions on the left and right of Figure 10

5.3 Properties of Happens-before

In §3.1 we explained that synchronisation could disappear
when mo is not followed. Since we have included mo in
the commitment order, the counterexample does not apply
anymore, and we can prove that hb grows monotonically.
We use the following auxiliary definition for that.

Definition 5.4. Let r be a relation over actions, and A a set
of actions. Then downclosed(A, r) holds if and only if for
all (a, b) ∈ r with b ∈ A we have that a ∈ A.

For example downclosed(A, ex .mo) means that there are
no mo edges from outside A into A. Now the following
monotonicity theorem states that if that is true for A, then
the restriction of ex to A does not contain any hb edges
that are not in ex , or in other words none of the hb edges
disappeared.

Theorem 5.5. Let ex be an execution. Let A be

a set of actions with downclosed(A, ex .mo). Then

(exRestrict(ex , A)).hb ⊆ ex .hb.

Recall that in §3.4 we mentioned another desirable prop-
erty of how hb changes: there should not appear new
synchronisation between previously committed writes and
loads. We prove a slightly stronger result: there does not ap-
pear new synchronisation between any type of action to an
action that is not an atomic write.

Theorem 5.6. Let ex be a consistent execution. Let A be a

set of actions such that downclosed(A, ex .com). Then for

all (a, b) ∈ ex .hb with b ∈ A and b not an atomic write, we

have that (a, b) ∈ (exRestrict(ex , A)).hb.

5.4 Consistency of Prefixes

Now we know how hb changes during incremental genera-
tion of executions, we can prove that the partial executions
exRestrict(ex , Ai) (as defined in §5.2) are consistent, where
Ai is the set of actions committed so far. This means that
every consistent execution can be build incrementally while
being consistent at every step.

Theorem 5.7. Let A be a set of actions such that

downclosed(A, ex .com). If ex is a consistent execution,

then exRestrict(ex , A) is a consistent execution.

5.5 Transition Relation

Given a consistent execution ex , an order a1, . . . , an, and
the partial executions ex i = exRestrict(ex , {a1, . . . , ai}),
we now define a transition relation that allows the transition
between ex i and ex i+1. This ensures completeness: if we
use this transition relation to follow paths from the initial
state (containing an empty witness) we know that we will
generate all consistent executions.

The transition relation incrementalStep(pre, s1, s2, a) is
intended to hold if committing a in state s1 can result in state
s2, given the pre-execution pre (recall that we still assume to
be given a complete pre-execution). The transition relation
has several conjuncts, which we describe after giving the
definition.

Definition 5.8. phantom
The relation incrementalStep(pre, s1, s2, a) is defined as

a ∈ pre.actions ∧ (1)

a /∈ s1.committed ∧ (2)

s2.committed = s1.committed ∪ {a} ∧ (3)

witRestrict(s2.wit , s1.committed) = s1.wit ∧ (4)
[

∀b ∈ pre.actions .

(b ∈ s1.committed → (a, b) /∈ ex .com) ∧

((b, a) ∈ ex .com → b ∈ s1.committed)
]

∧ (5)

isConsistent(exprefix) (6)

where ex and exprefix are defined by

ex = (pre, s2.wit , get_rel(pre, s2.wit))

preprefix = preRestrict(pre, s2.committed)

exprefix = (preprefix , s2.wit , get_rel(preprefix , s2.wit))

Conjunct (1) makes sure that an action of the pre-
execution is committed (and not an arbitrary action), Con-
junct (2) that the action a has not been committed yet, and
Conjunct (3) that the set of committed actions is updated
correctly during the transition. Conjunct (4) ensures that all
the changes to the witness involve the new action a; in other
words, the execution witness restricted to the old set of com-
mitted actions is still the same. Conjunct (5) ensures that ac-
tions are committed according to the commitment order, and
finally Conjunct (6) ensures that the generated partial execu-
tion is consistent (isConsistent is the axiomatic consistency
predicate).

We define that incrementalTrace(pre, s) holds if s is
reachable from the initial state following incrementalStep.
The following states that all consistent executions are reach-
able.

Theorem 5.9. Let ex be a consistent, finite execution.

Let A be a set of actions with A ⊆ ex .actions and

downclosed(A, ex .com). Then there exists a state s with

s.committed = A

s.wit = witRestrict(ex .wit , A)

such that incrementalTrace(pre, s).

5.6 The Incremental Model

We now define a new notion of consistency that uses
incrementalTrace , which is equivalent to the axiomatic
consistency predicate for finite executions.

Definition 5.10. Let ex = (pre,wit , get_rel(pre,wit)) be
a candidate execution. We define

incrementalConsistent(ex) =

∃s.
(

incrementalTrace(pre, s) ∧

s.wit = wit ∧ s.committed = pre.actions
)

Theorem 5.11 (Equivalence). Let ex be a finite candidate

execution with ex = (pre,wit , get_rel(pre,wit)). Then

incrementalConsistent(ex) holds if and only if ex is con-

sistent according to the axiomatic model.

6. An Executable Model

In the previous section we saw that all finite consistent wit-
nesses can be generated incrementally: starting from the ini-
tial state s0 we follow incrementalStep(pre, si, si+1, ai)
to generate the states s1, . . . , sn until we have committed
all the actions of the pre-execution. The problem is that
incrementalStep is a relation, so to actually compute a state

si+1 from the state si we have to enumerate states until one
of them satisfies incrementalStep.

In this section we define a step function executableStep

that given a state and a pre-execution, returns the set of
possible next states, which makes it feasible to compute
executions incrementally.

To find out how we should define the step func-
tion we investigate how si+1 differs from si when
incrementalStep(pre, si, si+1, ai) holds. For the set of
committed actions this is clear: si+1.committed =
si.committed ∪ {a} since this is directly required by
incrementalStep (see Definition 5.8). For the witness this
is not immediately obvious, so we investigate this in the fol-
lowing sections: in §6.1 we consider the mo relation, in §6.2
the rf relation, and in §6.3 the sc and lo relations. Then in
§6.4 we define the step function.

6.1 Modification Order

We consider how mo can change from si to si+1 when
action a is committed. In consistent executions, mo is an
order over atomic writes that is total over the writes of the
same location. We therefore expect mo to remain the same if
a is not an atomic write, and a to be added to mo otherwise.
Since the modification order is included in the commitment
order, we expect that a can only be added to the end of
the existing mo order. To state that formally, we define a
function addToMo that adds an action a at the end of the
modification order of a state s.

Definition 6.1. Define sameLocWrites(A, a) as

{b ∈ A | is_write(b) ∧ loc_of (b) = loc_of (a)}.

Then define addToMo(a, s) as s.wit .mo ∪ {(b, a) | b ∈
sameLocWrites(s.committed , a)}.

We now formally state our expectations of how mo

changes. The state s should be thought of as the current state,
and ex as the execution we try to transition to. We explain
the assumptions afterwards.

Lemma 6.2. Let s be a state, ex an execution and a an

action, for which the following holds.

a /∈ s.committed (7)

ex .actions = s.committed ∪ a (8)

witRestrict(ex .wit , s.committed) = s.wit (9)

downclosed(s.committed , ex .mo) (10)

isConsistent(ex) (11)

If a is an atomic write, we have ex .mo = addToMo(a, s)
and otherwise we have ex .mo = s.wit .mo.

Assumptions (7) and (8) together state that there is one
new action in ex . Then (9) states that the witnesses of ex and
s agree on the part that is already committed in s; assumption
(10) states that so far, the execution has followed mo; and

finally, (11) states that ex is consistent. The conclusion of the
lemma then says that if a is an atomic write, the modification
order of s changes according to addToMo, and otherwise it
does not change.

6.2 Reads-from Relation

We consider how rf can change from si to si+1 when ac-
tion a is committed. In consistent executions, rf is a relation
from writes to reads. Because rf is included in the commit-
ment order, we only expect new rf edges to the new action a
and not from a. Hence, how rf changes depends on whether
a is a load, an RMW, or neither.

In case a is a load, the first observation is that there could
be multiple writes where a could read from. To account
for this we let addToRfLoad non-deterministically return
a new rf relation (which is mathematically modelled as a
function that returns a set of rf relations). There is also
the possibility that a does not read from anywhere. The
consistency predicate det_read describes when this happens:
if there exists a write that happens before a then a should
read from somewhere, otherwise it should not. This could
be self-satisfying: if there is no write that happens before
a, creating a rf edge might create hb edge from a write to
a which would then make det_read true. Hence, we non-
deterministically choose to create a rf edge or not, and when
the new hb relation is known, we check whether there should
have been an edge or not.

Definition 6.3. Define addToRfLoad(a, s) as follows.
First, non-deterministically choose between return-
ing s.wit .rf (meaning no new edge is added), or
non-deterministically picking a write w from the set
sameLocWrites(s.committed , a) for which we have
value_written_by(w) = value_read_by(a) and returning
s.wit .rf ∪ {(w, a)}.

In the second case (where a is an RMW), the consis-
tency predicate rmw_atomicity requires that a reads from its
immediate mo-predecessor if there is one, and otherwise it
should be indeterminate (not reading from any write).

Definition 6.4. Define addToRfRmw(a, s) as follows. If
the set sameLocWrites(s.committed , a) is empty, return
s.wit .rf . Otherwise, there is a mo-maximal element w
of that set. We check whether value_written_by(w) =
value_read_by(a) holds, and if so, we return s.wit .rf ∪
{(w, a)}.

We can now formally state our expectations about how
rf changes during a transition. For the explanation of
the assumptions we refer to the explanation given after
Lemma 6.2.

Lemma 6.5. Let s be a state, ex an execution and a an

action for which

a /∈ s.committed

ex .actions = s.committed ∪ a

witRestrict(ex .wit , s.committed) = s.wit

downclosed(s.committed , ex .mo)

downclosed(s.committed , ex .rf)

isConsistent(ex)

(1) If a is a load, then ex .rf ∈ addToRfLoad(a, s).
(2) If a is a RMW, then ex .rf ∈ addToRfRmw(a, s).
(3) Otherwise we have ex .rf = s.wit .rf .

6.3 SC and Lock Order

In consistent executions, sc is a total order over all actions
with an SC memory order, and lo is an order over locks and
unlocks that is total per location. Because there exist cycles
in sc∪com and in lo∪com , we have to allow the new action
a to be inserted before already committed actions in either
order. Our approach is to define the functions addToSc and
addToLo that non-deterministically insert a anywhere in
respectively sc or lo, and later filter the possibilities that
became inconsistent.

Then we prove a lemma similar to Lemma 6.2 and
Lemma 6.5 that shows that this construction suffices: if a
has a sequential consistent memory order, we have ex .sc ∈
addToSc(a, s) and otherwise we have ex .sc = s.wit .sc; if
a is a lock or an unlock, we have ex .lo ∈ addToLo(a, s)
and otherwise we have ex .lo = s.wit .lo.

6.4 The Transition Function

With the results of §6.1, 6.2 and 6.3 it is now straightforward
to define a non-deterministic function performAction(s, a)
that returns an execution witness based on the type of a.

• Loads: we change rf with addToRfLoad . If the memory
order of a is SC, we change the sc relation with addToSc.

• Stores: if a is atomic we change mo with addToMo. If
the memory order is SC we change sc with addToSc.

• RMWs: we change rf with addToRfRmw , mo with
addToMo, and if the memory order is SC then sc with
addToSc.

• Locks and unlocks: we change lo with addToLo.
• Fences: if the memory order is SC we change sc with
addToSc.

Definition 6.6. Define executableStep(pre, s) as follows.
First non-deterministically pick an action a ∈ pre.actions
with a /∈ s.committed . Then, non-deterministically gen-
erate a witness wit using performAction(s, a). Define the
new state s2 with s2.committed = s.committed ∪ {a} and
s2.wit = wit . Finally, check whether our choice followed
the commitment order and resulted in a consistent execution

by discarding states that do not satisfy Conjunct (5) or Con-
junct (6) of Definition 5.8. For each of the non-discarded
options, the function returns the pair (s2, a).

Theorem 6.7. We have (s2, a) ∈ executableStep(pre, s1)
if and only if incrementalStep(pre, s1, s2, a).

Define executableTrace and executableConsistent in
the same way as in the incremental model (Definition 5.10),
but then using executableStep instead of incrementalStep.
From the previous theorem and from Theorem 5.11 it then
follows that the executable model is equivalent to the ax-
iomatic model for finite executions:

Corollary 6.8. Let ex be a finite candidate execu-

tion with ex = (pre,wit , get_rel(pre,wit)). Then

executableConsistent(ex) holds if and only if ex is con-

sistent according to the axiomatic model.

7. Integration with the Threadwise Model

In the previous section we defined an executable transition
function, but we still assumed that we are given a complete
pre-execution with concrete values for all the reads. We now
integrate that executable model with an operational thread-
wise semantics that builds pre-executions incrementally.

As the front-end language, we use a small functional pro-
gramming language with explicit memory operations (Core).
This is developed as an intermediate language in a broader
project [16] to give semantics of C; as such, any C program
can be elaborated to a Core program.

The challenge here is that the operational semantics of
Core follows program order, while the executable concur-
rency model does not. Our solution is to let the two models
take transitions independently of each other, so the former
can follow program order, while the latter follows the com-
mitment order. A consequence of this is that the concurrency
model does not always immediately commit a read when the
threadwise semantics has generated it, which means that the
threadwise semantics does not know the return value, but at
the same time it has to be able to continue the execution. Our
solution is to continue the execution symbolically.

We describe the interaction between the operational se-
mantics of Core and the executable concurrency model in
§7.1 and the validation in §7.2. The symbolic execution has
significant drawbacks and one might hope that it is only
needed for atomics, but in §7.3 we show that it is also neces-
sary for non-atomics. Then in §7.4 we discuss what remains
necessary to produce a more generally usable tool.

7.1 The Interaction with the Threadwise Model

The integrated semantics starts with an empty pre-execution,
and then goes on to alternate between performing one step of
the Core dynamics and zero or more steps of the concurrency
model.

The Core dynamics is a step function: from a given Core
program state it returns the set of memory actions (and the

resulting Core program state should that operation be per-
formed) that can be performed at this point by the program.
These actions are communicated to the concurrency model
by adding them to the pre-execution. For load operations,
the resulting Core program state needs a read value. Since
the concurrency model may choose not to provide a value
immediately, we introduce a symbolic name for the value
read, and use it to build the resulting Core state.

As a result all values in Core programs must be sym-
bolic. This means in particular that the execution of con-
trol operators is done symbolically. When a control point
is reached, the threadwise semantics non-deterministically
explores both branches, under corresponding symbolic con-
straints for each branch.

When the concurrency model does give an answer for a
read, at some later point in the execution, the set of con-
straints is updated by asserting an equality between the
symbolic name created earlier for the read and the actual
value. In the case of execution branches that should not have
been taken, the constraint therefore becomes unsatisfiable
and the execution path is killed. Our C semantics elabo-
rates the many C integral numeric types into Core operations
on mathematical integers, so all constraints are simply over
those.

This solves the fundamental problem we stated in the
introduction: although the concurrency model cannot always
immediately determine the value of a read, it does so during

the generation of the pre-execution which avoids exploring
many incompatible control-flow unfoldings.

7.2 Validation

The correctness of the concurrency model is guaranteed
by the equivalence theorem. To validate the integration we
have run the semantics on the following classic litmus test
programs (these tests are available in the supplementary
material):

• Message passing: a version with a write-release, a relaxed
read in a loop, and an acquire fence (see Figure 3)

• Load buffering: a version with relaxed atomics (that al-
lows the cycle given on the left of Figure 10), a ver-
sion with release/acquire atomics, and a version with SC
atomics.

• Store buffering: a version with relaxed atomics, a ver-
sion with release/acquire atomics, and a version with SC
atomics.

• A program that allows a cycle in mo∪sb (see Figure 10).
• WRC: a version with a write-releases, load-acquires in

loops, and a relaxed read.

For each test, pseudo-random exploration revealed all the
allowed outcomes (and never forbidden outcomes). For the
relaxed version of LB and for the mo-sb-cycle program the
outcomes with cycles in respectively rf ∪ sb and mo ∪ sb

happened rarely: only approximately 1 out of a 1000 runs

exhibited them (we include runs that result in a dead-end in
this number). For all the other tests all the allowed outcomes
where generated in the order of 10 runs.

7.3 Symbolic Execution Unavoidable for Non-atomics

One drawback of the symbolic execution is that we lose
completeness if the constraint generation and solver cannot
handle the full generality of constraints (e.g. for memory
accesses from pointers computed in complex ways). One
might hope to only need symbolic execution for atomics, and
that one could always immediately return a concrete value
for non-atomics, but unfortunately the following shows that
this is not the case.

Consider the execution in Figure 12 and imagine a non-
atomic write w1 to a new location (say z1) that is sb-before
action a, and similarly a new write w2 that is sb-before ac-
tion k; and imagine a non-atomic read r1 of z1 that is sb-
between actions d and e, and similarly a read r2 that is sb-
between actions i and j. Suppose without loss of general-
ity that when r1 is generated by the threadwise semantics,
r2 has not yet been generated. The latter means that j can-
not have been generated (since the threadwise semantics fol-
lows program order), and therefore that g, a, b and c have
not been committed by the concurrency model (because the
concurrency model follows rf and mo). Hence, the hb edge
between w1 and r1 does not exist yet, and therefore we do
not know where r1 can read from at this time (see also §3.4)
and the threadwise semantics has to use a symbol as its re-
turn value.

7.4 Outstanding Issues

Extending the operational semantics to support random-
mode execution of more realistic C programs requires at
least three significant advances. First, the C/C++11 concur-
rency model, in both axiomatic and operational forms, must
be extended to support aspects of C neglected by Batty et
al. [6], including general array, struct, and mixed-size ac-
cesses, object lifetime, and dynamic errors. Second, the im-
plementation of constraints must support those that arise
from realistic pointer arithmetic (ideally including bitwise
operations). Third, there will need to be performance opti-
misation, as at present the state size (and transition compute
time) grows with trace length, but in principle “sufficiently
old” information can be garbage-collected.

8. Related Work

There is a long history of equivalence or inclusion results
between operational and axiomatic relaxed memory models,
e.g. Higham et al. [12], Owens et al. [20], Alglave et al. [1],
and Cenciarelli et al. [9], but very little that relates to the
C/C++11 model issues that we address here (the first three of
those address hardware models, where concrete operational
models provide a usable order; the last is in the rather differ-
ent JMM context).

The most closely related work that we are aware of is the
work by Lahav et al. [13]. The authors study the fragment of
C/C++11 in which all read, write, and read-modify-write ac-
cesses have release/acquire memory orders, without relaxed,
consume, SC, or non-atomic accesses, and with just a single
kind of fence. They identify that the execution presented in
§3.2 with read-acquires and write-releases instead of relaxed
accesses is not observable in implementations, and go on to
prove that the existing compilation schemes to POWER and
x86-TSO can still be used when forbidding hb-mo-cycles.
For this stronger release/acquire semantics (where those cy-
cles are forbidden) they give a concrete operational seman-
tics in terms of ordered message buffers and memory local to
processors, and their results are largely also mechanised (in
Coq). However, the release/acquire fragment of C/C++11 is
considerably simpler than the full model we deal with here.
For example, in that fragment the sb-rf and sc-mo-rf cycles
that we address do not occur. They also work with a small
calculus rather than integrating their model with a larger C
semantics.

The operational semantics by Turon et al. [25] covers
non-atomics, SC-atomics and release/acquire atomics, but
not relaxed or consume atomics. It is precisely these memory
orders that make developing an equivalent operational se-
mantics hard. Furthermore, their semantics simplifies some
of the concepts of the axiomatic model to give a cleaner se-
mantics, at the expense of completeness. For their purposes
this is not a problem, since they are developing a sound pro-
gram logic, but our goal is to develop an equivalent model.

The other most closely related work we are aware of is the
model-checker of Norris and Demsky [19]. This is focused
on efficiency, but does not attempt to be equivalent with
respect to the C/C++11 model. Our operational model may
inform future work on C/C++11 model-checking.

More peripherally, two lines of work have integrated
a TSO memory model with a semantics for significant
fragments of C: the CompCertTSO verified compiler of
Ševčík et al. [27], and the K semantics of Ellison [11,
§4.2.6]. TSO is much stronger and simpler than C/C++11,
and there cannot be cycles in hb ∪ rf , so the concurrency
impacts much less on the sequential semantics. Moreover,
mainstream C compilers do not implement TSO, so the sig-
nificance of such a semantics for concurrent C/C++11 pro-
grams is unclear.

Then there is work using SAT solvers for axiomatic mod-
els, for C/C++11 by Blanchette et al. [7] and for the JMM
by Torlak et al. [24]. For litmus tests these offer perfor-
mance improvements w.r.t. naive enumeration of candidate
executions, but finding single paths of larger programs seems
likely to be challenging, as does integration with a more sub-
stantial C semantics.

Finally, there are also a number of less closely related
proposals for other language-level memory models [10, 14].

9. Conclusion

We have presented an operational concurrency model that
covers the full formalisation [6] of C/C++11 concurrency in-
cluding locks, fences, read-modify-writes, non-atomics and
atomics with all memory orders, including consume. We
have proved the equivalence of our model with that formal-
isation and mechanised the proof in Isabelle/HOL. We have
also integrated the operational concurrency model with a se-
quential operational semantics [16] (the sequential seman-
tics is not our contribution); the combined semantics can in-
crementally execute programs in a small fragment of C.

The challenge in defining the operational model was the
fact that many obvious approaches such as following pro-
gram order or the sequential consistency order do not work,
because C/C++11 allows cycles in various orders. These cy-
cles are not always observed on current hardware, and in
these cases we suggested strengthening the C/C++11 model:
we suggested to forbid coherence shapes that involve sc

(§3.3), cycles in sw ∪ rf (§3.4) and we suggested changing
the definition of release-sequences (§3.1).

More generally, we highlight two so-far underappreciated
qualities that a programming language concurrency seman-
tics should have. It should be incrementally executable, and
it should be integrable (better yet, integrated) with the se-
mantics for the rest of the language, not just a memory model
in isolation. Leaving such integration for future work may
lead to a memory model that makes it remarkably involved.
Since the sequential part of most languages are defined in
an operational style (including C/C++) these requirements
can be best satisfied by developing an equivalent operational
concurrency semantics early in the process.

Acknowledgements We thank Mark Batty for discussions
and the anonymous referees for their comments. This work
was partly funded by a Gates studentship (Nienhuis) and by
the EPSRC Programme Grant REMS: Rigorous Engineering

for Mainstream Systems, EP/K008528/1.

References

[1] Jade Alglave, Luc Maranget, and Michael Tautschnig. Herd-
ing cats: Modelling, simulation, testing, and data mining for
weak memory. ACM TOPLAS, 36(2):7:1–7:74, 2014.

[2] Mark Batty. The C11 and C++11 Concurrency Model. PhD
thesis, University of Cambridge, 2015. https://www.cs.

kent.ac.uk/people/staff/mjb211/toc.pdf.

[3] Mark Batty, Mike Dodds, and Alexey Gotsman. Library
abstraction for C/C++ concurrency. In Proc. POPL, pages
235–248, 2013.

[4] Mark Batty, Kayvan Memarian, Kyndylan Nienhuis, Jean
Pichon-Pharabod, and Peter Sewell. The problem of program-
ming language concurrency semantics. In Proc. ESOP, pages
283–307. 2015.

[5] Mark Batty, Kayvan Memarian, Scott Owens, Susmit Sarkar,
and Peter Sewell. Clarifying and compiling C/C++ concur-

rency: from C++11 to POWER. In Proc. POPL, pages 509–
520, 2012.

[6] Mark Batty, Scott Owens, Susmit Sarkar, Peter Sewell,
and Tjark Weber. Mathematizing C++ concurrency. In
Proc. POPL, 2011.

[7] Jasmin Christian Blanchette, Tjark Weber, Mark Batty,
Scott Owens, and Susmit Sarkar. Nitpicking C++ concur-
rency. In Peter Schneider-Kamp and Michael Hanus, editors,
Proc. PPDP, pages 113–124, 2011.

[8] Hans-J Boehm and Sarita V Adve. Foundations of the C++
concurrency memory model. In ACM SIGPLAN Notices,
volume 43, pages 68–78. ACM, 2008.

[9] Pietro Cenciarelli, Alexander Knapp, and Eleonora Sibilio.
The Java memory model: Operationally, denotationally, ax-
iomatically. In Proc. ESOP, pages 331–346, 2007.

[10] Karl Crary and Michael J. Sullivan. A calculus for relaxed
memory. In Proc. POPL, pages 623–636, 2015.

[11] Chucky Ellison. A Formal Semantics of C with Applications.
PhD thesis, University of Illinois, July 2012.

[12] Lisa Higham, Lillanne Jackson, and Jalal Kawash. Specifying
memory consistency of write buffer multiprocessors. ACM

TOPLAS, 25(1), February 2007.

[13] Ori Lahav, Nick Giannarakis, and Viktor Vafeiadis. Taming
release-acquire consistency. In Proc. POPL, pages 649–662,
2016.

[14] Jeremy Manson, William Pugh, and Sarita V Adve. The Java

memory model, volume 40. ACM, 2005.

[15] Paul E. McKenney, Torvald Riegel, Jeff Preshing, Hans
Boehm, Clark Nelson, and Olivier Giroux. N4321: To-
wards implementation and use of memory order consume.
WG21 working note, http://www.open-std.org/jtc1/

sc22/wg21/docs/papers/2014/n4321.pdf, October 2014.

[16] Kayvan Memarian, Justus Matthiesen, James Lingard, Kyndy-
lan Nienhuis, David Chisnall, Robert N.M. Watson, and Peter
Sewell. Into the depths of C: elaborating the de facto stan-
dards. In Proc. PLDI, 2016.

[17] Robin Morisset, Pankaj Pawan, and Francesco Zappa
Nardelli. Compiler testing via a theory of sound optimisations
in the C11/C++11 memory model. In Proc. PLDI, 2013.

[18] Dominic P. Mulligan, Scott Owens, Kathryn E. Gray, Tom
Ridge, and Peter Sewell. Lem: reusable engineering of real-
world semantics. In Proc. ICFP, pages 175–188, 2014.

[19] Brian Norris and Brian Demsky. CDSchecker: checking
concurrent data structures written with C/C++ atomics. In
Proc. OOPSLA, 2013.

[20] Scott Owens, Susmit Sarkar, and Peter Sewell. A better x86
memory model: x86-TSO. In Theorem Proving in Higher

Order Logics, pages 391–407. 2009.

[21] Jean Pichon-Pharabod and Peter Sewell. A concurrency se-
mantics for relaxed atomics that permits optimisation and
avoids thin-air executions. In Proc. POPL, 2016.

[22] Jaroslav Ševčík and Peter Sewell. C/C++11 mappings
to processors. http://www.cl.cam.ac.uk/~pes20/cpp/

cpp0xmappings.html. Accessed 2015-07-08.

[23] Joseph Tassarotti, Derek Dreyer, and Viktor Vafeiadis. Ver-
ifying read-copy-update in a logic for weak memory. In
Proc. PLDI, pages 110–120, 2015.

[24] Emina Torlak, Mandana Vaziri, and Julian Dolby. Memsat:
Checking axiomatic specifications of memory models. In
Proc. PLDI, pages 341–350, 2010.

[25] Aaron Turon, Viktor Vafeiadis, and Derek Dreyer. GPS: nav-
igating weak memory with ghosts, protocols, and separation.
In Proc. OOPSLA, pages 691–707, 2014.

[26] Viktor Vafeiadis, Thibaut Balabonski, Soham Chakraborty,
Robin Morisset, and Francesco Zappa Nardelli. Common
compiler optimisations are invalid in the C11 memory model

and what we can do about it. In Proc. POPL, pages 209–220,
2015.

[27] Jaroslav Ševčík, Viktor Vafeiadis, Francesco Zappa Nardelli,
Suresh Jagannathan, and Peter Sewell. CompCertTSO: A
verified compiler for relaxed-memory concurrency. J. ACM,
60(3), June 2013.

[28] WG14. ISO/IEC 9899:2011.

[29] WG14 and WG21. ISO/IEC 14882:2011.

[30] WG14 and WG21. ISO/IEC 14882:2014.

[31] WG21. N3786.

