
Modal Kleene Algebra Applied to
Program Correctness

Victor B. F. Gomes1 and Georg Struth2

1 Computer Laboratory, University of Cambridge
victor.gomes@cl.cam.ac.uk

2 Department of Computer Science, University of Sheffield
g.struth@sheffield.ac.uk

Abstract. Modal Kleene algebras are relatives of dynamic logics that
support program construction and verification by equational reasoning.
We describe their application in implementing versatile program correct-
ness components in interactive theorem provers such as Isabelle/HOL.
Starting from a weakest precondition based component with a simple
relational store model, we show how variants for Hoare logic, strongest
postconditions and program refinement can be built in a principled way.
Modularity of the approach is demonstrated by variants that capture
program termination and recursion, memory models for programs with
pointers, and program trace semantics.

1 Introduction

Modal Kleene algebras (MKA) [9] are algebraic relatives of propositional dy-
namic logic (PDL) [14] in the tradition of the dynamic algebras proposed by
Németi and Pratt [22,26] and Hollenberg’s algebra of dynamic negation [15]. A
particularity of MKA is that reasoning is equational, symmetries between modal-
ities are captured by algebraic and order-theoretic dualities, and soundness and
completeness results arise from properties of morphisms between algebras.

MKA has highly compact axioms. It expands Kleene algebra by two dual op-
erations and three simple equational axioms for each of them. While the Kleene
algebra operations capture the sequential composition, nondeterministic choice
and finite iteration of programs, the additional ones model those states from
which a program can be executed and in which it can terminate. Despite its
simplicity, MKA has the expressive power of PDL: modal box and diamond op-
erators, i.e. predicate transformers, can be defined; propositions and assertions
can be modelled. This makes MKA an interesting tool for program correctness.

Over the last decade, the mathematics of MKA has been well investigated,
models relevant to computing have been constructed, extensions and variations
introduced, applications from game theory to termination analysis considered,
and mathematical components for interactive theorem provers implemented.
Nevertheless, the obvious potential of MKA for building construction and verifi-
cation tools for imperative programs remains to be explored. The main goal of
this article is to bridge this gap.



2 Victor B. F. Gomes and Georg Struth

Our main contribution therefore consists in MKA-based program correctness
components for Isabelle/HOL [24] in which imperative programs can be verified
or constructed by stepwise refinement. Yet our design method is generic applies
beyond Isabelle. In a nutshell, it consists in deriving verification conditions for
the control structure of programs by equational reasoning within MKA, in linking
the algebra formally with denotational semantics of the store and data domain,
and in adding data-level verification conditions, notably assignment laws, to the
concrete semantics. Detailed contributions are as follows.

∗ We derive laws for calculating weakest (liberal) preconditions in MKA, most of
them equational (Section 3), show how assignment statements and a weakest
precondition rule for assignments can be obtained in the relational model of
MKA (Section 4), and sketch how this development can be implemented as a
simple verification (and dynamic logic) component in Isabelle (Section 5).
∗ We show how the opposition duality present in MKA yields verification com-

ponents for strongest postconditions and a Floyd-style assignment rule in the
style of [13] with minimal implementation effort (Section 6).
∗ We formally prove that MKA subsumes Kleene algebras with tests: all theo-

rems of the latter setting hold in the former. This brings previous verification
and refinement components based on Hoare logic [2] into scope (Section 7).
∗ We propose a new meta-equational while rule for weakest preconditions in the

context of divergence Kleene algebras and formalise the relational model of
these algebras in Isabelle, yielding a total correctness component (Section 8).
∗ We extend the MKA components for while programs to quantale-based ones

for recursive procedures and provide new explicit definitions of modalities in
this setting (Section 9).
∗ We further evidence the versatility of the approach by outlining a more ab-

stract treatment of predicate transformer algebras in Isabelle and by demon-
strating how other memory models and denotational program semantics can
be integrated in modular ways (Section 10).

Many of the verification rules used in our components are well known, but have
been derived in the algebra by simple equational reasoning (and automated the-
orem proving) in model-independent fashion. Similar store models have been
used by the interactive theorem proving community, but our separation of data
and control and their modular integration via a shallow embedding is new and
yields components that are particularly simple, modular and reusable. Program
verification can be performed directly in the concrete denotational semantics by
using instances of the abstract algebraic rules and providing a minimal program
syntax as a façade. For applications, grammars and semantic maps for suitable
fragments of imperative programming languages should be provided, and fa-
cilities for code generation should be included. Integrating algebras and models
also makes our components correct by construction: our formal soundness proofs
make all axiomatic extensions consistent with Isabelle’s small trustworthy core.

All results discussed in this article have been programmed in Isabelle and
made accessible to readers in the Archive of Formal Proofs [12], including all
verification components and a suite of verification examples.



Modal Kleene Algebra Applied to Program Correctness 3

2 Modal Kleene Algebra

Modal Kleene algebras are semirings expanded by two operations.
A semiring is a structure (S,+, ·, 0, 1) such that (S,+, 0) is a commuta-

tive monoid and (S, ·, 1) a monoid. These interact via the distributivity laws
w(x+ y)z = wxz + wyz and the annihilation laws 0x = 0 = x0. Here and hence-
forth we drop the multiplication symbol. As in PDL, elements x, y ∈ S represent
programs; xy models sequential composition and x+ y nondeterministic choice.
The programs 0 and 1 model abort and skip.

An antidomain semiring [9] is a semiring S expanded by an antidomain
operation a : S → S that satisfies

(a x)x = 0, a x+ a (a x) = 1, a (xy) + a (x(a (a y))) = a (x(a (a y))).

Intuitively, the antidomain a x of program x represents those states from which
x cannot be executed, whereas the domain d x = (a ◦ a)x of x models those
states from which it can be. The three antidomain axioms give rise to a rich
structure with symmetries and dualities.

Firstly, antidomain semirings are ordered. Addition is idempotent, x+x = x
holds for all x ∈ S, which is essential for interpreting it as choice. Thus S is a
dioid and (S,+) a semilattice with order relation x ≤ y ↔ x+ y = y. Addition
and multiplication are order preserving or isotone; 0 is the lest element with
respect to ≤. The converse of ≤ is the refinement order on programs.

Secondly, (a(S),+, ·, a, 0, 1), with a(S) denoting the image of the set S under
a, is a boolean subalgebra of S with + as join, · as meet, a as complementation
and 0 and 1 as least and greatest elements. The set d(S) = a(S) is closed
under the operations because d ◦ d = d, which implies that x is in a(S) iff
d x = x. (Anti)domain elements in a(S), for which we henceforth write p, q, r,
can therefore be used as assertions or propositions. We also write p̄ instead of
a p and encode conditionals à la PDL as if p then x else y = px+ p̄y.

Thirdly, the opposite of a dioid is a dioid. Opposition swaps the order of
multiplication and runs programs backwards. Yet the class of antidomain semir-
ings is not closed under this duality. In fact, the (anti)domain of a reverse
program is the (anti)range of the original one: it represents the set of those
states in which it can(not) end. The opposite of an antidomain semiring is thus
an antirange semiring with dual axioms x(ar x) = 0, ar x + r x = 1 and
ar (x · y) + ar (x(r y)) = ar (xr( y)), where r = ar ◦ ar .

Fourthly, forward modal operators can be defined in antidomain semirings,

|x〉p = d (xp), and |x]p = a (x(a p)),

whereas backward modalities are definable by opposition in antirange semirings
as [x|y = ar (x(ar y)) and 〈x|y = r (xy). This is justified by the PDL semantics of
|x〉p, which yields those states (in a Kripke frame) from which executing x may
lead into states where p holds, whereas [x]p describes those states from which x
must lead to states satisfying p. Note that, in antidomain semirings, px and xp
model the domain and range restriction of x to states satisfying p.



4 Victor B. F. Gomes and Georg Struth

A modal semiring [9] is an antidomain semiring S that is also an antirange
semiring in which d (r x) = r x and r (d x) = d x hold for all x ∈ S, and conse-
quently a(S) = ar(S).

In this setting, boxes and diamonds satisfy a number of dualities: the De
Morgan laws |x]p = |x〉p̄, |x〉yp = |x]p̄, [x|p = 〈x|p̄, and 〈x|p = [x|p̄, the conju-
gations (|x〉p)q = 0 ↔ p(〈x|q) = 0 and (|x]p)q = 0 ↔ p([x|q) = 0, and, most
importantly for our purposes, the Galois connections

〈x|p ≤ q ↔ p ≤ |x]q and |x〉p ≤ q ↔ p ≤ [x|q.

Modal semirings are therefore boolean algebras with operators 〈 |, [ |, | 〉 and
| ] of type S → (a(S) → a(S)) in the sense of Jónsson and Tarski [16]. These
operators are otherwise known as predicate transformers.

PDL allows encoding while programs without assignments. A notion of finite
iteration of programs must be added to a dioid for that purpose. A Kleene algebra
is a dioid K expanded by an operation ∗ : K → K that satisfies the star unfold
and induction axioms

1 + xx∗ ≤ x∗ and z + xy ≤ y → x∗z ≤ y

as well as their opposites 1 + x∗x ≤ x∗ and z + yx ≤ y → zx∗ ≤ y. An
antidomain Kleene algebra [9] is an antidomain semiring that is also a Kleene
algebra and likewise for antirange Kleene algebras. A modal Kleene algebra is
a modal semiring that is also a Kleene algebra. As in PDL one can now define
while p do x = (px)∗p̄.

Henceforth we write AKA for the class of antidomain Kleene algebras and
MKA for the class of modal Kleene algebras.

3 Laws for Weakest Preconditions

Conjugations and Galois connections give theorems for free, but many additional
properties hold in AKA and MKA. A comprehensive list can be found in the
Isabelle formalisation in the Archive of Formal Proofs [11].

In addition to these, the following laws are helpful for program verification.

Lemma 1. Let S ∈ AKA. For all p, q ∈ a(S) and x, y ∈ S,

1. p ≤ q → |x]p ≤ |x]q and x ≤ y → |y]p ≤ |x]p,
2. p̄+ |x]q = |px]q,
3. |xp̄]q = |x](p+ q),
4. |x]p ≤ |xq̄](pq̄),
5. p|if p then x else y]q = p|x]q and p̄|if p then x else y]q = p̄|y]q,
6. |while p do x]q = (p+ q)(p̄+ |x]|while p do x]q),
7. p|while p do x]q = p|x]|while p do x]q and p̄|while p do x]q ≤ q.

These facts can be used for deriving verification conditions for the control struc-
ture of programs. To this end we define a while loop annotated with a loop
invariant: while p inv i do x = while p do x.



Modal Kleene Algebra Applied to Program Correctness 5

Lemma 2. Let S ∈ AKA. For all p, q, i, t ∈ a(S), x, y ∈ S,

1. |xy]q = |x]|y]q,
2. |if p then x else y]q = (p̄+ |x]q)(p+ |y]q) = if p then |x]q else |y]q,
3. pq ≤ |x]p → p ≤ |while q do x](pq̄),
4. p ≤ i ∧ it̄ ≤ q ∧ it ≤ |x]i → p ≤ |while t inv i do x]q.

In PDL, |x]q models the weakest (liberal) precondition of program x and post-
condition q. The specification statement for partial correctness—if precondition
p holds before executing program x and if x terminates, then postcondition q
holds upon termination—is captured by p ≤ |x]q. The formulas in Lemma 2
thus calculate weakest preconditions recursively from the structure of while pro-
grams. Equation (1) yields a rule for sequential composition, (2) yields rules
for conditionals, (3) is a quasi-equation for loops, and (4) a quasi-equation for
loops with invariants. All rules except those for loops are purely equational and
therefore superior to those of Hoare logic in applications.

4 Relational Program Semantics

The standard PDL semantics uses a Kripke frame (S, h). A program x is inter-
preted as a binary relation hx between states in S and a proposition p as a
subset h p of states in S. Diamond and box formulas are interpreted as h |x〉p =
{s | ∃s′. (s, s′) ∈ hx ∧ s′ ∈ h p} and h |x]p = {s | ∀s′. (s, s′) ∈ hx→ s′ ∈ h p}.

With MKA it is more convenient to interpret programs and assertions uni-
formly as binary relations over S by embedding subsets A of S into subidentity
relations {(a, a) | a ∈ A}.

Proposition 1 ([9,11]). Let (2S×S ,∪, ; , a, ∅, Id ,∗ ) be the set of all binary rela-
tions over the set S with the following operations: set union ∪, relational com-
position R;S = {(s, s′) | ∃s′′. (s, s′′) ∈ R ∧ (s′′, s′) ∈ S}, relational antidomain
aR = {(s, s) | ¬∃s′. (s, s′) ∈ R}, the identity relation Id = {(s, s) | s ∈ S}, the
empty relation ∅, and the reflexive-transitive closure R∗ =

⋃
i∈NR

i of R.

1. This structure forms an AKA, the full relation AKA over S.
2. Each of its subalgebras forms a relation AKA.

This soundness result justifies our previous programming intuitions. The alge-
braic structure of AKA is reflected at the level of relations; the algebra of subiden-
tities (a(2S×S),∪, ; , a, ∅, Id) is again a boolean subalgebra. The antidomain op-
eration can be written as aR = Id ∩−(R>), where −R denotes the complement
of R in 2S×S , whereas a is complementation on a(2S×S). The universal relation
> is defined as {(s, s′) | s, s′ ∈ S}. The relational domain operation is defined
accordingly as dR = {(s, s) | ∃s′. (s, s′) ∈ R}. The boolean algebra of subidenti-
ties in a(2S×S), the boolean algebra of subsets of S and the boolean algebra of
predicates as boolean-valued functions of type S → B are of course isomorphic.
More precisely, the coercion functions dP e = {(s, s) | Ps} from predicates to
relations and bRc = {a | ∃b. (a, b) ∈ R} from subidentity relations to predicates



6 Victor B. F. Gomes and Georg Struth

form a bijective pair that preserves joins/unions, meets/intersections and nega-
tions/complements. The Kripke semantics of relational boxes and diamonds is
consistent with the algebraic one: |R〉P = d (R;P ) and |R]P = a (R; aP ).

The dual of Proposition 1 links, accordingly, relations with antirange op-
eration ar R = {(s′, s′) | ¬∃s.(s, s′) ∈ R} and antirange Kleene algebras. In
combination, these results show that MKA has relational models.

The standard relational semantics of while programs—and that of first-order
dynamic logic—considers the store as a function from variables in V to values
in a set E, that is, s : V → E and S is the function space EV .

Let the update f [b/a]x of function f : A → B in argument a ∈ A by value
b ∈ B be defined as b whenever x = a and as f a otherwise. The relational
semantics of an assignment statement is then given by

(v := e) = {(s, s[(e s)/v]) | s ∈ EV },

where e s denotes the value of expression e in store s. This definition allows
calculating weakest preconditions of assignments.

Lemma 3. In every relation AKA, |v := e]dQe = dλs. Q(s[(e s)/v])e.

On the one hand, the formulas in Lemma 2 and 3 give us all we need for verifying
while programs. On the other hand, they yield a hybrid encoding of first-order
dynamic logic, where the propositional part is captured algebraically and the
first-order part modelled within the relational semantics. The following section
transforms this approach into a verification component.

5 Verification Component using Weakest Preconditions

The results from Section 3 and 4 suffice for implementing a simple component for
dynamic logic, and primarily a verification component, quickly and easily in an
interactive theorem prover; see [12] for details. Our Isabelle/HOL components
use a shallow embedding; verification is performed on the concrete relational
store semantics from Section 4. Relational instances of the algebraic weakest pre-
condition laws (Section 3) are brought into scope by formalising Proposition 1.
Data types for expressions, statements and while-programs and a semantic map
into the relation AKA could be added easily. Instead we merely supply some
syntactic sugar for relational programs. We now sketch this implementation.

Firstly, Isabelle provides axiomatic type classes and locales for formalising
modular algebraic hierarchies and their models. Our verification component is
based on comprehensive mathematical components for Kleene algebras [4] and
AKA [11]. AKA, for instance, could have been formalised as follows.

class antidomain-kleene-algebra = kleene-algebra +
fixes ad :: ′a ⇒ ′a (ad)
assumes as1 [simp]: ad x · x = 0
and as2 [simp]: ad (x · y) + ad (x · ad (ad y)) = ad (x · ad (ad y))
and as3 [simp]: ad (ad x ) + ad x = 1



Modal Kleene Algebra Applied to Program Correctness 7

This definition expands the type class of Kleene algebras to the class of AKA
by adding the antidomain operation and the three antidomain axioms. The type
of the antidomain operation indicates that AKAs are polymorphic and can be
instantiated—for instance to the type of polymorphic binary relations or that
of binary relations over a polymorphic store. Notions such as domain, boxes or
diamonds can be defined within this class. Isabelle’s simplifiers and integrated
theorem provers can be used for proving facts about AKA, and, by the expansion,
all facts proved about Kleene algebras are in scope as well.

Secondly, our Isabelle components provide soundness proofs for various mod-
els. That of relation AKA, for instance, can be formalised as follows.

interpretation rel-aka: antidomain-kleene-algebra
Id {} op ∪ op ; op ⊆ op ⊂ rtrancl rel-ad

The interpretation statement says that any relational structure specified as in
Proposition 1 forms an AKA. Isabelle dictates its proof obligations. After dis-
charging them, instances of all abstract properties proved about AKA are avail-
able in the concrete relational semantics; in particular those from Lemma 2. In
addition, the soundness proof makes the axiomatic extension of AKA consistent
with Isabelle’s small trustworthy core. Our verification components thus become
correct by construction relative to it.

The relations introduced in the soundness proof are again polymorphic. They
can be instantiated further to relations over a polymorphic store, which is defined
as type-synonym ′a store = string ⇒ ′a. It can model data of arbitrary and
heterogenous type. The assignment command and the corresponding weakest
precondition rule can then be implemented as follows.

definition gets :: string ⇒ ( ′a store ⇒ ′a) ⇒ ′a store rel (- ::= - [70 , 65 ] 61 ) where
v ::= e = {(s,s (v := e s)) |s. True}

lemma wp-assign [simp]: wp (v ::= e) dQe = dλs. Q (s (v := e s))e

Here, ::= is syntax for assignments, whereas := denotes Isabelle’s built-in func-
tion update. After programming additional syntactic sugar for program specifi-
cations and syntax, one can start verifying while programs.

lemma euclid :
PRE (λs::nat store. s ′′x ′′ = x ∧ s ′′y ′′ = y)
(WHILE (λs. s ′′y ′′ 6= 0 ) INV (λs. gcd (s ′′x ′′) (s ′′y ′′) = gcd x y)
DO
( ′′z ′′ ::= (λs. s ′′y ′′));
( ′′y ′′ ::= (λs. s ′′x ′′ mod s ′′y ′′));
( ′′x ′′ ::= (λs. s ′′z ′′))

OD)
POST (λs. s ′′x ′′ = gcd x y)
by (rule rel-antidomain-kleene-algebra.fbox-while) (auto simp: gcd-non-0-nat)



8 Victor B. F. Gomes and Georg Struth

In this simple example proof, a relational instance of the while rule from
Lemma 2(4) is applied first. All proof obligations generated are then simplified.
As all rules except the one for loops are pure equations, they can be added to
Isabelle’s simplifier. Here, in particular, the sequential composition rule from
Lemma 2(1) and the assignment rule from Lemma 3 eliminate the entire control
structure. Automated theorem proving can then finish off the remaining data-
level proof. For straight-line programs, verification proofs are purely equational
and the entire control structure of programs can usually be simplified away.

Several variables of heterogenous type are handled by instantiating the type
′a of the store by a sum type. Verifying a typical sorting algorithm, for instance,
requires type nat + ′a + ′a list with the natural number measuring the length of
the input list and ′a being a linearly ordered type. Assignments of variables of a
summand type can then be expressed by using projections and injections. Our
Isabelle theories contain an example verification of insertion sort [12].

Verification condition generation can be automated further with tactics that
apply the while rule recursively. These can be programmed elegantly in Isabelle’s
Eisbach proof method language [18]. Verifying simple programs thus reduces to
calling an Eisbach method to eliminate the control structure and then using
Isabelle’s provers and simplifiers for the data level; see our online examples [12].

The Isabelle formalisation provides a template for developing external ver-
ification tools. This makes it desirable to generate proof obligations as far as
possible within first-order logic, so that they can be tackled by automated the-
orem provers and SMT solvers. It is easy to tune verification condition gen-
eration accordingly. The weakest precondition operator can, for instance, be
presented as bwp X dQec = λs. ∀s′. (s, s′) ∈ X → Qs′, the loop rule allows
deriving ∀s. P s → bwp (WHILE T INV I DO X OD) dQec s from the assump-
tions ∀s.P s → I s, I s ∧ ¬ T s → Qs and I s ∧ T s → bwp X dIec s), and the
assignment rule can be written as bwp (v ::= e) dQec = λs. Q (s[(e s)/v]).

6 Verification Component using Strongest Postconditions

In an influential article, Gordon and Collavizza [13] contrast the backwards ap-
proach that uses weakest preconditions and Hoare’s assignment law with the
lesser known forward one with strongest postconditions and Floyd’s assignment
law. With MKA, the two approaches are related by opposition duality, the Ga-
lois connection between forward boxes and backward diamonds. As indicated in
Section 2, the specification statement p ≤ |x]q is equivalent to 〈x|p ≤ q, with
〈x|p capturing the strongest postcondition of program x and precondition p.

We have formalised opposition duality between antidomain and antirange
Kleene algebras in Isabelle and implemented MKA based on that duality [11].
As a consequence, all facts for forward modalities can be dualised by Isabelle
rather effortlessly. Facts from Lemma 1 dualise, for instance, to p〈x|q = 〈xp|q,
〈x|(pt) = 〈tx|p, 〈x|p ≤ 〈q̄x|(pq̄). More importantly, we immediately obtain the
following dual statements to those in Lemma 2.



Modal Kleene Algebra Applied to Program Correctness 9

Lemma 4. Let S ∈ MKA. For all p, q, i, t ∈ a(S), x, y ∈ S,

1. 〈xy|p = 〈y|〈x|p,
2. if p then x else y|q = 〈x|(pq) + 〈y|(p̄q),
3. 〈x|(pq) ≤ p→ 〈while q do x|p ≤ (pq̄),
4. p ≤ i ∧ it̄ ≤ q ∧ 〈x|(t̄i)→ 〈while t inv i do x|p ≤ q.

The lemmas listed in the following proof show how Isabelle picks up duality.

lemma bdia-seq-var : 〈x | p ≤ p ′ =⇒ 〈y | p ′ ≤ q =⇒ 〈x · y | p ≤ q
by (metis ardual .ds.fd-subdist-1 ardual .ds.fdia-mult dual-order .trans . . . )

A forward assignment law is derivable in the relational store model.

lemma bdia-assign [simp]:
rel-aka.bdia (v ::= e) dPe = dλs. ∃w . s v = e (s(v := w)) ∧ P (s(v :=w))e

Here, rel-aka.bdia denotes the backward diamond operator of relation MKA. Once
more, the rules in Lemma 4 and our variant of Floyd’s assignment axiom suffice
for program verification; the algebraic and the relational layer are linked seam-
lessly by the relational soundness proof for MKA. We found little difference in
performance between the backward and the forward approach on simple exam-
ples. Beyond that, the forward approach offers potential for symbolic execution
and static analysis [13].

7 Components for Hoare Logic and Refinement

We have previously developed program correctness components using Kleene
algebras with tests (KAT) [2,1]: a verification component based on Hoare logic
and a refinement component based on Morgan’s specification statement [21].

Inspired by MKA we have implemented KAT as a Kleene algebra K expanded
by an antitest operation n : K → K that satisfies

t 1 = 1, t ((t x)(t y)) = (t x)(t y), (nx)(t x) = 0, (nx)(n y) = n (t x+ t y),

where t = n ◦ n is the test operation. Similarly to MKA, n(K) = t(K) forms a
boolean subalgebra useful for modelling tests and assertions.

Propositional Hoare logic, that is, Hoare logic without assignment axioms, is
subsumed by PDL [14]. Here we obtain the following correspondence.

Proposition 2 ([9]). Every AKA and antirange Kleene algebra is a KAT.

Formalising this fact in Isabelle brings the verification components for KAT into
the scope of MKA. In KAT, Hoare triples are defined as

H px q ↔ px ≤ xq,



10 Victor B. F. Gomes and Georg Struth

where x is a program and p, q are tests. In MKA, in turn, p ≤ |x]q ↔ px ≤ xq ↔
〈x|p ≤ q. Thus Hoare triples relate to the specification statements for weakest
preconditions and strongest postconditions:

H px q ↔ p ≤ |x]q ↔ 〈x|p ≤ q,

and this correspondence confirms that |x]q is indeed the weakest precondition
and 〈x|q the strongest postcondition satisfying the Hoare triple. However, weak-
est preconditions or strongest postconditions cannot be expressed in KAT [28].

The standard rules for propositional Hoare logic are thus available in MKA
and can once more be combined with Floyd and Hoare’s assignment axioms.
Hoare’s axiom, for instance, is derivable because

dλs. P (s[(e s)/v]e; (v := e) = (v := e); dP e.

KAT has been expanded to refinement KAT [2] by adding an operation R :
K ×K → K and an axiom

H px q ↔ x ≤ Rp q,

stating that Morgan’s specification statement Rp q is the greatest program that
satisfies the Hoare triple H px q. MKA can be expanded to refinement MKA in
the same way, but Galois connections

〈x|p ≤ q ↔ x ≤ Rp q ↔ p ≤ [x|q

between the specification statements are now revealed. Once more, every refine-
ment MKA is a refinement KAT, and the simple refinement component developed
previously for KAT in Isabelle is automatically available for MKA.

8 A Meta-Equational while-Rule

A divergence Kleene algebra [8] is an AKA K expanded by a divergence operation
∇ : K → K that satisfies the unfold and coinduction axioms

∇x ≤ |x〉∇x and p ≤ |x〉p+ q → p ≤ ∇x+ |x∗〉q.

Intuitively, ∇x models the set of those states from which program x need not ter-
minate. We have formalised divergence Kleene algebras [11] and their relational
models in Isabelle. In this setting, ∇R =

⋃
{P. P ⊆ |R〉P}, and we have proved

in Isabelle that ∇R = 0 if and only if R is noetherian in the sense that there
are no infinitely ascending R-chains. This is the case if and only if the converse
of R is wellfounded. This condition is interesting for total program correctness
because ∇x = 0 relates to loop termination.

In [27], algebraic conditions for the existence of solutions in y of equations
of the form y = xy+ z have been investigated in the context of Kleene algebras.
It is well known that, by Arden’s rule, a unique solution y = x∗z exists in the



Modal Kleene Algebra Applied to Program Correctness 11

regular language models of Kleene algebra if language x does not contain the
empty word. In relational models this empty word property can be replaced by
a noethericity assumption. This analogy motivates a new meta-equational while
rule for predicate transformers.

Lemma 5. In every divergence Kleene algebra, if ∇x = 0, then

1. p = |x〉p+ q ↔ p = |x∗〉q,
2. p = q|x]p↔ p = |x∗]q.

The second meta-equation can be derived from the first one. It specialises to
while loops and weakest preconditions as follows.

Lemma 6. In every divergence Kleene algebra, if ∇ (tx) = 0, then

1. p = (t+ q)|tx]p↔ p = |while t do x]q,
2. i = (t+ q)|tx]i↔ i = |while t inv i do x]q.

In these rules, ∇ (tx) = 0 prevents that the body x of the while loop can be
executed forever from states where test t holds. This of course expresses loop
termination. Dual rules for forward reasoning with strongest postconditions fol-
low immediately from the Galois connections. Partial correctness reasoning now
no longer hides the explicit assumption of program termination, whereas total
correctness requires discharging this assumption. Our relational soundness proof
for divergence Kleene algebras in Isabelle links the absence of divergence for-
mally with wellfoundedness and brings Isabelle’s tools for termination analysis
into scope (e.g. [19]). A deeper investigation of total program correctness in
applications remains beyond the scope of this article.

A second benefit of the rules in Lemma 6 is that they can simplify verification
condition generation, as equations for calculating the weakest precondition of a
loop can be simplified to equivalent equations involving only the body of the loop.
In our Isabelle implementation, however, we found it so far difficult to make this
rule cooperate with the simplifiers. See our Isabelle theories for examples [12].

9 Domain Quantales and Components for Recursion

A limitation of MKA is that recursion cannot be expressed. This requires the
more expressive setting of quantales, which subsume MKA, and in which classical
fixpoint theory, and thus recursion, can be developed. Antidomain and modal
operators can be axiomatised as before, but we present a class of quantales
consistent with the relational semantics, in which an antidomain operation can be
defined explicitly. We restrict our attention to single recursive procedures; mutual
recursion could be captured as well by using polyvariadic fixpoint combinators.

Formally a quantale (or standard Kleene algebra [7]) is a structure (Q, ·, 1,≤)
such that (Q, ·, 1,≤) is a monoid, (Q,≤) a complete lattice, and the infinite dis-
tributivity laws x(

⊔
i∈I yi)z =

⊔
i∈I xyiz hold, where

⊔
X denotes the supremum

of a set X ⊆ Q. A quantale is boolean if the underlying complete lattice is a



12 Victor B. F. Gomes and Georg Struth

complete boolean algebra. Thus the infinite distributivity laws x u (
⊔

i∈I yi) =⊔
i∈I(xu yi) and its lattice dual xt (

d
i∈I yi) =

d
i∈I(xt yi) are required, where

we write
d
X for the infimum of X ⊆ Q.

Every quantale is a Kleene algebra with x∗ =
⊔

i∈N x
i, and binary relations

under the usual operations form boolean quantales. In every quantale, x t y =⊔
{x, y}; the annihilation laws are special cases of distributivity and

⊔
i∈∅ xi = ⊥.

Boolean quantales are similar to algebras of relations; only the operation of
relational converse and the associated axioms are absent. The domain and an-
tidomain of a relation can be defined explicitly in relation algebra as d x = 1 u x>
and a x = 1 u −(d x) = 1 u −(x>). In boolean quantales this is impossible.

Lemma 7. In some boolean quantale, (1 u x>)x 6= x and (1 u −(x>))x 6= ⊥.

Proof. Consider the four-element boolean quantale with Q = {⊥, 1, α,>} in
which the order, infima, suprema and complements are defined by the fact that
1 and α are incomparable and multiplication is given by αα = ⊥, α> = α = >α
and >> = >. Then (1 u α>)α = ⊥ 6= α whereas (1 u −(α>))α = α 6= ⊥. ut
Though that does not rule out other explicit definitions, one can resort to ax-
iomatising (anti)domain in quantales as in the case of MKA. As an alternative,
we present a new explicit definition of antidomain for a class of boolean quantales
that is consistent with binary relations.

Proposition 3. Every boolean quantale S in which (z u x>)y = zy u x> holds
for all x, y, z ∈ S is an AKA with a x = 1 u −(x>).

In fact, the AKA axioms are already derivable in boolean monoids, i.e., boolean
quantales where infinite infima and suprema need not exist. A dual result holds
for antirange Kleene algebras satisfying x(yu>z) = xyu>z and ar x = 1u>x.
Boolean quantales satisfying both laws and a(Q) = ar(Q) are thus MKAs.

We have already added test axioms, as described in Section 7, to quantales [2]
and implemented a basic fixpoint calculus for quantales in Isabelle [3]. Two key
ingredients are Knaster-Tarski’s and Kleene’s fixpoint theorems. A subsumption
result similar to Proposition 2 can also be formalised in Isabelle.

Proposition 4. Every antidomain and antirange quantale is a test quantale.

Our previous components for test quantales are thus in the scope of domain
quantales and can be combined with the rules for weakest preconditions and
strongest postconditions from Sections 3-6. The following recursion rule, for ex-
ample, can be derived for every isotone endofunction f over a domain quantale:

(∀x ∈ Q. p = |x]q → p = |f x]q) → p = |µf ]q.

Examples showing this rule at work have already been published in the setting
of test quantales [2] and are not worth repeating.

Finally, many of the concepts used so far can be defined explicitly in the
modal quantale setting. In particular,

|x]q =
⊔
{p | px ≤ xq}, 〈x|p =

l
{q | px ≤ xq},

R p q =
⊔
{x | px ≤ xq}, ∇x =

⊔
{p | p ≤ |x〉p},



Modal Kleene Algebra Applied to Program Correctness 13

where of course px ≤ xq ↔ H px q and |x〉p =
d
{q | xp ≤ qx} by opposition

duality. Hence every antidomain quantale is a modal refinement Kleene algebra
in the sense of Section 7 and a divergence Kleene algebra in the sense of Section 8.

10 Extensions and Variations

Program transformation and optimisation. By contrast to PDL and similarly to
KAT, MKA allows considering programs outside of modal formulas as first class
citizens. This allows, for instance, the treatment of program transformations and
optimisations, for example in the context of a compiler [17,2].

Predicate transformer algebras. The algebra of predicate transformers as func-
tions S → (a(S) → a(S)) can be studied abstractly in the setting of MKA [20].
Consider transformers |x] = λp.|x]p under multiplication |x]|y] = |x] ◦ |y] as
function composition, meet as |x] u |y] = λp.(|x]p)(|y]p), a multiplicative unit
|1] = λp.d p and an additive unit |0] = λp.1. Transformers over (left) antidomain
Kleene algebras then form (left) Kleene algebras with meet as addition and
|x]∗ = |x∗] [20]. Some laws from Lemma 2 can now be represented in point-free
style. Equation (1), for instance, becomes |xy] = |x] ◦ |y]; equation (2) becomes
|if p then x else y] = |d p] ◦ |x]u |a p] ◦ |y]. The Kleene algebra structure simpli-
fies proofs at this level, but unfortunately it seems impossible to implement the
lifting result in Isabelle, though all laws needed for it can be derived.

Changing the memory model. The simple store from Section 5 can be replaced
modularly, for instance, by one of type string ⇒ (’a ref + (’a ⇒ ’a ref)), where ’a ref

is a polymorphic reference type for pointers and heaps provided by Nipkow [23].
Our approach is modular with respect to this new memory model for verifying
pointer algorithms in the predicate transformer setting while using Nipkow’s
lemmas, for example for linked lists (see our Isabelle theories [12]), at the data
level. A store in which variables of heterogeneous type are modelled by Isabelle
records, which is another standard implementation (e.g. [2]), could also be added
with little effort.

Changing the program semantics. One can also replace the relational program
semantics modularly by other ones. As an example we have implemented a path
semantics that considers non-empty finite paths (s1, . . . , sn) of program stores
generated by the actions of a program [5,4]. Paths (s1, . . . , sm) and (t1, . . . , tn)
are composed by a fusion product that yields (s1, . . . , sm, t2, . . . tn) if sm = t1
and is undefined otherwise. Sets of non-empty paths under the product XY =
{p | ∃p′ ∈ X, p′′ ∈ Y. p = p′p′′}, set union, the empty set, the set of all paths
of length one and X∗ =

⋃
i∈NR

i form Kleene algebras [4], in fact AKAs with
aX = {s | ¬(∃p ∈ X. s = first p)}. Then (v := e) = {(s, s[(e s)/v))] | s ∈ EV }
models (the paths semantics of) assignments, predicates are lifted to paths by
dP e = {s | P s} and a path assignment rule |(x := e)]dQe = dλs. Q(s[(e s)/v])e
can be derived in the path model. It can be combined with the path instances
of our abstract algebraic rules for verifying programs in the path semantics.



14 Victor B. F. Gomes and Georg Struth

11 Conclusion

Our program correctness components [12] are small. Relative to the previous
mathematical components for MKA [11], the weakest precondition component
outlined in Section 5 required proving about 30 facts, most of them by automated
theorem proving within the algebra. Based on this, the strongest postconditions
component needed about 10 facts, mainly to make the dual verification rules
explicit. The verification and refinement components for KAT were brought into
scope (Section 7) by proving three routine facts in the algebra. The development
of the meta-equational while rule and the resulting total correctness component
required again about 30 facts. Integrating the memory model for pointers and the
path model needed once more just a handfull of proofs. Only the proofs linking
divergence Kleene algebras with noethericity in the relational model required
some more tedious background work.

The components for (modal) Kleene algebras in Isabelle [4,11] include ax-
iomatic variants that can be used, for instance, for comparing programs and
processes up to simulation and bisimulation equivalence and that are suitable,
for instance, for analysing probabilistic programs. They also contain further
models of computational interest. We expect that verification components for
many of them can be developed as minor variations to the ones presented. To
make such developments easy, we have usually expanded proofs in our Isabelle
components to make them readable, easy to compile and robust to change.

In verification proofs we have obtained a high level of automation that com-
pares with similar tools. Domain-specific data level proof support or techniques
for inferring invariants seem crucial for enhancing automation further.

A modular extension of MKA to separation logic will be the subject of a suc-
cessor article (cf. [10]); the integration of more advanced predicate transformer
models with angelic and demonic nondeterminism, as described in Back and
von Wright’s book [6], seems equally possible. Finally, dynamic logic forms the
basis of Platzer’s approach to verifying hybrid and cyber-physical systems [25].
Developing MKA-based Isabelle components for it would require implementing
a substantial amount of continuous mathematics in Isabelle, but might still be
modular with respect to an algebraic control flow layer.

Acknowledgements. This work was partly supported by EPSRC Programme
Grant REMS: Rigorous Engineering for Mainstream Systems, EP/K008528/1.

References

1. A. Armstrong, V. B. F. Gomes, and G. Struth. Kleene algebra with tests and
demonic refinement algebras. Archive of Formal Proofs, 2014.

2. A. Armstrong, V. B. F. Gomes, and G. Struth. Building program construction
and verification tools from algebraic principles. Formal Aspects of Computing,
28(2):265–293, 2016.

3. A. Armstrong and G. Struth. Automated reasoning in higher-order regular algebra.
In W. Kahl and T. G. Griffin, editors, RAMiCS 2012, volume 7560 of LNCS, pages
66–81. Springer, 2012.



Modal Kleene Algebra Applied to Program Correctness 15

4. A. Armstrong, G. Struth, and T. Weber. Kleene algebra. Archive of Formal Proofs,
2013.

5. A. Armstrong, G. Struth, and T. Weber. Programming and automating mathe-
matics in the Tarski-Kleene hierarchy. J. Logical and Algebraic Methods in Pro-
gramming, 83(2):87–102, 2014.

6. R. Back and J. von Wright. Refinement Calculus - A Systematic Introduction.
Springer, 1998.

7. J. H. Conway. Regular Algebra and Finite Machines. Chapman and Hall, 1971.
8. J. Desharnais, B. Möller, and G. Struth. Algebraic notions of termination. Logical

Methods in Computer Science, 7(1), 2011.
9. J. Desharnais and G. Struth. Internal axioms for domain semirings. Science of

Computer Programming, 76(3):181–203, 2011.
10. V. B. F. Gomes. Algebraic Principles for Program Correctness Tools in Is-

abelle/HOL. PhD thesis, University of Sheffield, 2015.
11. V. B. F. Gomes, W. Guttman, P. Höfner, G. Struth, and T. Weber. Kleene algebra

with domain. Archive of Formal Proofs, 2016.
12. V. B. F. Gomes and G. Struth. Program construction and verification components

based on Kleene algebra. Archive of Formal Proofs, 2016.
13. M. Gordon and H. Collavizza. Forward with Hoare. In A. W. Roscoe, C. B.

Jones, and K. W. Wood, editors, Reflections on the Work of C.A.R. Hoare, pages
101–121. Springer, 2010.

14. D. Harel, D. Kozen, and J. Tiuryn. Dynamic Logic. MIT Press, 2000.
15. M. Hollenberg. An equational axiomatization of dynamic negation and relational

composition. Journal of Logic, Language and Information, 6(4):381–401, 1997.
16. B. Jónsson and A. Tarski. Boolean algebras with operators, part I. Americal

Journal of Mathematics, 73(4):207–215, 1951.
17. D. Kozen and M. Patron. Certification of compiler optimizations using Kleene

algebra with tests. In J. W. Lloyd and al, editors, CL 2000, volume 1861 of LNCS,
pages 568–582. Springer, 2000.

18. D. Matichuk, T. C. Murray, and M. Wenzel. Eisbach: A proof method language
for Isabelle. J. Automated Reasoning, 56(3):261–282, 2016.

19. J. Meng, L. C. Paulson, and G. Klein. A termination checker for Isabelle Hoare
logic. In International Verification Workshop, 2007.

20. B. Möller and G. Struth. Algebras of modal operators and partial correctness.
Theoretical Computer Science, 351(2):221–239, 2006.

21. C. Morgan. Programming from specifications, 2nd Edition. Prentice Hall, 1994.
22. I. Németi. Dynamic algebras of programs. In F. Gécseg, editor, FCT’81, volume

117 of LNCS, pages 281–290. Springer, 1981.
23. T. Nipkow and G. Klein. Concrete Semantics—With Isabelle/HOL. Springer, 2014.
24. T. Nipkow, L. C. Paulson, and M. Wenzel. Isabelle/HOL - A Proof Assistant for

Higher-Order Logic, volume 2283 of LNCS. Springer, 2002.
25. A. Platzer. Logical Analysis of Hybrid Systems. Springer, 2010.
26. V. R. Pratt. Dynamic algebras as a well-behaved fragment of relation algebras. In

C. Bergman, R. D. Maddux, and D. Pigozzi, editors, Algebraic Logic and Universal
Algebra in Computer Science, volume 425 of LNCS, pages 77–110. Springer, 1990.

27. G. Struth. Left omega algebras and regular equations. J. Logic and Algebraic
Programming, 81(6):705–717, 2012.

28. G. Struth. On the expressive power of Kleene algebra with domain. Information
Processing Letters, 116(4):284–288, 2016.


	Modal Kleene Algebra Applied to Program Correctness

