Verifying Overlay Networksfor Relocatable Computations
(or: Nomadic Pict, relocated)

Peter Sewell

University of Cambridge
http://www.cl.cam.ac.uk/users/pes20

Abstract

In the late 1990s we developed a calculus, Nomadic Pict, ictwh

to express and verify overlay networks, for reliable comioation
between relocatable computations. Then, efficient systempast

for relocation was rare, and the calculus was reified in aotype
high-level programming language. Now, relocatable corifporn

is a pervasive reality, though at the level of virtual maeinather
than high-level languages. One can ask whether the sentiagdicy

and algorithms developed for Nomadic Pict can be applied (or
adapted) to infrastructure for communication betweeneh@sual
machines.

1. Introduction

In the 1990s, with the promise of commodity computation giml
visible on the horizon, there was considerable intereshabile
computation systems in which running computations could be
moved from one physical machine to another. Many motivating
scenarios were put forward, including mangagement of tlysph
ical machines (e.g. moving a server away from a machine which
needed rebooting), management of network resource (exgjhgno
computations ‘close’ to their communication partners)] amn-
aging intermittently connected devices (e.g. moving cotejions
to and from PDAs or laptops). Much of this work was in terms
of high-level programming language support for moving camp
tations, and some drew together research on functionargmog
ming languages such as Standard ML (Milner et al. 1997), and p
cess calculi such as the-calculus (Milner et al. 1992). Several
languages, including Oblig (Cardelli 1995), Facile (Themst al.
1996), and the Distributed Join Calculus (Fournet et al6).98up-
ported not just mobility but alsébcation-independentommuni-
cation between these mobile computations, with distribitéas-
tructure in the language implementation, which today onghini
term an overlay network, to reliably deliver messages jreetve
of any relocations.

It was clear then that the design of these overlay networls wa
a challenging problem:

e The distributed algorithms involved are delicate and error
prone, highly concurrent, and with potential races between
message delivery and relocation of computations; they ame h
to reason about informally.

The languages cited above have particular algorithms hard-
coded into their implementations, but in general the choice
of an infrastructure algorithm must be somewhat applicatio
specific: any given overlay algorithm will only have satitfary
performance for some range of migration and communication
behaviour; it should be matched to the expected propedies (
robustness and security demands) of applications, andeof th
underlying network.

Pawet T. Wojciechowski

Poznah University of Technology
http://www.cs.put.poznan.pl/pawelw/

To address this we developed a small calculus, Nomadic teict,
permit such algorithms to be described concisely and witthma
ematical precision (Sewell et al. 1998, 1999; Wojciechadvesid
Sewell 1999, 2000; Wojciechowski 2001, 2006). The basimpri
tives included fine-grained concurrency and asynchron@ssage
passing, taken from the-calculus, together with constructs to cre-
ate a new named computation (potentially multithreadedjelo-
cate such a computation from one machine to another, andatb se
asynchronous messages between these computations. gdldhe
simple to realize, with at most one inter-machine commuitoa
required for each transition of the calculus. An overlaywuek

for reliable location-independent communication couleitbe ex-
pressed as a translation of an extended calculus, with tisda
into the basic calculus. We implemented the eponymous anogr
ming language based on the Nomadic Pict calculi, and experi-
mented with a variety of overlay networks, variously celidesl

or P2P, with more or less caching, replication, and so on.eQpe-
rience was that the level of abstraction of these calculi avgeod

fit, making it relatively easy to design and understand therlay
network algorithms. Moreover, together with Unyapoth, vegel-
oped semantic techniques to suppaatificationof the correctness
of these algorithms (Unyapoth and Sewell 2001). The keyeissu
here was observational congruence reasoning in the prees#nc
assumptions under which particular computations could u=-g
anteed (temporarilynot to relocate, thus controlling the races be-
tween message delivery and relocation.

Ten years later, in 2008, relocatable computation is finally
becoming a commonplace reality. This is happening not at the
programming-language level we envisioned before, but heck-
pointing and movement of virtual machine images, which joles
a pervasive (and narrow) API at which to cut the softwarekstac
However, when it comes to looking at communication between
virtual machines, this may not be a significant differencethiis
position paper we therefore ask whether the Nomadic Pic¢tads
tions could be directly applied, or be adapted, to solve lprab in
this new setting.

2. TheNomadic = Calculi, Relocated

In this section we recall the Nomadiccalculi, shifting terminol-
ogy to match the hypothesised virtual machine application.

The main entities arsitess andvirtual machinesz. Sites rep-
resent physical machines; each site has a unique namealints
chines are units of running computation. Each has a unigomena
and a body consisting of some Nomadic Pict concurrent psaBes
(modelling whatever multi-threaded programs are runnimghat
virtual machine); at any moment it is located at a particsise.
For simplicity we do not model nested virtual machines.

A virtual machine camelocate at any point in time, to any other
site (identified by name), new virtual machines cacteated(with
the system synthesising a new unique name, bound to a ligxical

2008/4/17

create? g = PinQ
relocate tos— P
iflocal (a)c!v then P else Q

| (a)ctv (sugar)
| (a@s)ctv (sugar)
0
PlQ

newc:~'Tin P

c!

c?p— P

*C?p— P

if v then P else ()
letp=evin P

spawn VMa with body P, on local site

relocate this VM to site

sendc!v to VM « if it is co-located here,
and runP, otherwise rur@)

send!v to VM « if it is co-located here
send!v to VM « if it is at site s

empty process

parallel composition of processésand@
declare a new channel

output ofv on channet in current VM
input on channet in current VM
replicated input

conditional

local declaration

Figurel.

Nomadicr-calculus: Syntax

I' I @Q,create? b = P in Q

I'lF @Q,relocate tos — P

I'IF Qq (ctv|c?p— P)

I IF @Q,iflocal (b)c!v then P else)
I' IF Q,iflocal (b)c!v then P else Q

Ll

I'IFnewb: VM?@s in (@, P | @,Q)
T@®ars)l-Q,P
I IF @,match(p,v) P
LIk QP | @pcto
TIF @,Q

if '+ a@s

if I'F a@Qs AT I b@s
if 0+ a@s AT bQs’ As# s

Figure2. Nomadicr-calculus: Selected Reduction Rules

scoped identifier) and virtual machines ciateract by sending
messages to each other.

A key point in the design of the low-level calculus is to make
it easy to understand the behaviour of the system in the pcese
of partial failure. To do so, we chose interaction primisitbat can
be directly implemented above the real-world network (tbhekets
APl and TCP or UDP), without requiring a sophisticated distied
infrastructure. Our guiding principle is that each reductstep of
the low-level calculus should be implementable using attrone
inter-site asynchronous communication.

To provide an expressive language for local computatiohiwit
each virtual machine body, but keep the calculus conciseinwe
clude the constructs of a standard asynchronewsiculus. The
Nomadic Pict concurrent process of a virtual machine body ca
involve parallel composition, new channel creation, anginas
chronous messaging on those channels within the virtuahmec

In the rest of this section we give the syntax of processeas, an
the key points of their reduction semantics.

2.1 Processes of the Low-L evel Calculus

The syntax of a low-level core calculus is given in Fig. 1,ugyed
into the three virtual machine primitives, two useful conmiua-
tion forms that are expressible as syntactic sugar, andaoited |
asynchronougi-calculus. Executing the construeteate? b =

P in @) spawns a new virtual machine, with bo#y on the current
site. After the creation) commences execution, in parallel with
the rest of of the body of the spawning virtual machine. Th& ne
virtual machine has a unique name which may be referred to wit

1This choice may not be appropriate in the virtual machingregtwhere
one would presumably like to relocate VMs while retainingatéver net-
work connections and connectivity they possess.

b, both in its body and in the spawning virtual machibés(binding
in P and@Q). The Z is a mobility capability, eithes, requiring this
virtual machine to be static, ar;, allowing it to be mobile.

Virtual machines can relocate to named sites: the execution
of relocate to s — P as part of a virtual machine results in
the whole of that virtual machine migrating to site After the
migration, P commences execution in parallel with the rest of the
body of the virtual machine.

There is a single primitive for interaction between virtuad-
chines, allowing an atomic delivery of an asynchronous agsess
between two virtual machines that are co-located on the siteme
The execution ofiflocal (a)c!v then P else Q in the body
of virtual machineb has two possible outcomes. If the virtual ma-
chinea is on the same site as virtual machinéhen the message
ctv will be delivered toa (where it may later interact with an in-
put) andP will commence execution in parallel with the rest of the
body ofb; otherwise the message will not be delivered ghdill
execute as part df. This is analogous to test-and-set operations in
shared memory systems—delivering the message and sta&tting
or discarding it and starting, atomically. It can greatly simplify
algorithms that involve communication with virtual maoéénthat
may relocate away at any time, yet is still implementablealiyc
by the VM implementation on a single site.

Two other useful constructs can be expressed as s{igat:v
and (a@s)c!v attempt to delivere!v (an output ofv on channel
¢), to virtual machinez, on the current site and on respectively.
They fail silently if a is not where it is expected to be, and so
are usually used only in a context wherés predictable.The first
is implementable simply aiflocal (a)c!v then 0 else 0; the
second asreate” b = relocate to s— (a)c!vin0, forafresh
nameb that does not occur ig, a, ¢, Or v.

2008/4/17

Turning to therr-calculus constructs, the body of a virtual ma-
chine may be empty0] or a parallel compositio#®|Q of processes.

Execution ofnew ¢ : T in P creates a new unique channel
name for carrying values of typE; c is binding inP. The! is a
capability: as in (Pierce and Sangiorgi 1996), channelseamsed
for input onlyr, output onlyw, or bothrw; these induce a subtype
order.

An outputc! v (of valuev on channet) and an input?p — Pin
the same virtual machine may synchronise, resulting imith the
appropriate parts of the valuebound to the formal parameters in
the patterrp. Note that, as in other asynchronatigalculi, outputs
do not have continuation processes. A replicated imp@p — P
behaves similarly except that it persists after the syndkadion,
and so might receive another value.

Finally, we have conditionalsf v then P else (), and local
declarationdet p = ev in P, assigning the result of evaluating a
simple value expressiogv to a patterrp. In ¢?p — P, *c?p— P
andlet p = ev in P the names in pattermare binding inP.

For a simple example program in the low-level calculus, con-
sider the following VM server.

*getVM?[a 5| —
create” b =
relocate to s—
({(a@s'Yack'b | B)

in0
It can receive (on the channel named: VM) requests for an
virtual machine. This is a replicated inpatyet VM ?[a s] — . ..) SO
the server persists and can repeatedly grant requestsetbeats
contain a pair (bound to the tupje s] of a ands) consisting of the
name of the requesting virtual machine and the name of tadasit
the new VM to go to. When a request is received the serveraseat
a virtual machine with a new name boundtd his virtual machine
immediately relocates to site It then sends an acknowledgement
to the requesting virtual machirmg(which here is assumed to be on
site s’) containing its name. In parallel, the body of the served
VM commences execution.

2.2 Processes of the High-Level Calculus

The high-level calculus is obtained by extending the loveldan-
guage with a single location-independent communicatiomipr
tive.

P

| (a@7?)clv sendc! v to virtual machinex

whereever it is

The intended semantics is that this will reliably delivez thessage
c'v to virtual machines, irrespective of the current site afand of
any relocations. The high-level calculus includes all the-level
constructs, so those low-level communication primitives also
available for interaction with application virtual maceswhose
locations are predictable.

2.3 Outline of the Reduction Semantics
2.3.1 Located Processes and L ocated Type Contexts

The basic process terms given above only allow the source cod
of the body of a single virtual machine to be expressed. @urin
computation, this virtual machine may evolve into a systdm o
many virtual machines, distributed over many sites. To tkesoch
systems, we definecated processes

LP :=@,P | LP|LQ |newz : TQ@s in LP

Here the body of a virtual machine may be split into many
parts, for example writte@, P | . . . |@Q, P,,. The construchew x :
T@s in LP declares a new name (binding in L P); if this is a

virtual machine name, witl’ = VM%, we have an annotatiofs
giving the names of the site where the virtual machine is currently
located. Channels, on the other hand, are not located =if~ 7"
then the annotation is omitted.

Correspondingly, we add location information to type catge
Located type contextF include data specifying the site where
each declared virtual machine is located; the operati@rabsitics
updates this when virtual machines move.

Fu=e|, X |D,z:vW?Q@s |D,z:T T #vM?

For example, the located type context below declares tves,sit
ands’, and a channel, which can be used for sending or receiving
integers. It also declares a mobile virtual machindocated ats,
and a static virtual machirig located at’.

s:Site, s’ :Site, ¢: “™Int, a: VM"@s, b: VM Qs

2.3.2 Reductions

To capture our informal understanding of the calculus ingigweight
a way as possible, we give a reduction semantics. It is defirtdd

a structural congruence and reduction axioms, extendiagftn
the w-calculus (Milner 1993). Reductions are ow@mfigurations
which are paird” I LP of a located type context and a located
processL P. We use a judgemerit - a@s, meaning that a virtual
machinea is located ats in the located type context. We shall
give some examples of reductions, illustrating the new iies.
The most interesting axioms for the low-level calculus avergin
Figure 2.

A virtual machinea can spawn a new virtual machimbewith
body P, and continues witlQ). The new virtual machine is located
at the same site as(says, withI" - a@s). The virtual machiné
is initially bound and the scope is over the proc€si a and the
whole of the new virtual machine.

I'IF Qu(R | create™ b= Pin Q)
— T'IFQuR|newd: VM"@s in (Q,Q | @, P)

When a virtual machine relocates to a new site, we simply
update the located type context.

I'IF @Qq(R | relocate to s—Q)
— I'@®a—slFQ(R|Q)

A new-bound virtual machine may also relocate; in this case, we
simply update the location annotation.

'l Q,R |newb : VM"Qs’ in @Q,relocate to s—Q
— T IFQ,R |newb: VM"Qs’ in @,Q

A virtual machinea may send a location-dependent message to
a virtual machineb if they are on the same site. The message,
once delivered may then react with an inputbinAssuming that
T'F a@sandl’ - b@s.

I'IF @4 (iflocal (b)c![| then P else Q) | @Q,(c?[|— R)
— TIFQ.P|@Qyc!]] | c?[]— R)
— TI'IFQ,P | Q,R

If a andb are at different sites then the message will get lost.

I' I @4 (iflocal (b)c![| then P else Q) | @,(c?[|— R)
— TIFQ.,Q|Qy(c?]|—R)

Synchronisation of a local outputv and an input?z— P only
occurs within a virtual machine, but in the executioriglocal a
new channel name can escape the virtual machine where it was
created, to be used elsewhere for output and/or input. @ensi
for example the process below, executing as the body of aabirt

2008/4/17

machinea.

create” b =
c?z— (z13|z?n—0)
in
newd: “"int in
iflocal (b)c!d then 0 else 0
|dr7

It has a reduction for the creation of virtual machina reduction
for theiflocal that delivers the output! d to b, and then a local
synchronisation of this output with the input enVirtual machine
a then has bodyl! 7 and virtual machiné has bodyd! 3|d?n— 0.
Only the latter output ol can synchronise with's input d?n—0.
For each channel name there is therefore effectivetycalculus-
style channel in each virtual machine. The channels aréndist
in that outputs and inputs can only interact if they are indhme
virtual machine. This provides a limited form of dynamic dhiimg,
with the semantics of a channel name (i.e., the set of parthat a
communication on that channel might synchronise with) ddpat
on the virtual machine in which it is used; it proves very u#f
the infrastructure algorithms that we develop.

The high-level calculus has one additional axiom, allowing
location-independent communication between virtual riveesh

I'lF @ (b@7)clv — T'IF @pelv

This delivers the messagev to virtual machine irrespective of
whereb (and the sendet) are located. For example, below an
empty tuple message on channé$ delivered to a virtual machine
b with a waiting input orc.

DIk @ (P | (b@7)et[)) | @(c?] — R)
— TI'lFQ.P | @b(c! [] | C"[]—)R)

3. TheQuestions

So, are these calculi (or something similar) a level of ausiton
that would be useful in managing datacentres, with widespre
virtualization? Are there system design problems whosetisois
would be best expressed at this level?

Insofar as there are problems involving the interaction bf V
relocation and inter-VM communication, the answer seertai{p
sibly, to us) yes, but we are not in a position to know. We look
forward to finding out.

References

1996. CONCUR '96: Concurrency Theory, 7th International Confere
LNCS, vol. 1119. Springer-Verlag, Pisa, Italy.

CARDELLI, L. 1995. A language with distributed scope. @onference
record of POPL '95, 22nd ACM SIGPLAN-SIGACT Symposium am-Pri
ciples of Programming Languages: papers presented at thgp8gium:
San Francisco, California, January 22-25, 1996M, Ed. ACM Press,
New York, NY, USA, 286-297.

FOURNET, C., GONTHIER, G., LEVY, J.-J., MARANGET, L., AND REMY,
D. 1996. A calculus of mobile agents. See (CON 1996), 406-421

MILNER, R. 1993. The polyadig-calculus: A tutorial. Series F: Computer
and System Sciences, vol. 94. Springer. Available as TeahReport
ECS-LFCS-91-180, University of Edinburgh, October 1991.

MILNER, R., FARROW, J.,AND WALKER, D. 1992. A calculus of mobile
processes, part l/linformation and Computation 10Q—77.

MILNER, R., TOFTE, M., HARPER, R.,AND MACQUEEN, D. 1997.The
Definition of Standard ML (RevisedJhe MIT Press.

PIERCE, B. C. AND SANGIORGI, D. 1996. Typing and subtyping for
mobile processesMathematical Structures in Computer Scienceg,
409-454. An extract appearedmmoc. LICS '93 376-385.

SEWELL, P., WoJclEcHOwsSK| P. T.,AND PIERCE, B. C. 1998. Lo-
cation independence for mobile agents. Pioceedings of IFL 98: the

Workshop on Internet Programming Languages (Chicago)oimjunc-
tion with ICCL 6pp.

SEWELL, P., WoJciEcHOwsK| P. T., AND PIERCE, B. C. 1999.
Location-independent communication for mobile agentsialevel ar-
chitecture. Ininternet Programming Languages, LNCS 168@ringer
Verlag, 1-31.

THOMSEN, B., LETH, L., AND Kuo, T.-M. 1996. A Facile tutorial. See
(CON 1996), 278-298.

UNYAPOTH, A. AND SEWELL, P. 2001. Nomadic Pict: Correct communi-
cation infrastructure for mobile computation. Rmoceedings of POPL
2001: The 28th ACM SIGPLAN-SIGACT Symposium on Principgles o
Programming Languages (Londor})16-127.

WoJaclecHowsk| P. T. 2001. Algorithms for location-independent com-
munication between mobile agents.Rroceedings of AISB '01 Sympo-
sium on Software Mobility and Adaptive Behaviour (York, UKiso
published as Technical Report IC-2001-13, School of Cosmpand
Communication Sciences, Ecole Polytechnique Fédémleadisanne
(EPFL).

WoJclECHOWSK| P. T. 2006. Scalable message routing for mobile soft-
ware assistants. Rroceedings of EUC '06: the 2006 IFIP International
Conferenc e on Embedded And Ubiquitous Computiegture Notes in
Computer Science, vol. 4096. Springer, 355-364.

WoJclEcHOWSK| P. T. AND SEWELL, P. 1999. Nomadic Pict: Lan-
guage and infrastructure design for mobile agents. Pitaceedings
of ASA/MA '99 (First International Symposium on Agent Systand
Applications/Third International Symposium on Mobile A, Palm
Springs, CA, USA

WOJCIECHOWSK| P. T.AND SEWELL, P. 2000. Nomadic Pict: Language
and infrastructure design for mobile agentl£EE Concurrency 82
(April-June), 42-52.

2008/4/17

