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Abstract
In the late 1990s we developed a calculus, Nomadic Pict, in which
to express and verify overlay networks, for reliable communication
between relocatable computations. Then, efficient system support
for relocation was rare, and the calculus was reified in a prototype
high-level programming language. Now, relocatable computation
is a pervasive reality, though at the level of virtual machines rather
than high-level languages. One can ask whether the semantictheory
and algorithms developed for Nomadic Pict can be applied (or
adapted) to infrastructure for communication between these virtual
machines.

1. Introduction
In the 1990s, with the promise of commodity computation dimly
visible on the horizon, there was considerable interest inmobile
computation: systems in which running computations could be
moved from one physical machine to another. Many motivating
scenarios were put forward, including mangagement of the phys-
ical machines (e.g. moving a server away from a machine which
needed rebooting), management of network resource (e.g. moving
computations ‘close’ to their communication partners), and man-
aging intermittently connected devices (e.g. moving computations
to and from PDAs or laptops). Much of this work was in terms
of high-level programming language support for moving compu-
tations, and some drew together research on functional program-
ming languages such as Standard ML (Milner et al. 1997), and pro-
cess calculi such as theπ-calculus (Milner et al. 1992). Several
languages, including Obliq (Cardelli 1995), Facile (Thomsen et al.
1996), and the Distributed Join Calculus (Fournet et al. 1996), sup-
ported not just mobility but alsolocation-independentcommuni-
cation between these mobile computations, with distributed infras-
tructure in the language implementation, which today one might
term an overlay network, to reliably deliver messages irrespective
of any relocations.

It was clear then that the design of these overlay networks was
a challenging problem:

• The distributed algorithms involved are delicate and error-
prone, highly concurrent, and with potential races between
message delivery and relocation of computations; they are hard
to reason about informally.

• The languages cited above have particular algorithms hard-
coded into their implementations, but in general the choice
of an infrastructure algorithm must be somewhat application-
specific: any given overlay algorithm will only have satisfactory
performance for some range of migration and communication
behaviour; it should be matched to the expected properties (and
robustness and security demands) of applications, and of the
underlying network.

To address this we developed a small calculus, Nomadic Pict,to
permit such algorithms to be described concisely and with math-
ematical precision (Sewell et al. 1998, 1999; Wojciechowski and
Sewell 1999, 2000; Wojciechowski 2001, 2006). The basic primi-
tives included fine-grained concurrency and asynchronous message
passing, taken from theπ-calculus, together with constructs to cre-
ate a new named computation (potentially multithreaded), to relo-
cate such a computation from one machine to another, and to send
asynchronous messages between these computations. All these are
simple to realize, with at most one inter-machine communication
required for each transition of the calculus. An overlay network
for reliable location-independent communication could then be ex-
pressed as a translation of an extended calculus, with that added,
into the basic calculus. We implemented the eponymous program-
ming language based on the Nomadic Pict calculi, and experi-
mented with a variety of overlay networks, variously centralised
or P2P, with more or less caching, replication, and so on. Ourexpe-
rience was that the level of abstraction of these calculi wasa good
fit, making it relatively easy to design and understand the overlay
network algorithms. Moreover, together with Unyapoth, we devel-
oped semantic techniques to supportverificationof the correctness
of these algorithms (Unyapoth and Sewell 2001). The key issue
here was observational congruence reasoning in the presence of
assumptions under which particular computations could be guar-
anteed (temporarily)not to relocate, thus controlling the races be-
tween message delivery and relocation.

Ten years later, in 2008, relocatable computation is finally
becoming a commonplace reality. This is happening not at the
programming-language level we envisioned before, but via check-
pointing and movement of virtual machine images, which provides
a pervasive (and narrow) API at which to cut the software stack.
However, when it comes to looking at communication between
virtual machines, this may not be a significant difference. In this
position paper we therefore ask whether the Nomadic Pict abstrac-
tions could be directly applied, or be adapted, to solve problems in
this new setting.

2. The Nomadic π Calculi, Relocated
In this section we recall the Nomadicπ calculi, shifting terminol-
ogy to match the hypothesised virtual machine application.

The main entities aresitess andvirtual machinesa. Sites rep-
resent physical machines; each site has a unique name. Virtual ma-
chines are units of running computation. Each has a unique name
and a body consisting of some Nomadic Pict concurrent process P
(modelling whatever multi-threaded programs are running in that
virtual machine); at any moment it is located at a particularsite.
For simplicity we do not model nested virtual machines.

A virtual machine canrelocate, at any point in time, to any other
site (identified by name), new virtual machines can becreated(with
the system synthesising a new unique name, bound to a lexically
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P ::= createcreatecreate
Z a = P ininin Q spawn VMa with bodyP , on local site

| relocate torelocate torelocate to s→P relocate this VM to sites
| iflocaliflocaliflocal 〈a〉c!!!v thenthenthen P elseelseelse Q sendc!!!v to VM a if it is co-located here,

and runP , otherwise runQ
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

| 〈a〉c!!!v (sugar) sendc!!!v to VM a if it is co-located here
| 〈a@s〉c!!!v (sugar) sendc!!!v to VM a if it is at sites

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
| 000 empty process
| P |Q parallel composition of processesP andQ

| newnewnew c : ^̂̂IT ininin P declare a new channelc

| c!!!v output ofv on channelc in current VM
| c???p→P input on channelc in current VM
| ***c???p→P replicated input
| ififif v thenthenthen P elseelseelse Q conditional
| letletlet p = ev ininin P local declaration

Figure 1. Nomadicπ-calculus: Syntax

Γ 
 @acreatecreatecreate
Z b = P ininin Q −→ Γ 
 newnewnew b : VMZ@s ininin (@bP | @aQ) if Γ ⊢ a@s

Γ 
 @arelocate torelocate torelocate to s → P −→ (Γ ⊕ a 7→ s) 
 @aP
Γ 
 @a (c!!!v|c???p→P ) −→ Γ 
 @amatch(p, v)P
Γ 
 @aiflocaliflocaliflocal 〈b〉c!!!v thenthenthen P elseelseelse Q −→ Γ 
 @aP | @bc!!!v if Γ ⊢ a@s ∧ Γ ⊢ b@s

Γ 
 @aiflocaliflocaliflocal 〈b〉c!!!v thenthenthen P elseelseelse Q −→ Γ 
 @aQ if Γ ⊢ a@s ∧ Γ ⊢ b@s′ ∧ s 6= s′

Figure 2. Nomadicπ-calculus: Selected Reduction Rules

scoped identifier) and virtual machines caninteract by sending
messages to each other.

A key point in the design of the low-level calculus is to make
it easy to understand the behaviour of the system in the presence
of partial failure. To do so, we chose interaction primitives that can
be directly implemented above the real-world network (the Sockets
API and TCP or UDP), without requiring a sophisticated distributed
infrastructure. Our guiding principle is that each reduction step of
the low-level calculus should be implementable using at most one
inter-site asynchronous communication.1

To provide an expressive language for local computation within
each virtual machine body, but keep the calculus concise, wein-
clude the constructs of a standard asynchronousπ-calculus. The
Nomadic Pict concurrent process of a virtual machine body can
involve parallel composition, new channel creation, and asyn-
chronous messaging on those channels within the virtual machine.

In the rest of this section we give the syntax of processes, and
the key points of their reduction semantics.

2.1 Processes of the Low-Level Calculus

The syntax of a low-level core calculus is given in Fig. 1, grouped
into the three virtual machine primitives, two useful communica-
tion forms that are expressible as syntactic sugar, and the local
asynchronouspi-calculus. Executing the constructcreatecreatecreate

Z b =
P ininin Q spawns a new virtual machine, with bodyP , on the current
site. After the creation,Q commences execution, in parallel with
the rest of of the body of the spawning virtual machine. The new
virtual machine has a unique name which may be referred to with

1 This choice may not be appropriate in the virtual machine setting, where
one would presumably like to relocate VMs while retaining whatever net-
work connections and connectivity they possess.

b, both in its body and in the spawning virtual machine (b is binding
in P andQ). TheZ is a mobility capability, eithers, requiring this
virtual machine to be static, orm, allowing it to be mobile.

Virtual machines can relocate to named sites: the execution
of relocate torelocate torelocate to s → P as part of a virtual machine results in
the whole of that virtual machine migrating to sites. After the
migration,P commences execution in parallel with the rest of the
body of the virtual machine.

There is a single primitive for interaction between virtualma-
chines, allowing an atomic delivery of an asynchronous message
between two virtual machines that are co-located on the samesite.
The execution ofiflocaliflocaliflocal 〈a〉c!!!v thenthenthen P elseelseelse Q in the body
of virtual machineb has two possible outcomes. If the virtual ma-
chinea is on the same site as virtual machineb then the message
c!!!v will be delivered toa (where it may later interact with an in-
put) andP will commence execution in parallel with the rest of the
body ofb; otherwise the message will not be delivered andQ will
execute as part ofb. This is analogous to test-and-set operations in
shared memory systems—delivering the message and startingP ,
or discarding it and startingQ, atomically. It can greatly simplify
algorithms that involve communication with virtual machines that
may relocate away at any time, yet is still implementable locally,
by the VM implementation on a single site.

Two other useful constructs can be expressed as sugar:〈a〉c!!!v
and〈a@s〉c!!!v attempt to deliverc!!!v (an output ofv on channel
c), to virtual machinea, on the current site and ons, respectively.
They fail silently if a is not where it is expected to be, and so
are usually used only in a context wherea is predictable.The first
is implementable simply asiflocaliflocaliflocal 〈a〉c!!!v thenthenthen 000 elseelseelse 000; the
second ascreatecreatecreate

m b = relocate torelocate torelocate to s→ 〈a〉c!!!vininin 000, for a fresh
nameb that does not occur ins, a, c, or v.
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Turning to theπ-calculus constructs, the body of a virtual ma-
chine may be empty (000) or a parallel compositionP |Q of processes.

Execution ofnewnewnew c : ^̂̂IT ininin P creates a new unique channel
name for carrying values of typeT ; c is binding inP . TheI is a
capability: as in (Pierce and Sangiorgi 1996), channels canbe used
for input onlyr, output onlyw, or bothrw; these induce a subtype
order.

An outputc!!!v (of valuev on channelc) and an inputc???p→P in
the same virtual machine may synchronise, resulting inP with the
appropriate parts of the valuev bound to the formal parameters in
the patternp. Note that, as in other asynchronousπ-calculi, outputs
do not have continuation processes. A replicated input***c???p → P
behaves similarly except that it persists after the synchronisation,
and so might receive another value.

Finally, we have conditionalsififif v thenthenthen P elseelseelse Q, and local
declarationsletletlet p = ev ininin P , assigning the result of evaluating a
simple value expressionev to a patternp. In c???p→P , ***c???p→P
andletletlet p = ev ininin P the names in patternp are binding inP .

For a simple example program in the low-level calculus, con-
sider the following VM server.

***getVM???[a s]→
createcreatecreate

m b =
relocate torelocate torelocate to s→

(〈a@s′〉ack!!!b | B)
ininin 000

It can receive (on the channel namedgetVM ) requests for an
virtual machine. This is a replicated input (***getVM???[a s]→ . . .) so
the server persists and can repeatedly grant requests. The requests
contain a pair (bound to the tuple[a s] of a ands) consisting of the
name of the requesting virtual machine and the name of the site for
the new VM to go to. When a request is received the server creates
a virtual machine with a new name bound tob. This virtual machine
immediately relocates to sites. It then sends an acknowledgement
to the requesting virtual machinea (which here is assumed to be on
sites′) containing its name. In parallel, the bodyB of the served
VM commences execution.

2.2 Processes of the High-Level Calculus

The high-level calculus is obtained by extending the low-level lan-
guage with a single location-independent communication primi-
tive.

P ::= . . .
| 〈a@?〉c!!!v sendc!!!v to virtual machinea

whereever it is

The intended semantics is that this will reliably deliver the message
c!!!v to virtual machinea, irrespective of the current site ofa and of
any relocations. The high-level calculus includes all the low-level
constructs, so those low-level communication primitives are also
available for interaction with application virtual machines whose
locations are predictable.

2.3 Outline of the Reduction Semantics

2.3.1 Located Processes and Located Type Contexts

The basic process terms given above only allow the source code
of the body of a single virtual machine to be expressed. During
computation, this virtual machine may evolve into a system of
many virtual machines, distributed over many sites. To denote such
systems, we definelocated processes

LP ::= @aP | LP |LQ | newnewnew x : T@s ininin LP

Here the body of a virtual machinea may be split into many
parts, for example written@aP1| . . . |@aPn. The constructnewnewnew x :
T@s ininin LP declares a new namex (binding inLP ); if this is a

virtual machine name, withT = VM
Z , we have an annotation@s

giving the names of the site where the virtual machine is currently
located. Channels, on the other hand, are not located – ifT = ^̂̂

IT ′

then the annotation is omitted.
Correspondingly, we add location information to type contexts.

Located type contextsΓ include data specifying the site where
each declared virtual machine is located; the operational semantics
updates this when virtual machines move.

Γ ::= • | Γ, X | Γ, x : VMZ@s | Γ, x : T T 6= VM
Z

For example, the located type context below declares two sites,s
ands′, and a channelc, which can be used for sending or receiving
integers. It also declares a mobile virtual machinea, located ats,
and a static virtual machineb, located ats′.

s : Site, s
′ : Site, c : ^̂̂rwInt, a : VMm@s, b : VMs@s

′

2.3.2 Reductions

To capture our informal understanding of the calculus in as lightweight
a way as possible, we give a reduction semantics. It is definedwith
a structural congruence and reduction axioms, extending that for
theπ-calculus (Milner 1993). Reductions are overconfigurations,
which are pairsΓ 
 LP of a located type contextΓ and a located
processLP . We use a judgementΓ ⊢ a@s, meaning that a virtual
machinea is located ats in the located type contextΓ. We shall
give some examples of reductions, illustrating the new primitives.
The most interesting axioms for the low-level calculus are given in
Figure 2.

A virtual machinea can spawn a new virtual machineb, with
bodyP , and continues withQ. The new virtual machine is located
at the same site asa (says, with Γ ⊢ a@s). The virtual machineb
is initially bound and the scope is over the processQ in a and the
whole of the new virtual machine.

Γ 
 @a(R | createcreatecreate
m b = P ininin Q)

−→ Γ 
 @aR | newnewnew b : VMm@s ininin (@aQ | @bP )

When a virtual machinea relocates to a new sites, we simply
update the located type context.

Γ 
 @a(R | relocate torelocate torelocate to s→Q)
−→ Γ ⊕ a 7→ s 
 @a(R | Q)

A newnewnew-bound virtual machine may also relocate; in this case, we
simply update the location annotation.

Γ 
 @aR | newnewnew b : VMm@s′ ininin @brelocate torelocate torelocate to s→Q

−→ Γ 
 @aR | newnewnew b : VMm@s′ ininin @bQ

A virtual machinea may send a location-dependent message to
a virtual machineb if they are on the same site. The message,
once delivered may then react with an input inb. Assuming that
Γ ⊢ a@s andΓ ⊢ b@s.

Γ 
 @a(iflocaliflocaliflocal 〈b〉c!!![] thenthenthen P elseelseelse Q) | @b(c???[]→R)
−→ Γ 
 @aP | @b(c!!![] | c???[]→R)
−→ Γ 
 @aP | @bR

If a andb are at different sites then the message will get lost.

Γ 
 @a(iflocaliflocaliflocal 〈b〉c!!![] thenthenthen P elseelseelse Q) | @b(c???[]→R)
−→ Γ 
 @aQ | @b(c???[]→R)

Synchronisation of a local outputc!!!v and an inputc???x→P only
occurs within a virtual machine, but in the execution ofiflocaliflocaliflocal a
new channel name can escape the virtual machine where it was
created, to be used elsewhere for output and/or input. Consider
for example the process below, executing as the body of a virtual

3 2008/4/17



machinea.

createcreatecreate
m b =

c???x→ (x!!!3|x???n→000)
ininin

newnewnew d : ^̂̂rw

int ininin

iflocaliflocaliflocal 〈b〉c!!!d thenthenthen 000 elseelseelse 000
| d!!!7

It has a reduction for the creation of virtual machineb, a reduction
for theiflocaliflocaliflocal that delivers the outputc!!!d to b, and then a local
synchronisation of this output with the input onc. Virtual machine
a then has bodyd!!!7 and virtual machineb has bodyd!!!3|d???n→000.
Only the latter output ond can synchronise withb’s input d???n→000.
For each channel name there is therefore effectively aπ-calculus-
style channel in each virtual machine. The channels are distinct,
in that outputs and inputs can only interact if they are in thesame
virtual machine. This provides a limited form of dynamic binding,
with the semantics of a channel name (i.e., the set of partners that a
communication on that channel might synchronise with) dependent
on the virtual machine in which it is used; it proves very useful in
the infrastructure algorithms that we develop.

The high-level calculus has one additional axiom, allowing
location-independent communication between virtual machines.

Γ 
 @a〈b@?〉c!!!v −→ Γ 
 @bc!!!v

This delivers the messagec!!!v to virtual machineb irrespective of
where b (and the sendera) are located. For example, below an
empty tuple message on channelc is delivered to a virtual machine
b with a waiting input onc.

Γ 
 @a(P | 〈b@?〉c!!![]) | @b(c???[]→R)
−→ Γ 
 @aP | @b(c!!![] | c???[]→R)

3. The Questions
So, are these calculi (or something similar) a level of abstraction
that would be useful in managing datacentres, with widespread
virtualization? Are there system design problems whose solutions
would be best expressed at this level?

Insofar as there are problems involving the interaction of VM
relocation and inter-VM communication, the answer seems (plau-
sibly, to us) yes, but we are not in a position to know. We look
forward to finding out.
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