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Abstract. How close are we to a world where every paper on program-
ming languages is accompanied by an electronic appendix with machine-
checked proofs?
We propose an initial set of benchmarks for measuring progress in this
area. Based on the metatheory of System F<:, a typed lambda-calculus
with second-order polymorphism, subtyping, and records, these bench-
marks embody many aspects of programming languages that are chal-
lenging to formalize: variable binding at both the term and type levels,
syntactic forms with variable numbers of components (including binders),
and proofs demanding complex induction principles. We hope that these
benchmarks will help clarify the current state of the art, provide a basis
for comparing competing technologies, and motivate further research.

1 Introduction

Many proofs about programming languages are long, straightforward, and te-
dious, with just a few interesting cases. Their complexity arises from the man-
agement of many details rather than from deep conceptual difficulties; yet small
mistakes or overlooked cases can invalidate large amounts of work. These effects
are amplified as languages scale: it becomes hard to keep definitions and proofs
consistent, to reuse work, and to ensure tight relationships between theory and
implementations. Automated proof assistants offer the hope of significantly eas-
ing these problems. However, despite much encouraging progress in recent years
and the availability of several mature tools (ACL2 [26], Coq [3], HOL [18], HOL
Light [21], Isabelle [35], Lego [28], NuPRL [7], PVS [40], Twelf [42], etc.), their
use is still not commonplace.

We believe that the time is ripe to join the efforts of the two communities,
bringing developers of automated proof assistants together with a large pool
of eager potential clients—programming language designers and researchers. In
particular, we would like to answer two questions:



1. What is the current state of the art in formalizing language metatheory and
semantics? What can be recommended as best practices for groups (typically
not proof-assistant experts) embarking on formalizing language definitions,
either small- or large-scale?

2. What improvements are needed to make the use of tool support common-
place? What can each community contribute?

Over the past several months, we have surveyed the landscape of proof as-
sistants, language representation strategies, and related tools. Collectively, we
have applied automated theorem proving technology to a number of problems,
including proving transitivity of the algorithmic subtype relation in KernelF<: [6,
5, 9], proving type soundness of Featherweight Java [24], proving type soundness
of variants of the simply typed λ-calculus and F<:, and a substantial formaliza-
tion of the behavior of TCP, UDP, and the Sockets API. We have carried out
these case studies using a variety of object-language representation strategies,
proof techniques, and proving environments. We have also experimented with
lightweight tools designed to make it easier to define and typeset both formal
and informal mathematics. Although experts in programming language theory,
we are relative outsiders with respect to computer-aided proof.

Our conclusion from these experiments is that the relevant technology has
developed almost to the point where it can be widely used by language re-
searchers. We seek to push it over the threshold, making the use of proof tools
common practice in programming language research—mechanized metatheory
for the masses.

Tool support for formal reasoning about programming languages would be
useful at many levels:

1. Machine-checked metatheory. These are the classic problems: type preser-
vation and soundness theorems, unique decomposition properties for opera-
tional semantics, proofs of equivalence between algorithmic and declarative
variants of type systems, etc. At present such results are typically proved
by hand for small to medium-sized calculi, and are not proved at all for full
language definitions. We envision a future in which the papers in conferences
such as Principles of Programming Languages (POPL) and the International
Conference on Functional Programming (ICFP) are routinely accompanied
by mechanically checkable proofs of the theorems they claim.

2. Use of definitions as oracles for testing and animation. When developing a
language implementation together with a formal definition one would like
to use the definition as an oracle for testing. This requires tools that can
decide typing and evaluation relationships, and they might differ from the
tools used for (1) or be embedded in the same proof assistant. In some cases
one could use a definition directly as a prototype.

3. Support for engineering large-scale definitions. As we move to full language
definitions—on the scale of Standard ML [30] or larger—pragmatic “software
engineering” issues become increasingly important, as do the potential ben-
efits of tool support. For large definitions, the need for elegant and concise



notation becomes pressing, as witnessed by the care taken by present-day
researchers using informal mathematics. Even lightweight tool support, with-
out full mechanized proof, could be very useful in this domain, e.g., for sort
checking and typesetting of definitions and of informal proofs, automatically
instantiating definitions, performing substitutions, etc.

Large scale formalization of languages is already within reach of current
technology. For examples, see the work on proofs of correctness of the Damas-
Milner type inference algorithm for ML [12, 33], semantics for C [37], semantics
for Standard ML [46, 48, 20], and semantics and proofs of correctness for sub-
stantial subsets of Java [36, 27, 34]. Some other significant existing applications
of mechanized metatheory include Foundational Proof Carrying Code [1] and
Typed Assembly Langugages [8]. Inspired by these successes, we seek to make
mechanized metatheory more accessible to programming languages researchers.

We hope to stimulate progress by providing a framework for comparing al-
ternative technologies. We issue here an initial set of challenge problems, dubbed
the PoplMark Challenge, chosen to exercise some aspects of programming lan-
guages that are known to be difficult to formalize: variable binding at both term
and type levels, syntactic forms with variable numbers of components (including
binders), and proofs demanding complex induction principles. Such challenge
problems have been used in the past within the theorem proving community to
focus attention on specific areas and to evaluate the relative merits of different
tools; these have ranged in scale from benchmark suites and small problems [45,
19, 11, 23, 15, 32] up to the grand challenges of Floyd, Hoare, and Moore [13, 22,
31]. We hope that our challenge will have a similarly stimulating effect.

Our problems are drawn from the basic metatheory of a call-by-value variant
of System F<: [5, 9], enriched with records, record subtyping, and record patterns.
We provide an informal definition of its type system and operational semantics
and outline proofs of some of its metatheory in Appendix A. This language is of
moderate scale—significantly more complex than simply typed lambda-calculus
or “mini ML,” but much smaller than a full-blown programming language—to
keep the work involved in attempting the challenges manageable. (Our challenges
therefore explicitly address only points 1 and 2 above; we regard the pragmatic
issues of point 3 as equally critical, but it is not yet clear to us how to formulate
a useful challenge problem at this larger scale.) As these challenges are met, we
anticipate that the set of problems will be extended to emphasize other language
features and proof techniques.

We have begun collecting and publicizing solutions to these challenge prob-
lems and information related to mechanized metatheory on our web site.3 In
the longer run, we hope that this site and accompanying e-mail discussion list4

will serve as a forum for promoting and advancing the current best practices in
proof assistant technology and making this technology available to the broader
programming languages community and beyond. We encourage researchers to

3 http://www.cis.upenn.edu/proj/plclub/mmm/
4 poplmark@lists.seas.upenn.edu



try out the PoplMark Challenge using their favorite tools and send us their
solutions.

In the next section, we discuss in more detail our reasons for selecting this
specific set of challenge problems. Section 3 describes the problems themselves,
and Section 4 sketches some avenues for further development of the challenge
problem set.

2 Design of the Challenge

This section motivates our choice of challenge problems and discusses the eval-
uation criteria for proposed solutions to the challenges. Since variable binding
is a central aspect of the challenges, we briefly discuss relevant techniques and
sketch some of our own experience in this area.

2.1 Problem Selection

The goal of the PoplMark Challenge is to provide a small, well-defined set of
problems that capture many of the most critical issues in formalizing programing
language metatheory. By its nature, such a benchmark will not be able to reflect
all important issues—it is not practical to require challenge participants to for-
malize a large-scale language, for example. Instead, the PoplMark problems
concentrate on a few important features:

– Binding. Most programming languages have some form of binding in their
syntax and require a treatment of α-equivalence and capture-avoiding sub-
stitution in their semantics. To adequately represent many languages, the
representation strategy must support multiple kinds of binders (e.g. term
and type), constructs introducing multiple binders over the same scope, and
potentially unbounded lists of binders (e.g. for record patterns).

– Complex inductions. Programming language definitions often involve com-
plex, mutually recursive definitions. Structural induction over such objects,
mutual induction, and induction on heights or pairs of derivations are all
commonplace in metatheory.

– Experimentation. Proofs about programming languages are just one aspect
of formalization; for some applications, experimenting with formalized lan-
guage designs is equally interesting. It should be easy for the language de-
signer to execute typechecking algorithms, generate sample program behav-
iors, and—most importantly—test real language implementations against
the formalized definitions.

– Component reuse. To further facilitate experimentation with and sharing
of language designs, the infrastructure should support some way of reusing
prior definitions and parts of proofs.

We have carefully constructed the PoplMark Challenge to stress these
features; a theorem-proving infrastructure that addresses the whole challenge



should be applicable across a wide spectrum of programming language theory.
While we believe that the features above are essential, our challenge does not
address many other interesting and tricky-to-formalize constructs and reasoning
principles. We discuss possible extensions to the challenge in Section 4.

2.2 Evaluation Criteria

A solution to the PoplMark Challenge will consist of appropriate software
tools, a language representation strategy, and a demonstration that this infras-
tructure is sufficient to formalize the problems described in Section 3. Ap-
pendix A presents reasonably detailed informal proofs of the challenge proper-
ties. Solutions to the challenge should follow the overall structure of these proofs,
though we expect that details will vary from prover to prover and across term
representations. In all cases, there must be an argument for why the formalization
is equivalent to the presentation in Section 3—i.e., an adequacy theorem—which
should be as simple as possible.

The primary metric of success (beyond correctness, of course) is that a solu-
tion should give us confidence of future success of other formalizations carried
out using similar techniques. In particular, this implies that:

– The technology should impose reasonable overheads. We accept that there is
a cost to formalization, and our goal is not to be able to prove things more
easily than by hand (although that would certainly be welcome). We are
willing to spend more time and effort to use the proof infrastructure, but
the overhead of doing so must not be prohibitive. (For example, as we discuss
below, our experience is that explicit de Bruijn-indexed representations of
variable binding structure fail this test.)

– The technology should be transparent. The representation strategy and proof
assistant syntax should not depart too radically from the usual conventions
familiar to the technical audience, and the content of the theorems them-
selves should be apparent to someone not deeply familiar with the theorem
proving technology used or the representation strategy chosen.

– The technology should have a reasonable cost of entry. The infrastructure
should be usable (after, say, one semester of training) by someone who is
knowledgeable about programming language theory but not an expert in
theorem prover technology.

2.3 Representing Binders

The problem of representing and reasoning about inductively-defined structures
with binders is central to the PoplMark challenges. Representing binders has
been recognized as crucial by the theorem proving community, and many dif-
ferent solutions to this problem have been proposed. In our (still limited) ex-
perience, none emerge as clear winners. In this section we briefly summarize
the main approaches and, where applicable, describe our own experiments using
them. Our survey is far from complete and we refrain from drawing any hard



conclusions, to give the proponents of each method a chance to try their hand
at meeting the challenge.

A first-order, named approach very similar in flavor to standard informal pre-
sentations was used by Vestergaard and Brotherston to formalize some metathe-
ory of untyped λ-calculus [49, 50]. Their representation requires that each binder
initially be assigned a unique name—one aspect of the so-called Barendregt con-
vention [2].

Another popular concrete representation is de Bruijn’s nameless representa-
tion [10]. De Bruijn indices are easy to understand and support the full range
of induction principles needed to reason over terms. In our experience, however,
de Bruijn representations have two major flaws. First, the statements of theo-
rems require complicated clauses involving “shifted” terms and contexts. These
extra clauses make it difficult to see the correspondence between informal and
formal versions of the same theorem—there is no question of simply typesetting
the formal statement and pasting it into a paper. Second, while the notational
clutter is manageable for “toy” examples of the size of the simply-typed lambda
calculus, we have found it becomes quite a heavy burden even for fairly small
languages like F<:.

In their formalization of properties of pure type systems, McKinna and Pol-
lack use a hybrid approach that combines the above two representation strate-
gies. In this approach, free variables are ordinary names while bound variables
are represented using de Bruijn indices [29].

A radically different approach to representing terms with binders is higher-
order abstract syntax (HOAS) [41]. In HOAS representations, binders in the
meta-language are used to represent binders in the object language. Our experi-
ence with HOAS encodings (mainly as realized in Twelf) is that they provide a
conveniently high level of abstraction, encapsulating much of the complexity of
reasoning about binders. However, the strengths and limitations of the approach
are not yet clearly understood, and it can sometimes require significant ingenuity
to encode particular language features or proof ideas in this style.

Gordon and Melham propose a way to axiomatize inductive reasoning over
untyped lambda-terms [17] and suggest that other inductive structures with
binding can be encoded by setting up a correspondence with the untyped lambda
terms. Norrish has pursued this direction [38, 39], but observes that these axioms
are cumbersome to use without some assistance from the theorem-proving tool.
In particular, the axioms use universal quantification in inductive hypotheses
where in informal practice “some/any” quantification is used. He has developed
a library of lemmas about a system of permutations on top of the axioms that
aids reasoning significantly.

Several recent approaches to binding take the concept of “swapping” as a
primitive, and use it to build a nominal logic. Gabbay and Pitts proposed a
method of reasoning about binders based upon a set theory extended with an
intrinsic notion of permutation [14]. Pitts followed this up by proposing a new
“nominal” logic based upon the idea of permutations [44]. More recent work by
Urban proposes methods based on the same intuitions but carried out within a



conventional logic [47]. Our own preliminary experiments with Urban’s methods
have been encouraging.

3 The Challenge

Our challenge problems are taken from the basic metatheory of System F<:.
This system is formed by enriching the types and terms of System F with a
subtype relation, refining universal quantifiers to carry subtyping constraints,
and adding records, record subtyping, and record patterns. Our presentation is
based on Pierce’s Types and Programming Languages [43]; other good sources for
background information are the seminal papers by Cardelli et al [5] and Curien
and Ghelli [9].

The challenge comprises three distinct parts. The first deals just with the
type language of F<:; the second considers terms, evaluation, and type soundness.
Each of these is further subdivided into two parts, starting with definitions and
properties for pure F<: and then asking that the same properties be proved for
F<: enriched with records and patterns. This partitioning allows the development
to start small, but also—and more importantly—focuses attention on issues of
reuse: How much of the first sub-part can be re-used verbatim in the second
sub-part? The third problem asks that useful algorithms be extracted from the
earlier formal definitions and used to “animate” some simple properties.

Challenge 1A: Transitivity of Subtyping

The first part of this challenge problem deals purely with the type language
of F<:. The syntax for this language is defined by the following grammar and
inference rules. Although the grammar is simple—it has only four syntactic
forms—some of its key properties require fairly sophisticated reasoning.

Syntax:

T ::= types
X type variable
Top maximum type
T→T type of functions
∀X<:T.T universal type

Γ ::= type environments
∅ empty type env.
Γ, X<:T type variable binding

In ∀X<:T1.T2, the variable X is a binding occurrence with scope T2 (X is not
bound in T1). In Γ, X<:T, the X must not be in the domain of Γ, and the free
variables of T must all be in the domain of Γ.

Following standard practice, issues such as the use of α-conversion, capture
avoidance during substitution, etc. are left implicit in what follows. There are
several ways in which these issues can be formalized: we might take Γ as a



concrete structure (such as an association list of named variables and types)
but quotient types and terms up to alpha equivalence, or we could take entire
judgments up to alpha equivalence. We might axiomatize the well-formedness of
typing environments and types using auxiliary ` Γ ok and Γ ` T ok judgments.
And so on. We leave these decisions to the individual formalization.

It is acceptable to make small changes to the rules below to reflect these
decisions, such as adding well-formedness premises. Changing the presentation
of the rules to a notationally different but “obviously equivalent” style such as
HOAS is also acceptable, but there must be a clear argument that it is really
equivalent. Also, whatever formalization is chosen should make clear that we are
only dealing with well-scoped terms. For example, it should not be possible to
derive X <: Top in the empty typing environment.

The subtyping relation captures the intuition “if S is a subtype of T (written
S <: T) then an instance of S may safely be used wherever an instance of T is
expected.” It is defined as the least relation closed under the following rules.

Subtyping Γ ` S <: T

Γ ` S <: Top (SA-Top)

Γ ` X <: X (SA-Refl-TVar)

X<:U ∈ Γ Γ ` U <: T

Γ ` X <: T
(SA-Trans-TVar)

Γ ` T1 <: S1 Γ ` S2 <: T2

Γ ` S1→S2 <: T1→T2

(SA-Arrow)

Γ ` T1 <: S1 Γ, X<:T1 ` S2 <: T2

Γ ` ∀X<:S1.S2 <: ∀X<:T1.T2

(SA-All)

These rules present an algorithmic version of the subtyping relation. In
contrast to the more familiar declarative presentation, these rules are syntax-
directed, as might be found in the implementation of a type checker; the al-
gorithmic rules are also somewhat easier to reason with, having, for example,
an obvious inversion property (Lemma A.12). The declarative rules differ from
these by explicitly stating that subtyping is reflexive and transitive. However,
reflexivity and transitivity also turn out to be derivable properties in the algo-
rithmic system. A straightforward induction shows that the algorithmic rules
are reflexive. The first challenge is to show that that they are also transitive.

3.1 Lemma [Transitivity of Algorithmic Subtyping]: If Γ ` S <: Q and
Γ ` Q <: T, then Γ ` S <: T. 2

The difficulty here lies in the reasoning needed to prove this lemma. Transi-
tivity must be proven simultaneously with another property, called narrowing,
by an inductive argument with case analyses on the final rules used in the given
derivations. Full details of this proof appear in Appendix A.



3.2 Lemma [Narrowing]: If Γ, X<:Q, ∆ ` M <: N and Γ ` P <: Q then
Γ, X<:P, ∆ ` M <: N. 2

Challenge 1B: Transitivity of Subtyping with Records

We now extend this challenge by enriching the type language with record types.
The new syntax and subtyping rule for record types are shown below. Implicit
in the syntax is the condition that the labels {li

i∈1..n} appearing in a record
type {li : Ti

i∈1..n} are pairwise distinct.

New syntactic forms:

T ::= ... types
{li:Ti

i∈1..n} type of records

New subtyping rules Γ ` S <: T

{li
i∈1..n} ⊆ {kj

j∈1..m} if kj = li, then Γ ` Sj <: Ti

Γ ` {kj:Sj
j∈1..m} <: {li:Ti

i∈1..n}
(SA-Rcd)

Although it has been shown that records can actually be encoded in pure
F<: [4, 16], dealing with them directly is a worthwhile task since, unlike other
syntactic forms, record types have an arbitrary (finite) number of fields. Also,
the informal proof for Challenge 1A extends to record types by only adding the
appropriate cases. A formal proof should reflect this.

Challenge 2A: Type Safety for Pure F<:

The next challenge considers the type soundness of pure F<: (without record
types, for the moment). Below, we complete the definition of F<: by describing the
syntax of terms, values, and typing environments with term binders and giving
inference rules for the typing relation and a small-step operational semantics.

As usual in informal presentations, we elide the formal definition of substi-
tution and simply assume that the substitutions of a type P for X in T (denoted
[X 7→ P]T) and of a term q for x in t (denoted [x 7→ q]t) are capture-avoiding.

Syntax:

t ::= terms
x variable
λx:T.t abstraction
t t application
λX<:T.t type abstraction
t [T] type application

v ::= values
λx:T.t abstraction value
λX<:T.t type abstraction value



Γ ::= type environments
∅ empty type env.
Γ, x:T term variable binding
Γ, X<:T type variable binding

Typing Γ ` t : T

x:T ∈ Γ

Γ ` x : T
(T-Var)

Γ, x:T1 ` t2 : T2

Γ ` λx:T1.t2 : T1→T2

(T-Abs)

Γ ` t1 : T11→T12 Γ ` t2 : T11

Γ ` t1 t2 : T12

(T-App)

Γ, X<:T1 ` t2 : T2

Γ ` λX<:T1.t2 : ∀X<:T1.T2

(T-TAbs)

Γ ` t1 : ∀X<:T11.T12 Γ ` T2 <: T11

Γ ` t1 [T2] : [X 7→ T2]T12

(T-TApp)

Γ ` t : S Γ ` S <: T

Γ ` t : T
(T-Sub)

Evaluation t −→ t′

(λx:T11.t12) v2 −→ [x 7→ v2]t12 (E-AppAbs)

(λX<:T11.t12) [T2] −→ [X 7→ T2]t12 (E-TappTabs)

Evaluation contexts:
E ::= evaluation contexts

[−] hole
E t app fun
v E app arg
E [T] type fun

Evaluation in context:

t1 −→ t′
1

E[t1] −→ E[t′
1
]

(E-Ctx)



The evaluation relation is presented in two parts: the rules E-AppAbs and
E-TappTabs capture the immediate reduction rules of the language, while
E-Ctx permits reduction under an arbitrary evaluation context E. For F<:, one
would have an equally clear definition and slightly simpler proofs using explicit
closure rules for the evaluation relation. We use evaluation contexts with an
eye to larger languages and languages with non-local control operators such as
exceptions, for which (in informal mathematics) they are an important tool for
reducing notational clutter in definitions.5 Evaluation contexts are also partic-
ularly interesting from the point of view of formalization when they include
binders, though unfortunately there are no examples of this in call-by-value F<:.

Type soundness is usually proven in the style popularized by Wright and
Felleisen [51], in terms of preservation and progress theorems. Challenge 2A is
to prove these properties for pure F<:.

3.3 Theorem [Preservation]: If Γ ` t : T and t −→ t′, then Γ ` t′ : T. 2

3.4 Theorem [Progress]: If t is a closed, well-typed F<: term (i.e., if ` t : T

for some T), then either t is a value or else there is some t′ with t −→ t′. 2

Unlike the proof of transitivity of subtyping, the inductive arguments re-
quired here are straightforward. However, variable binding becomes a more sig-
nificant issue, since this language includes binding of both type and term vari-
ables. Several lemmas relating to both kinds of binding must also be shown, in
particular lemmas about type and term substitutions. These lemmas, in turn,
require reasoning about permuting, weakening, and strengthening typing envi-
ronments.

Challenge 2B: Type Safety with Records and Pattern Matching

The next challenge is to extend the preservation and progress results to cover
records and pattern matching. The new syntax and rules for this language appear
below. As for record types, the labels {li

i∈1..n} appearing in a record {li =
ti

i∈1..n} are assumed to be pairwise distinct. Similarly, the variable patterns
appearing in a pattern are assumed to bind pairwise distinct variables.

New syntactic forms:

t ::= ... terms
{li=ti

i∈1..n} record
t.l projection

5 This design choice has generated a robust debate on the PoplMark discussion list
as to whether evaluation contexts must be used in order for a solution to count
as valid, or whether an “obviously equivalent” presentation such as an evaluation
relation with additional congruence rules is acceptable. We prefer evaluation contexts
for the reasons we have given, but the consensus of the community appears to be
that one should accept solutions in other styles. However, a good solution must be
formulated in a style that provides similar clarity as the language scales.



let p=t in t pattern binding

p ::= patterns
x:T variable pattern
{li=pi

i∈1..n} record pattern

v ::= ... values
{li=vi

i∈1..n} record value

New typing rules Γ ` t : T

Γ ` t1 : T1 ` p : T1 ⇒ ∆ Γ, ∆ ` t2 : T2

Γ ` let p=t1 in t2 : T2

(T-Let)

for each i Γ ` ti : Ti

Γ ` {li=ti
i∈1..n} : {li:Ti

i∈1..n}
(T-Rcd)

Γ ` t1 : {li:Ti
i∈1..n}

Γ ` t1.lj : Tj

(T-Proj)

Pattern typing rules:

` (x:T) : T ⇒ x : T (P-Var)

for each i ` pi : Ti ⇒ ∆i

` {li=pi
i∈1..n} : {li:Ti

i∈1..n} ⇒ ∆n, . . . , ∆1

(P-Rcd)

New evaluation rules t −→ t′

let p=v1 in t2 −→ match(p, v1)t2 (E-LetV)

{li=vi
i∈1..n}.lj −→ vj (E-ProjRcd)

New evaluation contexts:
E ::= ... evaluation contexts

E.l projection
{li=vi

i∈1..j−1,lj=E,lk=tk
k∈j+1..n} record

let p=E in t2 let binding

Matching rules:

match(x:T, v) = [x 7→ v] (M-Var)

{li
i∈1..n} ⊆ {kj

j∈1..m} if li = kj , then match(pi, vj) = σi

match({li=pi
i∈1..n}, {kj=vj

j∈1..m}) = σn ◦ · · · ◦ σ1

(M-Rcd)



Compared to the language of Challenge 2A, the let construct is a fundamen-
tally new binding form, since patterns may bind an arbitrary (finite) number of
term variables.

Challenge 3: Testing and Animating with Respect to the Semantics

Given a complete formal definition of a language, there are at least two interest-
ing ways in which it can be used (as opposed to being reasoned about). When
implementing the language, it should be possible to use the formal definition
as an oracle for testing the implementation—checking that it does conform to
the definition by running test cases in the implementation and confirming for-
mally that the outcome is as prescribed. Secondly, one would like to construct a
prototype implementation from the definition and use it for animating the lan-
guage, i.e., exploring the language’s properties on particular examples. In both
cases, this should be done without any unverified (and thus error-prone) manual
translation of definitions.

Our final challenge is to provide an implementation of this functionality,
specifically for the following three tasks (using the language of Challenge 2B):

1. Given F<: terms t and t′, decide whether t −→ t′.
2. Given F<: terms t and t′, decide whether t−→∗

t′ 6−→, where −→∗ is the
reflexive-transitive closure of −→.

3. Given an F<: term t, find a term t′ such that t −→ t′.

The first two subtasks are useful for testing language implementations, while the
last is useful for animating the definition. For all three subtasks, the system(s)
should accept syntax that is “reasonably close” to that of informal (ASCII)
mathematical notation, though it maybe necessary to translate between the
syntaxes of a formal environment and an implementation. We will provide an
implementation of an interpreter for F<: with records and patterns at the chal-
lenge’s website in order to make this challenge concrete, together with a graded
sequence of example terms. To make a rough performance comparison possible,
solutions should indicate execution times for these terms.

A solution to this challenge might make use of decision procedures and tactics
of a proof assistant or might extract stand-alone code. In general, it may be
necessary to combine theorems (e.g. that a rule-based but algorithmic definition
of typing coincides with a declarative definition) and proof search (e.g. deciding
particular instances of the algorithmic definition).

4 Beyond the Challenge

The PoplMark Challenge is not meant to be exhaustive: other aspects of pro-
gramming language theory raise formalization difficulties that are interestingly
different from the problems we have proposed—to name a few: more complex
binding constructs such as mutually recursive definitions, logical relations proofs,
coinductive simulation arguments, undecidability results, and linear handling of



type environments. As time goes on, we will issue a small number of further
challenges highlighting the most important of these issues; suggestions from the
community would be welcome. However, we believe that a technology that pro-
vides a good solution to the PoplMark challenge as we have formulated it
here will be sufficient to attract eager adopters in the programming languages
community, beginning with the authors.

So what are you waiting for? It’s time to bring mechanized metatheory to
the masses!

Acknowledgments

A number of people have joined us in preliminary discussions of these challenge
problems, including Andrew Appel, Karl Crary, Frank Pfenning, Bob Harper,
Hugo Herbelin, Jason Hickey, Michael Norrish, Andrew Pitts, Randy Pollack,
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A Paper Proofs

For the sake of concreteness and to standardize proof techniques (and thus make
solutions easier to compare), here are paper proofs of the properties mentioned
in the challenges.

A technical note for type experts: There are two reasonable ways of defin-
ing the subtyping relation of F<:, differing in their formulation of the rule for
comparing bounded quantifiers (rule SA-All): a more tractable but less flexible
version called the kernel rule, and a more expressive but technically somewhat
problematic full subtyping rule. We choose the full variant here as its metatheory
is more interesting.

Algorithmic Subtyping (Challenges 1A and 1B)

We give the proof for the full subtyping relation including records. The proof for
the pure system is obtained by simply deleting the cases involving records.

A.1 Lemma [Reflexivity]: Γ ` T <: T is provable for every Γ and T. 2

Proof: By induction on the structure of T. 2

A.2 Lemma [Permutation and Weakening]:

1. Suppose that ∆ is a well-formed permutation of Γ—that is, ∆ has the same
bindings as Γ, and their ordering in ∆ preserves the scopes of type variables
from Γ, in the sense that, if one binding in Γ introduces a type variable that
is mentioned in another binding further to the right, then these bindings
appear in the same order in ∆.
Now, if Γ ` S <: T, then ∆ ` S <: T.

2. If Γ ` S <: T and dom(∆) ∩ dom(Γ) = ∅, then Γ, ∆ ` S <: T. 2

Proof: Routine inductions. Part (1) is used in the SA-All case of part (2). 2

A.3 Lemma [Transitivity and Narrowing]:

1. If Γ ` S <: Q and Γ ` Q <: T, then Γ ` S <: T.
2. If Γ, X<:Q, ∆ ` M <: N and Γ ` P <: Q then Γ, X<:P, ∆ ` M <: N. 2

Proof: The two parts are proved simultaneously, by induction on the structure
of Q. At each stage of the induction, the argument for part (2) assumes that part
(1) has been established already for the Q in question; part (1) uses part (2) only
for strictly smaller Qs.

1. We proceed by an inner induction on the structure of Γ ` S <: Q, with a case
analysis on the final rules of this derivation and of Γ ` Q <: T.
If the right-hand derivation is an instance of SA-Top, then we are done,
since Γ ` S <: Top by SA-Top. If the left-hand derivation is an instance
of SA-Top, then Q = Top, and, inspecting the algorithmic rules, we see



that the right-hand derivation must also be an instance of SA-Top. If either
derivation is an instance of SA-Refl-TVar, then we are again done, since
the other derivation is exactly the desired result.
If the left-hand derivation ends with an instance of SA-Trans-TVar, then
we have S = Y with Y<:U ∈ Γ and a subderivation of Γ ` U <: Q. By the
inner induction hypothesis, Γ ` U <: T, and, by SA-Trans-TVar again,
Γ ` Y <: T, as required.
If the left-hand derivation ends with an instance of SA-Arrow, SA-All, or
SA-Rcd, then, since we have already considered the case where the right-
hand derivation ends with SA-Top, it must end with the same rule as the
left. If this rule is SA-Arrow, then we have S = S1→S2, Q = Q1→Q2, and
T = T1→T2, with subderivations Γ ` Q1 <: S1, Γ ` S2 <: Q2, Γ ` T1 <: Q1,
and Γ ` Q2 <: T2. We apply part (1) of the outer induction hypothesis
twice (noting that Q1 and Q2 are both immediate subterms of Q) to obtain
Γ ` T1 <: S1 and Γ ` S2 <: T2, and then use SA-Arrow to obtain Γ `
S1→S2 <: T1→T2.
In the case where the two derivations end with SA-All, we have S =
∀X<:S1.S2, Q = ∀X<:Q1.Q2, and T = ∀X<:T1.T2, with

Γ ` Q1 <: S1 Γ, X<:Q1 ` S2 <: Q2

Γ ` T1 <: Q1 Γ, X<:T1 ` Q2 <: T2

as subderivations. By part (1) of the outer induction hypothesis (Q1 being an
immediate subterm Q), we can combine the two subderivations for the bounds
to obtain Γ ` T1 <: S1. For the bodies, we need to work a little harder,
since the two contexts do not quite agree. We first use part (2) of the outer
induction hypothesis (noting again that Q1 is an immediate subterm of Q) to
narrow the bound of X in the derivation of Γ, X<:Q1 ` S2 <: Q2, obtaining
Γ, X<:T1 ` S2 <: Q2. Now part (1) of the outer induction hypothesis applies
(Q2 being an immediate subterm of Q), yielding Γ, X<:T1 ` S2 <: T2. Finally,
by SA-All, Γ ` ∀X<:S1.S2 <: ∀X<:T1.T2.
Finally, if the two derivations both end with SA-Rcd, then we have S =
{li : Si

i∈1..n}, Q = {hj : Qj
j∈1..m}, and T = {gk : Tk

k∈1..p}, with

{gk
k∈1..p} ⊆ {hj

j∈1..m} ⊆ {li
i∈1..n}

if li = hj , then Γ ` Si <: Qj

if hj = gk, then Γ ` Qj <: Tk

as premises. If li = gk, then there is an hj such that hj = gk = li. Thus,
Γ ` Si <: Qj and Γ ` Qj <: Tk. Observing that Qj is an immediate subterm
of Q, we apply the outer induction hypothesis to obtain Γ ` Si <: Tk. By
SA-Rcd, Γ ` {li : Si

i∈1..n} <: {gk : Tk
k∈1..p}.

2. We proceed by an inner induction on the structure of the derivation of
Γ, X<:Q, ∆ ` M <: N. Most of the cases proceed by straightforward use
of the inner induction hypothesis. The interesting case is SA-Trans-TVar
with M = X and we have Γ, X<:Q, ∆ ` Q <: N as a subderivation. Applying the
inner induction hypothesis to this subderivation yields Γ, X<:P, ∆ ` Q <: N.



Also, applying weakening (Lemma A.2, part 2) to Γ ` P <: Q yields
Γ, X<:P, ∆ ` P <: Q. Now, by part (1) of the outer induction hypothesis
(with the same Q), we have Γ, X<:P, ∆ ` P <: N. Rule SA-Trans-TVar
yields Γ, X<:P, ∆ ` X <: N, as required. 2

Type Safety (Challenges 2A and 2B): Lemmas

Again, we give the proof of type safety for the whole system including records
and pattern matching. We begin with some preliminary technical facts about
the typing and subtype relations.

A.4 Lemma [Permutation for Typing]: Suppose that ∆ is a well-formed
permutation of Γ. If Γ ` t : T, then ∆ ` t : T. 2

Proof: By straightforward induction on derivations. 2

A.5 Lemma [Weakening for Subtyping and Typing]:

1. If Γ ` S <: T and Γ, x:U is well-formed, then Γ, x:U ` S <: T.
2. If Γ ` S <: T and Γ, X<:U is well-formed, then Γ, X<:U ` S <: T.
3. If Γ ` t : T and Γ, x:U is well-formed, then Γ, x:U ` t : T.
4. If Γ ` t : T and Γ, X<:U is well-formed, then Γ, X<:U ` t : T. 2

5. If Γ ` S <: T and Γ, ∆ is well-formed, then Γ, ∆ ` S <: T.
6. If Γ ` t : T and Γ, ∆ is well-formed, then Γ, ∆ ` t : T.

Proof: The proofs for parts (1) and (2) proceed by straightforward induction
on derivations. The SA-All cases require permutation on subtyping derivations
(Lemma A.2, part 1). The proofs for parts (3) and (4) also proceed by straight-
forward induction on derivations, using parts (1) and (2) in the T-Sub and
T-TApp cases. The T-Abs, T-TAbs, and T-Let cases require permutation on
typing derivations (Lemma A.4). Parts (5) and (6) follow by induction on the
number of bindings in ∆, using the first four parts. 2

A.6 Lemma [Strengthening]: If Γ, x:Q, ∆ ` S <: T, then Γ, ∆ ` S <: T. 2

Proof: Typing assumptions play no role in subtype derivations. 2

The proof of type preservation relies on several lemmas relating substitution
with the typing and subtype relations. First, we state an analog for the typing
relation of the narrowing lemma for subtyping (Lemma A.3, part 2).

A.7 Lemma [Narrowing for the Typing Relation]: If Γ, X<:Q, ∆ ` t :

T and Γ ` P <: Q, then Γ, X<:P, ∆ ` t : T. 2

Proof: Straightforward induction, using Lemma A.3(2) for the T-Sub case. 2

Next, we have the usual lemma relating substitution and the typing relation.



A.8 Lemma [Substitution preserves typing]: If Γ, x:Q, ∆ ` t : T and
Γ ` q : Q, then Γ, ∆ ` [x 7→ q]t : T. 2

Proof: Induction on a derivation of Γ, x:Q, ∆ ` t : T, using the properties
above. In particular, we use Lemma A.6 in the T-TApp and T-Sub cases. 2

Since we may substitute types for type variables during reduction, we also
need a lemma relating type substitution and typing. The proof of this lemma
(specifically, the T-Sub case) depends on a new lemma relating substitution and
subtyping.

A.9 Definition: We write [X 7→ S]Γ for the context obtained by substituting S

for X in the right-hand sides of all of the bindings in Γ. 2

A.10 Lemma [Type substitution preserves subtyping]: If Γ, X<:Q, ∆ `
S <: T and Γ ` P <: Q, then Γ, [X 7→ P]∆ ` [X 7→ P]S <: [X 7→ P]T. 2

Note that we need to substitute for X only in the part of the environment
that follows the binding of X, since our conventions about scoping require that
the types to the left of the binding of X do not contain X.

Proof: By induction on a derivation of Γ, X<:Q, ∆ ` S <: T. The only interesting
cases are the following:

Case SA-Trans-TVar: S = Y

Y<:U ∈ (Γ, X<:Q, ∆)
Γ, X<:Q, ∆ ` U <: T

There are two subcases to consider. If Y 6= X, then the result follows from con-
sidering cases on whether Y<:U ∈ Γ or Y<:U ∈ ∆, the induction hypothesis, and
SA-Trans-TVar. (Note that [X 7→ P]U = U if Y<:U ∈ Γ.)

On the other hand, if Y = X, then we have U = Q. By the induction hypothesis,
Γ, [X 7→ P]∆ ` [X 7→ P]Q <: [X 7→ P]T. Note that [X 7→ P]Q = Q. We then have
Γ ` P <: [X 7→ P]Q since Γ ` P <: Q. By weakening, Γ, [X 7→ P]∆ ` P <: [X 7→ P]Q,
and by transitivity, Γ, [X 7→ P]∆ ` P <: [X 7→ P]T. Therefore, Γ, [X 7→ P]∆ ` [X 7→
P]X <: [X 7→ P]T.

Case SA-All: S = ∀Z<:R1.S2 T = ∀Z<:U1.T2

Γ, X<:Q, ∆ ` U1 <: R1

Γ, X<:Q, ∆, Z<:U1 ` S2 <: T2

By the induction hypothesis,

Γ, [X 7→ P]∆, Z<:[X 7→ P]U1 ` [X 7→ P]S2 <: [X 7→ P]T2, and
Γ, [X 7→ P]∆ ` [X 7→ P]U1 <: [X 7→ P]R1.

By SA-All,

Γ, [X 7→ P]∆ ` ∀Z<:[X 7→ P]R1.[X 7→ P]S2 <: ∀Z<:[X 7→ P]U1.[X 7→ P]T2, i.e.,
Γ, [X 7→ P]∆ ` [X 7→ P](∀Z<:R1.S2) <: [X 7→ P](∀Z<:U1.T2). 2

A similar lemma relates type substitution and typing.



A.11 Lemma [Type substitution preserves typing]: If Γ, X<:Q, ∆ ` t :

T and Γ ` P <: Q, then Γ, [X 7→ P]∆ ` [X 7→ P]t : [X 7→ P]T. 2

Proof: By induction on a derivation of Γ, X<:Q, ∆ ` t : T. We give only the
interesting cases.

Case T-TApp: t = t1 [T2] Γ, X<:Q, ∆ ` t1 : ∀Z<:T11.T12

T = [Z 7→ T2]T12 Γ, X<:Q, ∆ ` T2 <: T11

By the induction hypothesis, Γ, [X 7→ P]∆ ` [X 7→ P]t1 : [X 7→ P](∀Z<:T11.T12),
i.e., Γ, [X 7→ P]∆ ` [X 7→ P]t1 : ∀Z<:[X 7→ P]T11.[X 7→ P]T12. By the preservation
of subtyping under substitution (Lemma A.10), we have Γ, [X 7→ P]∆ ` [X 7→
P]T2 <: [X 7→ P]T11. By T-TApp,

Γ, [X 7→ P]∆ ` [X 7→ P]t1 [[X 7→ P]T2] : [Z 7→ [X 7→ P]T2]([X 7→ P]T12), i.e.
Γ, [X 7→ P]∆ ` [X 7→ P](t1 [T2]) : [X 7→ P]([Z 7→ T2]T12).

Case T-Sub: Γ, X<:Q, ∆ ` t : S Γ, X<:Q, ∆ ` S <: T

By the induction hypothesis, Γ, [X 7→ P]∆ ` [X 7→ P]t : [X 7→ P]S. By the
preservation of subtyping under substitution (Lemma A.10), we have Γ, [X 7→
P]∆ ` [X 7→ P]S <: [X 7→ P]T, and the result follows by T-Sub. 2

Next, we establish some simple structural properties of subtyping.

A.12 Lemma [Inversion of subtyping (right to left)]:

1. If Γ ` S <: X, then S is a type variable.
2. If Γ ` S <: T1→T2, then either S is a type variable or else S has the form

S1→S2, with Γ ` T1 <: S1 and Γ ` S2 <: T2.
3. If Γ ` S <: ∀X<:U1.T2, then either S is a type variable or else S has the form

∀X<:Q1.S2 with Γ, X<:U1 ` S2 <: T2 and Γ ` U1 <: Q1.
4. If Γ ` S <: {li : Ti

i∈1..n}, then either S is a type variable or else S has the
form {kj : Qj

j∈1..m} with {li
i∈1..n} ⊆ {kj

j∈1..m} and where li = kj implies
Γ ` Qj <: Ti for every i and j. 2

Proof: Each part is immediate from the definition of the subtyping relation. 2

Lemma A.12 is used, in turn, to establish one straightforward structural
property of the typing relation that is needed in the critical cases of the type
preservation proof.

A.13 Lemma:

1. If Γ ` λx:S1.s2 : T and Γ ` T <: U1→U2, then Γ ` U1 <: S1 and there is
some S2 such that Γ, x:S1 ` s2 : S2 and Γ ` S2 <: U2.

2. If Γ ` λX<:S1.s2 : T and Γ ` T <: ∀X<:U1.U2, then Γ ` U1 <: S1 and there
is some S2 such that Γ, X<:U1 ` s2 : S2 and Γ, X<:U1 ` S2 <: U2.

3. If Γ ` {li = ti
i∈1..n} : S and Γ ` S <: {kj : Tj

j∈1..m}, then {kj
j∈1..m} ⊆

{li
i∈1..n} and li = kj implies Γ ` ti : Tj for every i and j. 2

Proof: Straightforward induction on typing derivations, using Lemma A.12 for
the induction case (rule T-Sub). 2



Type Safety (Challenges 2A and 2B): Progress

The progress theorem for F<: is relatively straightforward. We begin by recording
a canonical forms property telling us the possible shapes of closed values of arrow,
record, and quantifier types.

A.14 Lemma [Canonical Forms]:

1. If v is a closed value of type T1→T2, then v has the form λx:S1.t2.
2. If v is a closed value of type {li : Ti

i∈1..n}, then v has the form {kj =
vj

j∈1..m} with {li
i∈1..n} ⊆ {kj

j∈1..m}.
3. If v is a closed value of type ∀X<:T1.T2, then v has the form λX<:S1.t2. 2

Proof: All parts proceed by induction on typing derivations; we give the ar-
gument only for the third part. (The others are similar.) By inspection of the
typing rules, it is clear that the final rule in a derivation of ` v : ∀X<:T1.T2

must be either T-TAbs or T-Sub. If it is T-TAbs, then the desired result is
immediate. So suppose the last rule is T-Sub. From the premises of this rule, we
have ` v : S and ` S <: ∀X<:T1.T2. From the inversion lemma (A.12), we know
that S has the form ∀X<:Q1.Q2 (S can not be a type variable since the typing
environment is empty). The result now follows from the induction hypothesis.
2

We now observe that any non-value term can be decomposed into an evalu-
ation context and a subterm which can take a step.

A.15 Lemma: If ` t : T, then either t is a value or there exists an evaluation
context E and term t0 such that t = E[t0] and t0 −→ t′0. 2

Proof: By induction on a derivation of ` t : T. We give only the interesting
cases.

Case T-App: t = t1 t2 ` t1 : T11→T12 ` t2 : T11

By the induction hypothesis applied to t1, we have two subcases to consider.

Subcase: t1 is a value

We now apply the induction hypothesis to t2. If t2 is a value, then by the
canonical forms lemma (A.14), t1 must have the form λx:S1.t3. We then
have t −→ [x 7→ t2]t3 by E-AppAbs. Thus, we can take E = [−] and
t0 = t. Otherwise, t2 = E′[t3] with t3 −→ t′

3
. Thus, we can take E = t1 E′

and t0 = t3.

Subcase: t1 = E′[t3] t3 −→ t′
3

In this case, take E = E′ t2 and t0 = t3.

Case T-TApp: t = t1 [T2]

This case is similar to the T-App case.



Case T-Let: t = let p=t1 in t2 ` t1 : T1

By the induction hypothesis, we have two cases to consider.

Subcase: t1 is a value

Then t −→ match(p, t1)t2 by E-LetV. Take E = [−] and t0 = t.

Subcase: t1 = E′[t3] t3 −→ t′3

In this case, take E = let p=E′ in t3 and t0 = t3.

Case T-Proj: t = t1.lj ` t1 : {li : Ti
i∈1..n}

By the induction hypothesis, we have two cases to consider.

Subcase: t1 is a value

By the canonical forms lemma (A.14), t1 must have the form {hk = vk
k∈1..m}

with {li
i∈1..n} ⊆ {hk

k∈1..m}. By E-ProjRcd, there is a t′ such that t −→
t′. Thus, we can take E = [−] and t0 = t in this case.

Subcase: t1 = E′[t2] t2 −→ t′
2

In this case, take E = E′.lj and t0 = t2.

Case T-Rcd: t = {li = ti
i∈1..n} T = {li : Ti

i∈1..n}

for each i ` ti : Ti

If every ti is a value, then we’re done. Otherwise, by the induction hypothesis,
there is a least j such that tj = E′[s0] and s0 −→ s′

0
. In this case, we can take

E = {li = ti
i∈1..j−1 , lj = E′, lk = t k∈j+1..n

k } and t0 = s0. 2

The proof of progress is now straightforward.

A.16 Theorem [Progress]: If t is a closed, well-typed F<: term (i.e., if ` t :

T for some T), then either t is a value or else there is some t′ with t −→ t′. 2

Proof: By Lemma A.15, either t is a value or else there is an evaluation context
E and term t0 such that t = E[t0] and t0 −→ t′0. In the latter case, take
t′ = E[t′

0
] and observe that t −→ t′ by E-Ctx. 2

Type Safety (Challenges 2A and 2B): Preservation

We begin the proof of preservation by proving a substitution lemma for pattern
matching on records.

A.17 Lemma [Matched patterns preserve typing]: Suppose ` p : T1 ⇒
∆, that Γ ` v0 : T1, and that Γ, ∆ ` t2 : T2. Then Γ ` match(p, v0)t2 : T2. 2

Proof: By induction on the derivation of ` p : T1 ⇒ ∆.

Case P-Var: p = x:T1 ∆ = x : T1

Then match(x:T1, v0) = [x 7→ v0], and the result follows from Lemma A.8.



Case P-Rcd: p = {li = pi
i∈1..n} T1 = {li : Si

i∈1..n}

for each i ` pi : Si ⇒ ∆i

∆ = ∆n, . . . , ∆1

By Lemma A.13, v0 has the form {gj = vj
j∈1..m}, with {li

i∈1..n} ⊆ {gj
j∈1..m}

and gj = li implies Γ ` vj : Si for every i and j. By definition, we then have
match(p, v0) = (σn ◦ · · · ◦ σ1) where li = gj implies match(pi, vj) = σi for
every i and j. Starting from Γ, ∆ ` t2 : T2, we iteratively apply the induction
hypothesis with p1, p2, . . . , pn, to obtain Γ ` match(p, v1)t2 : T2. More formally,
the result follows by induction on n, applying weakening (Lemma A.5) to the
judgments Γ ` vj : Si as needed. 2

The following lemma relates evaluation contexts and the typing relation.

A.18 Lemma:

1. If Γ ` E[t] : T and if for all T0, Γ ` t : T0 implies Γ ` t′ : T0, then
Γ ` E[t′] : T.

2. If Γ ` E[t] : T, then Γ ` t : T0 for some T0. 2

Proof: Both parts are proven by induction on the structure of evaluation con-
texts. In each case, we consider the last rule used in the derivation of Γ ` E[t] : T

and apply the induction hypothesis. 2

We now prove that immediate reduction preserves the types of terms.

A.19 Lemma: If Γ ` t : T and t −→ t′, where the derivation of t −→ t′ ends
in a rule other than E-Ctx, then Γ ` t′ : T. 2

Proof: By induction on a derivation of Γ ` t : T. We give only the interesting
cases.

Case T-App: t = t1 t2 Γ ` t1 : T11→T12 T = T12 Γ ` t2 : T11

The derivation of t −→ t′ must end in E-AppAbs. Thus, t1 = λx:U11.u12

and t′ = [x 7→ t2]u12. By Lemma A.13, Γ, x:U11 ` u12 : U12 for some U12

with Γ ` T11 <: U11 and Γ ` U12 <: T12. By narrowing (Lemma A.7) and the
preservation of typing under substitution (Lemma A.8), Γ ` [x 7→ t2]u12 : U12,
from which we obtain Γ ` [x 7→ t2]u12 : T12 by T-Sub.

Case T-Proj: t = t1.lj T = Tj Γ ` t1 : {li : Ti
i∈1..n}

The derivation of t −→ t′ must end in E-ProjRcd. Thus, t1 is a record value
{hk = vk

k∈1..m}. By Lemma A.13, we have {li
i∈1..n} ⊆ {hk

k∈1..m} and li = hk

implies Γ ` vk : Ti for every i and j. By E-ProjRcd, we have t′ = vk where
hk = lj . Thus, Γ ` t′ : Tj as required.

Case T-TApp: t = t1 [T2] Γ ` t : ∀X<:T11.T12

T = [X 7→ T2]T12 Γ ` T2 <: T11

The derivation of t −→ t′ must end in E-TappTabs. Thus, t1 = λX<:U11.u12

and t′ = [X 7→ T2]u12. By Lemma A.13, Γ ` T11 <: U11 and Γ, X<:T11 ` u12 : U12

for some U12 with Γ, X<:T11 ` U12 <: T12. By the preservation of typing under
substitution (Lemma A.11), Γ ` [X 7→ T2]u12 : [X 7→ T2]U12, from which Γ `
[X 7→ T2]u12 : [X 7→ T2]T12 follows by Lemma A.10 and T-Sub.



Case T-Let: t = let p=t1 in t2

Γ ` t1 : T1 ` p : T1 ⇒ ∆ Γ, ∆ ` t2 : T

The derivation of t −→ t′ must end in E-LetV. Thus, t1 is a value and t −→
match(p, t1)t2. The result then follows by Lemma A.17. 2

Finally, we prove the main preservation theorem.

A.20 Theorem [Preservation]: If Γ ` t : T and t −→ t′, then Γ ` t′ : T. 2

Proof: By induction on a derivation of t −→ t′. Suppose the derivation ends
in E-Ctx. Then, t = E[t0], t0 −→ t′0, and t′ = E[t′0]. By Lemma A.18,
Γ ` t0 : T0 for some T0. By the induction hypothesis, for any T0 such that
Γ ` t0 : T0, we have Γ ` t′

0
: T0. The result then follows by Lemma A.18. In

all other cases, the result follows by Lemma A.19. 2


