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1 POP preserves ARM definition of single-copy atom-
icity

Lemma 1. Let r be a committed read. If part of its return value was read from a write
w′, its return value cannot have a part read from a write w that are coherence-hidden
behind w′, assuming r, w and w′ are not misaligned.

Proof. Assume a trace tr where the return value of r was partly read from w′ but
where it also contains a part for footprint fp that was read from a write w where fp
is coherence-hidden by w′. Let s̃ be the state in tr where r is last restarted. Then in s̃
the read r is unsatisfied.

Now there are two cases for the trace following s̃: either (1) r first reads from w, or
(2) r first reads from w′.

1. Let s be the state after s̃ before r reads from w and s′ the state afterwards. Then
by definition of satisfy-read-cand there is an edge w → r in s.order-constraints
and there is no e with w → e → r in s.order-constraints. Now there are two
cases: either (a) w and w′ are order-constraints-related in s or (b) not.

(a) Then the edge must be (w,w′) because this edge will be in the (acyclic)
order-constraints until the final state and this edge determines the coherence
between w and w′, which by assumption is w

co
−→ w′. As by assumption

r, w, and w′ cover the footprint fp and since r is propagated to the same
threads as w, r must be related with w′ as well. And as there is no e with
w → e → r it must be w → r → w′ in s.order-constraints. Now in s′ after
r reads from w, either r and w are swapped in order-constraints if they are
not fully propagated and it is r → w → w′ in s′order-constraints, or they
are fully propagated and it is w → r → w′ in s′.order-constraints. Since
without restarts of r no transition before r′s satisfaction can delete the edge
(r,w′) and since r reading from w′ requires an edge w′ → r in the (acyclic)
order-constraints this contradicts the assumption that r reads from w′.

(b) Then w and w′ have not been to propagated to any common thread yet.
(Otherwise by definition of propagate-action they would be related.) Since
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r and w are propagated to the same threads r is not related to w′ either.
Since w and r cannot be fully propagated it is r → w in s′.order-constraints
and r and w′, and w and w′ unrelated. In order to allow r to read from w′

an edge w′ → r is needed, by definition of satisfy-read-cand. Let s′′ be the
first state with edge w′ → r added. Since without restarts of r no transition
can delete the edges (r,w) and (w′w) in s′′ and any following state it is
w′ → r → w in order-constraints, so that in the final state the coherence is
determined to w′

co
−→ w which contradicts the assumption.

2. But then r reads from w the biggest possible footprint, which by assumption
includes fp. This contradicts the assumption that r reads f p from w.

�

2 Release/Acquire restore SC
Definition 1. An execution is SC if it corresponds to a total order eo on all events that
agrees with program order and where the values of reads are determined by eo: for
each bit of the read, pick the value from the eo-maximal predecessor write of the read.

Lemma 2. A write release that is propagated to all threads is order-constraints related
with all other write releases in storage.

Proof. Let w be a write release that is propagated to all threads and w′ another write
release. Then w is propagated to at least one thread tid that w′ is propagated to. Now
there are two cases: 1. w was propagated to tid first; or 2., w′ was propagated to tid
first. 1. Since the reorder condition does not hold for w and w′, at the point where w′

was propagated to tid in some transition t′, adding an edge w′ → w if there was no
edge already. Case 2 is symmetric. �

Corollary 1. In a final state s all write releases are totally ordered.

Proof. As s is a final state all write releases are fully propagated. By Lemma 2 any
two write releases are now order-constraints-related. Since order-constraints is acyclic
there is a total order on all write releases. �

Lemma 3. A program with only acquire reads and release writes does not have restarts
in any execution.

Proof. Restarts are caused for two reasons: reads being issued out of order and thread-
internal forwarding of writes to reads. Since reads can only be issued if all previous
read-acquires are already issued, programs with only acquire reads cannot issue reads
out of order. Since read-acquires cannot be forwarded to a program with only acquire
reads and release writes cannot have local forwarding. Therefore there are no restarts.

�

Lemma 4. Let (e, e′) in s.order-constraints and s′ such that s
t
−→ s′ for some t. If e,

and e′ are write releases, then (e, e′) in s′.order-constraints. If not, the edge (e, e′) is in
s′.order-constraints unless t is a read-satisfy transition or t causes a restart.
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Proof. By case analysis on the transition types. �

Lemma 5. If e is fully propagated in s and s →∗ s′, then there cannot be (e′, e) in
s′.order-constraints if (e′, e) is not in s.order-constraints.

Proof. By case analysis on the transition types. �

Lemma 6. Let r be a read and ws the writes that satisfy r. When r is fully propagated,
all writes w that r reads from have to be in storage.

Proof. By definition of satisfy-read-cand (w, r) must be in storage in order for r to read
from w. If r is fully propagated (w, r) must already be in order-constraints, by Lemma 5
and thus ws must be in storage. �

Lemma 7. If all instructions are release/acquire instructions, all events are accepted
into the storage subsystem in program order.

Proof. According to the thread semantics any read waits for po-earlier write releases
to be committed; any write release for all po-earlier memory accesses to be committed.

�

Theorem 1. An ARM program whose only reads are acquire reads and whose only
writes are release writes and whose memory accesses are all aligned has sequentially
consistent behaviour.

Proof. For simplicity assume the ARM program has no barriers. Let tr = s0
t0
−→ s1

t1
−→

. . .
tn−1
−−→ sn be a POP trace for a program using only release/acquire writes and reads.

By Lemma 3 this trace has no restarts. Since s := sn is a final state s.order-constraints
only contains writes (since all reads are satisfied). By Corolary 1 s.order-constraints is
a total order.

Now let pos be a list of the list of events in program order per thread. Then define
eo as follows:

eo:= s.order-constraints

Lemma 8. For any w
po
−−→ w′, (w,w′) is now in eo.

Proof. Now by Corollary 1 eo contains all write events. Let w
po
−−→ w′ be two write

releases from the same thread. Then (w,w′) is in eo: when w′ is accepted into the
storage subsystem w must have already been accepted into the storage subsystem as
well, by Lemma 6. When w′ is accepted the edge (w,w′) is added to order-constraints.
By Lemma 4 (w,w′) is also contained in s.order-constraints. �

embed’ po =
for i in [0 .. length po - 1] {
if po[i] is read_event {
let r = po[i] in
eo := eo union {(w,r) | w IN eo, (w,r) IN rf} //A
eo := eo union {(e,r) | e IN eo, (e,r) IN po} //B
eo := eo union {(r,w) | w IN eo, w is write, (w,r) NIN eo^*} //C
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eo := eo^*;
}

}

embed = map embed’ pos

First prove that before executing loop i of embed’ po, eo is acyclic.
Base case: i = 0. Since POP’s order-constraints relation is acyclic in any state and

since eo is set to s.order-constraints, eo is acyclic.
Step case: i → i + 1. Assume the property holds for i, show it also holds for i + 1.

Therefore, show that the execution of loop i preserves acyclicity. There are two cases:
po[i] is a write event or po[i] is a read event.

Case po[i] is a write event. Then, since the loop does not add to eo this is true by
the induction hypothesis.

Case r = po[i] is a read event. By induction hypothesis eo is acyclic before running
the loop body for i. Running the body for i adds r into eo. The commands A and B
only add edges pointing into r. C only adds edges (r, e) if (e, r) is not already in eo’s
transitive closure. Therefore eo remains acyclic by construction.

Now prove that before executing the loop i the following holds (INV): Let r be a
read from po[0..i − 1]. Then:

1. eo agrees with program order:

(a) if (e, r) in po then (e, r) in eo.

(b) if (r,w) in po for a write w, then (r,w) in eo.

2. For any w in eo: either (w, r) or (r,w) in eo.

3. Let s′ be the state when the first part of r was satisfied. The eo-prefix of r
restricted to writes is exactly the prefix of r in s′.order-constraints restricted to
writes.

Once we have proved the statement above, from this follows that after running em-
bed, eo is a partial order of all events from tr that contains program order. Furthermore
the read values determined by the partial order are the same as in the POP trace:

Let r be a read and let s′ be the pop state where r is first satisfied. Show the prefix
of r in s′.order-constraints now completely determines the read value of r. In s′ the
read r is fully propagated by definition of satisfy-read-cand. Therefore r is related to
all writes in storage. Since for any write to be read from by r there must be an edge
(w, r) in order-constraints, and since in s′ the read r is already fully propagated, by
Lemma 5 any write that r can still read from is in its s′.order-constraints prefix. By
full propagation of r all these writes are fully propagated as well and therefore totally
ordered. Now for any byte in r’s footprint there is a unique maximum according to
s.order-constraints-prefix. r will read exactly these maxima, by Lemma 0.

Now the only events that are not ordered in eo are pairs of reads from different
threads. Any linear extension of eo will still agree with program order (since all same-
thread events are already ordered in a way that agrees with program order) and with
the read values from the POP trace (since any read is already ordered with all writes
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in a way that is compatible with the read values in the partial order). Then follows SC
according to the above definition.

Now show INV by induction on i.
Base case: i = 0. 1-3. are vacuously true.
Step case: i→ i+1. Assume INV holds for i, show it also holds for i+1. Therefore,

show that the execution of loop i preserves INV.
There are two cases: po[i] is a write event or po[i] is a read event.
Case po[i] is write event. As po[i] is a write from, the reads from po[0..i + 1 − 1]

are the same as from po[0..i − 1], and because eo does not change, 1.-3. hold by the
induction hypothesis.

Case r = po[i] is a read event.

1. (a) These edges are added by command B.

(b) By induction hypothesis this is true for all reads in po[0..i − 1], only need
to show it is also true for r = po[i]. Let w be a write such that r

po
−−→ w.

Show that (r,w) is added to eo. To do that, show that before running C in
the loop for i, (w, r) is not in eo and therefore C adds (r,w). Assume (w, r)
is in eo.
Now there are two cases: (i) (w, r) is a transitive edge or (ii) not.

(i) If it is, look at the immediate predecessor e of r in the transitive reduc-
tion of eo on the path (w, r). The path is then (w, e), (e, r), where (e, r)
cannot be a transitive edge. Now there are two cases: (A) (e, r) was
added because e is po-before r or (B) because e is a write that r read
from.
Before running C in the loop i, embed’ only adds edges pointing into
r, so (w, e) must have also already been in eo before running loop i.

(A) But then e
po
−−→ r

po
−−→ w, so (e,w) must have been in eo before the

execution of the loop for i (if e is a write this is by Lemma 8, if it
is a read then by induction hypothesis). But then before running
loop i there was a cycle (w, e), (e,w) in eo. Contradiction: eo is
acyclic.

(B) As r is program-order before w, by Lemma 7 w can only have been
issued into the storage subsystem after r at which point the stor-
age subsystem added an edge (r,w). By definition of the storage
semantics this edge can only be removed by a transition satisfying
r. Let s′ be the state before r made its first read. In this state r by
definition of POP was fully propagated. By definition of satisfy-
read-cand the read of r from e is only possible if there is an edge
(e, r) in order-constraints. By Lemma 5 this edge must have al-
ready been there in s′. Therefore by transitivity the edge (e,w)
was in s′.order-constraints. Because all writes are totally ordered
in the initial eo and since it stays acyclic, the edge (w, e) must
have been in s.order-constraints already, and by Lemma 5 since r
and therefore e is fully propagated in s′, (w, e) must have already
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been in s′.order-constraints. But then we have (w, e) and (e,w)
in s′.order-constraints, a contradiction because order-constraints
is acyclic.

(ii) Then by assumption that r
po
−−→ w, (w, r) must have been added because

r read from w. But w was committed into storage after r, adding an
edge (r,w). Let s’ be the state when r read from w. Since tr does not
involve restarts: (r,w) is still in s′.order-constraints, but by definition
of satis f y− read − cand also (w, r) in s′.order-constraints. Contradic-
tion to the acyclicity of order-constraints.

2. By induction hypothesis this is already true for all reads in po[0..i − 1]. Only
need to show this for r = po[i]. Commands A and B of loop i add certain edges
pointing into r. For any event e in eo (including any read) that is not yet directly
or by transitivity related to r, command C adds an edge (e, r).

3. By induction hypothesis for all r in po[0..i − 1] this is true before running loop
i. Have to show (a) that loop i preserves it for po[0..i − 1] and (b) that loop i
establishes it for po[i].

(a) Let r′ be a read from po[0..i − 1]. By induction hypothesis the eo-prefix
of r′ restricted to writes is exactly the prefix of r′ in s′.order-constraints
restricted to writes, where s′ is the state in which r′ was first satisfied.
Since by induction hypothesis (2.) r′ is totally related to all writes in eo
before running loop i, since loop i does not add writes into eo, and since
embed’ preserves acyclicity of eo, {w|w is write, (w, r′) ∈ eo} is the same
before and after the execution of loop i. Then (a) follows.

(b) Let s′ be the state when r = po[i] was first satisfied and ws be the writes
satisfying r. By definition of satisfy-read-cand r has to be fully propagated,
and for each of the writes w′ it reads from eventually (w′, r) has to be in
order-constraints in the states before r reads from w′. Since r is required to
be fully propagated in s′, by Lemma 5 edges (w′, r) have to already be in
s′.order-constraints for all those w′ from ws. By Lemma 2 all w′ ∈ ws are
totally ordered.
Let w be the s′.order-constraints-maximal write from ws. As w is fully
propagated (by full propagation of r), by Lemma 5 the set {e|(e,w) ∈
s′.order-constraints} restricted to writes is equal to the set pref := {e|(e,w) ∈
s.order-constraints} restricted to writes. Since pref is a total order and in-
cluded in the initial eo, since nothing is ever removed from eo, and since
eo stays acyclic: pref = eo-prefix of w restricted to writes before running
loop i.
Only have to show that there is no w′ overlapping r in between w and r is
in eo before running command C in loop i. Assume such a w′ with (w,w′)
and (w′, r) in eo.
Now there are two cases: (i) the edge (w′, r) is a direct edge, or (ii) a
transitive edge.
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(i) Then (w′, r) must have been added either because (A) r read from w′,
or (B) because w′ is po-before r.
(A) We assumed w was the s′.order-constraints-maximal write r read

from. As we proved before, all writes w′′ from ws—including
w′—had edges (w′′, r) and therefore must have been fully propa-
gated in s′, and therefore ordered with w. By assumption of max-
imality of w there would have been (w′,w) in s′.order-constraints
and therefore (w′,w) in s.order-constraints and (w′,w) in the ini-
tial eo. As nothing is ever removed from eo we have (w,w′) and
(w′,w) which contradicts the acyclicity of eo.

(B) Then by Lemma 7 r was accepted into the storage subsystem after
w′, adding an edge (w′, r) to order-constraints. Since tr does not
involve restarts, this edge would also be in s′.order-constraints.
By definition of satisfy-read-cand in s′, w and w′ were fully prop-
agated and therefore by Lemma 2 the writes w and w′ were re-
lated in s′.order-constraints. By the assumption that w was max-
imal in s′.order-constraints the relation must have been (w′,w) in
s′.order-constraints. By Lemma 4 (w′,w) in s.order-constraints
and therefore in eo before the execution of loop i. As there is also
(w,w′) in eo this contradicts the acyclicity of eo.

(ii) Then let (e, e′) be the last edge in one of the paths from w′ to r in the
transitive reduction of eo so that e is a write and e′ is a read. This is
well-defined, since every read is satisfied. Since the path from e′ to r
is a path in the transitive reduction that only involves reads the edges
from e′ to r must have all been added for program order. Therefore
e′

po
−−→ r.

Now there are two cases: (e, e′) was added because (A) e is po-before
e′ or (B) because e′ read from e.
(A) Then by Lemma 7 r was issued into storage after e, adding an edge

(e, r). Then in s′ by satisfy-read-cand e would have been fully
propagated. As all writes were already totally ordered in the ini-
tial eo = s.order-constraints (and by acyclicity of eo) (w′, e) was
contained in s.order-constraints. But by Lemma 5, since e was
fully propagated in s′, the edge (w′, e) must have already been
in s′.order-constraints, and therefore by transitivity also (w′, r)
in s′.order-constraints. By Lemma 6 w was in storage in s′ and
by Lemma 2 w′ and w must have been related. Assume there
would have been (w′,w) in s′.order-constraints then (w′,w) by
Lemma 2 would have been in s.order-constraints and therefore
eo, which contradicts the acyclicity of eo. Therefore it must have
been (w,w′) in s′.order-constraints. But then r would have read
from w′ so that w′ in ws, contradicting maximility of w.

(B) So e is a write that e′ read from and e′
po
−−→ r. Now by Lemma 7

we know that r was accepted into the storage subsystem after e′

which caused adding an edge (e′, r) when r was accepted. Now
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there are two cases: (a) r first read was before the first read of e′

or (b) the first read of e′ was before r’s first read.
(a) Then (e′, r) was also in s′.order-constraints and e′ was fully

propagated in s′. Since e′ is satisfied from e in a state after
s′ which requires an edge (e, e′) to be in order-constraints af-
ter s′, the edge (e, e′) by Lemma 5 must have already been in
s′.order-constraints. Therefore (e, r) in s′.order-constraints and
e must have been fully propagated; by Lemma 5 w was in stor-
age in s′ and by Lemma 2 e and w must have been related, and
it must have been (w, e) in s′.order-constraints (otherwise (e,w)
would be in eo, contradicting its acyclicity). Since (w′, e) is
in eo and therefore in s.order-constraints, it must have already
been in s′.order-constraints by Lemma 5 as e is fully propa-
gated in s′. By full propagation of e, the edge (w′, e) requires
w′ to have been fully propagated in s′ as well. Therefore there
must be an edge between w and w′, and because (w,w′) in eo it
must have been (w,w′) in s′.order-constraints. But then we have
(w,w′) and (w′, e) and (e, r) in s′.order-constraints which means
r would have read from w′ which contradicts the assumption
that w was s′.order-constraints-maximal.

(b) Then let s′′ be the state before the first read of e′. In s′′ the edge
(e′, r) is still in s′′.order-constraints, and by definition of satisfy-
read-cand e is fully propagated and there is an edge (e, e′) in
s′′.order-constraints. Since (w′, e) in eo it must be (w′, e) in
s.order-constraints; by Lemma 5 (w′, e) ∈ s′′.order-constraints.
Therefore there is an edge (w′, r)in s′′.order-constraints for the
fully propagated w′. Then because of (w,w′) in eo, it must have
been (w,w′) in s.order-constraints and by Lemma 5 (w,w′) in
s′′.order-constraints.
Since w′ and r by assumption overlap, and r does not read
before s′, no transition between s′′ and s′ deletes (w′, r) so
(w′, r) is in s′.order-constraints. By Lemma 4 also (w,w′) in
s′.order-constraints. But then in s′ the read r would have read
from w′ which is in contradiction to the assumption that w was
the s′.order-constraints-maximal write in ws.

�

3 Barriers restore BSC+SCA

3.1 ARM
By Lemma 1 the SCA part is given in POP even without barriers. Now only need to
show that fully-barriered ARM programs without misaligned accesses are BSC.

First prove the following lemma
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Lemma 9. A fully-barriered ARM or POWER program does not have restarts.

Proof. Restarts are caused for two reasons: reads being issued out of order and thread-
internal forwarding of writes to reads. Since reads can only be issued if all previous
barriers are committed and therefore all other po-before reads are committed as well,
fully-barriered ARM and POWER programs cannot issue reads out of order. Thread-
local write forwarding can only happen if the write and a po-later read are issued but
not committed yet. But since any read will wait for po-earlier barriers and therefore
po-earlier writes to be committed there is no thread-local write forwarding in fully-
barriered programs. Therefore there are no restarts. �

The following will assume restartless traces.

Theorem 2. The behaviour of fully-barriered ARM programs with no misaligned mem-
ory accesses is BSC+SCA.

Proof. Now use a similar approach as in the Release/Acquire SC proof to construct a
total order on the byte-sized events that corresponds to po, rf, and co. Let tr = s0

t0
−→

s1
t1
−→ . . .

tn−1
−−→ sn be a POP trace with final state s := sn for a fully-barriered ARM

program without misaligned accesses. Split up events from tr into byte-sized events.
Let po be the program order lifted to byte-sized events. Let rf and co be the per byte
reads-from and coherence relations as seen in the POP trace.

eo := s.order-constraints lifted to byte-sized events and with barriers removed
Now, since s.order-constraints is acyclic, eo is acyclic. Furthermore, if sw

po
−−→ sw′

for two subwrites sw of w and sw′ of w′, then (sw, sw′) in eo.

Proof. Acyclicity of eo follows from the acyclicity of s.order-constraints. As w
po
−−→ w′

there is at least one barrier between w and w′, let b be the last one. Committing w′

requires b to be committed, committing b requires w to be committed. When commit-
ting b an edge w → b will be added to order-constraints that no transition can remove.
Thus the edge is still in order-constraints when w′ is committed at which point b→ w′

is added to order-constraints, and by transitivity w → w′. As no transition can delete
b → w′ from order-constraints we have w → w′ in s.order-constraints and therefore
(sw, sw′) in eo. �

Furthermore, if (sw, sw′) in co then (sw, sw′) in eo.

Proof. Coherence in POP is determined by the final order-constraints. Let w be the
write of sw, w′ the write of sw′. Since sw

co
−→ sw′, (w,w′) in s.order-constraints. There-

fore (sw, sw′) in eo. �

embed’ po =
po := remove barriers from po;
for i in [0 .. length po-1] {
if po[i] is read_event {
let r = po[i] in
eo := eo + {(sw,sr) | sw in eo, sr is subread of r,
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sr read from sw} // A
eo := eo + {(se,sr) | se in eo, sr is subread of r,

se is po-before sr} // B
eo := eo + {(sr,sw) | sr is subread of r,

sw is subwrite of a write w,
(r,w) in po,
(sw,sr) not in eo^*} // C

eo := eo + {(sr,sw) | sr is subread of r,
sw is subwrite of a write w,
sr and sw to same address,
(sw,sr) not in eo^*} // D

eo := eo^*;
}

}

embed = map embed’ pos

Now prove by induction on i that before executing loop i of embed’ po, eo is
acyclic.

Base case: i = 0. This holds by acyclicity of s.order-constraints.
Step case: i → i + 1. Assume the property holds for i, show it also holds for i + 1.

Therefore, show that the execution of loop i preserves acyclicity. There are two cases:
po[i] is a write event or po[i] is a read event.

Case po[i] is a write event. Then, since the loop does not add to eo this is true by
the induction hypothesis.

Case r = po[i] is a read event. By induction hypothesis eo is acyclic before run-
ning the loop body for i. Running the body for i adds the subreads of r into eo. The
commands A and B only add edges pointing into subreads of r. C only adds edges
(sr, sw) if (sw, sr) is not already in eo’s transitive closure. Neither A, B, or C add edges
between the subreads sr. Therefore eo remains acyclic by construction.

Lemma 10. Let w be a write po-before e in a fully-barriered ARM program. When-
ever e is in the storage subsystem of a state s there is an edge (w, b) and (b, e) in
s.order-constraints for a barrier b in between w and e.

Proof. Let b be the last barrer between e and b. When b is in storage b must already
be committed, which in turn requires w to be committed. When b is committed (w, b)
is added into order-constraints which no transition can remove; when e is accepted in
to storage (b, e) is added into order-constraints which can only be deleted by deleting e
from the storage. �

Lemma 11. Let sw be subwrite of a write w and sw′ subwrite of a write w′ and assume
there is a path from sw to sw′ in the transitive reduction of eo that includes no other
writes but at least one read. Then (w,w′) in s.order-constraints.

Proof. By case analysis on the shapes of the shortest path. The only edges that connect
writes to reads are the ones added by commands A and B; the only edges between reads
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are the edges added by command B; the only edges that connect reads with writes are
the edges from C and D. The possible shapes of the path are therefore:

1. B∗; C

2. B∗; D

3. A; B∗; C

4. A; B∗; D

Show that for all of the shapes (w,w′) ∈ s′.order-constraints.

1. Let sr, subread of some read r, be the last subread on the path, and let s′ be the
state before sr is satisfied. Then it is w

po
−−→ w′ and therefore by Lemma 10 it is

(w,w′) ∈ s.order-constraints.

2. Let sr, subread of some read r, be the last subread on the path, and let s′ be the
state before sr is satisfied. Then it is w

po
−−→ r, and (sr, sw′) is added by D and

therefore sr and sw′ are to the same address. Therefore in the transition after s′,
the subread sr reads from a subwrite sw∗ of a write w∗ and sw′ is not before sw∗
in eo. (Otherwise the edge (sw′, sw∗) combined with the rf-edge (sw∗, sr) would
have meant (sw′, sr) is in eo and D would not have added (sr, sw′) to eo.

Since sw′ and sw∗ must have the same address and since coherence is a subset
of eo, this means it must be sw∗

co
−→ sw′. Now in the state s′ by Lemma 10

there is (w, b) and (b, r) in order-constraints for a barrier b. By definition of
satisfy-read-cand there is an edge (w∗, r) in s′.order-constraints.

Now there are two cases: r is fully propagated or not.

• If it is not, then in the state after satisfying sr with sw∗ r and w∗ swap and
it is (w, b) and (b,w∗) in order-constraints and neither edge can be deleted.
Thus when eventually (w∗,w′) in order-constraints (as this will become the
coherence order) it is (w,w′) ∈ s.order-constraints.

• If it is, then w∗ is fully propagated and in order for it to become w∗
co
−→ w′

the edge (w∗,w′) must already be in order-constraints and the write w′

must be fully propagated as well and related with b. If it were (w′, b)
in order-constraints then w′ would be in between w∗ and r and r would
not be able to read from w∗ as assumed. Therefore it must be (b,w′) ∈
s′.order-constraints and therefore (w,w′) in s′.order-constraints and (since
the barrier does not allow deleting this edge) also s.order-constraints.

3. Let sr, subread of some read r, be the first subread on the path, and let s′ be the
state before sr is satisfied. Then sr reads from sw and it is r

po
−−→ w′.

In s′ by definition of satisfy-read-cand w is propagated to r’s thread and w′ cannot
be in storage yet, since there are uncommitted barriers in between r and w′. Let
b be the last such barrier. When b is committed an edge (w, b) is added which no
transition can delete; when w′ is added (b,w′) is added which cannot be deleted.
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Thus in all state after the subreads on the path between sw and sw′ are satisfied
(all the subreads po-before w′ it is (w,w′) in order-constraints.

4. Let sr, subread of some read r, be the first subread on the path, and sr′, subread
of some read r′ be the last subread on the path. Let s′ be the state before sr is
satisfied. Then sr′ is not in storage yet, and by definition of satisfy-read-cand it w
is propagated to the thread of r. Let b be the last barrier between r and r′. When
b is accepted into storage there is (w, b) in order-constraints which cannot be
deleted; when r′ is accepted into storage it is (b, r′) ∈ order-constraints which—
in the absence of restarts cannot be deleted before satisfying r′.

Now let s′′ be the state when sr′ reads from some subwrite sw∗ of a write w∗.
As (sr′, sw′) is added by D, sr′ and sw′ are to the same address. Also, sw′

is not before sw∗ in eo. (Otherwise the edge (sw′, sw∗) combined with the rf-
edge (sw∗, sr′) would have meant (sw′, sr′) is in eo and D would not have added
(sr′, sw′) to eo.

Since sw′ and sw∗ must have the same address and since coherence is a subset
of eo, this means it must be sw∗

co
−→ sw′. Now in the state s′′ there is (w, b) and

(b, r′) in order-constraints for barrier b. By definition of satisfy-read-cand there
is an edge (w∗, r′) in s′′.order-constraints.

Now there are two cases: r′ is fully propagated or not.

• If it is not, then in the state after satisfying sr′ with sw∗ r′ and w∗ swap and
it is (w, b) and (b,w∗) in order-constraints and neither edge can be deleted.
Thus when eventually (w∗,w′) in order-constraints (as this will become the
coherence order) it is (w,w′) ∈ s.order-constraints.

• If it is, then w∗ is fully propagated and in order for it to become w∗
co
−→

w′, the edge (w∗,w′) must already be in order-constraints and the write
w′ must be fully propagated as well, and thus related with b. If it was
(w′, b) ∈ order-constraints then w′ would be in between w∗ and r and
r would not be able to read from w∗ as assumed. Therefore it must be
(b,w′) ∈ s′′.order-constraints and therefore (w,w′) in s′.order-constraints
and also s.order-constraints (since the barrier does not allow deleting this
edge).

�

Corollary 2. For any path from a subwrite sw of a write w to a subwrite sw′ of some w′

in the transitive reduction of eo it must be (w,w′) in the final state’s order-constraints.

Proof. Divide the path into subpaths that start from a subwrite and end in a subwrite
passing only subreads: whenever there is an edge (sw∗, sw∗′) for to subwrites it must
have already been (w∗,w∗′) for their writes in the final order-constraints since embed’
does not add direct edges between writes; whenever there is a path from one sub-
write sw∗ to another sw∗′ with only reads according to the previous Lemma it is also
(w∗,w∗′) in order-constraints for the final state for their writes. �
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Now prove INV: Before executing the loop i the following holds:
Let r be a read from po[0..i − 1] and sr a subread of r. Then

1. eo agrees with program order:

(a) if (se, sr) in po then (se, sr) in eo.
(b) if (sr, sw) in po for any subwrite sw, then (sr, sw) in eo.

2. For any w with subwrite sw in eo to the same address as sr: either (sw, sr) or
(sr, sw) in eo.

3. Let sw be the subwrite of a write w that satisfied sr. The same-address eo-
predecessor of sr is sw.

If we can prove this, we have shown that embed returns a partial order on the
byte-sized events that contains program order (we have shown acyclicity of eo before),
coherence and is compatible with reads-from. (As coherence for ARM is per write
rather than per byte-sized write, the coherence relation trivially is compatible with the
si relation.) As the partial order already contains program order, coherence, and every
subread is already related to all subwrites to the same address, any linear extension of
this partial order is a witness that tr is a BSC execution. Combined with the result that
ARM programs preserve single copy atomicity, we have a proof for the BSC+SCA
therorem.

Thus only remains to show INV, by induction on i.
Base case: i = 0. 1-3. are vacuously true.
Step case: i→ i+1. Assume INV holds for i, show it also holds for i+1. Therefore,

show that the execution of loop i preserves INV.
There are two cases: po[i] is a write event or po[i] is a read event.
Case po[i] is write event. Then the reads from po[0..i + 1− 1] are the same as from

po[0..i − 1], and because eo does not change, 1.-3. hold by the induction hypothesis.
Case r = po[i] is a read event.

1. (a) For all reads in po[0..i − 1] this is true by the induction hypothesis; for a
subreads sr of a read r = po[i] command B adds these edges.

(b) By induction hypothesis this is true for all reads in po[0..i − 1], only need
to show it is also true for r = po[i]. Let w be a write such that r

po
−−→ w,

so sr
po
−−→ sw for any subwrite of w. Show that (sr, sw) is added to eo. To

do that, show that before loop i’s command C, (sw, sr) is not in eo and
therefore C adds (sr, sw). Assume (sw, sr) is in eo.
Two cases: (sw, sr) is (i) a direct edge or (ii) a transitive edge.

(i) (i) Then it cannot be a po-edge since it is r
po
−−→ w. Therefore assume

it is an rf-edge. But this cannot happen: sw can only be accepted into
storage once all barriers between r and w are committed which in turn
requires r to already be satisfied.

(ii) (ii) Now let (se, sr) be the last edge in the path from sw to sr in the
transitive reduction of eo. Now this was either (A) added by A as a po
edge or (B) by B as an rf edge.
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(A) Then it is se
po
−−→ sr

po
−−→ sw and by induction hypothesis and the

fact that all write pairs are related according to po it is (se, sw) in
eo. But as se is on the path from sw to sr we also have (sw, se) in
eo which contradicts its acyclicity.

(B) Then se is a subwrite sw′ of some write w′ that sr read. Let s′

be the state before sr read from sw′. According to read-satisfy-
cand sw′ was propagated to the thread of r and by definition of
the thread semantics w was not accepted into storage. When the
last barrier b between r and b was accepted into storage (w′, b)
was added to order-constraints which cannot be deleted; when w
was accepted into storage after that (it must have waited for b
to be accepted by definition of the thread semantics) (b,w) was
added. Therefore it is (w′,w) is order-constraints in this and all
future states including s, and therefore also (sw′, sw) in eo. But
we assumed (sw, sw′) in eo which contradicts the acyclicity of eo.

2. By induction hypothesis this is true for all sr from po[0..i − 1]. Since embed’
never deletes elements of eo, only need to show this is also true for the case the
sr is subread of a read r = po[i]. Let sw be subwrite of a write w. Show that loop
i relates sw and sr. If not after running commands A to C sr and sw are unrelated
then command D sw sr relates them.

3. We have to show two things: (a) for any sr, sw is in the eo-prefix of sr and (b)
there is no same-address sw′ inbetween sr and sw in eo.

(a) In case sr is from po[0..i − 1] this holds by the induction hypothesis. In
case sr is subread of r = po[i] command A adds (sw, sr) to eo.

(b) Let sr be the subread of some read r and assume there is a same-address
subwrite sw′ of a write w′ with edges sw→ sw′ → sr in eo. Now there are
two cases: (i) sw′ is from the same thread as sr, or (ii) it is not.

(i) Let s′ be the state before sr reads from sw, let b be the last barrier
between w′ and r. Then by Lemma 10 there is (w′, b) and (b, r) in
s′.order-constraints. By satisfy-read-cand w is propagated to r’s thread
and thus must be ordered with b. If it is (b,w) in s′.order-constraints
we have (w′,w) in order-constraints which due to the barrier cannot be
deleted and thus (sw′, sw) in eo which contradicts its acyclicity. There-
fore it must be (w, b) ∈ s′.order-constraints. But then b is in between r
and w so that r must be fully propagated. Since by Corollary 2 (w,w′)
must eventually be in order-constraints, by Lemma 5 it must already
be (w,w′) ∈ s′.order-constraints. But this contradicts the assumption
that sr can be satisfied in this state since w′ is in between w and r′.

(ii) Then pick the last subwrite sw∗ of some write w∗ on the path. Since
this cannot be sw the edge between sw∗ and sr can either be (A) po or
(B) sw∗ is followed by a subread sr∗ of a read r∗ so that (sw∗, sr∗) was
added as an rf-edge and r∗

po
−−→ r.
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(A) Let s′ be the state before sr is satisfied. Then there is (w∗, b) and
(b, r) in s′.order-constraints for the last barrier b between w∗ and
r and by satisfy-read-cand w is propagated to r’s thread. Thus
r must be ordered with b. If it is (b,w) the edge (w∗,w) is in
s.order-constraints and since the edge cannot be deleted due to the
barrier also (w∗,w) in s.order-constraints and therefore eo which
contradicts its acyclicity. Therefore assume it is (w, b) but then b is
in between r and w forcing r to be fully propagated. But since by
Corollary 2 it will be (w,w′) and (w′,w∗) in s.order-constraints,
by Lemma 5 there must already be (w,w′) and (w′,w∗) are in
s′.order-constraints. But this contradicts the assumption that r can
read from w since w′ is in between them.

(B) Let s′ be the state before sr is satisfied. Then r∗ must have read
from w∗ and w∗ was propagated to r’s thread before the last bar-
rier b between r∗ and r was committed. When b was committed
(w∗, b) was added to the order-constraints of this and all future
states, when r was accepted (b, r) was added, which by assump-
tion that tr has no restarts cannot be deleted before r is satisfied.
Now in s′ the write w must be ordered with b. As before, if we
assume (b,w) then it is (w∗,w) in s′.order-constraints and also
s.order-constraints and therefore eo, contradicting the acyclicity
of eo where we already have (w,w′), (w′,w∗). Thus assume it is
(w, b) ∈ s′.order-constraints. But then b is in between w and r and
w∗ must be fully propagated. By Corollary 2 it will eventually be
(w′,w∗) in s.order-constraints. Thus this edge must by Lemma 5
already be in s′.order-constraints forcing full propagation of w′.
Also it will by Corollary 2 be (w,w′) in s.order-constraints, which
by Lemma 5 means it must already be in s′.order-constraints. But
then we have (w,w′) and by transitivity also the edge (w′, r) is in
s′.order-constraints. But this contradicts the assumption that in s′

the read r can read from w because now w′ is in between them.

�

3.2 POWER
The following will assume restartless traces (see Lemma 9).

Theorem 3. The behaviour of fully-barriered POWER programs with no misaligned
memory accesses is BSC+SCA.

Proof. First: single-copy atomicity of (fully-barriered and not fully-barriered) POWER
programs without misaligned accesses follows from the definitions of the write-propagation
transition and the read-satisfaction transition: a read-satisfaction is an atomic transition
in the POWER model where the storage subsystem returns a write value composed of
the write slices that together cover the footprint of the read and that were last propa-
gated to the thread. The order of propagation does not always match coherence, but
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by definition of the write-propagation transition when a write propagation happens, a
slice of a write is propagated to some thread tid if and only if tid does not already have
a coherence-newer write slice for the same address.

Now use a similar approach as before to construct a total order on the byte-sized
events that corresponds to po, rf, and co. Let tr = s0

t0
−→ s1

t1
−→ . . .

tn−1
−−→ sn be a trace

of the POWER model with final state s := sn for a fully-barriered POWER program
without misaligned accesses. Split up events from tr into byte-sized events. Let po be
the program order lifted to byte-sized events. Let rf and co be the per byte reads-from
and coherence relations as seen in the POWER trace. Define for any state s′ in the trace

s′.order = s′.coherence ∪ {(w1,w2)| let tid be w2’s thread. w1 and w2 are separated
by a barrier in tid’s events-propagated-to and where not (w2,w1) ∈ s′.coherence}

By definition of the POWER model order is always acyclic. Now define eo :=
s.order lifted to byte-sized events and with barriers removed. Since the POWER model
maintains the acyclicity of this set, eo is acyclic. Furthermore, if sw

po
−−→ sw′ for two

subwrites sw of w and sw′ of w′, then (sw, sw′) in eo.

Proof. As w
po
−−→ w′ there is at least one barrier between w and w′, let b be the last one.

Committing w′ requires b to be committed, committing b requires w to be committed.
If w and w′ are to overlapping addresses it cannot be w′

co
−→ w. We have w before b

before w′ in the events-propagated-to list for the thread of w′, separated by b. Thus by
construction they are contained in eo. �

Furthermore, if (sw, sw′) in co then (sw, sw′) in eo, by construction of eo.

embed’ po =
po := remove barriers from po;
for i in [0 .. length po-1] {
if po[i] is read_event {
let r = po[i] in
eo := eo + {(sw,sr) | sw in eo, sr is subread of r,

sr read from sw} // A
eo := eo + {(se,sr) | se in eo, sr is subread of r,

se is po-before sr} // B
eo := eo + {(sr,sw) | sr is subread of r,

sw is subwrite of a write w,
(r,w) in po,
(sw,sr) not in eo^*} // C

eo := eo + {(sr,sw) | sr is subread of r,
sw is subwrite of a write w,
sr and sw to same address,
(sw,sr) not in eo^*} // D

eo := eo^*;
}

}

embed = map embed’ pos
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Now prove by induction on i that before executing loop i of embed’ po, eo is
acyclic.

Base case: i = 0. This holds by acyclicity of s.order-constraints.
Step case: i → i + 1. Assume the property holds for i, show it also holds for i + 1.

Therefore, show that the execution of loop i preserves acyclicity. There are two cases:
po[i] is a write event or po[i] is a read event.

Case po[i] is a write event. Then, since the loop does not add to eo this is true by
the induction hypothesis.

Case r = po[i] is a read event. By induction hypothesis eo is acyclic before run-
ning the loop body for i. Running the body for i adds the subreads of r into eo. The
commands A and B only add edges pointing into subreads of r. C only adds edges
(sr, sw) if (sw, sr) is not already in eo’s transitive closure. Neither A, B, or C add edges
between the subreads sr. Therefore eo remains acyclic by construction.

Now prove INV: Before executing the loop i the following holds: Let r be a read
from po[0..i − 1] and sr a subread of r. Then

1. eo agrees with program order:

(a) if (se, sr) in po then (se, sr) in eo.
(b) if (sr, sw) in po for any subwrite sw, then (sr, sw) in eo.

2. For any w with subwrite sw in eo to the same address as sr: either (sw, sr) or
(sr, sw) in eo.

3. Let sw be the subwrite of a write w that satisfied sr. The same-address eo-
predecessor of sr is sw.

If we can prove this, we have shown that embed returns a partial order on the
byte-sized events (we have shown acyclicity of eo before) that contains program order,
coherence and is compatible with reads-from. (As coherence for POWER is per write
rather than per byte-sized write, the coherence relation trivially is compatible with the
si relation.) As the partial order already contains program order, coherence, and every
subread is already related to all subwrites to the same address, any linear extension of
this partial order is a witness that tr is a BSC execution. Combined with the result that
POWER programs preserve single-copy atomicity, we have a proof for the BSC+SCA
therorem.

Before showing INV, prove the following lemma.

Lemma 12. In the following, edges will be called

• rf edge if added by A

• po edge if added by B or C

• fr edge if added by D

Let se, se′ and se′′ be subevents of e, e′, and e′′ respectively, let p be a path from se to
se′ in eo with no po edges (the ones added by command B and C), let (se′, se′′) in eo be
a po-edge and let s′′ be the state before e′′ is accepted into the storage subsystem. Then
in s′′ all reads belonging to the subreads on the path are satisfied and for all subwrites
sw on the path either sw or a coherence-successor of sw is propagated to all threads.
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Proof. Let b be the last barrier between se′ and se′′. Since there are no po edges all
edges between se and se′ are rf, fr, or co, thus relating same byte-address events. Now
prove by induction on the path length n from se to se′.

Base case: n = 0. Then when e′′ is committed b must be committed and thus e = e′

committed. Thus if e is a read it is satisfied, if it is a write it is committed and b has
forced the propagation of se′ to all threads that do not already have a coherence-newer
subwrite to its address.

Step case: n→ n + 1. Let p∗ be a path of length n from some subevent se∗ of e∗ to
se′. Show that extending p∗ to p by adding an edge (se, se∗) at the start preserves the
property. Then by induction hypothesis all reads except for e (if se is a subread) on the
path are satisfied in s′′ and for all subwrites except se (if it is a subwrite) either they or
a coherence successor are propagated to all threads in s′′.

Case e is a write and e′ is a write. Only need to show that se or a coherence
successor is propagated to all threads in s′′. Since se and se′ are both subwrites they
must be coherence related; as coherence is subset of the acyclic eo it must be se

co
−→ se′.

In s′′ the barrier b is committed which required committing e′. Therefore a coherence
successor of se is propagated to all threads in s′′.

Case e is a write and e′ is a read. Only need to show that se or a coherence successor
is propagated to all threads in s′′. As e′ is a read the edge at the end of the path
is an rf edge going from some subwrite sw′ of a write w′ to se′. Since sw′ and se
are same byte-address writes they must be coherence related and the coherence must
be as in eo: se

co
−→ sw′. When e′′ is committed, b is committed which requires e′

to be satisfied, by assumption with sw′. In order for this to be possible when e′ is
satisfied sw′—a coherence successor of se or se itself—is propagated to tid and b being
committed forces it or a coherence successor to be propagated to all threads that have
no coherence-newer subwrite already in s′′.

Case e is a read and e′ is a write. Only need to show that e is satisfied in s′′. As e
is a read the edge (se, se∗) must be an fr edge and se∗ is a subwrite. As shown before
it must be se∗

co
−→ se′. In s′′ the barrier b is committed which requires committing e′.

The barrier can only be committed when all its group A events are propagated—this
includes the subwrite se′. Thus if se is to read from something coherence-before se∗
and thus coherence-before se′, e has to be satisfied before se′ or a coherence-successor
is propagated to the thread of e and therefore before b is committed, before s′′.

Case e is a read and e′ is a read. Only need to show that e is satisfied in s′′. Since e
and e′ are both reads and there are no po-edges there must be a write in between them
and (se, se∗) is an fr edge to a subwrite se∗, whereas there is some subwrite sw′ of a
write w′ such that (sw′, se′) is the last edge of the path, an rf-edge. Then as shown
before se∗ and sw′ must be coherence related as se∗

co
−→ sw′. Now in s′′ the barrier b

is committed which requires satisfying se′ with sw′. To make this happen sw′ must be
propagated to tid. The barrier can only be committed when all its group A events or
coherence-successors thereof are propagated—this includes the write sw′. Thus if se
is to read from something coherence-before se∗ and thus coherence-before sw′, e has
to be satisfied before sw′ or a coherence-successor is propagated to the thread of e and
therefore before b is committed, before s′′. �
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From this we derive the following:

Corollary 3. Let p be a path from subevent se of e to subevent se′ of e′ in eo that ends
in a po-edge and let s′ be the state before e′ is accepted into the storage subsystem.
Then in s′′ all reads for the subreads in p are satisfied and for all subwrites sw in p
either sw or a coherence-successor of sw is propagated to all threads.

Proof. This follows from a simple inductive proof where the induction is on the number
of po edges in p where for every subpath of p the previous lemma applies. �

Thus only remains to show INV, by induction on i.
Base case: i = 0. 1-3. are vacuously true.
Step case: i→ i+1. Assume INV holds for i, show it also holds for i+1. Therefore,

show that the execution of loop i preserves INV.
There are two cases: po[i] is a write event or po[i] is a read event. In case po[i] is

write event the reads from po[0..i] are the same as from po[0..i − 1], and because eo
does not change, 1.-3. hold by the induction hypothesis.

Case r = po[i] is a read event.

1. (a) For all reads in po[0..i − 1] this is true by the induction hypothesis; for a
subread sr of a read r = po[i] command B adds these edges.

(b) By induction hypothesis this is true for all reads in po[0..i − 1], only need
to show it is also true for r = po[i]. Let w be a write such that r

po
−−→ w,

so sr
po
−−→ sw for any subwrite of w. Show that (sr, sw) is added to eo. To

do that, show that before loop i’s command C, (sw, sr) is not in eo and
therefore C adds (sr, sw). Assume (sw, sr) is in eo.
Two cases: (sw, sr) is (i) a direct edge or (ii) a transitive edge.

(i) Then it cannot be a po-edge since it is r
po
−−→ w. Therefore assume it

is an rf-edge. But this cannot happen: sw can only be committed into
storage once all barriers between r and w are committed which in turn
requires r to already be satisfied.

(ii) Now let (se, sr) be the last edge in the path from sw to sr in the transi-
tive reduction of eo. Now this was either (A) added by A as a po edge
or (B) by B as an rf edge.

(A) Then it is se
po
−−→ sr

po
−−→ sw and by induction hypothesis and the

fact that all write pairs are related according to po it is (se, sw) in
eo. But as se is on the path from sw to sr we also have (sw, se) in
eo which contradicts its acyclicity.

(B) Then se is a subwrite sw′ of some write w′ that sr read. Let s′ be
the state before sr read from sw′, let tid be r’s thread, and let b be
the last barrier between r and w in program order. In s′ some slices
of w′ including sw′ were propagated to tid and thus appended to
tid’s events-propagated-to list, and b and therefore w are uncom-
mitted. When b is committed (this must be before w is committed)
b is appended to events-propagated-to tid. When w is committed
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in some state s′′ it is appended to events-propagated-to tid and
made coherence-after any writes already propagated to tid. Now
if w overlaps with w′ it will be w′

co
−→ w and thus (sw′, sw) in

eo. If not then they are unrelated by coherence but we have the
slices of w′ including sw′ in s′′.events-propagated-to tid before
b before w and thus (w′,w) in order. Since no writes or barri-
ers are ever deleted from events-propagated-to, it will therefore be
(w′,w) ∈ s.order in both cases and therefore (sw′, sw) in eo. So in
both cases it is (sw′, sw) in eo, contradicting the assumption that
also (sw, sw′) is in the acyclic eo.

2. By induction hypothesis this is true for all sr from po[0..i − 1]. Since embed’
never deletes elements of eo, only need to show this is also true for the case that
r = po[i] is a read. Let sr be a subread of r and let sw be subwrite of a write w.
If after running commands A to C sr and sw are unrelated then command D sw
sr relates them.

3. We have to show two things: (a) for any sr, sw is in the eo-prefix of sr and (b)
there is no same-address sw′ inbetween sr and sw in eo.

(a) In case sr is from po[0..i − 1] this holds by the induction hypothesis. In
case sr is subread of r = po[i] command A adds (sw, sr) to eo.

(b) Let sr be the subread of some read r and assume there is a same-address
subwrite sw′ of a write w′ with edges sw → sw′ → sr in eo. Since coher-
ence is included in eo and eo is acyclic it must be w

co
−→ w′.

Now there are two cases: (i) sw′ is from the same thread as sr, or (ii) it is
not.

(i) Let s′ be the state before sr reads from sw, tid r’s thread and b the last
barrier between w′ and r. The read r can only be issued when b is
committed which in turn requires w′ to be committed. Now there are
two cases: sw was propagated to tid before or after w′ was committed.
If sw was propagated to tid before w′ was committed, when w′ was
committed it was made coherence after w. But since sw and sw′ have
the same address w′ would have overwritten sw with sw′ and r would
not have read from sw. So assume w′ was committed before the slices
of w were propagated to tid. Then before the propagation of the slices
of w to tid by write-propagate-cand w and w′ were coherence related,
and by assumption the coherence was established to w

co
−→ w′. But

then since the slice sw′ of w′ is to the same address as sw of w, sw
would not have been propagated to tid and r cannot have read from it,
contradicting the assumption.

(ii) Then look at the last edge on the path from sw via sw′ to sr. Since sr
reads from sw this edge cannot be an rf-edge, therefore it must be a po-
edge (the other edges do not have reads in their second component). As
we have an eo-path from sw′ to sr, by Corollary 3 in the state before
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sr’s read is accepted into the storage subsystem sw′ or a coherence-
successor is propagated to all threads, including sr’s thread. But since
w

co
−→ w′ it is sw

co
−→ sw′ this contradicts the assumption that sr reads

sw because in the state of its satisfaction the coherence-newer subwrite
sw′ or a coherence-successor is already propagated to sr’s thread.

�
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