
Principles, Meet Practice
An Early Retrospective on SAFE

Benjamin C. Pierce
University of Pennsylvania

Principles in Practice Workshop
January, 2014

PC

ALU

Memory

I−Store

Combine
 Tags

se
cu

ri
ty

vi
o

la
tio

n

result tag

new PC tag

tag data

Register
 File

TMU

Authority

+1

^ (incomplete, personal...)

How do we make
computers more

secure?

3

Don’t start from here!

unchecked address arithmetic

unchecked address
arithmetic

“uni-typed” semantics
 (pointer = integer = instruction)

"root" user

Memory protection at
process/page granularity

Single protection boundary
(user/kernel)

raw seething bits

monolithic kernel design

expensive crossing
between protection
domains

manual memory
management

macro instead of micro-kernels

Crash/
SAFE

Principles

• Clean-slate co-design

• Push security into hardware

• Pervasive verification

• Defense in depth

Clean-slate design

Clean-slate design: Principles
• No requirement to be compatible with any legacy standards or

artifacts

• Build a completely new system stack, oriented around security
from bottom to top
• New ISA (the SAFE Machine)

• New hardware implementation (on FPGAs)

• New operating system / runtime services

• New programming languages
• Breeze (for applications)

• Tempest (for low-level system programming)

• New applications
• Focused on web services

• Intensive co-design across traditional system layers

Clean-slate design: Practice
• Lots of fun!

• Way to explore new parts of the design space
• Not just relax one dimension at a time

• Plant a flag someplace completely different

• Ambitious co-design ⇒ many meetings (some pretty interesting :-)

• Main challenge: Evaluation / validation
• Need some basis for choosing which way to move

• General principles helpful up to a point

• After that, need pull from applications

• Result: Parts with clearer vision at the beginning made most
progress by the end

• e.g., hardware security mechanisms

Security in
Hardware

Security in Hardware: Principles

• Why hardware?
• Use abundant silicon to improve security (not just more cores)

• Make higher-level security mechanisms available to low-level code

• Hardware more trustworthy than software? (Immutable...)

• Mechanisms:
• Hardware typing

• Memory safety

• Metadata tags and fast tag checking / propagation
 ⇒ fine-grained dynamic information-flow control (IFC)

• Other innovations: linear capabilities, lightweight transactions,
stream support, fast context switching, ...

Security in Hardware: Practice

• Hardware typing :-)
• integer <> pointer <> instruction <> closure

• Memory safety :-)
• “low-fat pointers” [CCS 2013]

• efficient encoding of base, bounds, and offset into 64-bit
words
• logarithmic encoding uses few bits

• surprisingly little fragmentation

• bounds checked on every pointer access

• IFC... :-|

Information-Flow
Control

IFC: Principles

• Apply well-established theory of IFC from PL
community

IFC: Practice	

• Many significant challenges remaining in “well-
developed theory”

• ⇒ We became IFC researchers!

• Good progress on some issues...

• Mapping the jungle of label models [CSF 2013]

Immunity from poison pills [Oakland 2013]
 IFC labels as a denial-of-service vector...

Good discussions on other issues :-)

IFC: Major challenges
• Weak attack model

• Assumes attacker cannot observe nontermination, timing, power,
cache effects, disk head movement, ...

• Pragmatic solution in SAFE: Supplement with access control

• Doesn’t play well with concurrency

• Declassification a perennial problem

• Hard for programmers to use effectively
• Unclear connection between low-level “micro-policies” encoded as

labels and user-level “macro-policies”

• Fine-grained IFC especially tricky without a static type system

• Bottom line: Promising, but many open questions

give example for concurrency?
emphasize that there is a lot of great work
going on in all these areas -- just not finished

P0:
while H do
 skip;
L0 := true

P1:
while ¬H do
 skip;
L1 := true

P3:
while ¬L0⋀¬L1 do
 skip;
L := L0;
...

Possible solution: “never lower PC
label” à la LIO

Pervasive Verification

Pervasive Verification: Principles

• Keep design clean and simple

• Formally specify major interfaces
• Hardware ISA

• IFC abstract machine

• High-level programming language

• Formally verify critical software components
• Rule cache management

• Scheduling, process management, and IPC

• Garbage collection

• (Maybe compiler)

Pervasive Verification: Practice	

• Hard to convey difficulty of formal verification
to people who haven’t done it

• Hard to do formal verification on a fast-moving
design

• Bad interaction with “defense in depth”...

warnings like “100x verification cost” are just
words to the hardware and OS people

Defense in Depth

Defense-in-Depth: Principles

• Increase attacker work factor by forcing them
to overcome multiple lines of defense

• Avoid brittleness of “strong single layer”
• faulty devices

• bit flips

• unverified components

• proof rot

Defense-in-Depth: Practice	

• Concepts like “degree of redundancy” and
“attacker work factor” very difficult to measure

• “n+1 mechanisms better than n”

• More mechanism ⇒ more complex design

• Difficult to combine with pervasive verification

Not-So-Pervasive
Verification

Modest Verification: Principles

• Specify critical interfaces

• Verify key properties of simplified models

Modest Verification: Practice	

• Small proofs of noninterference for many IFC
calculi and abstract machines

• Biggest achievement
so far:
• Formalization of core

tag cache hardware,
software handler, IFC
abstract machine, and
proof of correctness
[POPL 2014]

Another Modest
Idea...

Random Testing
for Security Properties

(but effective!)

Random Testing: Principles

• Specify critical interfaces

• Use property-based random testing (à la
QuickCheck) to debug key properties such as
noninterference

Random Testing: Practice	

• Question: Can we effectively test security
properties (noninterference) by generating
random inputs (pairs of low-equivalent machine
states)?

• Progress so far [ICFP 2013]:
• Simple IFC abstract machine, known correct

• Manually inject IFC bugs

• Measure how quickly they can be found by random
testing

talk about ICFP
experiment and the
methodology it gives rise
to...

Property Mean time to find a
counterexample

End-to-end
noninterference ∞

Low-lockstep 7.69 ms

Single-step 0.47 ms

If two initial machine states are
low-equivalent and both machines
terminate in low states, then these

states are also low-equivalent

If two machine states are low-equivalent
then the next low states reached by both
machines (perhaps after some high steps)

are low-equivalentIf two machine states are related then the next
steps of the two machines are similar and the next

states (whether low or high) are again related
(cf. unwinding conditions)

Methodology	
for testing NI
• (Skip end-to-end property: too slow)

• Start with low-lockstep property (LLNI)
• Generic

• Finds bugs reasonably fast

• When LLNI stops finding bugs, try to find single-step invariant
• Requires considerable insight

• Random testing can help debug it!

• Test single-step property (SSNI) until no more counterexamples
are found
• Gives confidence in both invariant and artifact

• (Optional) Use invariant to prove SSNI
• Conclude that original NI property holds

(How well) does it scale up?

• We’re applying it to significantly larger fragments of
SAFE

• Have not run out of steam yet :-)

• Main challenge: Generating well-distributed test data

Where (Else)
We’re Going

• Working hardware
• Running on FPGAs, implemented in Bluespec

• Core OS / RTS components
• Simple scheduler, GC, tag hardware management

• Low-level systems programming language: Tempest
• Compiler working

• Growing body of systems code

• One simple “end to end” application

• (talk to Jesse Tov)

• High-level applications language: Breeze
• Running interpreter, but no compiler

• A few larger demo applications

Where we are...

Near-Term Goals
• SAFE processor
• Pipelining

• Energy and area optimization

• Low-level software
• Better tag management, more interesting label model

• High-level software
• More interesting demo application(s?)

• Formalization
• Full (or at least full-er) specification of ISA

• Validated by random testing

An Interesting Spin-Off
• Transplant (just) tag-management hardware to a

stock processor

• Explore other “micro-policies” that can be
implemented using hardware tags
• memory safety

• CFI

• linearity

• dynamic typing

• race detection

• ...

Thank you!

PC

ALU

Memory

I−Store

Combine
 Tags

se
cu

ri
ty

vi
o
la

tio
n

result tag

new PC tag

tag data

Register
 File

TMU

Authority

+1

Shown: Sumit Ray, Howard Reubenstein, Andrew Sutherland, Tom Knight, Olin Shivers,
Benjamin Pierce, Ben Karel, Benoit Montagu, Jonathan Smith, Cătălin Hriţcu, Randy
Pollack, André DeHon, Gregory Malecha, Basil Krikeles, Greg Sullivan, Greg Frazier, Tim
Anderson, Bryan Loyall

Not shown: Greg Morrisett, Peter Trei, David Wittenberg, Amanda Strnad, Justin
Slepak, David Darais, Robin Morisset, Chris White, Anna Gommerstadt, Marty Fahey, Tom
Hawkins, Karl Fischer, Hillary Holloway, Andrew Kaluzniacki, Michael Greenberg, Andrew
Tolmach, Antal Spector-Zabuski, Leonidas Lampropoulos, Tyler Brown, Ian Nightingale,
Udit Dhawan, Albert Kwon, Jesse Tov, Arthur Azevedo de Amorim, Nathan Collins, Arun
Thomas, Shannon Spires, Mitch Wand, ...

