PROGRAMMING LANGUAGE
SEMANTICS AS NATURAL SCIENCE

THE PECULIAR, EVOLVING, AND
BARELY CONSUMMATED RELATIONSHIP BETWEEN
SEMANTICS AND SCRIPTING LANGUAGES

Arjun Guha
Joe Gibbs Politz
Ben Lerner
Justin Pombrio
Shriram Krishnamurthi

A

Unearthing the excellence in JavaScript

"JavaScript has much in common with Scheme [...]
Because of this deep similarity ..."

B . s * v
B 3

w '
R}

Java SEi‘ipt:
The Good Parts

O‘REILLY,J YAHOO-' PRESS Douglas Crockford

function bar(x) {
return jﬂr};tion() {

var x = X;

reﬁégg,x;

s
}

var f = bar(200);

var X = 0;
vap’'y 900;

unction bgz(obj) {
with (obj) {
X =Y;
}
}

baz({ W: 100 });
x = 100

var myObj = { x : @ };
baz(myObj);

X = 100

myObj.x -> 900

Unearthing the excellence in JavaScript

"JavaScript has much in common with Scheme [...]
Because of thls deep s:m/larlty

No help to researchers
studying Web security,
building JavaScript analyses,
etc.

O’REILLY® | 'YAHOO! PREss

The Essence of JavaScript

Arjun Guha, Claudiu Saftoiu, and Shriram Krishnamurthi

Brown University

¢ = num | str | bool | undefined | null [=
v=c|func(z---) { return ¢ } | { str:v--- }

c‘=.l‘|l'||0t (x =€) ¢ |t(l"")|t[1']|l.[t]=l. de o= (l.v)---

=eollet (z = F) e|Ee--2) |v(v--- E, e---) e=--
| {str: v.-- str:E, strie--- }| Ele] |v[E] | Ele] E=..
| v[v] = E | delete E[e] | delete v[E]
let (z = v) e efz/v]---
(func(zy---xn) { return e })(v1---vn) — ez /2

{ ---str: v.-- Ylstr] —v

str, & (stry---str,)

(E-C
{ str1: v1 -+ strn: va r [str:] — undefined

{ stry: vy--- stry: v; ---str,: v, } [str;]
— { stry: vy--- stryr v ---strp: v,)

stre & (stry--

-l e = e|ref e| deref ¢
| E =¢€e|v = FE|ref E|deref E Evaluation Contexts

€1 < €9

oFE(e1) — ocFE{e2)

[l & dom(a) g =a (l.v)

cE{ref v) = o'E{l)
oE{deref I) — oE(a(l))

cE(l = v) = o[l/v]E(l)

We use —» to denote the reflexive-transitive closure of —.

.

- stry) "_proto__" & (stry .- - stra)

{ str1 : v1 ,

stre & (str1---)

{ stry: vy~ F [stry] = vy = { strpo: vy, stri: vy

, strn @ vn ¥ [str:] — undefined

str, & (stry---str,)

Locations
Values
Stores

Expressions

(E-REF)

(E-DEREF)

(E-SETREF)

(E-GeTFIiELD-NOTFOUND)

{ str1 : v1---

delete { stry: vy--- str;: vy ---strp: v, ¥ [

s { stri: vi--- Stri: v ---Strp: Un ¥

"_proto__": null --- str, : v, } [str:] — undefined

(E-GETFIELD-PROTO-NULL)

stre- & (str1---stry,) p= ref [

‘\fl“. '-E (‘\fl‘] cee)

delete { stry: vy--- ¥ [str.] < { stry: vy--- }

(E-DE { stry : vy---

"_proto_": p --- str, : v, } [str.] < (deref p) [str.]

(E-GETFIELD-PROTO)

Fig. 1. Functions and Objects

Fig. 4. Prototype-Based Objects

JavaScript

desugar

7\JS

program

SpiderMonkey,
V8, Rhino

\ 4

“their

Identical for
conformance suites

program

definitional
interpreter

\ 4

“our

answer”

answer”

What About the Spec?

. The spec is embodied in the
implementations

. The spec is incomplete: e.g., SES depends
ON window.console
. The spec depends on implementations!

I [...], the behavior of sort
is implementation-defined.

implementation-defined -+ .4 ylementation-dependent| D 2t

4. Attackers attack implementations, not specs

Internal/

External
validation

TWO POSITIONS

1. The desugar/semantics split is vital

2. Tests are a form of specification

JavaScript

program

SpiderMonkey,
V8, Rhino

v

“their
answer”

. Curated “essence” —

provides insight

. Target for proofs
. Target for tools

. Stabilizes quickly and

rarely changes after

. What we as scientists

should do

100 LOC
interpreter

v

“our
answer”

TESTS AS SPECIFICATIONS

Tests are incomplete but formal

Implementations on their own over-specity

Tests keep up with evolution

Tests ease the interface with specification authors

THREE RESEARCH PROBLEMS

1. SHRINKING DESUGARING OUTPUT

X["count"]

n + 1;

let (%context = %nonstrictContext) {
%defineGlobalAccessors(%context, "n");
%defineGlobalAccessors(%context, "x");
let (#strict = false) {
try {
%set-property(
%ToObject(
%scontext["x", {[#proto: null,
#class: "Object",
#extensible: true,]}]),
"count",
%PrimAdd(%context["n" , {[#proto: null,
#class: "Object",
#textensible: true,]}],
1.))
} catch {
%ErrorDispatch

}
¥
}

let (%context = %nonstrictContext) {
%»defineGlobalAccessors(%context, "n");
%defineGlobalAccessors(%context, "x");
let (#strict = false) {
try {
%set-property(
%ToObject(
scontext["x", {[#proto: null,
#class: "Object",
#extensible: true,]}]),
"count",
%PrimAdd(%context["n" , {[#proto: null,
#class: "Object",
#textensible: true,]}],

1.))

} catch {
%ErrorDispatch

1. Dead-code elimination

2. Constant propagation
3. Type-driven specialization

2. LIFTING DESUGARING
THROUGH REDUCTIONS

desugar

Three key properties:

1. Emulation

Desugaring a re-sugared term
yields the same desugared term

. Abstraction

Re-sugaring does not show terms
introduced by desugaring

. Completeness
Doesn’t skip expected steps

3. REDUCING EFFORT
PER SEMANTICS

Cisco I0S 1 PhD, 1 MS

EcmaScript 3 1 PhD, 1 UG
EcmaScript 5 Safe 1 PD, 2 PhD, 1 MS
DOM Events 1PD, 1 PhD, 1 MS, 1 UG

Python: The Full Monty
A Tested Semantics for the

Python Programming Language

Joe Gibbs Politz Alejandro Martinez Matthew Milano

Providence, RI, USA La Plata, BA, Argentina Providence, RI, USA
joe@cs.brown.edu amtriathlon@gmail.com matthew@cs.brown.edu

Sumner Warren Daniel Patterson Junsong Li

Providence, RI, USA Providence, RI, USA Beijing, China
jswarren@cs.brown.edu dbpatter@cs.brown.edu ljs.darkfish@gmail.com

Anand Chitipothu Shriram Krishnamurthi

Bangalore, India Providence, RI, USA
anandology@gmail.com sk@cs.brown.edu

New languages with JVM implementations

f++, a language inspired by Perl and Lisp.t]

. Ale
« Atejl PX, an extension of Java for easy parallel programming on multicore, GPU, Gnd and Cioud.[18]
« BB, an d language for business applcations

« BeanShell, a scripting language whose syntax is close to Java
« Ceylon, an upcomng Red Hat's Java competitor

« ColdFusion, a scrpting language compiled to Java, used on the ColdFusion applcation Server

4 onmt A

« CAL, a Haskell-inspired functional la noUage.
« E language has an impleamantation on the JVM.

« Fantom, a language built from the base to be portable across the JVM, .NET CLR, and JavaScr :':.1-‘]
« Fow Java.

« Fortress, a language designed by Sun as a successor 1o Fortran, mainly for parallel scientific computing.

« Frege, a non-strict, pure functional programming language in the spint of Haskell.! 0]
« Frnk, a language that tracks units of measure through calkculations
« Gosu, an extensiple type-system language compded to Java bytecode.

« Hec .i21]

+ loke, a prototype-based language somewhat reminiscent of lo, with similanities to Ruby, Lisp and Smalitak.
o KBML, an expert system DSL for defining correlation rules and event processing. Used by products based ¢ M platiorm.

o Kotin (programming language) invented by Jetbrair
« Jabaco, A BASIC-ike GUI RAD language for n.“”'ws that uses the JVM.
22]

« Jaskell, a Haskell inspired scnpting language.

« Join Java, a language that extends Java with the join semantics of the join-

crot

« Lbretto. Dynamic general purpose ct-onented programmng language.

« Mran, a customzable language uring type inference and a highly Ruby-inspired syntax.!®

o NAM

asic.

o Netlox
« Nce
« Nooo as a maor focus

nspred by Perl and

oV Ia"-g age has an implemantation on the JVM. (27
. end, a *a"-;., e built by the Eclpse foundation, featunng very tight Java interoperabiity, with a focus on extension methods and lamodas, and rich toolng
« X10, a language designed by |BM, featuning constrained types and a focus on concurrency and distribution.

« Yeti, a ML style functional language, that runs on the JVM.! (28]

NOT JUST “LANGUAGES”

Environments, APls, event models define behavior

Where do we get the next 700 semantics?

P

program

P evaluator

\ 4

“their

Ap

Assume:

P parser (ripped out)
Candidate A,

A\, evaluator

program

interpreter

\ 4

“our

answer”

want it to be identical

answer”

program program

O
> ‘ :
N BN e @ O
Learn this using

machine translation
techniques

Important Differences

MT Tree Alignment needs:
» Lots of sentences of input language (easy)
» Lots of sentences of output language

CERY
» Lots of examples of translations (oops!)
Typically at least 1mil, preferably 10mil

But MT also lacks something we have...

P

desugar

Ap

program

P evaluator

A\ 4

“their

program

interpreter

A\ 4

“our

answer”

answer”

Current Status

We've tried four different approaches:
* Naive tree matching

» Tree transducer by Gibbs sampling

* Genetic programming
» Sketching

None has yet succeeded beyond
toy examples

Summary

The purpose of a semantics is insight,
not only matching execution behavior

Decomposing into desugaring and a
core semantics offers room for flexibility

Desugaring deserves more respect in
semantics research

Tests are underutilized in semantics

The Modelers’ Hippocratic Oath

Emmanuel Derman and Paul Wilmott

| will remember that | didn't make the world, and it doesn't satisfy my
equations.

Though I will use models boldly to estimate value, | will not be overly
impressed by mathematics.

| will never sacrifice reality for elegance without explaining why | have
done so.

Nor will | give the people who use my model false comfort about its
accuracy. Instead, | will make explicit its assumptions and oversights.

| understand that my work may have enormous effects on society and
the economy, many of them beyond my comprehension.

http://www.wilmott.com/blogs/eman/index.cfm/2009/1/8/The-Financial-Modelers-Manifesto

