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Unearthing the excellence in JavaScript

"JavaScript has much in common with Scheme [...]
Because of this deep similarity ..."
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Java SEi‘ipt:
The Good Parts
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function bar(x) {
return jﬂr};tion() {

var x = X;

reﬁégg,x;

s
}

var f = bar(200);




var X = 0;
vap’'y 900;

unction bgz(obj) {
with (obj) {
X =Y;
}
}

baz({ W: 100 });
x = 100

var myObj = { x : @ };
baz(myObj);

X = 100

myObj.x -> 900




Unearthing the excellence in JavaScript

"JavaScript has much in common with Scheme [...]
Because of thls deep s:m/larlty

No help to researchers
studying Web security,
building JavaScript analyses,
etc.
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The Essence of JavaScript

Arjun Guha, Claudiu Saftoiu, and Shriram Krishnamurthi

Brown University
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Fig. 1. Functions and Objects

Fig. 4. Prototype-Based Objects
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What About the Spec?

. The spec is embodied in the
implementations

. The spec is incomplete: e.g., SES depends
ON window.console
. The spec depends on implementations!

I [...], the behavior of sort
is implementation-defined.

implementation-defined -+ .4 ylementation-dependent| D 2t

4. Attackers attack implementations, not specs
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TWO POSITIONS

1. The desugar/semantics split is vital

2. Tests are a form of specification
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TESTS AS SPECIFICATIONS

Tests are incomplete but formal

Implementations on their own over-specity

Tests keep up with evolution

Tests ease the interface with specification authors




THREE RESEARCH PROBLEMS




1. SHRINKING DESUGARING OUTPUT




X[ "count" ]

n + 1;

let (%context = %nonstrictContext) {
%defineGlobalAccessors(%context, "n");
%defineGlobalAccessors(%context, "x");
let (#strict = false) {
try {
%set-property(
%ToObject(
%scontext["x", {[#proto: null,
#class: "Object",
#extensible: true,]}]),
"count",
%PrimAdd(%context["n" , {[#proto: null,
#class: "Object",
#textensible: true,]}],
1.))
} catch {
%ErrorDispatch

}
¥
}




let (%context = %nonstrictContext) {
%»defineGlobalAccessors(%context, "n");
%defineGlobalAccessors(%context, "x");
let (#strict = false) {
try {
%set-property(
%ToObject(
scontext["x", {[#proto: null,
#class: "Object",
#extensible: true,]}]),
"count",
%PrimAdd(%context["n" , {[#proto: null,
#class: "Object",
#textensible: true,]}],

1.))

} catch {
%ErrorDispatch







1. Dead-code elimination

2. Constant propagation
3. Type-driven specialization




2. LIFTING DESUGARING
THROUGH REDUCTIONS




desugar

Three key properties:

1. Emulation

Desugaring a re-sugared term
yields the same desugared term

. Abstraction

Re-sugaring does not show terms
introduced by desugaring

. Completeness
Doesn’t skip expected steps




3. REDUCING EFFORT
PER SEMANTICS




Cisco I0S 1 PhD, 1 MS

EcmaScript 3 1 PhD, 1 UG
EcmaScript 5 Safe 1 PD, 2 PhD, 1 MS
DOM Events 1PD, 1 PhD, 1 MS, 1 UG
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New languages with JVM implementations

f++, a language inspired by Perl and Lisp.t ]

. Ale
« Atejl PX, an extension of Java for easy parallel programming on multicore, GPU, Gnd and Cioud.[ 18]
« BB, an d language for business applcations

« BeanShell, a scripting language whose syntax is close to Java
« Ceylon, an upcomng Red Hat's Java competitor

« ColdFusion, a scrpting language compiled to Java, used on the ColdFusion applcation Server

4 onmt A

« CAL, a Haskell-inspired functional la noUage.
« E language has an impleamantation on the JVM.

« Fantom, a language built from the base to be portable across the JVM, .NET CLR, and JavaScr :':.1-‘]
« Fow Java.

« Fortress, a language designed by Sun as a successor 1o Fortran, mainly for parallel scientific computing.

« Frege, a non-strict, pure functional programming language in the spint of Haskell.! 0]
« Frnk, a language that tracks units of measure through calkculations
« Gosu, an extensiple type-system language compded to Java bytecode.

« Hec .i21]

+ loke, a prototype-based language somewhat reminiscent of lo, with similanities to Ruby, Lisp and Smalitak.
o KBML, an expert system DSL for defining correlation rules and event processing. Used by products based ¢ M platiorm.

o Kotin (programming language) invented by Jetbrair
« Jabaco, A BASIC-ike GUI RAD language for n.“”'ws that uses the JVM.
22]

« Jaskell, a Haskell inspired scnpting language.

« Join Java, a language that extends Java with the join semantics of the join-

crot

« Lbretto. Dynamic general purpose ct-onented programmng language.

« Mran, a customzable language uring type inference and a highly Ruby-inspired syntax.!®

o NAM

asic.

o Netlox
« Nce
« Nooo as a maor focus

nspred by Perl and

oV Ia"-g age has an implemantation on the JVM. (27
. end, a *a"-;., e built by the Eclpse foundation, featunng very tight Java interoperabiity, with a focus on extension methods and lamodas, and rich toolng
« X10, a language designed by |BM, featuning constrained types and a focus on concurrency and distribution.

« Yeti, a ML style functional language, that runs on the JVM.! (28]




NOT JUST “LANGUAGES”

Environments, APls, event models define behavior

Where do we get the next 700 semantics?
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Important Differences

MT Tree Alignment needs:
» Lots of sentences of input language (easy)
» Lots of sentences of output language

CERY
» Lots of examples of translations (oops!)
Typically at least 1mil, preferably 10mil

But MT also lacks something we have...
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Current Status

We've tried four different approaches:
* Naive tree matching

» Tree transducer by Gibbs sampling

* Genetic programming
» Sketching

None has yet succeeded beyond
toy examples




Summary

The purpose of a semantics is insight,
not only matching execution behavior

Decomposing into desugaring and a
core semantics offers room for flexibility

Desugaring deserves more respect in
semantics research

Tests are underutilized in semantics




The Modelers’ Hippocratic Oath

Emmanuel Derman and Paul Wilmott

| will remember that | didn't make the world, and it doesn't satisfy my
equations.

Though I will use models boldly to estimate value, | will not be overly
impressed by mathematics.

| will never sacrifice reality for elegance without explaining why | have
done so.

Nor will | give the people who use my model false comfort about its
accuracy. Instead, | will make explicit its assumptions and oversights.

| understand that my work may have enormous effects on society and
the economy, many of them beyond my comprehension.

http://www.wilmott.com/blogs/eman/index.cfm/2009/1/8/The-Financial-Modelers-Manifesto




