
Formal, Executable Semantics
of Web Languages:
JavaScript and PHP

Sergio Ma!eis
Imperial College London

In collaboration with:
J. Mitchell (Stanford), A. Taly (Google),
K. Bhargavan, M. Bodin, A. Charugeraud, A. Delignat-Lavaud, A. Schmitt (INRIA),
D. Filaretti, P. Gardner, D. Naudziuniene, G. Smith, S. Yuwen (Imperial)

PiP’14, San Diego

A Personal Perspective

•  Goal: “language based web security”
–  1st step: build formal models (this talk)
– Next, analyze security properties

•  Based on:
– JSSec: small-step operational semantics of ES3
– JSCert: Coq semantics and interpreter of ES5
– KPHP: formal executable semantics of PHP in K

•  (Not a literature survey, see my papers for
references)

: Principles in Practice

•  Given a language L and an interpreter X, define a
semantics S such that for all p in L, S(p) ~=~ X(p)

•  Real world: here’s an interpreter X. Good luck!
– Define a semantics S such that S(p) === X(p) for as many

p as possible

•  Approach
–  “Observe” a piece of syntax (experiments &

documentation)
– Model behaviour using building blocks of meta-language
–  Formulate predictions to validate model (testing)

Handling Pre-Existing Systems
Complexity

JavaScript and PHP

•  Born as small languages
– JavaScript: sanitize input of HTML forms
– PHP: Personal Home Page Tools for tracking

home page visits

•  Now achieved world domination
– All web pages, most servers
– Top of Github/StackOveflow popularity

•  Chart from http://langpop.corger.nl

•  Picked up lots of complexity along the way

•  Critical points of failure for web security
–  Attacks come from obscure, di!cult corner cases
–  Do not leave out tricky or inelegant constructs

•  OK to look at conservative subsets

–  But beware of unsound simplifications

–  .

JavaScript and PHP

•  Critical points of failure for web security
–  Attacks come from obscure, di!cult corner cases
–  Do not leave out tricky or inelegant constructs

•  OK to look at conservative subsets

–  But beware of unsound simplifications

–  .

JavaScript and PHP

Libraries
•  JavaScript, PHP = Master
•  Browser, server = Blaster
•  We need operational semantics

of the core language
– Plus a mechanism to invoke library

functions

•  Formalization of libraries is an
independent task
– Di"erent goals, techniques
– One language, many libraries

Developing and Using
Semantics at Scale

Formalization: The Pain

Formalization: The Pain

Mechanization: The Gain

Parsing

•  Manual or lightweight parsing
– Ok for small projects, not scalable

•  A “user-friendly” parser
– Will get you started quickly but sometimes may be

wrong
–  JSCert: based on Closure/Rhino
– KPHP: based on PHP-front

•  A “production” parser
–  Tried with Chromium AST: optimizations get in the

way
•  Parsing should be verified
– Also source of security problems (XSS,SQLI,…)

Execution and Testing

•  JSSec: manual execution (not scalable)
– Experiments with various browsers
– Driven by corner cases of specification

•  JSCert: Coq to OCAML extraction
– JSRef + proof: significant overhead, but trusted
– Systematic validation of JSRef using test262

•  KPHP: semantics is directly executable
– PHP has no analogous to ES3/5 specification
–  (Zend) test-driven semantics development

Testing, Proofs and Analyses

Coverage

•  Lots of possible criteria (Daniel’s talk)
•  JSCert: LOC
– Mapping interpreter code/semantics rules
– Bisect: general-purpose tool for LOC coverage
–  test262: ~95% LOC

•  KPHP: ROS
–  Interpreter as black box
–  Instrumentation of semantics with rule traces
– Zend tests (56% ROS) + our own tests: 100% ROS

•  Open problem: automatically derive
conformance test suite from formal semantics

Meta-Proofs

•  JSSec: paper proof, labor intensive, error-prone

•  JSCert: Coq proof, even more labor, but trusted

•  Useful for debugging the semantics
•  Basis for further proofs
–  Coq proof: 6 months to find the right way, 3 days to do

Analyses

•  Secure subsets, Defensive JavaScript, Program logics
–  Proofs of reduction-closed invariants need only semantic

rules used by subset
•  Temporal verification of PHP programs
–  Based on built-in symbolic execution and LTL model

checking
–  Verification tools based on meta-language cover whole

semantics
•  PHP taint analysis based on abstract interpretation
–  Easy to turn executable semantics into static analyzer

Engaging With the Industrial
Communities

Language Evolution

•  JSSec: formalizes ES3
•  Horwat: Lisp interpreter for JavaScript 2.0/ES4
•  Herman & Flanagan: ES4 specification in ML
•  Lambda-JS: ES3 and now ES5S
•  JSCert: starts with ES5, open ended
•  Language evolution is indeed a challenge
– Not a good excuse to avoid formalizations
– You can design a semantics with evolution in mind

Design for Evolution: ES5 - JSCert

Reporting Bugs

•  JSSec:
–  Implementation inconsistencies in browsers
–  (Security) bugs in FBJS, ADSafe, etc.

•  JSCert:
– Bugs in SpiderMonkey, V8, WebKit
– Problems with ES6, test262

•  KPHP:
– Several horror stories (= bugs)
– No PHP spec: “It’s not a bug! It’s a feature!!”

PHP: What is a Bug?

•  Evaluation order of expressions: LR or RL?

•  PHP bug 61188

PHP: What is a Bug?

•  Formal semantics explains what happens

– Evaluation order is LR
– Array accesses are evaluated to values
– Variables are evaluated to references
– References are resolved lazily

•  Easy fix to expose LR evaluation consistently
– BinOp(E1,E2) è BinOp(R, E2) è BinOp(V,E2)

Conclusions

•  Toy models of programming languages
– Ok for new language features, analysis ideas.
–  Inadequate to provide security guarantees

•  Full-blown formal semantics
– Basis for trustworthy verification, certification.
– Tools and techniques are now mature enough.

References
•  JSSec:

–  Semantics: APLAS’08, http://jssec.net/semantics
–  Secure subsets: CSF’09, ESORICS’09, OAKLAND’10
–  Program logics: POPL’12
–  Defensive JavaScript: USENIX’13, http://defensivejs.com

•  JSCert:
–  POPL’14 http://jscert.org, https://github.com/jscert/jscert

•  KPHP:
–  Submitted. TR available 12/2/14 on http://www.doc.ic.ac.uk/~ma"eis/

•  .

