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Abstract. How close are we to a world in which mechanically verified
software is commonplace? A world in which theorem proving technology
is used routinely by both software developers and programming language
researchers alike? One crucial step towards achieving these goals is mech-
anized reasoning about language metatheory. The time has come to bring
together the theorem proving and programming language communities
to address this problem. We have proposed the POPLMark challenge
as a concrete set of benchmarks intended both for measuring progress in
this area and for stimulating discussion and collaboration. Our goal is
to push the boundaries of existing technology to the point where we can
achieve mechanized metatheory for the masses.

1 Mechanized Metatheory for the Masses

One significant obstacle to achieving the goal of verified software is reasoning
about the languages in which the software is written. Without formal models of
programming languages, it is impossible to even state, let alone prove, mean-
ingful properties of software or tools such as compilers. It is therefore essential
that we develop appropriate tools for modeling programming languages and me-
chanically checking their metatheoretic properties. This infrastructure should
provide facilities for proving properties of operational semantics, program anal-
yses (such as type checkers), and program transformations (such as optimization
and compilation).

Many proofs about programming languages are straightforward, long, and
tedious, with just a few interesting cases. Their complexity arises from the man-
agement of many details rather than from deep conceptual difficulties; yet small
mistakes or overlooked cases can invalidate large amounts of work. These effects
are amplified as languages scale: it becomes very hard to keep definitions and
proofs consistent, to reuse work, and to ensure tight relationships between theory
and implementations. Automated proof assistants offer the hope of significantly
easing these problems. However, despite much encouraging progress in recent
years and the availability of several mature tools (ACL2 [15], Coq [2], HOL [10],
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Isabelle [20], Lego [16], NuPRL [5], PVS [21], Twelf [22], etc.), their use is still
not commonplace.

We believe that the time is right to join the efforts of the two communities,
bringing developers of automated proof assistants together with a large pool
of eager potential clients—programming language designers and researchers. In
particular, we intend to answer two questions:

1. What is the current state of the art in formalizing language metatheory and
semantics? What can be recommended as best practices for groups (typically
not proof-assistant experts) embarking on formalized language definitions,
either small- or large-scale?

2. What improvements are needed to make the use of tool support common-
place? What can each community contribute?

Over the past six months, we have attempted to survey the landscape of proof
assistants, language representation strategies, and related tools. Collectively, we
have applied automated theorem proving technology to a number of problems,
including proving transitivity of the algorithmic subtype relation in Kernel F≤ [4,
3, 6], proving type soundness of Featherweight Java [14], proving type soundness
of variants of the simply typed λ-calculus and F≤, and a substantial formaliza-
tion of the behavior of TCP, UDP, and the Sockets API. We have carried out
these case studies using a variety of object-language representation strategies,
proof techniques, and proving environments. We have also experimented with
lightweight tools designed to make it easier to define and typeset both formal
and informal mathematics. Although experts in programming language theory,
we were (and are) relative novices with respect to computer-aided proof.

Our conclusion from these experiments is that the relevant technology has
developed almost to the point where it can be widely used by language re-
searchers. We seek to push it over the threshold, making the use of proof tools
common practice in programming language research—mechanized metatheory
for the masses.

Tool support for formal reasoning about programming languages would be
useful at many levels:

1. Machine-checked metatheory. These are the classic problems: type preser-
vation and soundness theorems, unique decomposition properties for opera-
tional semantics, proofs of equivalence between algorithmic and declarative
variants of type systems, etc. At present such results are typically proved
by hand for small to medium-size calculi, and are not proved at all for full
language definitions. We envision a future in which the papers in conferences
such as Principles of Programming Languages (POPL) and the International
Conference on Functional Programming (ICFP) are routinely accompanied
by mechanically checkable proofs of the theorems they claim.

2. Use of definitions as oracles for testing and animation. When developing a
language implementation together with a formal definition one would like
to use the definition as an oracle for testing. This requires tools that can



decide typing and evaluation relationships, and they might differ from the
tools used for (1) or be embedded in the same proof assistant. In some cases
one could use a definition directly as a prototype.

3. Support for engineering large-scale definitions. As we move to full language
definitions—on the scale of Standard ML [17] or larger—pragmatic “software
engineering” issues become increasingly important, as do the potential ben-
efits of tool support. For large definitions, the need for elegant and concise
notation becomes pressing, as witnessed by the care taken by present-day
researchers using informal mathematics. Even lightweight tool support, with-
out full mechanized proof, could be very useful in this domain, e.g. for sort
checking and typesetting of definitions and of informal proofs, automatically
instantiating definitions, performing substitutions, etc.

Our goal is to stimulate progress in this area by providing a common frame-
work for comparing alternative technologies. Our approach has been to design
a set of challenge problems, dubbed the POPLMark Challenge [1], chosen to
exercise many aspects of programming languages that are known to be diffi-
cult to formalize: variable binding at both term and type levels, syntactic forms
with variable numbers of components (including binders), and proofs demand-
ing complex induction principles. Such challenge problems have been used in the
past within the theorem proving community to focus attention on specific areas
and to evaluate the relative merits of different tools; these have ranged in scale
from benchmark suites and small problems [23, 11, 7, 13, 9, 19] up to the grand
challenges of Floyd, Hoare, and Moore [8, 12, 18]. We hope that our challenge
will have a similarly stimulating effect.

The POPLMark problems are drawn from the basic metatheory of a call-
by-value variant of System F≤ [3, 6], enriched with records, record subtyping,
and record patterns. Our challenge provides an informal-mathematics definition
of its type system and operational semantics and outline proofs of some of its
metatheory. This language is of moderate scale—neither a toy calculus nor a
full-blown programming language—to keep the work involved in attempting the
challenges manageable.3 The intent of this challenge is to cover a broad range
of issues that arise in the formalization of programming languages; of course
there are many programming language features, such as control-flow operators,
state, and concurrency, not covered by our sample problem, but we believe that
a system capable of formalizing the POPLMark problems should be able to
formalize those features as well. Nevertheless, we expect this challenge set to grow
and evolve as the community addresses some problems and discovers others.

The initial POPLMark challenge has already been disseminated to a wide
audience of theorem prover and programming language researchers. We are in the
process of collecting and evaluating solutions. Those results, along with related
information about mechanized metatheory, will be available on our web site.4

3 Our challenges therefore explicitly address only points (1) and (2) above; we regard
the pragmatic issues of (3) as equally critical, but it is not yet clear to us how to
formulate a useful challenge problem at this larger scale.

4 http://www.cis.upenn.edu/proj/plclub/mmm/



In the longer run, we hope that this site, and the corresponding mailing list 5

will serve as a forum for promoting and advancing the current best practices in
proof assistant technology and making this technology available to the broader
programming languages community and beyond. We encourage researchers to
try out the POPLMark Challenge using their favorite tools and send us their
solutions for inclusion in the web site.
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