
Interfacing ITP to other tools and the real world

(a few bullet points of possibly incoherent,
but discussion-provoking, crazy ideas)

Peter Sewell

University of Cambridge

http://www.cl.cam.ac.uk/~pes20/

WITP, 25 August 2009



Interfacing ITP to other tools and the real world

(a few bullet points of possibly incoherent,
but discussion-provoking, crazy ideas)

Peter Sewell

University of Cambridge

http://www.cl.cam.ac.uk/~pes20/

WITP, 25 August 2009



Interfacing ITP to other tools and the real world

(a few bullet points of possibly incoherent,
but discussion-provoking, crazy ideas)

Peter Sewell

University of Cambridge

http://www.cl.cam.ac.uk/~pes20/

WITP, 25 August 2009



Some ‘Real-World’ Applications of ITP

• Network protocols (TCP, SWIFT) (Norrish, Ridge,...)

• Programming language semantics

– POPLmark (Pierce, Weirich, Zdancewic,...)

– The Ott tool, compiling PL definitions (Zappa Nardelli,...)

– Java Module Systems (Strniša)

– An OCaml fragment (OCaml light) (Owens)

– A verified executable distributed queue (Ridge)

• Multiprocessor and C++ concurrency semantics (x86, PPC, ARM)
(Sarkar, Owens, Ridge, Zappa Nardelli, Myreen, Fox, Alglave,
Maranget, Batty,...)



Some ‘Real-World’ Applications of ITP

• Network protocols (TCP, SWIFT) in HOL

• Programming language semantics

– POPLmark

– The Ott tool, compiling PL definitions to LATEX, Coq, HOL, and
Isabelle/HOL

– Java Module Systems in Ott and Isabelle/HOL

– An OCaml fragment (OCaml light) in Ott and HOL

– A verified executable distributed queue in HOL

• Multiprocessor and C++ concurrency semantics (x86, PPC, ARM) in
HOL and Coq



Crazy Idea #1



Crazy Idea #1

ITP tools are great!



Looking at those Applications

• Coming up with the definitions is a major part of the work.

– They’re big (1000s or 10 000s of lines) and complicated.

– They’re of key (and relatively stable) CS abstractions

They should be reusable artefacts



Looking at those Applications

• Mechanised proof is not always the point.

Sometimes:

– no proof (typechecked typeset maths)

– mechanised symbolic evaluation...

– ...and code generation (for testing and prototyping)

– hand proof

– mixed hand and mechanised proof

– full mechanised proof



Looking at those Applications

• They’re logically undemanding:

– no need for dependent types or type classes

– we typically don’t care whether we’re classical or constructive

– there’s not much object-language variable binding
(not true for fancier PLs, though)

• we do make heavy use of “PL” types: inductive types and records,
and functions and relations over them



Looking at those Applications

• The ITP tool is just one piece of a complex ‘workflow’:

– production typesetting

– testing infrastructure

– target for code generation (Ott)

– target for auto-embedding of source language terms



Looking at those Applications

• We have to use multiple ITP tools:

– To fit in with local expertise (in multiple sites!)

– To make resulting models widely available



Crazy Idea #2



Crazy Idea #2 (mindset)

Your ITP tool is not at the centre of the (user’s) world



Crazy Idea #3 (ITP?)

They may not be using it interactively



Crazy Idea #4 (ITP?)

It’s not all about proofs. Definitions are (sometimes) more central!



Crazy Idea #5: Lightweight Translation of Definitions

Urgently needed: lightweight support for translating these big definitions
between ITP tools, to make them reusable.

Coq HOL4 Isabelle/HOL OCaml HaskellHOL Light



Crazy Idea #5: Lightweight Translation of Definitions

Urgently needed: lightweight support for translating these big definitions
between ITP tools, to make them reusable.

ICH

Coq HOL4 Isabelle/HOL OCaml HaskellHOL Light

Coq HOL4 Isabelle/HOL OCaml HaskellHOL Light



In general, obviously impossible. But in many cases, it should be
(a) easy, and (b) staggeringly useful. Sketch plan:

1. translate source files (idiomatic, readable).
NOT proof scripts or proof terms.

2. define that ICH intermediate language

• roughly the intersection of Coq/HOL/Isabelle-HOL

• but including source-level definitions of types, functions, relations,
etc., not the kernel logics

• specify type system and abstract syntax

• sort out libraries for sets, lists,...

3. take prover source files and export ICH code
(in the provers — this needs you!)

4. take ICH code and output prover source files (easy)



Crazy Idea #5: Lightweight Translation of Definitions

Then also use that intermediate language as a target for tools like Ott,
LNgen, and object-language embeddings.



Crazy Idea #5: Lightweight Translation of Definitions

Then also use that intermediate language as a target for tools like Ott,
LNgen, and object-language embeddings.

and watch as, somewhat before the next millennium, CS becomes
based on reusable de-facto-standard mechanised artifacts...


