
Under consideration for publication in J. Functional Programming 1

Ott: Effective Tool Support for the Working

Semanticist

Peter Sewell∗ Francesco Zappa Nardelli+ Scott Owens∗ Gilles Peskine∗

Thomas Ridge∗ Susmit Sarkar∗ Rok Strnǐsa∗

∗University of Cambridge +INRIA

Abstract

Semantic definitions of full-scale programming languages are rarely given, despite the
many potential benefits. Partly this is because the available metalanguages for expressing
semantics — usually either LATEX for informal mathematics, or the formal mathematics
of a proof assistant — make it much harder than necessary to work with large definitions.

We present a metalanguage specifically designed for this problem, and a tool, Ott,
that sanity-checks such definitions and compiles them into proof assistant code for Coq,
HOL, and Isabelle/HOL, together with LATEX code for production-quality typesetting,
and OCaml boilerplate. The main innovations are: (1) metalanguage design to make def-
initions concise, and easy to read and edit; (2) an expressive but intuitive metalanguage
for specifying binding structures; and (3) compilation to proof assistant code.

This has been tested in substantial case studies, including modular specifications of
calculi from the TAPL text, a Lightweight Java with Java JSR 277/294 module system
proposals, and a large fragment of OCaml (OCamllight, 310 rules), with mechanised proofs
of various soundness results. Our aim with this work is to enable a phase change: making
it feasible to work routinely, without heroic effort, with rigorous semantic definitions of
realistic languages.

1 Introduction

Problem Writing a precise semantic definition of a full-scale programming lan-

guage is a challenging task that has been done only rarely, despite the many poten-

tial benefits. Indeed, Standard ML remains, 19 years after publication, the shining

example of a language that is defined precisely and is at all widely used (Milner

et al. 1990). The recent R6RS Scheme standard (Sperber et al. 2007) contains a

(non-normative) operational semantics for a large part of the language, but even

languages such as Haskell (Peyton Jones 2003) and OCaml (Leroy et al. 2005),

though designed by programming language researchers and in large part based on

mathematical papers, rely on prose descriptions.

Precise semantic definitions are rare for several reasons, but one important reason

is that the metalanguages that are available for expressing semantic definitions are

not designed for this application, making it much harder than necessary to work

with large definitions. There are two main choices for a metalanguage:

2 Sewell et al.

(1) Informal mathematics, expressed in LATEX (by far the most common option).

(2) Formalised mathematics, in the language of a proof assistant such as Coq,

HOL, Isabelle/HOL, or Twelf (Coq 2008; HOL 2007; Isabelle 2008; Twelf

2005).

For a small calculus either can be used without much difficulty. A full language

definition, however, might easily be 100 pages or 10 000 lines. At this scale the syn-

tactic overhead of LATEX markup becomes very significant, getting in the way of

simply reading and writing the definition source. The absence of automatic check-

ing of sanity properties becomes a severe problem — in our experience with the

Acute language (Sewell et al. 2004, 2007a), just keeping a large definition internally

syntactically consistent during development is hard, and informal proof becomes

quite unreliable, as highlighted by the POPLmark challenge (Aydemir et al. 2005).

Further, there is no support for relating the definition to an implementation, either

for generating parts of an implementation, or for testing conformance. Accidental

errors are almost inescapable (Kahrs 1993; Rossberg 2001).

Proof assistants help with automatic checking, but come with their own prob-

lems. The sources of definitions are still cluttered with syntactic noise, non-trivial

encodings are often needed (e.g. to deal with subgrammars and binding, and to

work around limitations of the available polymorphism and inductive definition

support), and facilities for parsing and pretty printing terms of the source language

are limited. Typesetting of definitions is supported only partially and only in some

proof assistants, so one may have the problem of maintaining machine-readable and

human-readable versions of the specification, and keeping them in sync. Moreover,

each proof assistant has its own (steep) learning curve, the community is partitioned

into schools (few people are fluent in more than one), and one has to commit to a

particular proof assistant from the outset of a project.

A more subtle consequence of the limitations of the available metalanguages is

that they obstruct re-use of definitions across the community, even of small calculi.

Research groups each have their own private LATEX macros and idioms — to build

on a published calculus, one would typically re-typeset it (possibly introducing

minor hopefully-inessential changes in the process). Proof assistant definitions are

more often made available (e.g. in the Archive of Formal Proofs (Klein et al. 2009)),

but are specific to a single proof assistant. Both styles of definition make it hard to

compose semantics in a modular way, from fragments.

Contribution We describe a metalanguage specifically designed for writing se-

mantic definitions and a tool, Ott, that sanity-checks such definitions and compiles

them: into LATEX code; proof assistant code in Coq, HOL or Isabelle/HOL; and

OCaml boilerplate.

This metalanguage is designed to make it easy to express the syntax and se-

mantics of an object language, with as little meta-syntactic noise as possible, by

directly supporting some of the informal-mathematics notation that is in common

use. For example, in an email or working note one might write grammars for object

languages with complex binding structures:

Ott: Effective Tool Support for the Working Semanticist 3

t ::=

| let p = t in t’ bind binders(p) in t’

p ::=

| x binders = x

| { l1=p1,...,ln=pn } binders = binders(p1 ... pn)

and informal semantic rules:

G |- t1:T1 ... G |- tn:Tn

--

G |- {l1=t1,...,ln=tn} : {l1:T1,...,ln:Tn}

These are intuitively clear, concise, and easy to read and edit. Sadly, they lack both

the precision of proof assistant definitions and the production-quality typesetting of

LATEX — but it turns out that only a modicum of information need be added to make

them precise. An Ott source file includes that information. It can be used in various

ways: simply for lightweight error checking and production-quality typesetting of a

definition, and of informal proof; or as a front end to a proof assistant, generating

proof assistant definitions as a basis for formal proof. Ott is not itself a proof tool:

our focus on engineering language definitions complements the ongoing work by

many groups on engineering language metatheory proof.

In more detail, the main innovations are:

• Metalanguage design to make definitions concise and easy to read and

edit (§2). The Ott metalanguage lets one specify the syntax of an object lan-

guage, together with rules defining inductive relations, for semantic judgements.

Making these easy to express demands rather different syntactic choices to those of

typical programming languages: we allow arbitrary context-free grammars of sym-

bolic terms, including direct support for subgrammars, lists, and context grammars,

and enforce rigid metavariable naming conventions to reduce ambiguity. The tool

builds parsers and pretty-printers for symbolic and concrete terms of the object

language.

• An expressive metalanguage (but one that remains simple and intu-

itive) for specifying binding (§3). Nontrivial object languages often involve

complex forms of binding: not just the single binders of lambda terms, which have

received much attention, but also structured patterns, multiple mutually recursive

let definitions, or-patterns, dependent record patterns, etc. We introduce a meta-

language that can express all these but that remains close to informal practice. We

give it three interpretations. Firstly, we define substitution and free variable func-

tions for a “fully concrete” representation, not quotiented by alpha equivalence.

This is not appropriate for all examples, but suffices for surprisingly many cases

(including those below), and is implemented. Secondly, we define alpha equivalence

and capture-avoiding substitution for arbitrary binding specifications, clarifying

several issues. We present this as a standard of comparison for future work: imple-

menting the general case would be a substantial challenge. We prove (on paper)

that under usable conditions the two notions of substitution coincide. Thirdly, we

describe an implementation of the “locally nameless” representation (Pollack 2006)

for a restricted class of binding specifications, which does give canonical represen-

4 Sewell et al.

tatives for alpha equivalence classes, and comment on what would be involved in

implementing support for the Nominal Isabelle package (Urban 2008).

• Compilation to proof assistant code (§4). From a single definition in the

metalanguage, the Ott tool can generate proof assistant definitions in Coq, HOL,

and Isabelle/HOL. These can then be used as a basis for formal proof and (where

the proof assistant permits) code extraction and animation. We aim to generate

well-formed and idiomatic definitions, without dangling proof obligations, and in

good taste as a basis for user proof development.

This compilation deals with the syntactic idiosyncrasies of the different targets

and, more fundamentally, encodes features that are not directly translatable into

each target. The main issues are: dependency analysis; support for common list

idioms; generation and use of subrule predicates and context grammar application

functions; generation of substitution and free variable functions; (for Isabelle/HOL)

a tuple encoding for mutually primitive recursive functions, with auxiliary function

definitions for nested pattern matching and for nested list types; (for Coq) gen-

eration of auxiliary list types for the syntax and semantics; (for Coq) generation

of useful induction principles when using native lists; and (for HOL) a stronger

definition library.

• Substantial case studies (§5). The usefulness of the Ott metalanguage and

tool has been tested in a number of case studies. First, we have some modest test

cases:

(1) small lambda calculi: (a) untyped, (b) simply typed, and (c) with ML poly-

morphism, all call-by-value (CBV);

(2) systems from TAPL (Pierce 2002) including booleans, naturals, functions,

base types, units, seq, ascription, lets, fix, products, sums, tuples, records,

and variants;

(3) the path-based module system of Leroy (1996), with a term language and

operational semantics based on Owens & Flatt (2006); and

(4) formalisation of the core Ott binding specifications.

Second, we have some more substantial developments:

(5) Lightweight Java (LJ), a small imperative fragment of Java;

(6) LJAM formalisations of Java module system proposals, based on JSR 277/294

(including LJ, 163 semantic rules) (Strnǐsa et al. 2007); and

(7) a large core of OCaml, including record and datatype definitions (OCamllight,

310 semantic rules) (Owens 2008).

There have also been several developments primarily by other users, including:

(8) a language for rely-guarantee and separation logic (Vafeiadis & Parkinson

2007);

(9) an object calculus with nominal inheritance and both untyped and typed

classes (Gray 2008);

Ott: Effective Tool Support for the Working Semanticist 5

(10) a formalisation of the semantics of value commitment and its implementation

using audit logs (Fournet et al. 2008);

(11) Scalina, an object calculus with type-level abstraction (Moors et al. 2008);

(12) a formalisation of C++ Concepts (Zalewski 2008; Zalewski & Schupp 2009);

and

(13) LFJ (Delaware et al. 2009), an extension of Lightweight Java with Features.

Almost all of these involve Ott definitions of type systems and operational seman-

tics, and (at least) (1b), (2), (5), (6), (7) and (8) have machine-checked proofs of

metatheory based on the Ott-generated proof assistant code.

We discuss the experience of using Ott in §6. There is a long history of related

work in this area, discussed in §7. We conclude in §8.

This paper is a revised and extended version of (Sewell et al. 2007b). The ex-

amples have been revised to reflect the current release of the tool (version 0.10.16,

released 2009.03.9), the case study descriptions have been updated, and there are

new subsections describing the support for contexts, discussing parsing issues, for-

mally defining alpha equivalence for Ott binding specifications, and discussing sup-

port for the locally nameless representation. A user guide is available on the web,

along with the tool itself (under a BSD-style licence), a number of examples, and a

mailing list discussion forum (Sewell & Zappa Nardelli 2007). User feedback is very

welcome.

2 Overview and Metalanguage Design

In this section we give an overview of the metalanguage. The basic idea is to let the

user specify the concrete and abstract syntax of their object language, including

whatever meta-notation is needed to express its semantics, together with transla-

tions from clauses of that syntax to proof assistant and LATEX code. Definitions

of inductive relations can then be given using that syntax and translated to the

various targets. This core functionality is extended with support for various per-

vasive semantic idioms, including subgrammars, list forms, context grammars, and

binding specifications, to make a pragmatically useful tool.

2.1 A small example

We begin with the example in Fig. 1, which is a complete Ott source file for an un-

typed CBV lambda calculus, including the information required to generate LATEX,

OCaml boilerplate, and proof assistant definitions in Coq, HOL and Isabelle/HOL.

The typeset LATEX is shown in Fig. 2. This is a very small example, sufficing to

illustrate some of the issues but not the key problems of dealing with the scale and

complexity of a full language (or even a nontrivial calculus) which are our main

motivation. We comment on those as we go, and invite the reader to imagine the

development for their favorite programming language or calculus in parallel.

Core First consider Fig. 1 but ignore the data within {{ }} and (+ +), and

6 Sewell et al.

metavarmetavarmetavar var, x ::= {{ comcomcom term variable }}
{{ isaisaisa string}} {{ coqcoqcoq nat}} {{ holholhol string}} {{ coq-equalitycoq-equalitycoq-equality }}
{{ ocamlocamlocaml int}} {{ lexlexlex alphanum}} {{ textextex \mathit{[[var]]} }}

grammargrammargrammar
term, t :: ’t_’ ::= {{ comcomcom term }}

| x :: :: var {{ comcomcom variable}}
| \ x . t :: :: lam (+ bindbindbind x ininin t +) {{ comcomcom lambda }}
| t t’ :: :: app {{ comcomcom app }}
| (t) :: SSS :: paren {{ ichoichoicho [[t]] }}
| { t / x } t’ :: MMM :: sub

{{ ichoichoicho (tsubst_term [[t]] [[x]] [[t’]])}}

val,v :: ’v_’ ::= {{ comcomcom value }}
| \ x . t :: :: lam {{ comcomcom lambda }}

terminalsterminalsterminals :: ’terminals_’ ::=
| \ :: :: lambda {{ textextex \lambda }}
| --> :: :: red {{ textextex \longrightarrow }}

subrulessubrulessubrules
val <:: term

substitutionssubstitutionssubstitutions
singlesinglesingle term var :: tsubst

defnsdefnsdefns
Jop :: ’’ ::=

defndefndefn
t1 --> t2 :: ::reduce::’’ {{ comcomcom [[t1]] reduces to [[t2]]}} bybyby

-------------------------- :: ax_app
(\x.t1) v2 --> {v2/x}t1

t1 --> t1’
-------------- :: ctx_app_fun
t1 t --> t1’ t

t1 --> t1’
-------------- :: ctx_app_arg
v t1 --> v t1’

Fig. 1. A small Ott source file, for an untyped CBV lambda calculus, with data for Coq,
HOL, Isabelle/HOL, LATEX, and OCaml.

the terminalsterminalsterminals block. At the top of the figure, the metavarmetavarmetavar declaration introduces

metavariables var (with synonym x), for term variables. The following grammargrammargrammar

introduces grammars for terms, with nonterminal root term (with synonym t), and

for values, with nonterminal root val (and synonym v):

term, t :: ’t_’ ::=

| x :: :: var

| \ x . t :: :: lam

| t t’ :: :: app

| (t) :: SSS :: paren

| { t / x } t’ :: MMM :: sub

val, v :: ’v_’ ::=

Ott: Effective Tool Support for the Working Semanticist 7

| \ x . t :: :: lam

This specifies the concrete syntax of object-language terms, the abstract syntax

representations for proof-assistant mathematics, and the syntax of symbolic terms

to be used in semantic rules. The paren and sub productions are metaproductions

(flagged SSS or MMM), introducing syntax which is not part of the object language but is

needed when writing semantic rules. Metaproductions flagged SSS are syntactic sugar,

differing from those flagged MMM only in that they are permitted when parsing concrete

terms. The productions are named t var, t lam, etc., taking the common prefixes

t and v as specified on the first line of each part of the grammar. The terminals of

the grammar (\ . () { } / -->) are inferred, as those tokens that cannot be lexed

as metavariables or nonterminals, avoiding the need to specify them explicitly.

Turn now to the defnsdefnsdefns block at the bottom of the figure. This introduces a

mutually recursive collection of judgments, here a single judgement t1 --> t2 for

the reduction relation, defined by three rules. Consider the innocent-looking CBV

beta rule:

------------------------ :: ax_app

(\x.t1) v2 --> {v2/x}t1

The conclusion is a term of the syntactic form of the judgement being defined,

here t1 --> t2. Its two subterms (\x.t1) v2 and {v2/x}t1 are symbolic terms

for the t grammar, not concrete terms of the object language. They involve some

object-language constructors (instances of the lam and app productions of the term

grammar), just as concrete terms would, but also:

• mention symbolic metavariables (x) and nonterminals (t1 and v2), built from

metavariable and nonterminal roots (x, t, and v) by appending structured

suffixes — here just numbers;

• depend on a subtype relationship between v and t (declared by the subrulessubrulessubrules

val <:: term, and checked by the tool) to allow v2 to appear in a position

where a term of type term is expected; and

• involve syntax for parentheses and substitution, as specified by the paren and

sub metaproductions.

The ax app rule does not have any premises, but the other two rules do, e.g.

t1 --> t1’

-------------- :: ctx_app_arg

v t1 --> v t1’

Here the premises are instances of the judgement being defined, but in general they

may be symbolic terms of a formula grammar that includes all judgement forms

by default, but can also contain arbitrary user-defined formula productions, for

side-conditions.

This core information is already a well-formed Ott source file that can be pro-

cessed by the tool, sanity-checking the definitions, and default typeset output can

be generated.

Proof assistant code To generate proof assistant code we first need to specify

8 Sewell et al.

var , x term variable

term, t ::= term
| x variable
| λ x . t bind x in t lambda
| t t ′ app
| (t) S

val , v ::= value
| λ x . t lambda

t1 −→ t2 t1 reduces to t2

(λ x . t1) v2 −→ { v2 / x } t1
ax app

t1 −→ t ′1

t1 t −→ t ′
1
t

ctx app fun

t1 −→ t ′1

v t1 −→ v t ′
1

ctx app arg

Fig. 2. LATEX output generated from the Fig. 1 source file

the proof assistant representations ranged over by metavariables: the isaisaisa, coqcoqcoq and

holholhol annotations of the metavarmetavarmetavar block specify that the Isabelle/HOL, Coq and HOL

string, nat and string types be used. For Coq the coq-equalitycoq-equalitycoq-equality generates an

equality decidability lemma and proof script for the type.

The proof assistant representation of abstract syntax is then generated from

the grammar, as we describe in detail in §4. A grammar such as that for term

above will give rise to a proof assistant type with a constructor corresponding to

each of its (non-meta) productions. The metaproductions do not give rise to proof

assistant constructors. Instead, the user can specify an arbitrary translation for

each. These translations (‘homs’) give clauses of functions from symbolic terms

to the character string of generated proof-assistant code. In this example, the {{

ichoichoicho [[t]] }} hom for the paren production says that (t) should be translated

into just the translation of t, whereas the {{ ichoichoicho (tsubst term [[t]] [[x]]

[[t’]])}} hom for sub says that {t/x}t’ should be translated into the proof-

assistant application of tsubst term to the translations of t, x, and t’. Here the

‘ichoichoicho’ specifies that these translations should be done uniformly for Isabelle/HOL,

Coq, HOL, and OCaml output; one can also specify different translations for each.

The example val grammar for values is declared to be a subgrammar of that for

term, and so will not be represented with a new proof assistant type. Instead, Ott

will generate a proof assistant predicate is val of term to pick out the relevant

part of the representation type for term.

The tsubst term mentioned in the hom for sub above is a proof assistant identi-

fier for a function that calculates substitution over terms, automatically generated

by the substitutionssubstitutionssubstitutions declaration. We return in §3 to what this does, and to the

meaning of the binding specification (+ bindbindbind x ininin t +) in the lam production.

Ott: Effective Tool Support for the Working Semanticist 9

Homs can also be used to specify proof assistant types for nonterminals, in cases

where one wants a specific proof assistant type expression rather than a type freely

generated from the syntax.

Tuned typesetting To fine-tune the generated LATEX, to produce the output

of Fig. 2, the user can add some of the remaining data in Fig. 1: the {{ textextex

\mathit{[[var]]} }} in the metavarmetavarmetavar declaration, specifying that vars be type-

set in math italic; the terminalsterminalsterminals grammar, overriding the default typesetting for

terminals \ and --> by λ and −→; and {{ comcomcom . . .}} comments, annotating pro-

ductions and judgements. An option controls whether non-sugar metaproductions

are typeset.

One can also write textextex annotations to override the default typesetting at the

level of productions, not just tokens. For example, in System F<: (Cardelli et al.

1994; Curien & Ghelli 1991), where one has both term and type abstractions, one

might wish to typeset the former with λ and the latter with Λ, and fine-tune the

spacing. Writing productions

| \ x : T . t :: :: Lam

{{ textextex \lambda [[x]] \mathord{:} [[T]]. \, [[t]] }}

| \ X <: T . t :: :: TLam

{{ textextex \Lambda [[X]] \mathord{<:} [[T]]. \, [[t]] }}

will typeset F<: lambda-terms such as (\X<:T11.\x:X.t12) [T2] as

(ΛX<:T11. λx :X . t12) [T2]. These annotations define clauses of functions

from symbolic terms to the character string of generated LATEX, overriding

the built-in default clause. Similarly, one can control typesetting of symbolic

metavariable and nonterminal roots, e.g. to typeset a nonterminal root G as Γ.

Concrete terms To fully specify the concrete syntax of the object language one

need only add definitions for the lexical form of variables, i.e., the concrete instances

of metavariables, with the {{ lexlexlex alphanumalphanumalphanum }} hom in the metavarmetavarmetavar block. Here

alphanumalphanumalphanum is a built-in regular expression. Concrete examples can then be parsed

by the tool and pretty-printed into LATEX or proof assistant code.

OCaml boilerplate The tool can also generate OCaml boilerplate: type defi-

nitions for the abstract syntax, functions for substitution, etc., to use as a starting

point for implementations. To do this one need specify only the OCaml representa-

tion of metavariables, by the ocamlocamlocaml hom in the metavarmetavarmetavar block, and OCaml homs

for metaproductions, here already included in the uniform ichoichoicho homs. Ott does not

generate OCaml code for the definitions of judgments. If the judgement definitions

are in a suitable form for automatic generation, then the various proof assistant

support for code extraction or generation may be used from the Ott-generated

prover code.

2.2 List forms

For an example that is rather more typical of a large-scale semantics, consider the

record typing rule shown Fig. 3, taken from our OCamllight definition. The top half

10 Sewell et al.

E |- e1 : t1 ... E |- en : tn
E |- field name1 : t->t1 ... E |- field namen : t->tn
t = (t1’, ..., tl’) typeconstr name
E |- typeconstr name gives typeconstr name:kind {field name1’; ...; field namem’}
field name1...field namen PERMUTES field name1’...field namem’
length (e1)...(en)>=1
-- :: rc
E |- {field name1=e1; ...; field namen=en} : t

E ⊢ e1 : t1 ... E ⊢ en : tn
E ⊢ field name1 : t → t1 ... E ⊢ field namen : t → tn
t = (t ′

1
, ... , t ′

l
) typeconstr name

E ⊢ typeconstr name ⊲ typeconstr name : kind {field name′

1
; ... ; field name′

m }
field name1 ...field namen PERMUTESfield name′

1
...field name′

m

length (e1) ... (en) ≥ 1

E ⊢ {field name1 = e1 ; ... ; field namen = en } : t
rc

Fig. 3. A sample OCamllight semantic rule, in Ott source and LATEX forms

of Fig. 3 shows the source text for that rule, and the bottom half the automatically

typeset version — note the close correspondence between the two, making it easy

to read and edit the source.

The first, second, and fourth premises of the rule are uses of judgement forms; the

other premises are uses of formula productions with meanings defined by homs.

The rule also involves several list forms, indicated with dots ‘...’, as is common in

informal mathematics. Lists are ubiquitous in programming language syntax, and

this informal notation is widely used for good reasons, being concise and clear.

We therefore support it directly in the metalanguage, making it precise so that

we can generate proof assistant definition clauses, together with the LATEX shown.

Looking at the list forms more closely, we see index variables n, m, and l occurring

in suffixes. There are symbolic nonterminals and metavariables indexed in three

different ranges: e�, t�, and field name� are indexed from 1 to n, field name ′

� is

indexed from 1 to m, and t′
�

is indexed 1 to l. To parse list forms involving dots,

the tool finds subterms which can be antiunified by abstracting out components of

suffixes. For example, the input

E |- e1 : t1 ... E |- en : tn

is parsed using a production formula ::= formula1 .. formulam which allows a

list of formulae to be regarded as a single formula. The subterms E |- e1 : t1

and E |- en : tn can each be parsed as a formula. Abstracting corresponding

occurrences of the suffices 1 and n gives us an antiunifier E |- e� : t�, which

can be mapped back onto the original terms with � 7→ 1 and � 7→ n respectively

— and so we have found a correct list form.

With direct support for lists, we need also direct support for symbolic terms

involving list projection and concatenation, e.g. in the record rules below.

{ l ′1 =v1 , .. , l ′n =vn } . l ′j −→ vj
Proj

Ott: Effective Tool Support for the Working Semanticist 11

t −→ t ′

{ l1 =v1 , .. , lm =vm , l = t , l ′1 = t ′1 , .. , l ′n = t ′n }

−→ { l1 =v1 , .. , lm =vm , l = t ′ , l ′1 = t ′1 , .. , l ′n = t ′n }

Rec

Lastly, one sometimes wants to write list comprehensions rather than dots, for

compactness or as a matter of general style. We support comprehensions of several

forms, e.g. with explicit index i and bounds 0 to n−1, as below, and with unspecified

or upper-only bounds.

Γ ⊢ t : { li : Ti

i∈0..n−1
}

Γ ⊢ t . lj : Tj

Proj

Other types commonly used in semantics, e.g. finite maps or sets, can often be

described with this list syntax in conjunction with type and metaproduction homs

to specify the proof assistant representation.

2.3 Context rules

Term contexts of various kinds are also very common in language semantics, e.g. for

evaluation contexts, or to express congruence closure. Ott supports the definition

of single-hole contexts. For example, suppose one has a term grammar as below:

term, t :: ’t_’ ::= {{ comcomcom term }}

| x :: :: var {{ comcomcom variable}}

| \ x . t :: :: lam (+ bindbindbind x ininin t +) {{ comcomcom lambda }}

| t t’ :: :: app {{ comcomcom app }}

| (t1 , , tn) :: :: tuple {{ comcomcom tuple }}

| (t) :: SSS:: paren {{ ichoichoicho [[t]] }}

| { t / x } t’ :: MMM:: sub

{{ ichoichoicho (tsubst_term [[t]] [[x]] [[t’]])}}

| E . t :: MMM:: ctx

{{ ichoichoicho (appctx_E_term [[E]] [[t]])}}

{{ textextex [[E]] \cdot [[t]] }}

A context grammar is declared as a normal grammar but with a single occurrence

of the terminal __ in each production, e.g. as in the grammar for E below.

E :: ’E_’ ::=

| __ t :: :: appL

| v __ :: :: appR

| \ x . __ :: :: lam

| (t1 (__ t2)) :: :: strangeNestedApp

| (v1 , .. , vm , __ , t1 , .. , tn) :: :: tuple

Given this, a contextrulescontextrulescontextrules declaration:

contextrulescontextrulescontextrules

E _:: term :: term

causes Ott to (a) check that each production of the E grammar is indeed a context

for the term grammar, and (b) to generate proof assistant functions, e.g. here a

function that will be called appctx_E_term, to apply a context to a term. As the

12 Sewell et al.

strangeNestedApp production shows, context productions can involve nested term

structure.

In general, context rule declarations have the form

contextrulescontextrulescontextrules

ntE _:: nt1 :: nt2

where ntE, nt1, and nt2 are nonterminal roots. This declares contexts ntE for the

nt1 grammar, with holes in nt2 positions.

The proof assistant representation for context grammars is just like that for

other grammars, with new proof assistant types and/or predicates as appropriate.

Just as before, context grammars may be non-free, mentioning nonterminals of

subgrammars. In the example above, the E grammar is non-free, as it mentions

the subgrammar nonterminal v, so the tool generates a proof assistant type with

constructors E appL, E appR, etc., together with a predicate is_E_of_E (using the

generated is_val_of_term predicate) which picks out the elements of that type

that actually represent contexts.

Just as for substitutions, the context application function is typically used by

adding a metaproduction to the term grammar. Above we added a metaproduction

E.t to the t grammar with an icho hom that uses appctx_E_term. That can then

be used in relations:

t --> t’

------------ :: ctx

E.t --> E.t’

2.4 Syntactic Design

Some interlinked design choices keep the metalanguage general but syntactically

lightweight. Issues of concrete syntax are often best avoided in semantic research,

tending to lead to heated and unproductive debate. In designing a usable met-

alanguage, however, providing a lightweight syntax is important, just as it is in

designing a usable programming language. We aim to let the working semanticist

focus on the content of their definitions without being blinded by markup, inferring

data that can reasonably be inferred while retaining enough redundancy that the

tool can do useful error checking of the definitions. Further, the community has

developed a variety of well-chosen concise notations; we support some (though not

all) of these.

The tradeoffs are rather different from those for conventional programming lan-

guage syntax. There, the grammar is usually fixed, but programs may be large. One

often restricts to LALR(1) grammars for fast parsing, using a parser generator, and

engineers the grammar to remove ambiguity, at the cost of some complexity. Here,

it is essential to support user-defined notation and standard informal-mathematics

idioms. Semantic definitions are generally small compared to programs (large defini-

tions might be 10 000 lines, whereas large programs are several orders of magnitude

bigger). The user-defined grammar may be ambiguous, but the symbolic expres-

sions that appear in semantic rules rarely are, and are usually small, so we can ask

users to explicitly disambiguate where necessary.

Ott: Effective Tool Support for the Working Semanticist 13

There are no built-in assumptions on the structure of the mathematical defi-

nitions (e.g., we do not assume that object languages have a syntactic category

of expressions, or a small-step reduction relation). Instead, the tool supports def-

initions of arbitrary syntax and of inductive relations over it. Syntax definitions

include the full syntax of the symbolic terms used in rules (e.g. with metaproduc-

tions for whatever syntax is desired for substitution). Judgements can likewise have

arbitrary syntax, as can formulae.

The tool accepts arbitrary context-free grammars, so the user need not go through

the contortions required to make a non-ambiguous grammar (e.g. for yacc). Ab-

stract syntax grammars, considered concretely, are often ambiguous, but the sym-

bolic terms used in rules are generally rather small, so this ambiguity rarely arises

in practice. Where it does, we let the user resolve it with production-name anno-

tations in terms. The tool finds all parses of symbolic terms, flagging errors where

there are multiple possibilities. It uses a scannerless generalized LR (SGLR) parsing

approach, taking ideas from Rekers (1992), Visser (1997), and McPeak & Necula

(2004), which is simple and sufficiently efficient.

Naming conventions for symbolic nonterminals and metavariables are rigidly en-

forced — they must be composed of one of their roots and a suffix. This makes

many minor errors detectable, makes it possible to lex the suffixes, and makes

parsing much less ambiguous.

Highly ambiguous list forms are among the most difficult kinds of inputs to parse

correctly. For example, consider the following grammar of a typing contexts Γ:

Γ ::= x : t

| Γ1, . . . ,Γn

along with an example typing context:

G’,x1:t1,..,xn:tn,x’:t’,x1:t1,..,xn:tn,x’’:t’’

The example should be parsed as a flat list of five elements: a symbolic nonterminal

G’, a literal list form (x1:t1,..,xn:tn), a single list element (x’:t’), a second

literal list form, and a second single list element. It should not be parsed, for

example, as a list of two elements, themselves containing two and three elements,

although a naive interpretation of the grammar would allow this.

SGLR parsing does not natively support our list notation, so we first convert list-

containing productions to plain context-free grammars before building the SGLR

parser. The Γ grammar becomes:

Γ ::= x:t

| ǫ

| Γ′

Γ′ ::= Γ′′

| Γ′′,Γ′

Γ′′ ::= Γ

| Γ′′′

Γ′′′ ::= literal list forms over Γ

Reject productions and priority restrictions (Visser 1997) are generated to ensure

14 Sewell et al.

that terms can be unambiguously parsed against this highly ambiguous grammar.

The usual efficient, parser-table-construction-time interpretation of priority restric-

tions is insufficient here due to the possibility of parses with long chains of trivial

injections (e.g., Γ derives Γ′ derives Γ′′ derives Γ). Thus, the tool filters the parse

graph after creation to reject parses with priority violations spanning such chains.

2.5 Workflow

To make the Ott tool more usable in realistic workflows, we have had to attend to

some conceptually straightforward but pragmatically important engineering issues.

We mention a few to give the flavour:

Modular definitions The tool supports a simple but very useful form of modu-

lar semantics. By default, if it is given multiple Ott source files, then these are effec-

tively concatenated. If the -merge true option is given, however, then identically-

named grammars from different source files are merged into one, and similarly for

identically named relation definitions, so different aspects of a language definition

can be defined in different files.

Filtering Both LATEX and proof assistant files can be filtered, replacing delim-

ited Ott-syntax symbolic terms (or concrete term examples) in documents. For

example, given the Ott definition in Fig. 1, one can write [[(\x.x x) x’]]

in a LATEX file. Ott can then act as a preprocessor for LATEX, replacing

that by LATEX source that renders as (λ x . x x) x ′. This also provides a use-

ful sanity check, e.g. in informal proofs, simply by parsing the symbolic

terms used. Filtering for the other targets is similar. For example, in a fil-

tered HOL file the [[(\x.x x) x’]] would be replaced by the HOL term

(t_app (t_app (t_lam x (t_var x)) (t_var x)) (t_var x’)).

Additionally, LATEX and proof assistant code can be embedded within an Ott

source file (and similarly filtered).

Using the generated LATEX Ott can produce either a standalone LATEX file

(with a default preamble) or a file that can be included in other documents. The

generated LATEX is factored into LATEX commands for individual rules, the rules of

individual defndefndefns, and so on, up to the complete definition, so that parts or all of

the definition can be quoted in other documents in any order, without any resort

to cut and paste.

The typesetting style is indirected, so that it can be controlled by redefining

LATEX commands (and those redefinitions can be embedded in an Ott source file).

Fancy syntax The proof assistants each have their own support, more-or-less

elaborate, for fancy syntax. For Isabelle/HOL the Ott user can specify the data for

syntax declarations with additional homs, or the tool can generate them from an

Ott source grammar. They can then be used in proof scripts and in the displayed

goals during interactive proof.

Naming We support common prefixes for rule names and production names

Ott: Effective Tool Support for the Working Semanticist 15

(e.g. the t in Fig. 1), and allow synonyms for nonterminal and metavariable roots

(e.g. if one wanted S, T , and U to range over a grammar of types).

3 Binding Specifications and Substitution

How to deal with binding, and the accompanying notions of substitution and free

variables, is a key question in formalised programming language semantics. It in-

volves two issues: one needs to fix on a class of binding structures being dealt with,

and one needs proof-assistant representations for them.

The latter has been the subject of considerable attention, with representa-

tion techniques based on names, De Bruijn indices, higher-order abstract syntax

(HOAS), locally nameless terms, nominal sets, and so forth, in various proof as-

sistants. The annotated bibliography by Charguéraud (2006) collects around 40

papers on this, and it was a central focus of the POPLmark challenge (Aydemir

et al. 2005).

Almost all of this work, however, deals only with the simplest class of binding

structures, the single binders we saw in the lambda abstraction production of the

§2 example:

term, t ::=

| λ x . t bind x in t lambda

in which a single variable binds in a single subterm. Realistic programming lan-

guages often have much more complex binding structures, e.g. structured patterns,

multiple mutually recursive let definitions, comprehensions, or-patterns, and de-

pendent record patterns. We therefore turn our attention to the potential range of

binding structures. In §3.1 we introduce a novel metalanguage for specifying bind-

ing structures, expressive enough to cover all the above but remaining simple and

intuitive. We describe two semantics for the binding metalanguage: a fully concrete

semantics, in §3.2, which is implemented in the tool, and a reference definition of

alpha equivalence, introduced in §3.3 and formalised in §3.4. Finally, we discuss

support for locally nameless and nominal alpha-respecting representations, in §3.5;

we have implemented the former for a restricted class of binding specifications.

3.1 The Ott binding metalanguage: syntax

The binding metalanguage comprises two forms of annotation on productions. The

first, bindmse innonterm, is used in the lambda production above. That production

has a metavariable x and a nonterminal t , and the binding annotation expresses

that, in any concrete term of this production, the variable in the x position binds

in the subterm in the t position. A variable can bind in multiple subterms, as in

the example of a simple recursive let below.

t ::=

| let rec x = t in t ′ bind x in t

bind x in t ′

16 Sewell et al.

In general a production may require more than just a single variable to bind, and so

in the general case mse ranges over metavariable set expressions, which can include

the empty set, singleton metavariables (e.g. the x above, implicitly coerced to a

singleton set), and unions.

More complex examples require one to collect together sets of variables. For exam-

ple, the grammar below has structured patterns, with a let p = t in t ′ production

in which all the binders of the pattern p bind in the continuation t ′.

t ::=

| x

| (t1 , t2)

| let p = t in t ′ bind binders(p) in t ′

p ::=

| binders = {}

| x binders = x

| (p1 , p2) binders = binders(p1) ∪ binders(p2)

Here the bind clause binds all of the variables collected as binders(p). We see a user-

defined auxiliary function called binders, which is defined by structural induction

over patterns p to build the set of variables mentioned in a pattern. The clauses

that define the binders auxiliary are the second form of binding annotation. For

example binders(x) is the singleton set {x}, while binders(((x, x), y)) is the set

{x, y}. A definition may involve many different auxiliary functions; “binders” is a

user identifier, not a keyword.

The syntax of a precise fragment of the binding metalanguage is given in Fig. 4,

where we have used Ott to define part of the Ott metalanguage. A simple type

system (not shown) enforces sanity properties, e.g. that each auxiliary function

is only applied to nonterminals that it is defined over, and that metavariable set

expressions are well-sorted, not mixing distinct classes of variables.

Further to that fragment, the tool supports binding for the list forms of §2.2.

Metavariable set expressions can include lists of metavariables and auxiliary func-

tions applied to lists of nonterminals, e.g. as in the record patterns below.

p ::=

| x b = x

| { l1 = p1 , .. , ln = pn } b = b(p1..pn)

This suffices to express the binding structure of almost all the natural examples

we have come across, including definitions of mutually recursive functions with

multiple clauses for each, join-calculus definitions (Fournet et al. 1996), dependent

record patterns, and many others.

Given a binding specification, the tool can generate substitution functions auto-

matically. Fig. 1 contained the block:

substitutionssubstitutionssubstitutions

singlesinglesingle term var :: tsubst

which causes Ott to generate proof-assistant functions for single substitution of

Ott: Effective Tool Support for the Working Semanticist 17

term variables by terms over all (non-subgrammar) types of the grammar — here

that is just term, and a substitution function named tsubst term is generated.

Multiple substitutions can also be generated, and there is similar machinery for

free variable functions.

3.2 The Ott binding metalanguage: the fully concrete semantics

We give meaning to these binding specifications in two ways. The first semantics

is what we term a fully concrete representation. Perhaps surprisingly, a reason-

ably wide range of programming language definitions can be expressed satisfac-

torily without introducing alpha equivalence (we discuss what can and cannot be

expressed in §6). In typical call-by-value or call-by-name languages, there is no re-

duction under term variable binders. The substitutions that arise therefore only

substitute closed terms, so there is no danger of capture. The fully concrete rep-

resentation uses abstract syntax terms containing concrete variable names (Fig. 5

gives a general grammar of such concrete abstract syntax terms, casts). Substitu-

tion is defined so as to not substitute for bound variables within their scopes, but

without using any renaming. Section 4.2 shows an example of the generated code.

Doing this in the general case highlights a subtlety: when substituting (e.g.) ts for

xs in the Fig. 1 language, the only occurrences of x that are substitutable are those

in instances of productions of the term grammar that comprise just a singleton x

(just the var production), as only there will the result be obviously type correct.

Other occurrences (the x in the lam production, or the x in the pattern grammars

above), are not substitutable, and, correspondingly, should not appear in the results

of free variable functions. In natural examples one might expect all such occurrences

to be bound at some point in the grammar.

A precise definition of this fully concrete representation is available for the Mini-

Ott of Fig. 4, including definitions of substitution and free variables over the general

concrete abstract syntax terms of Fig. 5 (Peskine et al. 2007). Given the preceding

remarks it is essentially straightforward.

3.3 The Ott binding metalanguage: the alpha-equivalence semantics,

informally

The fully concrete representation suffices for the case studies we describe here (no-

tably including the OCaml fragment), but sometimes alpha equivalence really is

needed — e.g. where there is substitution under binders, for dependent type envi-

ronments1, or for compositional reasoning about terms. We have therefore defined

notions of alpha equivalence and capture-avoiding substitution over concrete ab-

stract syntax terms, again for an arbitrary Mini-Ott object language and binding

1 The POPLmark F<: example is nicely expressible in Ott as far as LATEX output goes, but its
dependent type environments would require explicit alpha conversion in the rules to capture
the intended semantics using the fully concrete representation. In single-binder versions of F<:

the Ott support for locally nameless representations can be used; see §3.5.

18 Sewell et al.

metavars metavarroot , mvr nontermroot , ntr
terminal , t auxfn, f
prodname, pn variable, var

grammar

metavar , mv ::=
| metavarroot suffix

nonterm, nt ::=
| nontermroot suffix

element , e ::=
| terminal
| metavar
| nonterm

metavar set expression, mse ::=
| metavar
| auxfn(nonterm)

| mse unionmse ′

| {}
bindspec, bs ::=

| bindmse innonterm
| auxfn = mse

prod , p ::=
| | element1 .. elementm :: :: prodname (+ bs1 .. bsn +)

rule, r ::=
| nontermroot :: ’’ ::= prod1 .. prodm

grammar rules, g ::=
| grammar rule1 .. rulem

Fig. 4. Mini-Ott in Ott: the binding specification metalanguage

concrete abstract syntax term, cast ::=
| var : mvr
| prodname (cast1 , .. , castm)

Fig. 5. Mini-Ott in Ott: concrete abstract syntax terms

specification. We first explain the key points with two examples, and in the following

subsection give the main part of the formal definition.

Ott: Effective Tool Support for the Working Semanticist 19

First, consider the OCaml or-patterns2 p1 | p2, e.g. with a pattern grammar

p ::=

| x b = x

| (p1 , p2) b = b(p1) ∪ b(p2)

| p1 | p2 b = b(p1) ∪ b(p2)

| None b = {}

| Some p b = b(p)

| (p) S

This would be subject to the conditions (captured in type rules) that for a pair

pattern (p1 , p2) the two subpatterns have disjoint domain, whereas for an or-

pattern p1 | p2 they have equal domain and types. One can then write example

terms such as that below.

let ((None , Some x) | (Some x , None)) = y in (x , x)

Here there is no simple notion of ‘binding occurrence’. Instead, one should think

of the two occurrences of x in the pattern, and the two occurrences of x in the

continuation, as all liable to alpha-vary together. This can be captured by defining,

inductively on a concrete abstract syntax term cast , a partial equivalence relation

closed reln over the occurrences of variables within it. In the example it would

relate all four occurrences of x to each other, as below, but leave y unrelated.

let ((None , Some x) | (Some x , None)) = y in (x , x)

Given this, one can define two terms to be alpha equivalent if their equivalence

classes of occurrences can be freshly renamed to make them identical.

For the second example, consider a system such as F<: with type environments

Γ as below.

Γ ::=

| ∅

| Γ, X<:T

| Γ, x :T

In setting up such a system, it is common to treat the terms and types up to alpha

equivalence. There is then a technical choice about whether the judgements are also

taken up to alpha equivalence: in typing judgements Γ ⊢ t :T , one can either treat

Γ concretely or declare the domain of Γ to bind in t and in T . Suppose one takes

the second approach, and further has each element of Γ (X <:T or x : T) binding

(X or x) in the succeeding elements. (All these options can be expressed in the Ott

bindspec metalanguage.) For a complete judgement such as

∅, X<:Top, Y <:X →X , x :X , y:Y ⊢ y x :X

it is then easy to see what the binding structure is, and we can depict the closed reln

2 Similar binding occurs in the join-calculus, where a join definition may mention the ‘bound’
names arbitrarily often on the left.

20 Sewell et al.

as below.

∅, X<:Top, Y <:X →X , x :X , y:Y ⊢ y x :X

Now consider that type environment in isolation, however:

∅, X<:Top, Y <:X →X , x :X , y:Y

Here, while in some sense the X <:Top binds in the succeeding part of the type

environment, it must not be alpha-varied, e.g. to

∅, X ′<:Top, Y <:X ′ →X ′, x :X ′, y:Y

as that would give a different type environment (which would type different terms).

Alpha conversion of the X becomes possible only when the type environment is put

in the complete context of a judgement. Our definitions capture this phenomenon

by defining for each term cast not just a closed reln relation for ‘closed’ binding

but also a similar open reln partial equivalence relation for ‘open’ binding, relating

occurrences which potentially may alpha-vary together if this term is placed in a

larger, binding, context. In the example that larger context would be an instance

of [·] ⊢ t :T , from the production for the judgement Γ ⊢ t :T . The open reln is

not directly involved in the definition of alpha equivalence, but is (compositionally)

used to calculate the closed reln. It is shown for this example below.3

∅, X<:Top, Y <:X →X , x :X , y:Y

Nontrivial open binding also occurs in languages with dependent patterns, e.g. those

with pattern matching for existential types.

We increase confidence in these definitions by proving a theorem that, under rea-

sonable conditions, substitution of closed terms in the fully concrete representation

coincides with capture-avoiding substitution for our notion of alpha equivalence for

arbitrary binding specifications. The conditions involve the types of the desired sub-

stitution and the auxiliary functions present — to a first approximation, that the

types of substitutions (e.g. in the pair pattern example above, terms of nonterminal

t for variables x), are distinct from the domains and results of auxiliary functions

(e.g. the binders above collects variables x from patterns p). In the absence of a

widely accepted alternative class of binding specifications, there is no way to even

formulate ‘correctness’ of that notion in general, but for specific examples one can

show that it coincides with a standard representation. We did that (a routine ex-

ercise), for the untyped lambda calculus. Both of these are hand proofs, though

above mechanized definitions.

Generating proof assistant code that respects this notion of alpha equivalence,

for arbitrary binding specifications, is a substantial question for future work. It

could be addressed directly, in which case one has to understand how to generalise

3 Here the x is in a singleton equivalence class by itself (indicated by a short vertical dashed line),
whereas, because the grammar was set up to extend to the right, with a production Γ, x : T ,
the final variable y is not in the open binding relation at all.

Ott: Effective Tool Support for the Working Semanticist 21

the existing proof assistant representations, and what kind of induction schemes

to produce, or via a uniform translation into single binders — perhaps introducing

proof-assistant binders at each bind mse point in the grammar. A perhaps more

tractable (but still rather expressive) subclass of binding specifications can be ob-

tained by simple static conditions that guarantee that there is no ‘open’ binding.

3.4 The Ott binding metalanguage: alpha equivalence, formally

In this subsection we describe our general definition of alpha equivalence for arbi-

trary Ott binding specifications in the Mini-Ott-in-Ott language, as introduced by

example in the previous subsection.

For brevity we present only an extract with the key parts of the definition. The

full definition is itself expressed in Ott, from which well-formed Isabelle/HOL code

is generated. These definitions are available on the web (Peskine et al. 2007). The

definition is somewhat involved, and implementing it in a proof assistant would be

challenging. But it does deal with the full generality of Ott binding specifications,

and therefore may be useful as a standard of comparison for more restricted propos-

als. Readers not concerned with the technicalities of complex binding specifications

may like to skip to the next subsection.

To simplify the notation, we suppose that productions contain no terminals, so

element ranges only over metavar and nonterm. The definition is phrased in terms

of occurrences oc within concrete abstract syntax terms cast : lists of natural number

indices describing paths from the root of a term, with the empty list indicating the

root itself. For example, the concrete abstract syntax term representing λa.a b of

the Fig. 1 grammar is t lam(a:var, t app(a:var, b:var)); prefixing subterms

with their occurrences we have

[]t lam([0]a:var, [1]t app([1,0]a:var, [1,1]b:var))

We also use partial equivalence relations (PERs) over sets of occurrences, for con-

venience represented not as binary relations but as sets of pairwise-disjoint sets of

occurrences. The definitions are parameterised by a grammar g , as in Fig. 4, con-

sisting of rules for each nonterminal root, each of which comprises several named

productions, each of which has a list of elements and binding specifications.

We begin with several auxiliary notions:

• p ∈ g (ntr): g has production p for ntr

• g ⊢ f (pn) = mse: g defines auxiliary function f at production name pn

to be mse

• cast@oc = cast ′: the subterm of cast at oc is cast ′

• head oc = i : oc starts with a branch i

• closure oc reln: the finest PER that is coarser than the set of sets of

occurrences oc reln

•
⋃

oc reln: the support of the PER oc reln

• i::oc set : the lifting of occurrences oc set from the i ’th subterm of a cast ,

i.e. {i ::oc
∣

∣ oc ∈ oc set}

• vars of oc set from cast : the set of variables at the occurrences oc set in cast

22 Sewell et al.

Given a bind clause bind mse in nt attached to a production, we can now define

the interpretation of the metavariable expression mse on a term cast generated by

that production. This (routine) interpretation, written [[mse]]g(cast), picks out the

occurrences of variables within cast that are referred to by mse. It is defined as

follows:

[[{}]]g(cast) = { }
funspec interp mse empty

1 : [[mse]]g(cast) = oc set

2 : [[mse ′]]g(cast) = oc set ′

[[mse ∪ mse ′]]g(cast) = oc set ∪ oc set ′
funspec interp mse union

1 : | e1 .. en :: :: pn (+ bs1 .. bsm +) ∈ g (ntr)

2 : el = mv

3 : castl = v ′

[[mv]]g(pn (cast1 , .. , castq)) = { l :: [] }
funspec interp mse mv

1 : | e1 .. eq :: :: pn (+ bs1 .. bsm +) ∈ g (ntr)

2 : el = nt

3 : castl = pn ′ (cast ′1 , .. , cast ′q′)

4 : g ⊢ f (pn ′) = mse ′

5 : [[mse ′]]g(castl) = oc set

[[f (nt)]]g(pn (cast1 , .. , castq)) = l :: oc set
funspec interp mse f

The funspec interp mse mv rule finds the relevant (pn) production for the term,

and finds in that production that the l ’th component is the metavariable mv in

question. The corresponding variable v ′ in the term is thus at occurrence l ::[]. The

funspec interp mse f rule, for an auxiliary function f of a nonterminal nt , again

finds the relevant production, where that nonterminal is the l ’th component. The

l ’th subterm cast l is an instance of production name pn ′, and the definition of f

for that production name is mse ′. We thus calculate the interpretation of mse ′ on

the subterm cast l and lift those occurrences to occurrences in the whole term. For

example, in the lam production of the Fig. 1 grammar,

| \ x . t :: :: lam (+ bindbindbind x ininin t +)

we have a bindspec bindbindbind x ininin t. The funspec interp mse mv rule picks out the

‘binder’ [0]a:var within the term λa.a b:

[[x]]g([]t lam([0]a:var, [1]t app([1,0]a:var, [1,1]b:var))) = {[0]}

We can now define the interpretation of an auxfn f on cast in grammar g , written

[[f]]g (cast):

1 : cast = pn (cast1 , .. , castq)

2 : g ⊢ f (pn) = mse

3 : [[mse]]g(cast) = oc set

[[f]]g(cast) = oc set
funspec interp auxfn def

Ott: Effective Tool Support for the Working Semanticist 23

We say an occurrence oc in cast is revealable if there exists some auxiliary function

f in the grammar such that oc ∈ [[f]]g (cast). It is these occurrences which may (if

they are not closed-bound deeper in the term) lead to non-trivial ‘open’ binding.

We now define, inductively over the structure of a cast , two partial equivalence

relations over the occurrences of variables within it: one (closed reln) for the ‘closed’

binding and one (open reln) for the ‘open’ binding. These are partial equivalence

relations with disjoint support, that is, no occurrence is related (to anything) by

both relations. There may be variable occurrences within cast that are not related

at all (so-called ‘free variables’). In the base case, for variables, both relations are

empty. The inductive step proceeds as follows.

Suppose cast = pn (casti
i
) and the production for pn is of the form

| ei
i :: :: pn (+ bsj

j
+)

Also suppose that, for each i, we have recursively calculated PERs closed relni and

open relni on the subterms cast i. (In the λa.a b example both of these are empty.)

We prefix each occurrence in those PERs by the corresponding i, to lift them into

occurrences of cast , and take their unions. Here the union remains a PER because

the supports of the individual sets are disjoint.

sub closed reln =
⋃

i

{

i::oc set | oc set ∈ closed relni

}

sub open reln =
⋃

i

{

i::oc set | oc set ∈ open relni

}

We look up the binding specifications attached to the production pn. Recall

that each of these is of the form ‘bind msej in ntj ’. For such a specification, we

interpret msej over cast , calculating the set [[msej]]g(cast) of all variable occurrences

that that msej may refer to.

We now consider each concrete syntactic variable v appearing at any occurrence

in [[msej]]g(cast). In the λa.a b example, this is just the a appearing at [0], while for

the previous or-pattern example, it would be the two occurrences of x in the pattern.

For each such variable, all binding occurrences of v and all bound occurrences of v

should be related to each other. The potential binding occurrences are those that

lie within the interpretation of msej . In the λa.a b example this is the [0] we found

above.

The potential bound occurrences are those that lie within the term lying at po-

sition i , where i is the position of ntj in the production. In the λa.a b example,

the t in the bindspec bindbindbind x ininin t refers to position 1 of the production \ x . t.

Looking at the [1, . . .] subterm of our cast []t lam([0]a:var, [1]t app([1,0]a:var,
[1,1]b:var)) we have [1]t app([1,0]a:var, [1,1]b:var). The only occurrence of a

within this is [1, 0].

However, we should be careful to remove any occurrences that are already closed-

24 Sewell et al.

bound within subterms. Thus, this step defines a new binding reln1 as follows:

new binding reln1 =

closure
{ (

({ oc ∈ [[msej]]g(cast) | cast@oc = v }∪

{ oc |∃i .(ntj = ei ∧ head oc = i ∧ cast@oc = v) })

−
⋃

sub closed reln
)

∣

∣ v ∈ vars of [[msej]]g(cast) from cast ∧

bsj = bind msej in ntj
}

In the simple example, this just relates [0] and [1, 0], as would be expected.

Note that in general the sets of occurrences for each choice of v and j are not

necessarily disjoint, since the same variable may bind in more than one subterm,

and, conversely, a single variable may be bound from more than one mse. Hence we

take the closure of the resulting set of sets. For an example, consider the recursive

let production

t ::=

| let rec x = t in t ′ bind x in t

bind x in t ′

where the new equivalence relationships for the two bindspecs need to be coalesced

into one.

We then combine the above with the open binding relation from the subterms:

new binding reln2 = closure(new binding reln1 ∪ sub open reln)

A closure operator is again required. This deals with the case where one has a

non-trivial sub open reln capturing the internal open binding within subterms, and

the current production binds all the variables of the open binding in some other

term; the subsets arising from the two sources need to be coalesced. For example,

in the type environment example from the previous section, at the point when a

typing context is used in a judgement, such as going from

∅, X<:Top, Y <:X →X , x :X , y:Y

to

∅, X<:Top, Y <:X →X , x :X , y:Y ⊢ y x :X

the open binding relation in the typing context (e.g. for variable X above) must be

closed with the new occurrences in the right hand side of the judgement.

Finally, the PER open reln for this term is obtained by filtering the

new binding reln2 above to retain only the equivalence classes containing revealable

occurrences, while the PER closed reln is the relation with all equivalence classes

consisting entirely of non-revealable occurrences, combined with the sub closed reln

from subterms.

open reln = {(oc set ′ ∈ new binding reln2)

| (∃oc. ((oc in cast is revealable) ∧ (oc ∈ oc set ′))) }

closed reln = sub closed reln ∪ (new binding reln2 − open reln)

Ott: Effective Tool Support for the Working Semanticist 25

We now turn to the definition of alpha-equivalence on concrete terms. Given terms

cast1 and cast2, with associated PERs closed reln1, open reln1, closed reln2, and

open reln2, we say they are alpha-equivalent if they have the same closed binding

sets, and, for each occurrence not in the closed binding set, the occurrence is defined

for one term if it is for the other, and the terms have the same label (variable, at the

leaves, or production-name, at interior nodes) at that occurrence. In other words,

they are alpha-equivalent iff they are identical except for the choice of variable

names at closed occurrences, and their closed binding PER is the same.

To take an example, the following two terms:

X = (λ x . (x y)) (λ x . (x y)) and Y = (λ z . (z y)) (λw . (w y))

are alpha-equivalent since their closed binding sets of occurrences are identical, and

all occurrences not in the closed binding sets are defined for one term if and only if

it is defined for the other, and further, such occurrences have nodes with the same

label.

However, the term

(λ x . (x x)) (λ x . (x y))

is not alpha-equivalent to X (or Y), since the closed binding sets are different.

Finally, concrete names that are open-bound are significant: the following are not

alpha-equivalent, as the occurrences of variable X on the left have different labels

from the occurrences of variable W on the right, though the closed and open binding

sets of the two terms are the same.

∅, X<:Top, Y <:X →X , x :X , y:Y ∅, W <:Top, Y <:W →W , x :W , y:Y

3.5 Implementing simple binding specifications with a locally nameless

representation

The locally nameless representation for terms up to alpha equivalence (Pollack

2006) is an hybrid representation that uses De Bruijn indexes for bound variables,

and a concrete representation for free-variables. This representation seems to have

several advantages over pure De Bruijn representations, but requires a non-trivial

encoding to convert a language definition from the usual notation to the theorem

prover one.

We have implemented support for the locally nameless representation of lan-

guages defined using single binders, i.e., Ott definitions with bindpsec annotations

of the form bindmv innt . At present this is for the generated Coq code only, not

for HOL or Isabelle/HOL. The user can specify which metavariables are to be rep-

resented in locally nameless style using a {{ repr-locally-namelessrepr-locally-namelessrepr-locally-nameless }} hom,

eg:

metavarmetavarmetavar var, x ::=

{{ repr-locally-namelessrepr-locally-namelessrepr-locally-nameless }}

{{ textextex \mathit{ [[var]] } }} {{ comcomcom term variable }}

They can then write syntax definitions as usual, as in the following syntax for

the lambda calculus.

26 Sewell et al.

grammargrammargrammar

term, t :: ’term_’ ::= {{ comcomcom term }}

| x :: :: var {{ comcomcom variable }}

| \ x . t :: :: lam (+ bindbindbind x ininin t +) {{ comcomcom abstraction }}

| t1 t2 :: :: app {{ comcomcom application }}

| (t) :: SSS :: paren {{ coqcoqcoq [[t]] }}

| { t2 / x } t1 :: MMM :: tsub {{ coqcoqcoq (open_term_wrt_term[[x t1]] [[t2]])}}

The only change from the Fig. 1 example is in the Coq hom for tsub production,

which makes use of an open term wrt term function; this (and some other locally

nameless infrastructure) is automatically generated. No other change to the Ott

source is required. In particular, any definitions of judgements, e.g. the definition

of the reduction relation of Fig. 1, are automatically compiled to use the locally

nameless representation. This compilation is described in §4.4. It uses cofinite quan-

tification, as advocated by Aydemir et al. (2008).

The LNgen tool of Aydemir & Weirich (2009) takes a grammar specified in a

proper subset of the Ott input language and generates a locally nameless represen-

tation. This is complementary to our work: LNgen produces not just free variable

and substitution functions (similar to those that Ott generates), but also theorems

about those functions, tactics for choosing fresh names, and a recursion scheme for

the definition of functions. However, it does not currently deal with definitions of

semantic judgements.

A different representation approach has been followed in Nominal Isabelle (Urban

2008), which provides an Isabelle/HOL package for defining and reasoning about

datatypes with binding. Currently this supports only single binders, and it would be

straightforward to compile this subset of the Ott metalanguage to Nominal Isabelle

(the biggest difficulty is to rearrange symbolic terms so that binding metavariables

appear close to the nonterminals they bind in).

4 Compilation to Proof Assistant Code

Our compilation generates proof-assistant definitions: of types; of functions, for

subrule predicates, for the binding auxiliaries of §3, for single and multiple substi-

tution, and for free variables; and of relations, for the semantic judgements. We

generate well-formed proof assistant code, without dangling proof obligations, and

try also to make it idiomatic for each proof assistant, to provide a good basis for

mechanized proof. All this is for Coq, HOL, and Isabelle/HOL. In simple cases the

three are very similar, modulo the details of prover syntax. The complete gener-

ated code for the Fig. 1 example is shown in Figs. 9, 10 and 11, at the end of this

paper, for Coq, HOL and Isabelle/HOL respectively. They are presented exactly as

generated except for some line breaks.

4.1 Types

Each metavariable declaration gives rise simply to a proof assistant type abbre-

viation, for example Definition var := nat in the Coq generated from Fig. 1.

Ott: Effective Tool Support for the Working Semanticist 27

These abbreviations can be suppressed by adding the declaration {{ phantomphantomphantom }},

which is useful to avoid duplicate definitions of types already defined in an imported

library. For Coq the coq-equalitycoq-equalitycoq-equality generates an equality decidability lemma and

proof script for the type:

Lemma eq_var: forall (x y : var), x = y + x <> y.

Proof.

decide equality; auto with ott_coq_equality arith.

Defined.

Hint Resolve eq_termvar : ott_coq_equality.

Nonterminal roots with type homs give rise to type abbreviations, as for metavari-

ables. For other nonterminals, in simple cases each nonterminal root of the user’s

grammar is compiled to a free proof assistant type. For example, the Coq compila-

tion for term of Fig. 1 generates a free type with three constructors, corresponding

to the three non-meta productions of the term grammar:

(** syntax *)

Inductive term : Set :=

| t_var : var -> term

| t_lam : var -> term -> term

| t_app : term -> term -> term.

Nonterminal roots that are not maximal in the subrule order, e.g. the values val of

Fig. 1, are represented using the type generated for the (unique) maximal nonter-

minal root above them. For these we also generate subrule predicates that carve out

the relevant part of that type, e.g. the following Coq definition that picks out the

elements of type term that represent abstract syntax terms of the val grammar.

(** subrules *)

Definition is_val_of_term (t5:term) : Prop :=

match t5 with

| (t_var x) => False

| (t_lam x t) => (True)

| (t_app t t’) => False

end.

The general case is more complex, as the grammars for the maximal nonterminal

roots may themselves mention other non-maximal nonterminals (e.g. if the term

grammar had occurrences of val in its definition). In such cases we generate both a

type and a predicate. In more detail, the non-free grammar rules are the least subset

of the rules that either (1) occur on the left of a subrule (<::) declaration, or (2)

have a non-meta production that mentions a non-free rule. The subrule predicate for

a type is defined by pattern matching over constructors of the maximal type above

it — for each non-meta production of the maximal type it calculates a disjunction

over all the productions of the lower type that are subproductions of it, invoking

other subrule predicates as appropriate.

In general there may also be a complex pattern of mutual recursion among these

types. Coq, HOL and Isabelle/HOL all support mutually recursive type definitions

(with Inductive, Hol_datatype, and datatype respectively), but it is desirable to

make each mutually recursive block as small as possible, to simplify the resulting

28 Sewell et al.

induction principle. Accordingly, we topologically sort the rules according to a de-

pendency order, generating mutually recursive blocks for each connected component

and inserting any (singleton) type abbreviations where they fit.

We also have to choose a representation for productions involving list forms. For

example, for a language with records one might write

metavarmetavarmetavar label, l ::= {{ holholhol string }} {{ coqcoqcoq nat }}

indexvarindexvarindexvar index, n ::= {{ holholhol num }} {{ coqcoqcoq nat }}

grammargrammargrammar

term, t :: ’t_’ ::=

| { l1 = t1 , .. , ln = tn } :: :: record

These records can be represented simply with constructors whose argument types

involve proof-assistant native list types, e.g. in HOL:

val _ = Hol_datatype ‘

term = t_record of (label#term) list ‘;

For Coq there are two standard choices, native lists or encoding; we support both.

The Ott default is to generate native lists, but here the induction principle inferred

by Coq is too weak to be useful, so we also generate an appropriate induction

principle using nested fixpoints. Alternatively, Ott can translate away the list types,

synthesising an additional type for each type of lists-of-tuples that arises in the

grammar. Coq is then able to generate useful induction principles. In the example,

we need a type of lists of pairs of a label and a term:

Inductive list_label_term : Set :=

| Nil_list_label_term : list_label_term

| Cons_list_label_term :

label -> term -> list_label_term -> list_label_term

with term : Set :=

| t_record : list_label_term -> term.

These are included in the topological sort, and utility functions, e.g. to make and

unmake lists, are synthesised. (A similar translation would be needed for Twelf, as

it has no polymorphic list type.) We also generate, on request, default Coq proofs

that there is a decidable equality on various types.

4.2 Functions

The generated functions are defined by pattern-matching and recursion. The pat-

terns are generated by building canonical symbolic terms from the productions of

the grammar. The recursion is essentially primitive recursion: for Coq we produce

Fixpoints or Definitions as appropriate; for HOL we use an ottDefine variant

of the Define package; and for Isabelle/HOL we produce primrecs or (on request)

funs. We have to deal both with the type dependency (the topologically sorted

mutually recursive types described above) and with function dependency — for

subrule predicates and binding auxiliaries we may have multiple mutually recursive

functions over the same type.

Binding Auxiliaries These functions calculate the intuitive fully concrete

Ott: Effective Tool Support for the Working Semanticist 29

interpretations of auxiliary functions defined in bindspecs, as in §3.2, giving proof

assistant sets or lists, of metavariables or nonterminals, over each type for which

the auxiliary is defined.

Substitutions and free variables The generated substitution functions also

walk over the structure of the free proof assistant types. Continuing the Fig. 1

example, given the declaration

substitutionssubstitutionssubstitutions

singlesinglesingle term var :: tsubst

we generate Coq code for substituting t’s for x’s in each generated type as below.

(The choice of synthesised fresh names could be improved here.)

(** substitutions *)

Fixpoint tsubst_term (t5:term) (x5:var) (t_6:term) struct t_6 : term :=

match t_6 with

| (t_var x) => (if eq_var x x5 then t5 else (t_var x))

| (t_lam x t) => t_lam x (if list_mem eq_var x5 (cons x nil) then t

else (tsubst_term t5 x5 t))

| (t_app t t’) => t_app (tsubst_term t5 x5 t) (tsubst_term t5 x5 t’)

end.

For each production, for each occurrence of a nonterminal nt within it, we first

calculate the things (of whatever type is in question) binding in that nt , i.e. those

that should be removed from the domain of any substitution pushed down into

it. In simple cases these are just the interpretation of the mse ′ (of the right type)

from any bind mse ′ in nt of the production. The substitution function clause for a

production is then of one of two forms: either (1) the production comprises a single

element, of the metavariable that we are substituting for, and this is within the

rule of the nonterminal that it is being replaced by, or (2) all other cases. For (1)

the element is compared with the domain of the substitution, and replaced by the

corresponding value from the range if it is found. For (2) the substitution functions

are mapped over the subelements, having first removed any bound things from the

domain of the substitution. (Substitution does not descend through nonterminals

with type homs, as they may involve arbitrarily complex user-defined proof assistant

types for which it would be unclear what to do, so these should generally only be

used at upper levels of a syntax, e.g. to use finite maps for type environments.)

The fully concrete interpretation also lets us define substitution for nonterminals,

e.g. to substitute for compound identifiers such as a dot-form M.x. This is all done

similarly, but with differences in detail, for single and for multiple substitutions, and

for the corresponding free variable functions. For all these we simplify the generated

functions by using the dependency analysis of the syntax, only propagating recursive

calls where needed.

Context application For context grammars we generate functions that apply

contexts to terms. In the §2.3 example, the declaration

contextrulescontextrulescontextrules

E _:: term :: term

30 Sewell et al.

makes the tool check that the E grammar is a context grammar for term with term

holes. We therefore generate a function taking an E and a term and returning a

term, by pattern matching on the (non-meta) E productions. The generated Coq

version is below.

(** context application *)

Definition appctx_E_term (E5:E) (term5:term) : term :=

match E5 with

| (E_appL t) => (t_app term5 t)

| (E_appR v) => (t_app v term5)

| (E_lam x) => (t_lam x term5)

| (E_nested t1 t2) => (t_app t1 (t_app term5 t2))

| (E_tuple v_list t_list) =>

(t_tuple ((app v_list (app (cons term5 nil) (app t_list nil)))))

end.

The right-hand sides of each clause are produced essentially by parsing the corre-

sponding production of the E grammar as if it were a symbolic term, with the term

argument (here t6) in place of the hole.

Dealing with the proof assistants Each proof assistant introduced its own

further difficulties. Leaving aside the purely syntactic idiosyncrasies, which are far

from trivial, but not very interesting:

For Coq, when translating lists away, generation of functions over productions

that involve list types must respect that translation. We therefore generate auxiliary

functions that recurse over those list types. Coq also needs an exact dependency

analysis.

For HOL, the standard Define package tries an automatic termination proof.

This does not suffice for all cases of our generated functions involving list types, so

we developed an ottDefine variant, with stronger support for proving termination

of definitions involving list operators.

For Isabelle/HOL, we chose the primrec package, to avoid any danger of leaving

dangling proof obligations, and because our functions are all intuitively primitive

recursive. Unfortunately, primrec (in the then-current Isabelle 2005 or more re-

cent Isabelle 2008 versions) does not support definitions involving several mutually

recursive functions over the same type. For these we generate single functions cal-

culating tuples of results, define the intended functions as projections of these, and

generate lemmas (and simple proof scripts) characterising them in terms of the in-

tended definitions. Further, primrec does not support pattern matching involving

nested constructors. We therefore generate auxiliary functions for productions with

embedded list types. Isabelle/HOL tuples are treated as nested pairs, so we do the

same for productions with tuples of size 3 or more. Isabelle/HOL also requires a

function definition for each recursive type. In the case where there are multiple uses

of the same type (e.g. several uses of term list in different productions) all the

functions we wish to generate need identical auxiliaries, so identical copies must be

generated. In retrospect, the choice to use primrec is debatable. The recent Isabelle

2008 has a more robust definition package for general functions, called fun, which

should subsume some of the above. Ott has an option to generate fun functions

Ott: Effective Tool Support for the Working Semanticist 31

symterm, st ::=
| stnb
| nonterm

symterm node body , stnb ::=
| prodname (ste1 , .. , stem)

symterm element , ste ::=
| st
| metavar
| var : mvr

Fig. 6. Mini-Ott in Ott: symbolic terms

but experiments suggest that the package cannot automatically prove termination

for all the generated functions.

4.3 Relations

The semantic relations are defined with the proof-assistant inductive relations pack-

ages, Inductive, Hol_reln, and inductive (or, on request, inductive_set), re-

spectively. For the Fig. 1 example, the generated Coq code is as follows.

(** definitions *)

(* defns Jop *)

Inductive reduce : term -> term -> Prop := (* defn reduce *)

| ax_app : forall (x:var) (t1 v2:term),

is_val_of_term v2 ->

reduce (t_app (t_lam x t1) v2) (tsubst_term v2 x t1)

| ctx_app_fun : forall (t1 t t1’:term),

reduce t1 t1’ ->

reduce (t_app t1 t) (t_app t1’ t)

| ctx_app_arg : forall (v t1 t1’:term),

is_val_of_term v ->

reduce t1 t1’ ->

reduce (t_app v t1) (t_app v t1’).

Note that the tool has added is val of term predicates as appropriate, where

the user’s rules mentioned nonterminals such as v2 of non-free types, and that the

homomorphisms for metaproductions have been in-lined, e.g. the (tsubst term v2

x t1).

In general, each defns block gives rise to a potentially mutually recursive defini-

tion of each defn inside it. (In contrast to the recursive types representing gram-

mars, where the tool calculates a topological sort, for defns it seems clearer for

the user to specify the recursive structure.) Definition rules are expressed internally

with symbolic terms. We give a simplified grammar thereof in Fig. 6, omitting the

symbolic terms for list forms. A symbolic term st for a nonterminal root is ei-

ther an explicit nonterminal or a node, the latter labelled with a production name

and containing a list of symterm elements, which in turn are either symbolic terms,

metavariables, or variables. Each definition rule gives rise to an implicational clause,

32 Sewell et al.

essentially that the premises (Ott symbolic terms of the formula grammar) imply

the conclusion (an Ott symbolic term of whichever judgement is being defined).

Symbolic terms are compiled in several different ways:

• Nodes of non-meta productions are output as applications of the appropriate

proof-assistant constructor (and, for a subrule, promoted to the corresponding

constructor of a maximal rule).
• Nodes of meta productions are transformed with the user-specified homomor-

phism.
• Nodes of judgement forms are represented as applications of the defined rela-

tion in Coq and HOL, and as set-membership assertions in Isabelle/HOL.

Further, for each nonterminal of a non-free grammar rule, e.g. a usage of v’ where

val<::term, an additional premise invoking the generated subrule predicate for the

non-free rule is added, e.g. is_val_of_term v’. For Coq and HOL, explicit quanti-

fiers are introduced for all variables mentioned in the rule.

Supporting list forms requires some additional analysis. For example, consider

the record typing rule below.

Γ ⊢ t0 :T0 .. Γ ⊢ tn−1 :Tn−1

Γ ⊢ { l0 = t0 , .. , ln−1 = tn−1 } :{ l0 :T0 , .. , ln−1 :Tn−1 } Ty Rcd

We analyse the symbolic terms in the premises and conclusion to identify lists of

nonterminals and metavariables with the same bounds — here t0..tn−1, T0..Tn−1,

and l0..ln−1 all have bounds 0..n−1. To make the fact that they have the same length

immediate in the generated code, we introduce a single proof assistant variable

for each such collection, with appropriate projections and list maps/foralls at the

usage points. For example, the HOL for the above is essentially as follows, with an

l_t_T_list : (label#term#typ) list.

(* Ty_Rcd *) !(l_t_T_list:(label#term#typ) list) (G:G) .

(EVERY (\b.b)

(MAP (\(l_,t_,T_). (Ty G t_ T_)) l_t_T_list))

==>

(Ty

G

(E_record (MAP (\(l_,t_,T_). (l_,t_)) l_t_T_list))

(T_Rec (MAP (\(l_,t_,T_). (l_,T_)) l_t_T_list)))

This seems to be a better idiom for later proof development than the alternative of

three different list variables coupled with assertions that they have the same length.

The HOL code for the Rec rules we saw in §2.2 is below — note the list-lifted usage

of the is_v_of_t predicate, and the list appends (++) in the conclusion.

(* reduce_Rec *) !(l’_t’_list:(label#term) list)

(l_v_list:(label#t) list) (l:label) (t:t) (t’:t) .

((EVERY (\(l_,v_). is_val_of_term v_) l_v_list) /\

((reduce t t’)))

==>

((reduce (t_Rec (l_v_list ++ [(l,t)] ++ l’_t’_list))

(t_Rec (l_v_list ++ [(l,t’)] ++ l’_t’_list))))

Ott: Effective Tool Support for the Working Semanticist 33

For the Proj typing rule we need a specific projection (the HOL EL) to pick out

the j’th element:

(* Ty_Proj *) !(l_T_list:(label#typ) list) (j:index) (G:G) (t:t) .

(((Ty G t (T_Rec (l_T_list)))))

==>

((Ty

G

(t_Proj t ((\ (l_,T_) . l_) (EL j l_T_list)))

((\ (l_,T_) . T_) (EL j l_T_list))))

For Coq, when translating away lists, we have to introduce yet more list types for

these proof assistant variables, in addition to the obvious translation of symbolic

terms, and, more substantially, to introduce additional inductive relation definitions

to induct over them.

4.4 Locally Nameless Representation

For generation of Coq code using the locally nameless representation, consider again

the lambda calculus example from §3.5, in which the user specified that term vari-

ables should be represented in locally nameless style:

metavarmetavarmetavar var, x ::= {{ repr-locally-namelessrepr-locally-namelessrepr-locally-nameless }} {{ comcomcom term variable }}

Ott will then generate the datatype below to represent the §3.5 term grammar:

Inductive term : Set :=

| t_var_b : nat -> term

| t_var_f : var -> term

| t_lam : term -> term

| t_app : term -> term -> term.

Productions containing metavariables susceptible to binding (e.g., t_var) give rise

to two distinct constructors, one (t_var_b) for De Bruijn indices to be used when

the metavariable is bound, and one (t_var_f) for “free” variables. The type var,

together with several useful lemmas and functions, is defined in a Metatheory libary,

distributed with Ott. Binder metavariables are erased from productions (here the

t_lam production does not carry a nat or var), as in De Bruijn representations.

Two groups of support functions are automatically generated: open functions,

to perform substitutions on De Bruijn indexes, and lc predicates, to test whether

terms are locally closed. The other support functions, for free variables and free-

variable substitutions, are generated if the user declares appropriate substitutionssubstitutionssubstitutions

and freevarsfreevarsfreevars sections.

Ott automatically compiles the symbolic terms that appear in rule definitions

into the appropriate terms in locally nameless style. For instance, the typing rule

for the simply-typed lambda-calculus:

E,x1: S |- t : T

------------------ :: lambda

E |- \x1.t : S->T

is compiled into its locally nameless representation:

34 Sewell et al.

Inductive typing : env -> term -> type -> Prop := (* defn typing *)

| ...

| typing_lambda : forall (L:vars) (E:env) (t:term) (S T:type),

(forall x, x \notin L ->

typing (E & x ~ S) (open_term_wrt_term t (t_var_f x)) T) ->

typing E (t_lam t) (type_arrow S T).

To do so, Ott follows the algorithm below. For each rule,

1. for each nonterminal that appears in the rule, compute the maximal set of

binders under which it appears. For example, in the rule above, the maximal

set of binders for the nonterminal t is the singleton {x}, and it is the empty

set for all the other nonterminals;

2. for each pair of a nonterminal and maximal-binder-set collected in Phase 1,

go over all the occurrences of the nonterminal in the rule and open them with

respect to all the variables in the maximal binding set except those under

which this particular occurrence is bound. In the example, this amounts to

opening the occurrence of t in the premise with respect to the metavariable

x;

3. quantify, using cofinite quantification, each metavariable that has been used

to open a nonterminal; and

4. add hypotheses about local-closure to guarantee the invariant that if a deriva-

tion holds, then the top-level terms involved are locally closed.

This algorithm works well in practice, but in some cases the user may want finer

control on which nonterminals are opened, and with respect to which metavariables.

Consider for instance the CBV beta-reduction rule:

-------------------------- :: ax_app

(\x1.t1) v2 --> {v2/x1}t1

A naive application of the algorithm described above would open the right hand

side occurrence of t1 with respect to a cofinitely-quantified x. Substitution would

then be used to replace the occurrences of x with v2, resulting in the awkward term

reduce

(t_app (t_lam t1) v2)

(tsubst_term v2 x (open_term_wrt_term t1 (t_var_f x)))

An idiomatic locally nameless translation of the CBV beta-reduction rule would

instead directly rely on the open function to substitute v2 for the bound occurrences

of x in t1, as in:

reduce

(t_app (t_lam t1) v2)

(open_term_wrt_term t1 v2)

To let the user specify this translation behaviour, we introduced special production

homomorphisms. In the §3.5 production for substitutions,

term, t :: ’t_’ ::= ...

| { t2 / x } t1 :: MMM :: tsub {{ coqcoqcoq (open_term_wrt_term[[x t1]] [[t2]])}}

Ott: Effective Tool Support for the Working Semanticist 35

System rules LATEX Coq HOL Isabelle/HOL
defn mt defn mt defn mt

untyped CBV lambda (Fig. 1) 3
√ √ √ √

simply typed CBV lambda 6
√ √ √ √ √ √ √

ML polymorphism 22
√ √ √ √

TAPL full simple 63
√ √ √ √ √ √ √

POPLmark F<: with records 48
√

Leroy JFP96 module system 67
√ √

RG-Sep language 22
√ √ √

Mini-Ott-in-Ott 55
√ √ hand

proofs

LJ: Lightweight Java 85
√ √ √

LJAM: Java Module System 163
√ √ √

OCamllight 310
√ √ √ √ √

Fig. 7. Case Studies

the homomorphism refers to the nonterminal t1 as [[x t1]] instead of the usual

[[t1]]. The prefixed x specifies that occurrences of t1 should not be opened with

respect to the metavariable x. The Ott algorithm to compile symbolic terms then

translates the ax_app rule into the idiomatic Coq shown above.

5 Case Studies

Our primary goal is to provide effective tool support for the working semanticist.

Assessing whether this has been achieved needs substantial case studies. Accord-

ingly, we have specified various languages in Ott, defining their type systems and

operational semantics, as in Fig. 7.

These range in scale from toy calculi to a large fragment of OCaml. They also vary

in kind: some are post-facto formalizations of existing systems, and some use Ott as

a tool in the service of other research goals. Some use it purely for sanity checking

and typesetting, whereas others use it also to produce definitions for mechanised

proof, in one or more of Coq, HOL, and Isabelle/HOL, indicated by the ticks in

the ‘defn’ columns. We have tested whether these definitions form a good basis

for such proof by machine-checked proofs of metatheoretic results (generally type

preservation and progress), indicated by ticks in the ‘mt’ columns. We did not aim

to prove results in all provers for all examples, but rather all provers for some

examples, and some substantial examples for each prover: ‘mt’ cells without a tick

36 Sewell et al.

grammargrammargrammar

t :::::: Tm ::=::=::= {{ comcomcom terms: }}

||| let x = t in t’ :::::: :::::: Let (+(+(+ bindbindbind x ininin t’ +)+)+)

{{ comcomcom let binding }}

defnsdefnsdefns

Jop :::::: ’’ ::=::=::=

defndefndefn

t --> t’ :::::: :::::: red :::::: E {{ comcomcom Evaluation }} bybyby

--- :::::: LetV

let x=v1 in t2 --> [x|->v1]t2

t1 --> t1’

-- :::::: Let

let x=t1 in t2 --> let x=t1’ in t2

defnsdefnsdefns

Jtype :::::: ’’ ::=::=::=

defndefndefn

G |- t : T :::::: :::::: typing :::::: T {{ comcomcom Typing }} bybyby

G |- t1:T1

G,x:T1 |- t2:T2

-- :::::: Let

G |- let x=t1 in t2 : T2

Fig. 8. An Ott source file for the let fragment of TAPL

indicate that we did not attempt that case. The ‘rules’ column gives the number of

semantic rules in each system, as a crude measure of its complexity. The sources,

generated code, and proof scripts for most of these systems are available (Sewell &

Zappa Nardelli 2007).

TAPL full simple This covers most of the simple features, up to variants,

from TAPL (Pierce 2002). It demonstrates the utility of the simple form of modu-

larity provided by Ott. The original TAPL languages were produced using Tinker-

Type (Levin & Pierce 2003) to compose features and check for conflicts. Here we

build a system, similar to the TinkerType sys-fullsimple, from Ott source files

that correspond roughly to the various TinkerType components, each with syntax

and semantic rules for a single feature. The Ott source for let is shown in Fig. 8, to

which we add: bool, bool typing, nat, nat typing, arrow typing, basety, unit,

seq, ascribe, product, sum, fix, tuple, and variant, together with infrastructure

common, common index, common labels, and common typing.

It also proved easy to largely reproduce the TAPL visual style, and to add sub-

typing (though we did no metatheory for subtyping).

Ott: Effective Tool Support for the Working Semanticist 37

Leroy JFP96 module system This formalizes the path-based type system of

Leroy (1996, §4), extended with a term language and an operational semantics.

RG-Sep language This is a concurrent while language used for work combin-

ing Rely-Guarantee reasoning with Separation Logic, defined and proved sound by

Vafeiadis & Parkinson (2007).

Mini-Ott-in-Ott This precisely defines the Ott binding specifications (with-

out list forms) with their fully concrete representation and alpha equivalence. The

metatheory here is a hand proof that for closed substitutions the two coincide.

LJ and LJAM LJ, by Strnǐsa and Parkinson, is an imperative fragment of

Java. LJAM extends that (again using Ott modularity) with a formalization of the

core part of JSR-277 and a proposal for JSR-294, which together form a proposal

for a Java module system (Strnǐsa et al. 2007).

OCamllight OCamllight (Owens 2008) covers a substantial core of OCaml — to

a first approximation, all except subtyping, objects, and modules. Notable features

that are handled are: ML-style polymorphism; pattern matching; mutable refer-

ences; finiteness of the integer type; definitions of type aliases (added after Owens

(2008)); definitions of record and variant data types; and exception definitions.

It does not cover much of the standard library, mutable records, arrays, pattern

matching guards, labels, polymorphic variants, objects, or modules.

We have tried to make our definition mirror the behaviour of the OCaml system

rather closely. The OCaml manual (Leroy et al. 2005) defines the syntax with a

BNF; our syntax is based on that. It describes the semantics in prose; our semantics

is based on a combination of that and our experience with the language.

This proof effort took only around 7–8 man-months, and the preceding definition

effort was only another few man-weeks. Compared with our previous experiences

this is remarkably lightweight: it has been possible to develop this as an example,

rather than requiring a major research project in its own right. Apart from Ott,

the work has been aided by HOL’s powerful first-order reasoning automation and

its inductive definition package, and by the use of the concrete representation.

6 Experience

In this section we assess to what extent Ott succeeds in our goal of providing

effective tool support for semantics, and whether Ott language definitions are indeed

“intuitively clear, concise, and easy to read and edit”. On the whole our experience

has been positive, and we describe some good points (and some less good points)

here. For small calculi it is easy to get started with the tool, and even for large

definitions such as (6) and (7) one can focus on the semantic content rather than the

LATEX or proof assistant markup. The proof assistant representations we generate

are reasonably uniform, which should enable the development of reusable proof

tactics, libraries, and idioms, specific to each proof assistant.

This is necessarily only anecdotal evidence, absent the possibility of controlled

experiments on a statistically significant sample of language designers, but it is

38 Sewell et al.

based on some non-trivial use of the tool, much of which was by people who were

not the main Ott designers and implementers.

Informal use We first consider use of the tool for informal semantics, not

mechanised in a proof assistant. Here the main alternative would be to use LATEX

directly, and escaping the syntactic overhead of reading and writing LATEX source

is a big win, as can be seen even in the small examples of Figs. 1 and 3. The homs

allow a very modular approach for specifying the LATEX output: a change in a hom

applies automatically everywhere it is used, which could only be achieved in LATEX

with considerable coding.

The lightweight error checking that one gets from parsing symbolic terms in rules,

and by enforcing naming conventions, is also a big win. In our previous work on the

Acute language (Sewell et al. 2004, 2007a) we wrote a complete language definition,

of around 80 dense pages. That was typeset using an early predecessor of Ott,

typesetting ASCII syntax with a tool that essentially lexed the source and translated

it token by token. Keeping the definitions self-consistent during development was

a major problem. In contrast, as Ott understands the grammar of symbolic terms

(including the grammar of judgements), and parses the input, it detects many

simple errors very quickly. This quick feedback was also reported as something the

students liked when Ott was used for teaching (Vitek 2009).

The quality of the typeset output is on the whole good, as shown in Figs. 2 and 3,

and the published papers on LJAM, OCamllight, and the other usages. The output

is fairly customisable, but not arbitrarily so, so one has to give up some control.

However, we have only very rarely been moved to paste and hand-edit the generated

LATEX, which is key for ongoing use.

As for negative points, the user does sometimes need to write some Ott boiler-

plate, e.g., a formula for checking equality for each nonterminal where that is used,

and grammar rules for instances of option types. Much of this would be eliminated

if Ott allowed parameterised nonterminals. The Ott error reporting could also be

improved. There is also only limited control of the typesetting layout, e.g. to line

breaks or tabbed alignment within typeset symbolic terms.

Generation of proof assistant definitions Here the basic point is that the

generated definitions are accepted by the provers and are usable as a basis for

mechanised proof, again without hand-editing. This is indicated by the presence

of ticks in the ‘mt’ column of Fig. 7 for all three target provers, including type

preservation and progress proofs for the most substantial examples (LJAM and

OCamllight, machine-checked in Isabelle/HOL and HOL respectively).

Generation of proof assistant definitions for multiple provers from the same Ott

source file also works. We did this for the modest examples of the simply typed

CBV lambda calculus and the TAPL “full simple” system, proving type soundness

results in each prover. We are told also that Delaware et al. (2009) took the Ott

sources for LJ, which had data only for Isabelle/HOL output, and found it quick

and painless to add homs to generate a Coq definition. They then hand-edited that

to add the extensions they were interested in, though it appears that at least some

of this hand-editing was to use Coq native lists, which Ott does support.

Ott: Effective Tool Support for the Working Semanticist 39

One should ask whether the generated prover code is really idiomatic. For the

Fig. 1 example, given the choice of the fully concrete representation for binding, we

think the generated prover code is essentially identical to what one might write by

hand, except perhaps for some extra parentheses and the names of some variables.

The complete generated code for the Fig. 1 example is shown in Figs. 9, 10 and

11, for Coq, HOL, and Isabelle/HOL respectively. Some users might make greater

use of the prover fancy syntax support, especially for Isabelle/HOL using the Proof

General interface (Aspinall 2000). In bigger examples there are some cases where

Ott is not expressive enough. For example, in LJAM there are various lookup

functions, e.g. to find a class definition. As Ott does not currently support user-

defined functions, these were written as inductive relation definitions, but then

proved equivalent to functional versions defined directly in Isabelle/HOL (using

filtering to translate into the representation type of abstract syntax terms).

Is it easier to read and write Ott source than prover code? For the Fig. 1 example,

one can contrast the Ott source with the prover code in Figs. 9, 10 and 11. One

can puzzle out the latter without much effort, but we do find the former more

transparent. The gain in readability becomes more significant for larger examples,

where one might have a hundred times as many rules and a great deal of boilerplate

substitution code. For OCamllight the Ott source, the typeset specification, and the

generated HOL were all useful, and the experience with LJAM is “definitely”. The

direct support for user syntax, lists, subgrammars, and context grammars is all

useful. In general, if one is working with semantics expressed as rules over the

abstract syntax, we expect the answer will be “often, yes”. But an expert in a

particular prover can certainly get things done directly. Moreover, if one is mostly

working with sets or some other prover library types and operations, not mostly

with an abstract syntax, or if one is making nontrivial use of prover type classes or

dependent types, then the answer would be “no”.

The typesetting support of all three provers is limited. Isabelle has perhaps the

most sophisticated system, but it seems to be token-based, not grammar-based, so

there is no analogue of our tex homs that would allow easy control of the typesetting

of each syntactic form without editing the main source. It is also not convenient

to quote parts of a development out of order in another document. For HOL, we

have used Wansbrough’s HolDoc tool, which does support quoting but is also token-

based (albeit with prefix operators) and is less robust than one might hope. For

Coq, coqdoc supports production of HTML for documenting libraries, but work

such as the Clight of Blazy & Leroy (2009) is typeset by manual transliteration of

Coq specifications; as they note, this can introduce or (worse) mask errors.

Binding specification and representation The tool currently implements

the fully concrete representation, for arbitrary binding specifications, and the locally

nameless representation, for single-binder specifications only.

In cases where the fully concrete representation suffices, it is very easy to work

with, and the expressiveness of arbitrary Ott binding specifications is useful. This

includes a surprising range of languages, including our LJAM and OCamllight exam-

ples and their progress and type preservation proofs. The former does not depend on

40 Sewell et al.

alpha equivalence at all. In the latter, the need for alpha-equivalence-aware reason-

ing arises only for type variables and type schemes. We used a De Bruijn encoding

of type variables to support the formal proof effort. Since Ott does not currently

support the automatic generation of such representations for HOL, we dealt di-

rectly with the index shifting functions in the Ott source, which was relatively

straightforward.

Of course, there are many important cases where the fully concrete representation

would not suffice, and where a manual encoding of terms up to alpha equivalence

would be heavy. These include many dependently typed systems, systems where

one needs to reduce under binders, and work considering the contextual seman-

tics of arbitrary subterms under binders (instead of solely the behaviour of whole

programs). When working with small calculi rather than full languages, one often

does not need complex binding specifications (single binders are enough) and there

the locally nameless representation should suffice. Our preliminary experiments for-

malising the simply typed lambda calculus, F<:, and (following Benton & Koutavas

(2007)) the nu-calculus of Pitts & Stark (1993), suggest that the generated Coq is

usable in this case.

Type system If one considers the type system of the Ott metalanguage, ignor-

ing syntactic issues, it essentially supports inductively defined relations over a term

language of mutually recursive labelled sums of products, with subtyping (from

subrule declarations) and hard-coded support for lists of products, over uninter-

preted proof-assistant type expressions. This is combined with support for context

grammars and for simple mixin-like modules.

The TAPL and LJ examples show that these simple modules can be effective:

the TAPL features are defined in separate files, roughly following the structure of

the TinkerType repository used to build the original text (Levin & Pierce 2003),

and the LJAM definitions reuse most of LJ.

There is no support for parameterised grammars or for polymorphic term con-

structors, both of which would be very useful, e.g. for a polymorphic user-defined

option type, or for a polymorphic equality formula, or for conditionals at arbitrary

types. There is also no support for user-defined (total) recursive functions over the

term language. This would also be very useful, and we have experimented with

some implementation, but it really requires polymorphism to make the right-hand

sides of typical functions easy to express.

General Ott was developed pragmatically to provide useful tool support. This

has good and bad effects: when working within its scope, it does (in our experience)

make it remarkably easy to write and work with semantic definitions, but there is

an accumulation of features. There is no doubt scope for some re-engineering.

The tool provides a relatively smooth path from informal to formal semantics:

one can quickly get production-quality definitions for typesetting (arguably with a

gentler learning curve than that of the provers) and then shift to generating prover

code. Of course, some rearrangement of the definitions may be needed at that point,

but we expect this will often be minor. One can retarget Ott definitions between

Ott: Effective Tool Support for the Working Semanticist 41

provers, but at present there is no automatic way to port prover definitions up to

Ott.

Of course, the tool also has the usual disadvantages of a pre-processor: one has

a somewhat more complex build process, with error messages at different points.

One could imagine a much tighter integration of the tool (or of specific features)

with the provers, e.g. to get user syntax appearing in goals.

As outlined here, the analysis and code generation performed by Ott is reasonably

complex (the tool is around 24 000 lines of OCaml). It is therefore quite possible

that the generated code is not what is intended, either because of soundness bugs

in the tool (though none such are known at present) or through misunderstanding

of its semantics, and one should not treat the tool as part of a trusted chain — it

is necessary in principle to look over the generated definitions. In any proof effort,

however, one will have to become intimately familiar with those definitions in any

case, so we do not regard this as a problem.

7 Related Work

As Strachey (1966) writes in the Proceedings of the first IFIP Working Conference,

Formal Language Description Languages:

A programming language is a rather large body of new and somewhat arbitrary math-
ematical notation introduced in the hope of making the problem of controlling computing
machines somewhat simpler.

The problem of dealing precisely with this notation, with the need for machine

support in doing so, has spawned an extensive literature. We discuss only on the

most related previous work.

The proof assistants that we build on, Coq, HOL, and Isabelle/HOL, together

with Twelf, are perhaps the most directly related work (Coq 2008; HOL 2007; Is-

abelle 2008; Twelf 2005). Ever since original LCF (Milner 1972), one of the main

intended applications of these and related systems has been reasoning about pro-

grams and programming languages, and they have been vastly improved over the

years to make this possible. Recently they have been used for a variety of substan-

tial languages, including for example the verifying compiler work of Blazy et al.

(2006) (Coq), a C expression semantics by Norrish (1999) (HOL), work on Java by

Klein & Nipkow (2006) (Isabelle/HOL), and an internal language for SML by Lee

et al. (2007) (Twelf). They are, however, all more-or-less general-purpose tools —

by adding front-end support that is specific to the problem of defining programming

language syntax and semantics, we believe Ott can significantly ease the problems

of working with large language definitions.

Several projects have aimed at automatically generating programming environ-

ments and/or compilers from language descriptions, including early work on the

Synthesiser Generator (Reps & Teitelbaum 1984). Kahn’s CENTAUR system (Bor-

ras et al. 1988) supported natural-semantics descriptions in the TYPOL language,

compiling them to Prolog for execution, together with a rich user interface in-

cluding an editor, and a language METAL to define abstract and concrete syntax

42 Sewell et al.

(Terrasse (1995) also considered compilation of TYPOL to Coq). Related work

by Klint (1993) and colleagues produced the ASF+SDF Meta-environment. Here

SDF provides rich support for defining syntax, while ASF allows for definitions in

an algebraic specification style. Again it is a programming environment, with a

generic syntax-directed editor. The ERGO Support System (Lee et al. 1988) also

had a strong user-interface component, but targeted (among others) ADT-OBJ and

λProlog. Mosses’s work on Action Semantics and Modular SOS (Mosses 2002) has

been supported by various tools, but makes strong assumptions on the form of the

semantic relations being defined. Moving closer in goals to Ott, ClaReT (Boulton

1997) took a sophisticated description of syntax and pretty printing, and a deno-

tational semantics, and generated HOL definitions.

In contrast to the programming environments above, Ott is a more lightweight

stand-alone tool for definitions, designed to fit in with existing editing, LATEX and

proof-assistant workflows and requiring less initial investment and commitment to

use. (Its support for production parsing and pretty printing is less developed than

several of the above, however.) Moreover, in contrast to CENTAUR and to research

on automatic compiler generation, Ott is not focussed on producing executable

definitions — one can define arbitrary semantic relations which may or may not be

algorithmic. The generality of these arbitrary inductive relation definitions means

that Ott should be well-suited to much present-day semantics work, for type systems

and/or operational semantics.

The Jakarta toolset, by Barthe et al. (2001), shares many high-level goals with

Ott. It aims to combine the advantages of a semantics prototyping environment,

with support for readable specifications and animation, with those of a prover. Its

JSL specification language can be compiled into (Coq) prover code; JSL specifica-

tions are “easy to read, extend, and manipulate”. The details are very different:

JSL types are first-order polymorphic types, and it supports functions defined by

conditional rewrite rules. The system generates proof support, including inversion

principles for such functions.

The SL system of Xiao et al. (2000) has a metalanguage for specifying semantics

with conditional rewrite rules and evaluation contexts. Dynamic constraints can

be declared as disjunctions of patterns, e.g. for specifying object-language values,

and contexts and hole-filling are typed. The emphasis is on compilation of such

definitions to interpreters. Later work considered automation of unique decomposi-

tion proofs (Xiao et al. 2001). PLTredex (Matthews et al. 2004) is a domain-specific

language for expressing reduction relation definitions and animating them. It is cur-

rently being used on a ‘full-language’ scale, for an R6RS Scheme definition (Sperber

et al. 2007), but is by design restricted to animation of reduction semantics. The

Ruler system (Dijkstra & Swierstra 2006) provides a language for expressing type

rules, generating LATEX and implementations but not proof assistant definitions,

used for a Haskell-like language. The SASyLF system of Aldrich et al. (2008) has

a simple Ott-like language for user-defined syntax and semantic rules, but with

an integrated proof language. It is intended for educational use, not for large-scale

semantics.

Ott: Effective Tool Support for the Working Semanticist 43

Turning to direct support for binding, Twelf is suited to HOAS representations.

FreshML (Shinwell et al. 2003), Alpha Prolog (Cheney & Urban 2004) and ML-

SOS (Lakin & Pitts 2007) both use nominal logic-programming and functional-

programming approaches, the latter two with a view to prototyping of semantics.

The Nominal Isabelle package (Urban 2008) integrates support for datatype defini-

tions with (at present) single binders into Isabelle/HOL. Cαml (Pottier 2006) is the

most substantial other work we are aware of that introduces a large and precisely

defined class of binding specifications, from which it generates OCaml code for type

definitions and substitutions. Types can be annotated with sets of atom sorts, with

occurrences of atoms of those sorts treated as binding within them. inner and outer

annotations let one specify that subterms are either inside or outside an enclosing

binder. For example, a lambda calculus with single binders might be expressed as

follows (this is an extract of an example from the Cαml distribution, omitting the

patterns that it includes):

type expression =

| EVar of atom var

| ELambda of < lambda >

| EApp of expression * expression

type lambda binds var =

atom var * inner expression

This seems to us somewhat less intuitive than the Ott binding specifications, es-

pecially in more complex examples. We conjecture that the two have mutually

incomparable expressiveness.

Representing binding within proof assistants was a key aspect of the POPLmark

challenge (Aydemir et al. 2005), and several comparisons have been produced, in-

cluding those of Aydemir et al. (2008) and Berghofer & Urban (2006). Owens (1995)

discusses pattern binding using locally nameless representations in Isabelle/HOL.

We mentioned the LNgen tool of Aydemir & Weirich (2009) in §3.5.

The work on concise concrete syntax by Tse & Zdancewic (2008) has similar

lightweight syntax definition goals to Ott, taking a concise description of a grammar

but producing the conventional object-language parsing and pretty printing tools.

It is interesting to contrast our OCaml fragment example with attempts to verify

aspects of the SML Definition. Early attempts, by Syme (1993), VanInwegen (1996),

and Gunter & Maharaj (1995), faced severe difficulties, both from the mathematical

style of the Definition and the limitations of HOL at the time whereas, using Ott

and HOL 4, we have found our example reasonably straightforward. Lee et al.

(2007) take a rather different approach. They factor their (Twelf) definition into

an internal language, and (yet to appear) a substantial elaboration from a source

language to that. They thus deal with a much more sophisticated type theory (aimed

at supporting source features that we do not cover, including SML modules), so the

proof effort is hard to compare, but their semantic rules are further removed from

source-language programs.

44 Sewell et al.

8 Conclusion

Summary We have introduced the Ott metalanguage and tool for expressing se-

mantics, incorporating metalanguage design to make definitions easy to read and

edit, a novel and expressive metalanguage for expressing binding, and compilation

to multiple proof assistants.

We hope that this work will enable a phase change: from the current state,

in which working with fully-rigorous definitions of real programming languages

requires heroic effort, to a world in which that is routine.

The Ott tool can be used in several different ways. Most simply, it can aid infor-

mal LATEX mathematics, permitting definitions, and terms in proofs and exposition,

to be written without syntactic noise. By parsing (and so sort-checking) this input

it quickly catches a range of simple errors, e.g. inconsistent use of judgement forms.

There is then a smooth path to fully-rigorous proof assistant definitions: those Ott

definitions can be annotated with the additional information required to generate

proof assistant code. In general one may also want to restructure the definitions to

suit the formalization. Our experience so far suggests that this is not a major issue,

and hence that one can avoid early commitment to a particular proof assistant. The

tool can be used at different scales: it aims to be sufficiently lightweight to be used

for small calculi, but it is also designed and engineered with the pragmatics of work-

ing with full-scale programming languages in mind. Our case studies suggest that it

achieves both goals. Furthermore, we hope it will make it easy to re-use definitions

of calculi and languages, and also fragments thereof, across the community. Widely

accepted de facto standard definitions would make it possible to discuss proposed

changes to existing languages in terms of changes to those definitions, rather than

solely in terms of toy calculi.

Future work There are many interesting directions for future work. Ott is

intended as a pragmatic and useful tool, and several extensions would be highly

desirable for many applications:

(1) While the fully concrete representation of binding is surprisingly widely ap-

plicable, it is far from being able to express all one would like to do. The tool

should also be able to generate proof assistant definitions using up-to-alpha

representations, e.g. in locally nameless or nominal styles. We have done the

former for the single-binder case, but how to do this for arbitrary Ott binding

specifications, which are very expressive, is an open problem, and one might

well need to initially restrict to some better-behaved class.

(2) The tool should directly support user-defined functions, in addition to (but

along the same lines as) the current support for relations.

(3) Improved support for multiple overlapping languages is needed, e.g. for sug-

ared and non-sugared languages. At present only very simple sugared forms,

that can be translated away with a context-free proof assistant hom, are sup-

ported. This might be coupled with better support for modular definitions.

(4) The Coq, HOL, and Isabelle/HOL output stages are all similar, in that us-

ages of homs and auxiliary functions can all be expressed simply with proof

Ott: Effective Tool Support for the Working Semanticist 45

assistant functions. A Twelf output stage would also be desirable, but needs

a translation into a relational style.

A more mathematical question is to consider in what sense the definitions Ott

generates for the different target proof assistants have the same meaning. This is

intuitively plausible when one considers the generated definitions, but the targets

are based on different logics, so it is far from trivial.

With more experience using the tool, we aim also to polish the generated proof-

assistant definitions and improve the available proof automation — for example,

to make proof scripts less dependent on the precise structure and ordering of the

definitions.

Being able to easily generate definitions for multiple proof assistants also opens

up new possibilities for (semi-)automatically testing conformance between seman-

tic definitions and production implementations, above the various proof assistant

support for proof search, tactic-based symbolic evaluation, code extraction from

proofs, and code generation from definitions.

Finally, we look forward to further experience and user feedback from the tool.

Acknowledgements We thank the other members of the POPLmark team, espe-

cially Benjamin Pierce, Stephanie Weirich and Steve Zdancewic, for interesting discussions

on this work, James Leifer for comments on a draft, Arthur Charguéraud for his work on

the Metatheory library for Coq, our early adopters for user feedback, and Keith Wans-

brough, Matthew Fairbairn and Tom Wilkie for their work on various Ott predecessors. We

acknowledge the support of EPSRC grants GR/T11715, EP/C510712, and EP/F036345,

and a Royal Society University Research Fellowship (Sewell).

46 Sewell et al.

(* generated by Ott 0.10.16 from: ../tests/non_super_tabular.ott ../tests/test10.ott *)

Require Import Arith.
Require Import Bool.
Require Import List.

(** syntax *)
Definition var := nat.
Lemma eq_var: forall (x y : var), {x = y} + {x <> y}.
Proof.

decide equality; auto with ott_coq_equality arith.
Defined.
Hint Resolve eq_var : ott_coq_equality.

Inductive term : Set :=
| t_var : var -> term
| t_lam : var -> term -> term
| t_app : term -> term -> term.

(** library functions *)
Fixpoint list_mem (A:Set) (eq:forall a b:A,{a=b}+{a<>b}) (x:A) (l:list A) {struct l} : bool :=

match l with
| nil => false
| cons h t => if eq h x then true else list_mem A eq x t

end.
Implicit Arguments list_mem.

(** subrules *)
Definition is_val_of_term (t5:term) : Prop :=

match t5 with
| (t_var x) => False
| (t_lam x t) => (True)
| (t_app t t’) => False

end.

(** substitutions *)
Fixpoint tsubst_term (t5:term) (x5:var) (t_6:term) {struct t_6} : term :=

match t_6 with
| (t_var x) => (if eq_var x x5 then t5 else (t_var x))
| (t_lam x t) => t_lam x (if list_mem eq_var x5 (cons x nil) then t else (tsubst_term t5 x5 t))
| (t_app t t’) => t_app (tsubst_term t5 x5 t) (tsubst_term t5 x5 t’)

end.

(** definitions *)

(* defns Jop *)
Inductive reduce : term -> term -> Prop := (* defn reduce *)
| ax_app : forall (x:var) (t1 v2:term),

is_val_of_term v2 ->
reduce (t_app (t_lam x t1) v2) (tsubst_term v2 x t1)

| ctx_app_fun : forall (t1 t t1’:term),
reduce t1 t1’ ->
reduce (t_app t1 t) (t_app t1’ t)

| ctx_app_arg : forall (v t1 t1’:term),
is_val_of_term v ->
reduce t1 t1’ ->
reduce (t_app v t1) (t_app v t1’).

Fig. 9. Generated Coq from Fig. 1

Ott: Effective Tool Support for the Working Semanticist 47

(* generated by Ott 0.10.16 from: ../tests/non_super_tabular.ott ../tests/test10.ott *)
theory test10
imports Main Multiset
begin

(** syntax *)
types "var" = "string"

datatype "term" =
t_var "var"

| t_lam "var" "term"
| t_app "term" "term"

(** subrules *)
consts
is_val_of_term :: "term => bool"
primrec
"is_val_of_term (t_var x) = (False)"
"is_val_of_term (t_lam x t) = ((True))"
"is_val_of_term (t_app t t’) = (False)"

(** substitutions *)
consts
tsubst_term :: "term => var => term => term"
primrec
"tsubst_term t5 x5 (t_var x) = ((if x=x5 then t5 else (t_var x)))"
"tsubst_term t5 x5 (t_lam x t) = (t_lam x (if x5 mem [x] then t else (tsubst_term t5 x5 t)))"
"tsubst_term t5 x5 (t_app t t’) = (t_app (tsubst_term t5 x5 t) (tsubst_term t5 x5 t’))"

(** definitions *)
(*defns Jop *)
inductive reduce :: "term \<Rightarrow> term \<Rightarrow> bool"
where
(* defn reduce *)

ax_appI: "\<lbrakk>is_val_of_term v2\<rbrakk> \<Longrightarrow>
reduce ((t_app (t_lam x t1) v2)) ((tsubst_term v2 x t1))"

| ctx_app_funI: "\<lbrakk>reduce (t1) (t1’)\<rbrakk> \<Longrightarrow>
reduce ((t_app t1 t)) ((t_app t1’ t))"

| ctx_app_argI: "\<lbrakk>is_val_of_term v ;
reduce (t1) (t1’)\<rbrakk> \<Longrightarrow>
reduce ((t_app v t1)) ((t_app v t1’))"

end

Fig. 10. Generated Isabelle/HOL from Fig. 1

48 Sewell et al.

(* generated by Ott 0.10.16 from: ../tests/non_super_tabular.ott ../tests/test10.ott *)
(* to compile: Holmake test10Theory.uo *)
(* for interactive use:

app load ["pred_setTheory","finite_mapTheory","stringTheory","containerTheory","ottLib"];
*)

open HolKernel boolLib Parse bossLib ottLib;
infix THEN THENC |-> ## ;
local open arithmeticTheory stringTheory containerTheory pred_setTheory listTheory

finite_mapTheory in end;

val _ = new_theory "test10";

(** syntax *)
val _ = type_abbrev("var", ‘‘:string‘‘);
val _ = Hol_datatype ‘
term =

t_var of var
| t_lam of var => term
| t_app of term => term

‘;

(** subrules *)
val _ = ottDefine "is_val_of_term" ‘

(is_val_of_term (t_var x) = F)
/\ (is_val_of_term (t_lam x t) = (T))
/\ (is_val_of_term (t_app t t’) = F)
‘;

(** substitutions *)
val _ = ottDefine "tsubst_term" ‘

(tsubst_term t5 x5 (t_var x) = (if x=x5 then t5 else (t_var x)))
/\ (tsubst_term t5 x5 (t_lam x t) = t_lam x (if MEM x5 [x] then t else (tsubst_term t5 x5 t)))
/\ (tsubst_term t5 x5 (t_app t t’) = t_app (tsubst_term t5 x5 t) (tsubst_term t5 x5 t’))
‘;

(** definitions *)
(* defns Jop *)

val (Jop_rules, Jop_ind, Jop_cases) = Hol_reln ‘
(* defn reduce *)

((* ax_app *) !(x:var) (t1:term) (v2:term) . (clause_name "ax_app") /\
((is_val_of_term v2))
==>

((reduce (t_app (t_lam x t1) v2) (tsubst_term v2 x t1))))

/\ ((* ctx_app_fun *) !(t1:term) (t:term) (t1’:term) . (clause_name "ctx_app_fun") /\
(((reduce t1 t1’)))
==>

((reduce (t_app t1 t) (t_app t1’ t))))

/\ ((* ctx_app_arg *) !(v:term) (t1:term) (t1’:term) . (clause_name "ctx_app_arg") /\
((is_val_of_term v) /\
((reduce t1 t1’)))
==>

((reduce (t_app v t1) (t_app v t1’))))

‘;

val _ = export_theory ();

Fig. 11. Generated HOL from Fig. 1

Ott: Effective Tool Support for the Working Semanticist 49

References

Aldrich, Jonathan, Simmons, Robert J., & Shin, Key. (2008). SASyLF: an educational
proof assistant for language theory. Pages 31–40 of: FDPE ’08: Proceedings of the 2008
International Workshop on Functional and Declarative Programming in Education. New
York, NY, USA: ACM.

Aspinall, David. (2000). Proof General: A generic tool for proof development. Pages
38–42 of: TACAS ’00: Proceedings of the 6th International Conference on Tools and
Algorithms for Construction and Analysis of Systems. London, UK: Springer-Verlag.

Aydemir, Brian, Charguéraud, Arthur, Pierce, Benjamin C., Pollack, Randy, & Weirich,
Stephanie. (2008). Engineering formal metatheory. Pages 3–15 of: Proc. of the 35th
ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages (POPL
’08). New York, NY, USA: ACM.

Aydemir, Brian E., Bohannon, Aaron, Fairbairn, Matthew, Foster, J. Nathan, Pierce, Ben-
jamin C., Sewell, Peter, Vytiniotis, Dimitrios, Washburn, Geoffrey, Weirich, Stephanie,
& Zdancewic, Steve. (2005). Mechanized metatheory for the masses: The POPLmark
Challenge. Pages 50–65 of: Proc. of the 18th International Conference on Theorem
Proving in Higher Order Logics (TPHOLs 2005), LNCS 3603.

Aydemir, Bryian, & Weirich, Stephanie. (2009). LNgen: Tool support for locally nameless
representation. http://www.cis.upenn.edu/∼baydemir/papers/lngen/.

Barthe, G., Dufay, G., Huisman, M., & de Sousa, S. Melo. (2001). Jakarta: a toolset to
reason about the JavaCard platform. Pages 2–18 of: Attali, I., & Jensen, T. (eds),
Proceedings of e-SMART’01. Lecture Notes in Computer Science, vol. 2140. Springer-
Verlag.

Benton, Nick, & Koutavas, Vasileios. (2007). A mechanized bisimulation for the nu-
calculus. http://research.microsoft.com/en-us/um/people/nick/nubisim.pdf.

Berghofer, Stefan, & Urban, Christian. (2006). A head-to-head comparison of de Bruijn
indices and names. Pages 53–67 of: Proc. of International Workshop on Logical Frame-
works and Meta-Languages: Theory and Practice (LFMTP), ENTCS 174(5).

Blazy, Sandrine, & Leroy, Xavier. (2009). Mechanized semantics for the Clight subset of
the C language. Journal of automated reasoning. Accepted for publication, to appear.

Blazy, Sandrine, Dargaye, Zaynah, & Leroy, Xavier. (2006). Formal verification of a C
compiler front-end. Pages 460–475 of: Proc. of International Symposium on Formal
Methods (FM 2006). Lecture Notes in Computer Science, vol. 4085. Springer-Verlag.

Borras, P., Clement, D., Despeyroux, Th., Incerpi, J., Kahn, G., Lang, B., & Pascual,
V. (1988). Centaur: the system. Pages 14–24 of: Proc. of the third ACM SIG-
SOFT/SIGPLAN Software Engineering Symposium on Practical Software Development
Environments (SDE 3). New York, NY, USA: ACM Press.

Boulton, R. J. (1997). A tool to support formal reasoning about computer languages.
Pages 81–95 of: Brinksma, E. (ed), Proc. of the Third International Workshop on Tools
and Algorithms for the Construction and Analysis of Systems (TACAS ’97). Lecture
Notes in Computer Science, vol. 1217. Springer.

Cardelli, Luca, Martini, Simone, Mitchell, John C., & Scedrov, Andre. (1994). An exten-
sion of System F with subtyping. Inf. comput., 109(1/2), 4–56.

Charguéraud, Arthur. (2006). Annotated bibliography for formalization of lambda-calculus
and type theory. http://fling-l.seas.upenn.edu/∼plclub/cgi-bin/poplmark/

index.php?title=Annotated Bibliography.
Cheney, James, & Urban, Christian. (2004). Alpha-Prolog: A logic programming language

with names, binding and alpha-equivalence. Pages 269–283 of: Proc. 20th International
Conference on Logic Programming (ICLP 2004). LNCS, no. 3132. Springer-Verlag.

Coq. (2008). The Coq proof assistant, v.8.1. http://coq.inria.fr/.
Curien, Pierre-Louis, & Ghelli, Giorgio. (1991). Subtyping + Extensionality: Confluence

of beta-eta-top reduction in F<=. Pages 731–749 of: Proc. TACS: Theoretical Aspects
of Computer Software, LNCS 526.

50 Sewell et al.

Delaware, Benjamin, Cook, William, & Batory, Don. (2009). A machine-checked model
of safe composition. Proc. FOAL: Foundations of Aspect-Oriented Languages.

Dijkstra, Atze, & Swierstra, S. Doaitse. (2006). Ruler: Programming type rules. Pages
30–46 of: Proc. Functional and Logic Programming (FLOPS), LNCS 3945.

Fournet, Cédric, Gonthier, Georges, Lévy, Jean-Jacques, Maranget, Luc, & Rémy, Didier.
(1996). A calculus of mobile agents. Pages 406–421 of: Proc. of 7th International
Conference on Concurrency Theory (CONCUR ’96). LNCS 1119.

Fournet, Cédric, Guts, Nataliya, & Zappa Nardelli, Francesco. (2008). A formal imple-
mentation of value commitment. Pages 383–397 of: Proc. 17th European Symposium
on Programming (ESOP 2008), LNCS 4960.

Gray, Kathryn E. (2008). Safe cross-language inheritance. Proc. 22nd European Conference
on Object-Oriented Programming, ECOOP ’08.

Gunter, Elsa, & Maharaj, Savi. (1995). Studying the ML module system in HOL. The
Computer Journal: Special Issue on Theorem Proving in Higher Order Logics.

HOL. (2007). The HOL 4 system, Kananaskis-4 release. http://hol.sourceforge.net/.
Isabelle. (2008). Isabelle 2008. http://isabelle.in.tum.de/.
Kahrs, Stefan. (1993). Mistakes and ambiguities in the definition of Standard ML. Tech.

rept. ECS-LFCS-93-257. University of Edinburgh.
Klein, Gerwin, & Nipkow, Tobias. (2006). A machine-checked model for a Java-like lan-

guage, virtual machine, and compiler. ACM Transactions on Programming Languages
and Systems, 28(4), 619–695.

Klein, Gerwin, Nipkow, Tobias, & Paulson, Lawrence (eds). (2009). The archive of formal
proofs. http://afp.sf.net.

Klint, P. (1993). A meta-environment for generating programming environments. ACM
Transactions on Software Engineering and Methodology, 2(2), 176–201.

Lakin, M. R., & Pitts, A. M. (2007). A metalanguage for structural operational semantics.
Pages I1–I16 of: Eighth Symposium on Trends in Functional Programming (TFP 2007).
Draft proceedings.

Lee, Daniel K., Crary, Karl, & Harper, Robert. (2007). Towards a mechanized metatheory
of Standard ML. Pages 173–184 of: Proc. 34th ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages (POPL).

Lee, Peter, Pfenning, Frank, Rollins, Gene, & Scherlis, William. (1988). The Ergo Support
System: An integrated set of tools for prototyping integrated environments. Pages 25–
34 of: Proc. ACM SIGSOFT/SIGPLAN Software Engineering Symposium on Practical
Software Development Environments.

Leroy, X., et al. . (2005). The Objective Caml system release 3.09 documentation and
user’s manual.

Leroy, Xavier. (1996). A syntactic theory of type generativity and sharing. Journal of
Functional Programming, 6(5), 667–698.

Levin, Michael Y., & Pierce, Benjamin C. (2003). Tinkertype: A language for playing with
formal systems. Journal of Functional Programming, 13(2).

Matthews, Jacob, Findler, Robert Bruce, Flatt, Matthew, & Felleisen, Matthias. (2004).
A visual environment for developing context-sensitive term rewriting systems. Pages
301–311 of: Proc. of 15th International Conference on Rewriting Techniques and Ap-
plications (RTA 2004), LNCS 3091.

McPeak, Scott, & Necula, George C. (2004). Elkhound: A fast, practical GLR parser
generator. Pages 73–88 of: Proc. of the 13th International Conference on Compiler
Construction (CC), LNCS 2985.

Milner, R., Tofte, M., & Harper, R. (1990). The definition of Standard ML. MIT Press.
Milner, Robin. (1972). Implementation and applications of Scott’s logic for computable

functions. Pages 1–6 of: Proc. ACM Conference on Proving Assertions About Programs.
Moors, Adriaan, Piessens, Frank, & Odersky, Martin. (2008). Safe type-level abstraction

in Scala. FOOL workshop.

Ott: Effective Tool Support for the Working Semanticist 51

Mosses, Peter D. (2002). Pragmatics of Modular SOS. Pages 21–40 of: Proc. of 9th
International Conference on Algebraic Methodology and Software Technology (AMAST
’02), LNCS 2442.

Norrish, Michael. (1999). Deterministic expressions in C. Pages 147–161 of: Proc. 8th
European Symposium on Programming (ESOP 1999), LNCS 1576.

Owens, Christopher. (1995). Coding binding and substitution explicitly in Isabelle. Pages
36–52 of: Proceedings of the First Isabelle Users Workshop. http://www.cl.cam.ac.

uk/∼lp15/papers/Workshop/.
Owens, Scott. (2008). A sound semantics for OCamllight. Proc. 17th European Symposium

on Programming (ESOP 2008), LNCS 4960.
Owens, Scott, & Flatt, Matthew. (2006). From structures and functors to modules and

units. Pages 87–98 of: Proc. of 11th ACM SIGPLAN International Conference on
Functional Programming (ICFP 2006).

Peskine, Gilles, Sarkar, Susmit, Sewell, Peter, & Zappa Nardelli, Francesco. (2007). Bind-
ing and substitution (note). http://www.cl.cam.ac.uk/users/pes20/ott/.

Peyton Jones, Simon (ed). (2003). Haskell 98 Language and Libraries. The Revised Report.
CUP.

Pierce, Benjamin C. (2002). Types and programming languages. MIT Press.
Pitts, A. M., & Stark, I. D. B. (1993). Observable properties of higher order functions

that dynamically create local names, or: What’s new? Pages 122–141 of: Mathematical
Foundations of Computer Science, Proc. 18th Int. Symp., Gdańsk, 1993. Lecture Notes
in Computer Science, vol. 711. Springer-Verlag, Berlin.

Pollack, Randy. (2006). Reasoning about languages with binding. http://homepages.inf.
ed.ac.uk/rpollack/export/bindingChallenge slides.pdf. Slides.

Pottier, François. (2006). An overview of Cαml. Pages 27–52 of: ACM workshop on ML,
ENTCS 148(2).

Rekers, Jan. (1992). Parser generation for interactive environments. Ph.D. thesis, Uni-
versity of Amsterdam.

Reps, Thomas, & Teitelbaum, Tim. (1984). The synthesizer generator. Pages 42–48
of: Proc. of the first ACM SIGSOFT/SIGPLAN Software Engineering Symposium on
Practical Software Development Environments (SDE 1).

Rossberg, Andreas. (2001). Defects in the revised definition of Standard ML. Tech. rept.
Saarland University. Updated 2007/01/22.

Sewell, Peter, & Zappa Nardelli, Francesco. (2007). Ott. http://www.cl.cam.ac.uk/

users/pes20/ott/.
Sewell, Peter, Leifer, James J., Wansbrough, Keith, Allen-Williams, Mair, Zappa Nardelli,

Francesco, Habouzit, Pierre, & Vafeiadis, Viktor. (2004). Acute: High-level programming
language design for distributed computation. design rationale and language definition.
Tech. rept. UCAM-CL-TR-605. University of Cambridge Computer Laboratory.

Sewell, Peter, Leifer, James J., Wansbrough, Keith, Zappa Nardelli, Francesco, Allen-
Williams, Mair, Habouzit, Pierre, & Vafeiadis, Viktor. (2007a). Acute: High-level pro-
gramming language design for distributed computation. Journal of Functional Pro-
gramming, 17(4–5), 547–612. Invited submission for an ICFP 2005 special issue.

Sewell, Peter, Zappa Nardelli, Francesco, Owens, Scott, Peskine, Gilles, Ridge, Thomas,
Sarkar, Susmit, & Strnǐsa, Rok. 2007b (Oct.). Ott: Effective tool support for the working
semanticist. Pages 1–12 of: Proc. of the 12th ACM SIGPLAN International Conference
on Functional Programming (ICFP 2007).

Shinwell, M. R., Pitts, A. M., & Gabbay, M. J. (2003). FreshML: Programming with
binders made simple. Pages 263–274 of: Proc. of the 8th ACM SIGPLAN International
Conference on Functional Programming (ICFP 2003).

Sperber, Michael, Dybvig, R. Kent, Flatt, Matthew, (Editors), Anton Van Straaten,
Kelsey, Richard, Clinger, William, Jonathan Rees (Editors, Revised5 Report on the
Algorithmic Language Scheme, Findler, Robert Bruce, & Jacob Matthews (Authors,

52 Sewell et al.

formal semantics). (2007). Revised6 report on the algorithmic language Scheme. http:

//www.r6rs.org/.
Strachey, Christopher. (1966). Towards a formal semantics. Pages 198–220 of: Formal

language description languages for computer programming. North Holland.
Strnǐsa, Rok, Sewell, Peter, & Parkinson, Matthew. (2007). The Java Module System:

core design and semantic definition. Pages 499–514 of: Proc. of ACM SIGPLAN Inter-
national Conference on Object-Oriented Programming, Systems, Languages and Appli-
cations (OOPSLA 2007) .

Syme, Don. (1993). Reasoning with the Formal Definition of Standard ML in HOL.
Pages 43–59 of: International Workshop on Higher Order Logic Theorem Proving and
its Applications, vol. 780. Vancouver, Canada: Springer-Verlag. Published 1994.

Terrasse, Delphine. (1995). Encoding Natural Semantics in Coq. Pages 230–244 of:
Proc. of the 4th International Conference on Algebraic Methodology and Software Tech-
nology (AMAST ’95), LNCS 936.

Tse, Stephen, & Zdancewic, Steve. (2008). Concise concrete syntax. Tech. rept. MS-
CIS-08-11. University of Pennsylvania. http://www.cis.upenn.edu/∼stevez/papers/
TZ08tr.pdf.

Twelf. (2005). Twelf 1.5. http://www.cs.cmu.edu/∼twelf/.
Urban, C. (2008). Nominal Techniques in Isabelle/HOL. Journal of Automated Reasoning,

40(4), 327–356.
Vafeiadis, Viktor, & Parkinson, Matthew. (2007). A marriage of rely/guarantee and sep-

aration logic. Pages 256–271 of: Proc. 18th International Conference on Concurrency
Theory (CONCUR), LNCS 4703.

VanInwegen, Myra. (1996). The machine-assisted proof of programming language prop-
erties. Ph.D. thesis, Univ. of Pennsylvania. Computer and Information Science Tech
Report MS-CIS-96-31.

Visser, Eelco. (1997). Syntax definition for language prototyping. Ph.D. thesis, University
of Amsterdam.

Vitek, Jan. (2009). Personal Communication.
Xiao, Yong, Ariola, Zena, & Mauny, Michel. 2000 (sep). From syntactic theories to inter-

preters: A specification language and its compilation. Derschowitz, Nachum, & Kirch-
ner, Claude (eds), First International Workshop on Rule-Based Programming (RULE
2000). http://arxiv.org/abs/cs.PL/0009030.

Xiao, Yong, Sabry, Amr, & Ariola, Zena M. (2001). From syntactic theories to interpreters:
Automating the proof of unique decomposition. Higher order symbol. comput., 14(4),
387–409.

Zalewski, Marcin. (2008). A Semantic Definition of Separate Type Checking in C++
with Concepts—Abstract syntax and complete semantic definition. Tech. rept. 2008:12.
Department of Computer Science and Engineering, Chalmers University.

Zalewski, Marcin, & Schupp, Sibylle. (2009). A Semantic Definition of Separate Type
Checking in C++ with Concepts. Journal of Object Technology. Accepted.

