
Ott: Tool Support for Semantics

User Guide

version 0.21.2

Peter Sewell∗ Francesco Zappa Nardelli+

with Scott Owens∗, Gilles Peskine∗, Tom Ridge∗,

Susmit Sarkar∗, and Rok Strnǐsa∗

∗University of Cambridge +INRIA

January 13, 2012

Contents

1 Introduction 4

2 Getting started with Ott 5

2.1 Directory contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 To build . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.3 To run . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.4 Emacs mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.5 Copyright information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

3 A minimal Ott source file: the untyped CBV lambda calculus 6

3.1 Index variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

4 Generating LATEX 8

4.1 Specifying LATEX for productions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
4.2 Specifying LATEX for grammar rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
4.3 Using the LATEX code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

5 Generating proof assistant definitions 12

5.1 Proof assistant code for grammar rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
5.2 Proof assistant code for inductive definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
5.3 Representation of binding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
5.4 Helper functions for free variable and substitution functions . . . . . . . . . . . . . . . . . . . . . 19
5.5 Correctness of the generated proof assistant code . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
5.6 Using the generated proof assistant code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

5.6.1 Coq . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
5.6.2 HOL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
5.6.3 Isabelle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

6 Judgments and formulae 21

6.1 Naming of premises for the Coq backend . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
6.2 In-line embedded prover code in premises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
6.3 User syntax . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

7 Concrete terms and OCaml generation 22

8 Filtering: Using Ott syntax within LATEX, Coq, Isabelle, HOL, or OCaml 23

8.1 Filtering embedded code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
8.2 Filtering files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

1



9 Binding specifications 26

10 Generating substitution and free variable functions 30

11 Locally-nameless representation 31

12 List forms 33

12.1 List dot forms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
12.2 List comprehension forms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
12.3 Proof assistant code for list forms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

12.3.1 Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
12.3.2 Terms (in inductive definition rules) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
12.3.3 List forms in homomorphisms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

13 Subrules 39

14 Context rules 40

15 Functions 41

16 Parsing Priorities 42

17 Combining multiple source files 43

18 Hom blocks 43

19 Isabelle syntax support 45

20 Isabelle code generation example 47

21 Reference: Command-line usage 48

22 Reference: The language of symbolic terms 50

23 Reference: Generation of proof assistant definitions 52

23.1 Generation of types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
23.2 Generation of functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

23.2.1 Subrule predicates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
23.2.2 Binding auxiliaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
23.2.3 Free variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
23.2.4 Substitutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

23.3 Generation of relations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

24 Reference: Summary of homomorphisms 55

25 Reference: The Ott source grammar 57

26 Reference: Examples 57

List of Figures

1 Source: test10.0.ott . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2 Source: test10.2.ott . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
3 Generated LATEX: test10.2.tex . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
4 Source: test10.4.ott . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
5 Generated Coq:test10.v . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
6 Generated Isabelle:test10.thy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
7 Generated HOL:test10Script.sml . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
8 Source: test10.7.ott . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
9 Generated OCaml code: test10.ml . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
10 F<: Extracts: LATEX source file to be filtered (test7tt.mng) . . . . . . . . . . . . . . . . . . . . . 27
11 F<: Extracts: the filtered output (test7tt.tex) . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
12 Mini-Ott in Ott: the binding specification metalanguage . . . . . . . . . . . . . . . . . . . . . . . 30
13 A sample OCaml semantic rule, in LATEX and Ott source forms . . . . . . . . . . . . . . . . . . . 33

2



14 An Ott source file for basic arithmetic using the typical parsing priorities . . . . . . . . . . . . . 44
15 An ott source file for the let fragment of TAPL . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
16 Hom Sections: test10 homs.ott . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
17 Mini-Ott in Ott: symbolic terms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3



1 Introduction

Ott is a tool for writing definitions of programming languages and calculi. It takes as input a definition
of a language syntax and semantics, in a concise and readable ASCII notation that is close to what one
would write in informal mathematics. It generates output:

1. a LATEX source file that defines commands to build a typeset version of the definition;

2. a Coq version of the definition;

3. a HOL version of the definition;

4. an Isabelle/HOL version of the definition;

5. an OCaml version of the syntax of the definition.

Additionally, it can be run as a filter, taking a LATEX/Coq/Isabelle/HOL/OCaml source file with em-
bedded (symbolic) terms of the defined language, parsing them and replacing them by typeset terms.

This document is a user guide for the tool. The papers

• Ott: Effective Tool Support for the Working Semanticist. Peter Sewell, Francesco Zappa Nardelli,
Scott Owens, Gilles Peskine, Thomas Ridge, Susmit Sarkar, Rok Strnǐsa. Journal of Functional
Programming 20(1):71-122, 2010 [SZNO+10].

• Ott: Effective Tool Support for the Working Semanticist. Peter Sewell, Francesco Zappa Nardelli,
Scott Owens, Gilles Peskine, Thomas Ridge, Susmit Sarkar, Rok Strnǐsa. ICFP’07 [SZNO+07].

gives an overview of the project, including discussion of motivation, design decisions, and related work,
and one should look at that together with this manual. The project web page

http://www.cl.cam.ac.uk/users/pes20/ott/

includes source and binary distributions of the tool, under a BSD-style licence. It also has a range of
examples, including untyped and simply typed CBV lambda calculus, ML polymorphism, various first-
order systems from Pierce’s TAPL [Pie02], the POPLmark F<: language [ABF

+05], a module system by
Leroy [Ler96, §4] (extended with a term language and an operational semantics), the LJ Java fragment
and LJAM Java module system [SSP07], and a substantial fragment of OCaml.

Our main goal is to support work on large programming language definitions, where the scale makes
it hard to keep a definition internally consistent, and hard to keep a tight correspondence between a
definition and implementations. We also wish to ease rapid prototyping work with smaller calculi, and
to make it easier to exchange definitions and definition fragments between groups. Most simply, the tool
can be used to aid completely informal LATEX mathematics. Here it permits the definition, and terms
within proofs and exposition, to be written in a clear, editable, ASCII notation, without LATEX noise. It
generates good-quality typeset output. By parsing (and so sort-checking) this input, it quickly catches
a range of simple errors, e.g. inconsistent use of judgement forms or metavariable naming conventions.
That same input, extended with some additional data, can be used to generate formal definitions for Coq,
HOL, and Isabelle. It should thereby enable a smooth transition between use of informal and formal
mathematics. Further, the tool can automatically generate definitions of functions for free variables,
single and multiple substitutions, subgrammar checks (e.g. for value subgrammars), and binding auxiliary
functions. Ott supports a ‘fully concrete’ representation, sufficient for many examples but not dealing
with general alpha equivalence. An experimental Coq backend generates definitions in locally-nameless
style for a subset of the Ott metalanguage. The OCaml backend generates type definitions that may
be useful for developing a complete implementation of the language, together with the functions listed
above. It does not generate anything for inductively defined relations (the various proof-assistant code
extraction facilities can sometimes be used for that). Our focus here is on the problem of writing and
editing language definitions, not (directly) on aiding mechanized proof of metatheory. If one is involved
in hard proofs about a relatively stable small calculus then it will aid only a small part of the work
(and one might choose instead to work just within a single proof assistant), but for larger languages the
definition is a more substantial problem — so much so that only a handful of full-scale languages have
been given complete definitions. We aim to make this more commonplace, less of a heroic task.

4



2 Getting started with Ott

2.1 Directory contents

The source distribution contains:

doc/ the user guide, in html, pdf, and ps
emacs/ an Ott Emacs mode
tex/ auxiliary files for LaTeX
coq/ auxiliary files for Coq
hol/ auxiliary files for HOL
tests/ various small example Ott files
examples/ some larger example Ott files
src/ the (OCaml) Ott sources
bin/ the Ott binary (binary distro only)
Makefile a Makefile for the examples
LICENCE the BSD-style licence terms
README this file (Section 2 of the user guide)
revision history.txt the revision history
ocamlgraph-0.99a.tar.gz a copy of the ocamlgraph library

(we no longer provide a Windows binary distribution)

2.2 To build

Ott depends on OCaml version 3.09.1 or later. In particular, Ott cannot be compiled with OCaml 3.08.
It also touched an OCaml bug in 3.10.0 for amd64, fixed in 3.10.1.

The command

make world

builds the ott binary in the bin/ subdirectory.

This will compiles Ott using ocamlopt. To force it to compile with ocamlc (which may give significantly
slower execution of Ott), do ”make world.byt”.

2.3 To run

Ott runs as a command-line tool. Executing bin/ott shows the usage and options. To run Ott on the
test file tests/test10.ott, generating LaTeX in test10.tex and Coq in test10.v, type:

bin/ott -i tests/test10.ott -o test10.tex -o test10.v

Isabelle and HOL can be generated with options -o test10.thy and -o test10Script.sml respectively.

The Makefile has various sample targets, ”make tests/test10.out”, ”make test7”, etc. Typically
they generate:

out.tex LaTeX source for a definition
out.ps the postscript built from that
out.v Coq source
outScript.sml HOL source
out.thy Isabelle source

from files test10.ott, test8.ott, etc., in tests/.

5



% minimal

metavar termvar, x ::=

grammar

t :: ’t_’ ::=

| x :: :: Var

| \ x . t :: :: Lam

| t t’ :: :: App

| ( t ) :: S:: Paren

| { t / x } t’ :: M:: Tsub

v :: ’v_’ ::=

| \ x . t :: :: Lam

subrules

v <:: t

defns

Jop :: ’’ ::=

defn

t1 --> t2 :: ::reduce::’’ by

-------------------------- :: ax_app

(\x.t12) v2 --> {v2/x}t12

t1 --> t1’

-------------- :: ctx_app_fun

t1 t --> t1’ t

t1 --> t1’

-------------- :: ctx_app_arg

v t1 --> v t1’

Figure 1: Source: test10.0.ott

2.4 Emacs mode

The file emacs/ottmode.el defines a very simple Emacs mode for syntax highlighting of Ott source files.
It can be used by, for example, adding the following to your .emacs, replacing PATH by a path to your
Ott emacs directory.

(setq load-path (cons (expand-file-name "PATH") load-path))

(require ’ottmode)

2.5 Copyright information

The ocamlgraph library is distributed under the LGPL (from http://www.lri.fr/~filliatr/ftp/ocamlgraph/);
we include a snapshot for convenience. For its authorship and copyright information see the files therein.

All other files are distributed under the BSD-style licence in LICENCE.

3 A minimal Ott source file: the untyped CBV lambda calculus

Fig. 1 shows an Ott source file for an untyped call-by-value (CBV) lambda calculus. This section explains
the basic features that appear there, while in the following sections we show what must be added to
generate typeset output, proof assistant definitions, and other things. The figure is colourised, with Ott

6



keywords like this and Ott symbols such as | and ::. Other user-specific input appears like this.

At the top of the figure, the metavar declaration introduces a sort of metavariables termvar (with
synonym x), for term variables. The following grammar introduces two grammar rules, one for terms,
with nonterminal root t, and one for values v. This specifies the concrete syntax of object-language
terms, the abstract syntax representations for proof-assistant mathematics, and the syntax of symbolic
terms to be used in semantic rules.

Each rule has a rule name prefix (e.g. ’t ’) and then a list of productions. Each production, e.g.

| \ x . t :: :: Lam

specifies a syntactic form as a list of elements, here ‘\’, ‘x’, ‘.’, and ‘t’, each of which is either a
metavariable (the ‘x’), a nonterminal (the ‘t’), or a terminal (\ . ( ) { } / -->). Within productions
all elements must be whitespace-separated, so that the tool can deduce which are terminals. In the
symbolic terms in the semantic rules below, however, whitespace is required only where necessary. A few
terminals have to be quoted (with ’’) if they appear in a grammar, e.g. to use | as an object-language
token, as they are part of the Ott syntax, but they do not have to be quoted at usage points. (If one
accidentally omits inter-token whitespace in the grammar, the output of Ott can be surprising. This is
best diagnosed by looking at the colourised ASCII or LATEX output from Ott.)

Metavariables and nonterminals can be formed from the specified metavariable and nonterminal roots
by appending a suffix, e.g. the nonterminal t’ in the App and Tsub productions.

Between the ::’s is an optional meta flag M or S. Non-meta productions give rise to clauses of datatype
definitions in the Isabelle/Coq/HOL output, whereas meta productions do not. Later, we will see how
the user can specify how meta syntax should be translated away when generating proof assistant output.
The two flags M and S are identical except that productions with the latter are admitted when parsing
example concrete terms; the S tag is thus appropriate for lightweight syntactic sugar, such as productions
for parentheses.

Each production has a production name (e.g. t_Lam), composed of the rule name prefix (here t_) and the
production name kernel that follows the ::’s (here Lam). The production name is used as a constructor
name in the generated Isabelle/Coq/HOL.

The tool supports arbitrary context-free grammars, extended with special constructs for list forms
(c.f. §12).
Following the grammar in this example is a subrule declaration

subrules

v <:: t

declaring that the v grammar rule (of values) is a subgrammar of the t rule (of terms). The tool checks
that there is in fact a subgrammar relationship, i.e. that for each production of the lower rule there
exists a production of the higher rule with corresponding elements (up to the subrule relation). The
subrule declaration means that, in the semantic rules below, we will be able to use v’s in places where the
grammar specifies t’s. In the generated Isabelle/Coq/HOL for this example only one free datatype will
be generated, for the t rule, while for the v rule we generate an is_v predicate over the t type. Usages
of v nonterminals in the semantic rules will have instances of this predicate automatically inserted.

Finally, we give a collection of definitions of inductive relations. In this example there is just one family
of definitions (of operational judgements), introduced by the defns Jop; it contains just one definition
of a relation, called reduce. In general there may be many defns blocks, each of which introduces
a mutually recursive collection of defns. The relation definition defn ... also includes a grammar
production specifying how elements of the relation can be written and typeset, here

t1 --> t2

As in the main grammar, the tokens of this syntax definition in the header must be space-separated, but
usages of the syntax generally need not be. Syntax rules for each family of judgements, and for their
union, are implicitly generated. The relation definition is given by a sequence of inference rules, each
with a horizontal line separating a number of premises from a conclusion, for example as below.

7



t1 --> t1’

-------------- :: ctx_app_arg

v t1 --> v t1’

The conclusion must be a symbolic term of the form of the judgement being defined. In simple cases (as
here) the premises can be symbolic terms of the form of any of the defined judgements. More generally
(see §6) they can be symbolic terms of a user-defined formula grammar, or in-line embedded prover
code. Each rule has a name, composed of a definition family prefix (here empty), a definition prefix
(here also empty) and a kernel (the ctx_app_arg).

The symbolic terms in semantic rules are parsed with a scannerless parser, built using parser combinators
over character-list inputs. The parser searches for all parses of the input. If none are found, the ASCII
and TeX output are annotated no parses, with a copy of the input with *** inserted at the point where
the last token was read. This is often at the point of the error (though if, for example, a putative dot
form is read but the two element lists cannot be anti-unified, it will be after the point of the error). If
multiple parses are found, the TeX output is annotated multiple parses and the different parses are
output to the console in detail during the Ott run. If the option picky multiple parses is set to true,
multiple parses are always reported. If it set to false, a symbolic term is considered ambiguous only if
two different parses compile to different strings (for a target). The parser combinators use memoization
and continuation-passing to achieve reasonable performance on the small symbolic terms that are typical
in semantic rules. Their performance on large (whole-program size) examples is untested. To resolve
ambiguity one can add metaproductions for parentheses (as in Fig. 1), or production-name annotations in
particular symbolic terms, e.g. the :t_tsub: in the AppAbs rule of the POPLmark example, test7.ott.
There is currently no support for precedence or associativity.

This file is included in the distribution as tests/test10.0.ott. It can be processed by executing

bin/ott -i tests/test10.0.ott

from the main directory. This simply reads in the file, checking that it is well-formed. Adding options:

bin/ott -show sort true -show defns true -i tests/test10.0.ott

it echos a colourised version to the screen, with metavariables in red, nonterminals in yellow, terminals
in green, and object variables in white. The colourisation uses vt220 control codes; if they do not work
on your screen add -colour false to the middle of the command line. To suppress the echo of the
definition, add -show post sort false and -show defns false.

3.1 Index variables

In addition to the metavar declarations above, the user can declare any number of distinguished index
metavariables, e.g. by:

indexvar index, i, j, n, m ::= {{ isa num }} {{ coq nat }} {{ hol num }}

Given such a declaration, index, i, j, n and m can be used in suffixes, e.g. in the production

| ( t1 , .... , tn ) :: :: Tuple

There is a fixed ad-hoc language of suffixes, including numbers, primes, and index variables (see §22).
Index metavariables cannot themselves be suffixed.

4 Generating LATEX

The example from the previous section can already be used to generate LATEX, for example by executing

bin/ott -i tests/test10.0.ott -o out.tex

to produce a LATEX file out.tex. One often needs to fine-tune the default typesetting, as illustrated in
Figure 2 (the Ott source) and Figure 3 (the resulting LATEX). (The latter was built using the additional
option -tex_show_meta false, to suppress display of the metaproductions.) The source file has three

8



% minimal + latex + comments

metavar termvar, x ::=

{{ tex \mathit{[[termvar]]} }}

grammar

t :: ’t_’ ::= {{ com term }}

| x :: :: Var {{ com variable}}

| \ x . t :: :: Lam {{ com lambda }}

| t t’ :: :: App {{ com app }}

| ( t ) :: S:: Paren

| { t / x } t’ :: M:: Tsub

v :: ’v_’ ::= {{ com value }}

| \ x . t :: :: Lam {{ com lambda }}

terminals :: ’terminals_’ ::=

| \ :: :: lambda {{ tex \lambda }}

| --> :: :: red {{ tex \longrightarrow }}

subrules

v <:: t

defns

Jop :: ’’ ::=

defn

t1 --> t2 :: ::reduce::’’ {{ com [[t1]] reduces to [[t2]]}} by

-------------------------- :: ax_app

(\x.t12) v2 --> {v2/x}t12

t1 --> t1’

-------------- :: ctx_app_fun

t1 t --> t1’ t

t1 --> t1’

-------------- :: ctx_app_arg

v t1 --> v t1’

Figure 2: Source: test10.2.ott

9



termvar , x

t ::= term
| x variable
| λx .t lambda
| t t ′ app
| (t) S

v ::= value
| λx .t lambda

t1 −→ t2 t1 reduces to t2

(λx .t12) v2 −→ {v2/x}t12
ax app

t1 −→ t ′1
t1 t −→ t ′1 t

ctx app fun

t1 −→ t ′1
v t1 −→ v t ′1

ctx app arg

Figure 3: Generated LATEX: test10.2.tex

additions to the previous file. Firstly, the metavar declaration is annotated with a specification of how
metavariables should be translated to LATEX:

metavar termvar, x ::=

{{ tex \mathit{[[termvar]]} }}

Inside the {{ tex . . . }} is some LATEX code \mathit{[[termvar]]} giving the translation of a termvar
or x. Here they are typeset in math italic (which in fact is also the default). Within the translation, the
metavariable itself can be mentioned inside double square brackets [[ . . . ]].

Secondly, there is a grammar for a distinguished nonterminal root terminals, with a {{ tex . . . }}

translation for each, overriding the default typesetting of some terminals. Note that the other terminals
(. ( ) { } /) are still given their default typesetting.

terminals :: ’terminals_’ ::=

| \ :: :: lambda {{ tex \lambda }}

| --> :: :: red {{ tex \longrightarrow }}

Thirdly, the file has com comments, including the {{ com term }} attached to a grammar rule, the {{

com variable}} attached to a production, and the {{ com [[t1]] reduces to [[t2]]}} attached to
a semantic relation. These appear in the LATEX output as shown in Figure 3.

4.1 Specifying LATEX for productions

One can also specify tex translations for productions, overriding the default LATEX typesetting, e.g. as
in this example of a type abstraction production.

| X <: T . t :: :: TLam {{ tex \Lambda [[X]] [[<:]] [[T]]. \, [[t]] }}

These homomorphisms, or homs1, can refer to the metavariables and nonterminals that occur in the
production, e.g. the [[X]], [[T]], and [[t]] in the tex hom above, interleaved with arbitrary strings
and with typeset elements of the terminals grammar, e.g. the [[<:]].

Homomorphisms are applied recursively down the structure of symbolic terms. For example, an F<:

term

1Strictly, clauses of primitive recursive function definitions from symbolic terms to strings, here of LATEX code.

10



(\X<:T11.t12) [T2]

would be LATEX-pretty-printed, using the tex clause above, as

( \, \Lambda \mathit{X} <: \mathit{T_{\mathrm{11}}} . \, \mathit{t_{\mathrm{12}}} \, )

\, \, [ \, \mathit{T_{\mathrm{2}}} \, ]

which is typeset as below.
( ΛX <: T11. t12 ) [T2 ]

Note the X, T11 and t12 of the symbolic term are used to instantiate the formal parameters X, T and t

of the homomorphism definition clause. If the t itself had compound term structure, e.g. as below

(\X<:T. \X’<:T’.x)

the homomorphism would be applied recursively, producing

( \, \Lambda \mathit{X} <: \mathit{T} . \, \Lambda \mathit{X’} <: \mathit{T’}

. \, \mathit{x} \, \, )

typeset as follows.
( ΛX <: T .ΛX ′ <: T ′. x )

Where there is no user-supplied homomorphism clause the LATEX pretty-printing defaults to a sequence
of the individual items separated by thin spaces (\,), with reasonable default fonts and making use of
the terminals grammar where appropriate.

4.2 Specifying LATEX for grammar rules

Grammar rules can include a tex hom specifying how all the nonterminal roots should be typeset, e.g.

type, t, s :: Typ_ ::= {{ tex \mathsf{[[type]]} }}

| unit :: :: unit

| type * type’ :: :: pair

| type -> type’ :: :: fun

Alternatively, the individual nonterminal roots can have tex homs specifying how they should be typeset:

G {{ tex \Gamma }} , D {{ tex \Delta }} :: ’G_’ ::=

| empty :: :: empty

| G , x : T :: :: term

permitting the user to write G’, D12 etc. in symbolic terms, to be typeset as Γ′, ∆12, etc.

4.3 Using the LATEX code

The generated LATEX code can be used in two main ways. By default, Ott generates a stand-alone LATEX
file, with a standard wrapper (including a \documentclass, various macro definitions, and a main body),
that gives the complete system definition.

The default header can be overridden by writing embed {{ tex-wrap-pre ... }} and the default
footer by writing embed {{ tex-wrap-post ... }} . Alternatively, the program option -tex_wrap false

with the -tex_wrap false command-line argument, one can generate a file that can be included in other
LATEX files, that just defines macros to typeset various parts of the system (-tex_wrap false overrides
any tex-wrap-pre/tex-wrap-post embeds).

The generated LATEX output is factored into individual LATEX commands: for the metavariable declara-
tions, each rule of the syntax definition, the collected syntax (\ottgrammar), each rule of the inductive
relation definitions, the collected rules for each relation, the collected rules for each defns block, the
union of those (\ottdefns) and the whole (\ottall). This makes it possible to quote individual parts
of the definition, possibly out-of-order, in a paper or technical report.

If one needs to include more than one system in a single LATEX document, the ott prefix can be replaced
using the -tex_name_prefix command-line argument.

11



The generated LATEX is factored through some common style macros, e.g. to typeset a comment, a
production, and a grammar. If necessary these can be redefined in an embed block (see Section 8.1). For
example, the file tests/squishtex.ott

embed

{{ tex-preamble

\renewcommand{\[[TEX_NAME_PREFIX]]grammartabular}[1]

{\begin{minipage}{\columnwidth}\begin{tabular}{ll}#1\end{tabular}\end{minipage} }

\renewcommand{\[[TEX_NAME_PREFIX]]rulehead}[3]

{$#1$ $#2$ & $#3$}

\renewcommand{\[[TEX_NAME_PREFIX]]prodline}[6]

{ \quad $#1$ \ $#2$ & \quad $#3 #4$ $#5$ $#6$}

\renewcommand{\[[TEX_NAME_PREFIX]]interrule}

{\\[2.0mm]}

}}

defines a more compact style for grammars. Note that the [[TEX NAME PREFIX]] is replaced by whatever
prefix is in force, so such style files can be reused in different contexts.

A more sophisticated LATEX package ottlayout.sty, providing fine control of how inference rules and
grammars should be typeset, is contained in the tex directory of the distribution. It is described in the
manual therein.

5 Generating proof assistant definitions

To generate proof assistant definitions, for Coq, Isabelle, and HOL, the minimal Ott source file of
Section 3/Figure 1 must be extended with a modest amount of additional data, as shown in Figure 4.
Executing

bin/ott -i tests/test10.4.ott -o out.v -o out.thy -o outScript.sml

generates Coq out.v, Isabelle out.thy, and HOL outScript.sml, shown in Figures 5, 6, and 7. The
additional data can be combined with the annotations for LATEX of the previous section, but those are
omitted here. We add four things. First, we specify proof assistant types to represent object-language
variables — in this example, choosing the string type of Isabelle and HOL, and the nat type for Coq:

metavar termvar, x ::=

{{ isa string}} {{ coq nat}} {{ hol string}} {{ coq-equality }}

For Coq output, one can specify {{ coq-equality proof-script }} to build a decidable equality over
the Coq representation type using the proof proof-script. If the script is omitted, as in this example, it
defaults to

Proof.

decide equality; auto with ott_coq_equality arith.

Defined.

where the ott_coq_equality database contains the decidable equalities of the representation types
defined in the source. It is possible to suppress type generation for specific metavariables or nonterminals,
by adding the declaration {{ phantom }}. This is useful in some cases, for instance to avoid duplicate
definitions of types already defined in an imported library. Any type homs are taken into account when
the metavariable or nonterminal root is output as a type.

Second, we specify what the binding is in the object language, with the (+ bind x in t +) annotation
on the Lam production:

| \ x . t :: :: Lam (+ bind x in t +)

Section 9 describes the full language of binding specifications.

Third, we add a block

12



% minimal + binding + subst + coq/hol/isa

metavar termvar, x ::=

{{ isa string}} {{ coq nat}} {{ hol string}} {{ coq-equality }}

grammar

t :: ’t_’ ::=

| x :: :: Var

| \ x . t :: :: Lam (+ bind x in t +)

| t t’ :: :: App

| ( t ) :: S:: Paren {{ icho [[t]] }}

| { t / x } t’ :: M:: Tsub {{ icho (tsubst_t [[t]] [[x]] [[t’]])}}

v :: ’v_’ ::=

| \ x . t :: :: Lam

subrules

v <:: t

substitutions

single t x :: tsubst

defns

Jop :: ’’ ::=

defn

t1 --> t2 :: ::reduce::’’ by

-------------------------- :: ax_app

(\x.t12) v2 --> {v2/x}t12

t1 --> t1’

-------------- :: ctx_app_fun

t1 t --> t1’ t

t1 --> t1’

-------------- :: ctx_app_arg

v t1 --> v t1’

Figure 4: Source: test10.4.ott

13



substitutions

single t x :: tsubst

to cause Ott to generate Coq/Isabelle/HOL definitions of a substitution function, with name root tsubst,
replacing metavariables x by terms t. This is for single substitutions; multiple substitution functions
(taking lists of substitutand/substitutee pairs) can also be generated with the keyword multiple. Sub-
stitution functions are generated for all rules of the grammar for which they might be required — here,
just over t, with a function named tsubst_t.

Finally, we specify translations for the metaproductions:

| ( t ) :: S:: Paren {{ icho [[t]] }}

| { t / x } t’ :: M:: Tsub {{ icho (tsubst_t [[t]] [[x]] [[t’]])}}

These specify that (t) should be translated into just the translation of t, whereas {t/x}t’ should be
translated into the proof-assistant application of tsubst t to the translations of t, x, and t’. The
(admittedly terse) icho specifies that these translations should be done uniformly for Isabelle, Coq,
HOL, and OCaml output. One can also specify just one of these, writing {{ coq . . .}}, {{ hol . . .}},
{{ isa . . .}}, or {{ ocaml . . .}}, or include several, with different translations for each. There are also
abbreviated forms ich, ic, ch, and ih. The body of a proof assistant hom should normally include
outer parentheses, as in the Tsub hom above, so that it is parsed correctly by the proof assistant in all
contexts.

5.1 Proof assistant code for grammar rules

The normal behaviour is to generate a free proof assistant type for each (non-subrule, non-phantom)
grammar rule. For example, the Coq compilation for t here generates a free type with three constructors:

Inductive term : Set :=

| t_var (x:var)

| t_lam (x:var) (t:term)

| t_app (t:term) (t’:term).

(note that the metaproductions do not give rise to constructors).

Remark: prior to version 0.20.2, the free type generated for Coq was

Inductive term : Set :=

| t_var : var -> term

| t_lam : var -> term -> term

| t_app : term -> term -> term.

but we found that trying to preserve the names specified by the user is helpful later, when doing proofs.
Whenever a clash is detected, or for list forms, the wildcard is used. The old behaviour can be obtained
via the top-level option -coq names in rules false.

By default the order of the arguments to those constructors follows the order in which they appear in
the production. That can be overridden with an order hom. For example, if for some reason (perhaps
compatibility with other Coq code) one wished the arguments to t_Lam to be reversed:

| t_Lam : t -> termvar -> t

one could add an order hom as below.

| \ x . t :: :: Lam {{ order [[t]] [[x]] }}

Instead of using the generated free type, one can specify an arbitrary proof assistant representation
type, annotating the grammar rule with a coq, isa, hol, or ocaml hom — for example, in the following
grammar for substitutions.

s {{ tex \sigma }} :: ’S_’ ::= {{ com multiple subst }} {{ isa (termvar*t) list }}

| [ x |-> t ] :: :: singleton {{ isa [ ([[x]],[[t]]) ] }}

| s1 , .. , sn :: :: list {{ isa List.concat [[s1 .. sn]] }}

14



(* generated by Ott 0.21.2 from: ../tests/test10.ott ../tests/non_super_tabular.ott *)

Require Import Arith.

Require Import Bool.

Require Import List.

Definition var := nat. (*r term variable *)

Lemma eq_var: forall (x y : var), {x = y} + {x <> y}.

Proof.

decide equality; auto with ott_coq_equality arith.

Defined.

Hint Resolve eq_var : ott_coq_equality.

Inductive term : Set := (*r term *)

| t_var (x:var) (*r variable *)

| t_lam (x:var) (t:term) (*r lambda *)

| t_app (t:term) (t’:term) (*r app *).

(** subrules *)

Definition is_val_of_term (t5:term) : Prop :=

match t5 with

| (t_var x) => False

| (t_lam x t) => (True)

| (t_app t t’) => False

end.

(** library functions *)

Fixpoint list_mem A (eq:forall a b:A,{a=b}+{a<>b}) (x:A) (l:list A) {struct l} : bool :=

match l with

| nil => false

| cons h t => if eq h x then true else list_mem A eq x t

end.

Implicit Arguments list_mem.

(** substitutions *)

Fixpoint tsubst_term (t5:term) (x5:var) (t_6:term) {struct t_6} : term :=

match t_6 with

| (t_var x) => (if eq_var x x5 then t5 else (t_var x))

| (t_lam x t) => t_lam x (if list_mem eq_var x5 (cons x nil) then t else (tsubst_term t5 x5 t))

| (t_app t t’) => t_app (tsubst_term t5 x5 t) (tsubst_term t5 x5 t’)

end.

(** definitions *)

(* defns Jop *)

Inductive reduce : term -> term -> Prop := (* defn reduce *)

| ax_app : forall (x:var) (t1 v2:term),

is_val_of_term v2 ->

reduce (t_app (t_lam x t1) v2) (tsubst_term v2 x t1 )

| ctx_app_fun : forall (t1 t t1’:term),

reduce t1 t1’ ->

reduce (t_app t1 t) (t_app t1’ t)

| ctx_app_arg : forall (v t1 t1’:term),

is_val_of_term v ->

reduce t1 t1’ ->

reduce (t_app v t1) (t_app v t1’).

Figure 5: Generated Coq:test10.v

15



(* generated by Ott 0.21.2 from: ../tests/test10.ott ../tests/non_super_tabular.ott *)

theory test10

imports Main "~~/src/HOL/Library/Multiset"

begin

types "var" = "string" -- {* term variable *}

datatype "term" = -- {* term *}

t_var "var" -- {* variable *}

| t_lam "var" "term" -- {* lambda *}

| t_app "term" "term" -- {* app *}

(** subrules *)

primrec

is_val_of_term :: "term => bool"

where

"is_val_of_term (t_var x) = (False)"

| "is_val_of_term (t_lam x t) = ((True))"

| "is_val_of_term (t_app t t’) = (False)"

(** substitutions *)

primrec

tsubst_term :: "term => var => term => term"

where

"tsubst_term t5 x5 (t_var x) = ((if x=x5 then t5 else (t_var x)))"

| "tsubst_term t5 x5 (t_lam x t) = (t_lam x (if x5 : set [x] then t else (tsubst_term t5 x5 t)))"

| "tsubst_term t5 x5 (t_app t t’) = (t_app (tsubst_term t5 x5 t) (tsubst_term t5 x5 t’))"

(** definitions *)

(* defns Jop *)

inductive reduce :: "term \<Rightarrow> term \<Rightarrow> bool"

where

(* defn reduce *)

ax_appI: "\<lbrakk>is_val_of_term v2\<rbrakk> \<Longrightarrow>

reduce ((t_app (t_lam x t1) v2)) ( (tsubst_term v2 x t1 ) )"

| ctx_app_funI: "\<lbrakk>reduce (t1) (t1’)\<rbrakk> \<Longrightarrow>

reduce ((t_app t1 t)) ((t_app t1’ t))"

| ctx_app_argI: "\<lbrakk>is_val_of_term v ;

reduce (t1) (t1’)\<rbrakk> \<Longrightarrow>

reduce ((t_app v t1)) ((t_app v t1’))"

end

Figure 6: Generated Isabelle:test10.thy

16



(* generated by Ott 0.21.2 from: ../tests/test10.ott ../tests/non_super_tabular.ott *)

(* to compile: Holmake test10Theory.uo *)

(* for interactive use:

app load ["pred_setTheory","finite_mapTheory","stringTheory","containerTheory","ottLib"];

*)

open HolKernel boolLib Parse bossLib ottLib;

infix THEN THENC |-> ## ;

local open arithmeticTheory stringTheory containerTheory pred_setTheory listTheory

finite_mapTheory in end;

val _ = new_theory "test10";

val _ = type_abbrev("var", ‘‘:string‘‘); (* term variable *)

val _ = Hol_datatype ‘

term = (* term *)

t_var of var (* variable *)

| t_lam of var => term (* lambda *)

| t_app of term => term (* app *)

‘;

(** subrules *)

val _ = ottDefine "is_val_of_term" ‘

( is_val_of_term (t_var x) = F)

/\ ( is_val_of_term (t_lam x t) = (T))

/\ ( is_val_of_term (t_app t t’) = F)

‘;

(** substitutions *)

val _ = ottDefine "tsubst_term" ‘

( tsubst_term t5 x5 (t_var x) = (if x=x5 then t5 else (t_var x)))

/\ ( tsubst_term t5 x5 (t_lam x t) = t_lam x (if MEM x5 [x] then t else (tsubst_term t5 x5 t)))

/\ ( tsubst_term t5 x5 (t_app t t’) = t_app (tsubst_term t5 x5 t) (tsubst_term t5 x5 t’))

‘;

(** definitions *)

(* defns Jop *)

val (Jop_rules, Jop_ind, Jop_cases) = Hol_reln‘

(* defn reduce *)

( (* ax_app *) ! (x:var) (t1:term) (v2:term) . (clause_name "ax_app") /\

((is_val_of_term v2))

==>

( ( reduce (t_app (t_lam x t1) v2) (tsubst_term v2 x t1 ) )))

/\ ( (* ctx_app_fun *) ! (t1:term) (t:term) (t1’:term) . (clause_name "ctx_app_fun") /\

(( ( reduce t1 t1’ )))

==>

( ( reduce (t_app t1 t) (t_app t1’ t) )))

/\ ( (* ctx_app_arg *) ! (v:term) (t1:term) (t1’:term) . (clause_name "ctx_app_arg") /\

((is_val_of_term v) /\

( ( reduce t1 t1’ )))

==>

( ( reduce (t_app v t1) (t_app v t1’) )))

‘;

val _ = export_theory ();

Figure 7: Generated HOL:test10Script.sml
17



Here the {{ isa (termvar*t) list }} hom specifies that in Isabelle output this type be represented
as an Isabelle (termvar*t) list instead of the default free inductive type; all the productions are
metaproductions (tagged M); and isa homs for each production specify how they should be translated into
that Isabelle type. This feature must be used with care, as any Ott-generated functions, e.g. substitution
functions, cannot recurse through such user-defined types.

Grammar rules (whether free or non-free) can also include a coq equality hom, instructing the Coq
code generator to derive a decidable equality for the Coq representation type. For example, the ML
polymorphism Ott source of test8.ott includes the following.

typvar :: TV_ ::= {{ coq-equality decide equality. apply eq_value_name_t. }}

| ’ ident :: :: ident

The Coq/HOL/Isabelle/OCaml type name for a grammar rule, or for a metavariable declaration, is
normally taken to be just its primary nonterminal root. Occasionally it is useful to work around a clash
between a metavar or nonterminal primary root and a proof assistant symbol, e.g. T in HOL or value in
Isabelle. For this, one can add a coq, hol, isa, or ocaml hom to the primary nonterminal root. In the
example below, the user can write T, T’ etc. in their Ott source, but the generated HOL type is Typ.

T {{ hol Typ }}, S, U :: ’T_’ ::= {{ com type }}

| T -> T’ :: :: Fun {{ com type of functions }}

The grammar rules within each grammar block of a syntax definition may depend on each other arbitrar-
ily. When generating Isabelle/Coq/HOL/OCaml representation types, however, they are topologically
sorted, to simplify the resulting induction principles.

5.2 Proof assistant code for inductive definitions

The semantic relations are defined with the proof-assistant inductive relations packages, Inductive,
Hol_reln, and inductive_set or inductive, respectively. Each defns block gives rise to a potentially
mutually recursive definition of each defn inside it (it seems clearer not to do a topological sort here).
Definition rules are expressed internally with symbolic terms. We give a simplified grammar thereof
in Fig. 17, omitting the symbolic terms for list forms. A symbolic term st for a nonterminal root is
either an explicit nonterminal or a node, the latter labelled with a production name and containing a
list of symterm elements, which in turn are either symbolic terms, metavariables, or variables. Each
definition rule gives rise to an implicational clause, essentially that the premises (Ott symbolic terms
of the formula grammar) imply the conclusion (an Ott symbolic term of whichever judgement is being
defined). Symbolic terms are compiled in several different ways:

• Nodes of non-meta productions are output as applications of the appropriate proof-assistant con-
structor (and, for a subrule, promoted to the corresponding constructor of a maximal rule).

• Nodes of meta productions are transformed with the user-specified homomorphism.

• Nodes of judgement forms are represented as applications of the defined relation in Coq and HOL,
and as set-membership assertions in Isabelle.

• Lists of formulae (the formula_dots production, c.f.§12) are special-cased to proof-assistant con-
junctions.

Further, for each nonterminal of a non-free grammar rule, e.g. a usage of v’ where v<::t, an additional
premise invoking the generated subrule predicate for the non-free rule is added, e.g. is_v v’. For Coq
and HOL, explicit quantifiers are introduced for all variables mentioned in the rule. For HOL, rules are
tagged with their rule name (using clause_name).

5.3 Representation of binding

At present the generated Isabelle/Coq/HOL uses fully concrete representations of variables in terms,
without any notion of alpha equivalence, as one can see in Fig. 6: see the t datatype of terms and the

18



tsubst_t substitution function there. An experimental Coq backend generates definitions in locally-
nameless style for a subset of the Ott metalanguage. This is work-in-progress, and it is extensively
documented in http://moscova.inria.fr/ zappa/projects/ln ott/. We intend in future to generate
other representations, and in some circumstances homs can be used to implement other representations
directly. For a reasonably wide variety of languages, however, one can capture the intended semantics
of whole programs in this idiom, subject only to the condition that standard library identifiers are not
shadowed within the program, as the operational semantics does not involve reduction under binders —
so any substitutions are of terms which (except for standard library identifiers) are closed. This includes
the ML polymorphism example of test8.ott. For languages which require a type environment with
internal dependencies, however, for example F<:, this is no longer the case. The POPLmark F<: example
given in test7.ott has a type system which disallows all shadowing, a property that is not preserved
by reduction. However, a correct translation of F<: is generated by the Coq locally-nameless backend,
and can be found in http://moscova.inria.fr/ zappa/projects/ln ott/.

Further discussion of binding representations is in the Ott ICFP 2007 paper and in a working draft

Binding and Substitition. Susmit Sarkar, Peter Sewell, and Francesco Zappa Nardelli. August
2007.

available from the Ott web page.

5.4 Helper functions for free variable and substitution functions

The generated free variable and substitution functions in the Coq output (e.g., in Figure 5) often rely on
a few standard library functions: list_mem, list_assoc, list_minus, list_minus2. In order to avoid
dependencies on external libraries for defining those functions, by default Ott generates the definitions
for any such functions it uses. It is possible to turn off the generation of definitions for these such
functions by writing the following directive early on in the source file:

embed {{ coq-lib list_mem list_minus }}

This instructs Ott to avoid generating definition for list_mem and list_minus, but to continue gener-
ating definitions for other functions such as list_assoc and list_minus2.

Note about list_minus2: Instead of using the function list_minus2, earlier versions of Ott generated
equivalent code based on list_filter, which was more difficult to reason about. For backwards com-
patibility, however, we provide the command-line option -coq_use_filter_fn for generating a definition
using the older code pattern.

5.5 Correctness of the generated proof assistant code

We have attempted to ensure that the proof assistant definitions generated by Ott are well-formed and
what the user would intend. This is not guaranteed, however, for several reasons: (1) There may be
name clashes between Ott-generated identifiers and proof assistant built-in identifiers (or, in pathological
cases, even among different Ott-generated identifiers). (2) In some cases we depend on automatic proof
procedures, e.g. for HOL definitions. These work in our test cases, but it is hard to ensure that they
will in all cases. More importantly, (3) the generation process is complex, so it is quite possible that
there is either a bug in Ott or a mismatch between the user expectation and what the tool actually does.
Ultimately one has to read the generated proof assistant definitions to check that they are as intended
— but typically one would do this in any case, many times over, in the process of proving metatheoretic
results, so we do not consider it a major issue.

5.6 Using the generated proof assistant code

Ott builds code for

19



Coq 8.3 http://coq.inria.fr/

HOL 4 (the current svn version) http://hol.sourceforge.net/

Isabelle/HOL (Isabelle 2011) http://isabelle.in.tum.de/

Given proof assistant files in the top-level directory of the distribution, as produced at the start of this
section (Coq out.v, Isabelle out.thy, and HOL outScript.sml), the various proof assistants can be
invoked as follows.

5.6.1 Coq

First run

make

in the coq directory of the distribution, to build the auxiliary files. These include a core file (ott_list_core)
of definitions that are used in Ott-generated output. At present these are only required when Coq native
lists are used. There are also various lemmas (in ott_list.v) which may be useful; they can be made
available with Require Import ott_list.

For batch mode run

coqc -I coq out.v

where coq is the path to the coq directory of the distribution.

The experimental locally-nameless backend requires the Metatheory library by Arthur Chargueraud,
available from the project web page.

5.6.2 HOL

First run

Holmake

in the hol directory of the distribution, to build the auxiliary files.

For batch mode run

Holmake -I hol outTheory.uo

where hol is the path to the hol directory of the distribution. For interactive mode, run

hol -I hol

inside an editor window (where the second hol is again the path to the hol directory of the distribution),
and in another window view the outScript.sml file. First paste in the app load command from a
comment at the top of the file, then paste in the remainder.

5.6.3 Isabelle

For batch mode:

echo ’ML_command {* (use_thy "Tmp"; OS.Process.exit OS.Process.success) handle e => (OS.Process.exit

Interactively, using Proof General:

isabelle emacs out.thy

20



6 Judgments and formulae

In a semantic rule, for example

t1 --> t1’

-------------- :: ctx_app_arg

v t1 --> v t1’

the conclusion must be a symbolic term of the form of the judgement being defined, but in general the
premises may be symbolic terms of a formula grammar or in-line embedded prover code. By default the
formula grammar includes all the defined judgement forms: for the running example Ott will synthesise
grammars as below.

formula ::=
| judgement

judgement ::=
| Jop

Jop ::=
| t1 −→ t2 t1 reduces to t2

The user can also define an explicit formula grammar, to let other forms (not just judgements) appear as
rule premises. Below is a fragment of the formula grammar from the LJ example on the Ott web page.

formula :: formula_ ::=

| judgement :: :: judgement

| formula1 .. formulan :: :: dots

| not formula :: M :: not

{{ tex \neg [[formula]] }}

{{ isa \<not> ([[formula]]) }}

| ( formula ) :: M :: brackets

{{ tex ([[formula]]\!) }}

{{ isa [[formula]] }}

| formula \/ formula’ :: M :: or

{{ tex [[formula]] \vee [[formula’]] }}

{{ isa [[formula]] \<or> [[formula’]] }}

| formula /\ formula’ :: M :: and

{{ tex [[formula]] \wedge [[formula’]] }}

{{ isa [[formula]] \<and> [[formula’]] }}

| x = x’ :: M :: xali

{{ isa [[x]] = [[x’]] }}

| X = X’ :: M :: Xali

{{ isa [[X]] = [[X’]] }}

This example adds (to the judgement forms) syntax for parenthesised formulae, negation, and, or, and
equality testing on two sorts. For each, tex and isa homs specify how they should be typeset and be
translated into Isabelle.

If the user defines a formula grammar then (as here) the production name prefix must be formula and
the name for the judgement production must be judgement.

6.1 Naming of premises for the Coq backend

It is possible to specify the names of premises of inductive predicates; these names are then used by the
Coq backend, and are often useful in proofs. For instance, we can call RED the hypothesis in the rule
below

t1 --> t1’ [[:RED]]

-------------- :: ctx_app_arg

21



v t1 --> v t1’

which will then generate the following Coq code:

| ctx_app_arg : forall (v t1 t1’:term)

(RED: reduce t1 t1’),

is_val_of_term v ->

reduce (t_app v t1) (t_app v t1’).

Names of rules cannot contain spaces or other non alpha-numerical characters, and must begin with a
letter. The name annotation must at the rightmost place on the hypothesis line, and must be enclosed
(without spaces) between the [[: and ]] parentheses.

6.2 In-line embedded prover code in premises

Instead of adding a formula production, one can directly embed prover code as a premise, delimited as
below by {{ and }}. Within that, text will be echoed directly to a prover (or given a default LATEX
typesetting) except that symbolic terms enclosed within [[ and ]] will be processed as in an embed

section.

{{ type_to_chunk ([[typeof e1]]) = Some [[c]] }}

----------------------------------------------------------- :: Assign1

e1=e2 . k |env --tau--> lval(e1) . [__=c e2] . k |env

6.3 User syntax

The tool also synthesises a user syntax grammar of all the user syntax, for example:

user syntax ::=
| var
| term
| val
| terminals

This is used for parsing top-level strings, for example when filtering embedded code (§8).

7 Concrete terms and OCaml generation

In semantic definitions, one typically never uses concrete variables, only metavariables that range over
them. In examples, however, one may need either a mix of concrete variables and metavariables, or, for
strictly concrete terms, to restrict to just the former (and also to prohibit symbolic nonterminals).

Figure 2 combines the LATEX and proof assistant annotations of Sections 3 and 4, adding a {{ lex

alphanum}} hom to the metavar declaration to specify the lexical form of concrete variables of this sort.
At present a lex homomorphism must have body either Alphanum (standing for [A-Z]([A-Z]|[a-z]|[0-9]|’|_)*),
alphanum (for ([A-Z]|[a-z])([A-Z]|[a-z]|[0-9]|’|_)*), alphanum0 (for [a-z]([A-Z]|[a-z]|[0-9]|’|_)*),
or numeral (for [0-9][0-9]*); more general regular expressions are not supported. An identifier that
can be ambiguously lexed as either a concrete or symbolic metavariable, e.g. x in the scope of the above
declaration, will be taken to be symbolic. To restrict the parser to strictly concrete terms only, one can
add a :concrete: prefix, as shown in Figure 10.

One can also specify how concrete variables should be LATEX’d or translated into a proof assistant,
e.g. with homomorphisms {{ texvar \mathrm{[[termvar]]}} and {{ isavar ’’[[termvar]]’’}}

(and similarly coqvar, holvar, and ocamlvar).

Figure 2 also specifies an OCaml representation type for variables, with the metavar hom {{ ocaml

int}}. Executing

bin/ott -i tests/test10.ott -o test10.ml

22



produces the OCaml code shown in Figure 9, including OCaml types to represent the abstract syntax,
and auxiliary functions for subrules and substitutions. This does not implement the semantic rules. In
some cases the various proof assistant code extraction facilities can be used — see Section 20.

8 Filtering: Using Ott syntax within LATEX, Coq, Isabelle, HOL,

or OCaml

8.1 Filtering embedded code

It is possible to embed arbitrary code in the Ott source using an embed block, which can contain tex,
coq, hol, isa, or ocaml homomorphisms, the bodies of which will appear in the respective output. The
embed keyword should be on a line by itself). For example, test8.ott contains the following to define
Coq and HOL remove_duplicates functions.

embed

{{ coq

Fixpoint remove_duplicates (l:list typvar_t) : list typvar_t :=

match l with

| nil => nil

| cons h t => if (list_mem eq_typvar_t h t) then remove_duplicates t

else cons h (remove_duplicates t)

end. }}

{{ hol

val _ = Define ‘

(remove_duplicates [] = []) /\

(remove_duplicates (x::xs) = if (MEM x xs) then remove_duplicates xs

else x::(remove_duplicates xs))

‘; }}

Within the body of an embed homomorphism, any text between [[ and ]] will be parsed as a symbolic
term (of the user_syntax grammar) and pretty printed, so one can use user syntax within LATEX or
proof assistant code. An Isabelle example is below, defining an Isabelle function to calculate the order
of a type with productions unit, t*t’, and t->t’.

{{ isa

consts

order :: "type => nat"

primrec

"order [[unit]] = 0"

"order [[t*t’]] = max (order [[t]]) (order [[t’]])"

"order [[t->t’]] = max (1+order [[t]]) (order [[t’]])"

}}

It is often useful to define a proof assistant function, in an embed section, together with a production of
the formula grammar with a proof assistant hom that uses that function, thereby introducing syntax
that lets the function be used in semantic rules.

Ott also permits embed blocks with tex-preamble, homs, whose contents appear in the generated LATEX
preamble. Any definitions of LATEX commands must appear in such a tex-preamble section.

8.2 Filtering files

Similar processing can be carried out on separate files, using the command-line options tex_filter,
isa_filter, etc. Each of these takes two arguments, a source filename and a destination filename.

23



% all

metavar termvar, x ::= {{ com term variable }}

{{ isa string}} {{ coq nat}} {{ hol string}} {{ coq-equality }}

{{ ocaml int}} {{ lex alphanum}} {{ tex \mathit{[[termvar]]} }}

grammar

t :: ’t_’ ::= {{ com term }}

| x :: :: Var {{ com variable}}

| \ x . t :: :: Lam (+ bind x in t +) {{ com lambda }}

| t t’ :: :: App {{ com app }}

| ( t ) :: S:: Paren {{ icho [[t]] }}

| { t / x } t’ :: M:: Tsub

{{ icho (tsubst_t [[t]] [[x]] [[t’]])}}

v :: ’v_’ ::= {{ com value }}

| \ x . t :: :: Lam {{ com lambda }}

terminals :: ’terminals_’ ::=

| \ :: :: lambda {{ tex \lambda }}

| --> :: :: red {{ tex \longrightarrow }}

subrules

v <:: t

substitutions

single t x :: tsubst

defns

Jop :: ’’ ::=

defn

t1 --> t2 :: ::reduce::’’ {{ com [[t1]] reduces to [[t2]]}} by

-------------------------- :: ax_app

(\x.t12) v2 --> {v2/x}t12

t1 --> t1’

-------------- :: ctx_app_fun

t1 t --> t1’ t

t1 --> t1’

-------------- :: ctx_app_arg

v t1 --> v t1’

Figure 8: Source: test10.7.ott

24



(* generated by Ott 0.21.2 from: ../tests/test10.ott ../tests/non_super_tabular.ott *)

type var = int (* term variable *)

type

term = (* term *)

T_var of var (* variable *)

| T_lam of var * term (* lambda *)

| T_app of term * term (* app *)

(** subrules *)

let is_val_of_term (t5:term) : bool =

match t5 with

| (T_var x) -> false

| (T_lam (x,t)) -> (true)

| (T_app (t,t’)) -> false

(** substitutions *)

let rec tsubst_term (t5:term) (x5:var) (t_6:term) : term =

match t_6 with

| (T_var x) -> (if x=x5 then t5 else (T_var x))

| (T_lam (x,t)) -> T_lam (x,(if List.mem x5 ([x]) then t else (tsubst_term t5 x5 t)))

| (T_app (t,t’)) -> T_app ((tsubst_term t5 x5 t),(tsubst_term t5 x5 t’))

(** definitions *)

Figure 9: Generated OCaml code: test10.ml

25



In processing the source file, any text between [[ and ]] will be parsed as a symbolic term (of the
user_syntax grammar) and pretty printed in the appropriate style. All other text is simply echoed.

Typical usage for LATEX would be something like this (from the Makefile used to produce this document):

test7.tex: ../src/ott ../tests/test7.ott ../tests/test7tt.mng

cd ../src; make tmp_test7_clean.ott

../src/ott \

-i ../src/tmp_test7_clean.ott \

-o test7.tex \

-tex_show_meta false \

-tex_wrap false \

-tex_name_prefix testSeven \

-tex_filter ../tests/test7tt.mng test7tt.tex

The -tex_wrap false turns off output of the default LATEX document preamble, so the generated file
test7.tex just contains LATEX definitions. The -tex_name_prefix testSeven sets a prefix for the
generated LATEX commands (so the LATEX definitions from multiple Ott source files can be included in
a single LATEX document). The -tex_filter argument takes two filenames, a source and a destination.
It filters the source file, (roughly) replacing any string found within [[ ]] by the tex pretty-print of its
parse. This parsing is done w.r.t. the generated nonterminal user_syntax which is a union of all the
user’s grammar.

At present munged strings are not automatically put within $ $, and there is no analogue of the <[ ]>

of our previous munger.

The lexing turns any sequence of [ (resp. of ]) of length n+1 for n > 2 into a literal sequence of length
n.

Figures 10 and 11 show a source file (test7tt.mng) that uses terms of the F<: definition of test7.ott,
and the result of filtering it.

Similar filtering can be performed on Coq, Isabelle, HOL, and OCaml files.

To filter files with respect to a relatively stable system definition, without having to re-process the Ott
source files of that system definition each time, there are command-line options

-writesys <filename> Output system definition

-readsys <filename> Input system definition

to first write the system definition (generated from some source files) to a file, and then to read one
back in (instead of re-reading the Ott source files). The saved system definitions are in an internal
format, produced using the OCaml marshaller, and contain OCaml closures. They therefore will not be
compatible between different Ott versions. They may also be quite large.

9 Binding specifications

Our first example involved a production with a single binder:

t ::=
| λ x . t bind x in t Lam

specified by the source shown in Figure 4:

| \ x . t :: :: Lam (+ bind x in t +)

in which a single variable binds in a single subterm. Realistic programming languages often have much
more complex binding structures, e.g. structured patterns, multiple mutually recursive let definitions,
comprehensions, or-patterns, and dependent record patterns.

Ott has a flexible metalanguage for specifying binding structures, expressive enough to cover these. It
comprises two forms of annotation on productions. The first, bindmse innonterm, lets one specify

26



We can TeX-typeset symbolic terms of the language, e.g.

\[ [[ (\X<:Top. \x:X.x) [Top->Top] ]]\]

and concrete terms

\[ [[ :concrete: \Z1<:Top. \x:Z1.x ]]\]

and similarly judgements etc, e.g.

\[ [[G |- t : T ]] \]

Here is an extract of the syntax:

\testSevengrammartabular{\testSevent\testSevenafterlastrule}

and a single semantic rule:

\[\testSevendruletinXXTwo{}\]

and a judgement definition:

\testSevendefnSA

One can also include a ‘defns’ collection of judgements, or the complete definition.

% \section{Full Definition}

% \testSevenmetavars\\[0pt]

% \testSevengrammar\\[0pt]

% \testSevendefnss

%

% \testSevenall

Figure 10: F<: Extracts: LATEX source file to be filtered (test7tt.mng)

27



We can TeX-typeset symbolic terms of the language, e.g.

(ΛX<:Top. λx :X . x )[Top → Top]

and concrete terms
ΛZ1<:Top. λx:Z1. x

and similarly judgements etc, e.g.
Γ ⊢ t : T

Here is an extract of the syntax:
t ::= term

| x variable
| λx :T . t bind x in t abstraction
| t t ′ application
| ΛX<:T . t bind X in t type abstraction
| t [T ] type application
| {l1=t1, .. , ln=tn} record
| t .l projection
| let p=t in t ′ bind b(p) in t ′ pattern binding
| (t) S

and a single semantic rule:

x : T ∈ Γ

x : T ∈ Γ,X ′ <: U ′
tin 2

and a judgement definition:

Γ ⊢ S <: T S is a subtype of T

Γ ⊢ ok

Γ ⊢ S <: Top
SA Top

Γ ⊢ ok

Γ ⊢ X <: X
SA Refl TVar

X <: U ∈ Γ
Γ ⊢ U <: T

Γ ⊢ X <: T
SA Trans TVar

Γ ⊢ T1 <: S1
Γ ⊢ S2 <: T2

Γ ⊢ S1 → S2 <: T1 → T2

SA Arrow

Γ ⊢ T1 <: S1
Γ,X <: T1 ⊢ S2 <: T2

Γ ⊢ ∀X<:S1.S2 <: ∀X<:T1.T2

SA All

∀i ∈ 1..m.∃j ∈ 1..n.(ki=lj ∧ Γ ⊢ Si <: Tj )

Γ ⊢ {k1 : S1, .. , km : Sm} <: {l1 : T1, .. , ln : Tn}
SA Rcd

One can also include a ‘defns’ collection of judgements, or the complete definition.

Figure 11: F<: Extracts: the filtered output (test7tt.tex)

28



that variables bind in nonterminals of the production, as in the Lam production above. Here mse is
a metavariable set expression, e.g. in that lambda production just the singleton metavariable x of the
production. A variable can bind in multiple nonterminals, as in the example of a simple recursive let

below.

t ::=
| let rec x = t in t ′ bind x in t

bind x in t ′

More complex examples require one to collect together sets of variables. For example, the grammar
below (shown in Ott source and the generated LATEX) has structured patterns, with a let p = t in t ′

production in which all the binders of the pattern p bind in the continuation t ′.

t :: E_ ::=

| x :: :: ident

| ( t1 , t2 ) :: :: pair

| let p = t in t’ :: :: letrec (+ bind binders(p) in t’ +)

p :: P_ ::=

| _ :: :: wildcard (+ binders = {} +)

| x :: :: ident (+ binders = x +)

| ( p1 , p2 ) :: :: pair (+ binders = binders(p1) union binders(p2) +)

t ::=
| x
| (t1, t2)
| let p = t in t ′ bind binders(p) in t ′

p ::=
| binders = {}
| x binders = x
| (p1, p2) binders = binders(p1) ∪ binders(p2)

This is expressed with the second form of annotation: user-defined auxiliary functions such as the binders
above. This is an auxiliary function defined over the p grammar that identifies a set of variables to be
used in the bind annotation on the let production. There can be any number of such auxiliary functions;
binders is not a distinguished keyword.

The syntax of a precise fragment of the binding metalanguage is given in Fig. 12, where we have
used Ott to define part of the Ott metalanguage. A simple type system (not shown) enforces sanity
properties, e.g. that each auxiliary function is only applied to nonterminals that it is defined over, and
that metavariable set expressions are well-sorted.

Further to that fragment, the tool supports binding for the list forms of §12. Metavariable set expressions
can include lists of metavariables and auxiliary functions applied to lists of nonterminals, e.g. as in the
record patterns below.

p ::=
| x b = x
| {l1 = p1, .. , ln = pn} b = b(p1..pn)

This suffices to express the binding structure of almost all the natural examples we have come across,
including definitions of mutually recursive functions with multiple clauses for each, Join calculus defini-
tions [FGL+96], dependent record patterns, and many others.

29



metavars metavarroot , mvr nontermroot , ntr

terminal , t auxfn, f

prodname, pn variable, var

grammar

metavar , mv ::=
| metavarroot suffix

nonterm, nt ::=
| nontermroot suffix

element , e ::=
| terminal

| metavar

| nonterm

metavar set expression, mse ::=
| metavar

| auxfn(nonterm)

| mse unionmse ′

| {}

bindspec, bs ::=
| bindmse innonterm

| auxfn = mse

prod , p ::=
| |element1 .. elementm::::prodname(+bs1 .. bsn+)

rule, r ::=
| nontermroot::’’::=prod1 .. prodm

grammar rules, g ::=
| grammar rule1 .. rulem

Figure 12: Mini-Ott in Ott: the binding specification metalanguage

10 Generating substitution and free variable functions

The tool can generate Isabelle/Coq/HOL/OCaml code for both single and multiple substitution func-
tions. For example, the ML polymorphism Ott source of test8.ott includes the following.

substitutions

single expr value_name :: subst

multiple typexpr typvar :: tsubst

This causes the generation of two families of substitution functions, one replacing a single value_name

by a expr, the other replacing multiple typvars by typexprs.

Each family contains a function for each datatype for which it is required, so in that example there
are functions subst_expr for the first and tsubst_typexpr, tsubst_typscheme and tsubst_G for the
second.

The functions for substitutions declared by

substitutions

single this that :: name1

multiple this that :: name2

replaces terms of productions consisting just of a single that by a this. Here thismust be a nonterminal
root, while that can be either a metavariable root or a nonterminal root (the latter possibility allows
substitution for compound identifiers, though it is not clear that this is generally useful enough to be
included). Substitution functions are generated for each member of each (mutually recursive) block of
grammar rules which either contain such a production or (indirectly) refer to one that does.

30



At present multiple substitutions are represented by Isabelle/Coq/HOL/OCaml lists, so for the example
above we have Isabelle

tsubst_typexpr :: "(typvar*typexpr) list => typexpr => typexpr"

tsubst_typscheme :: "(typvar*typexpr) list => typscheme => typscheme"

tsubst_G :: "(typvar*typexpr) list => G => G"

The generated functions do not substitute bound things, and recursive calls under binders are filtered to
remove the bound things.

Similarly, the tool can generate Isabelle/Coq/HOL/OCaml to calculate the free variables of terms. For
example, the ML polymorphism Ott source of test8.ott includes the following.

freevars

typexpr typvar :: ftv

This causes Isabelle functions as below to be generated, calculating the free typvars that occur in
singleton productions in the typexpr grammar, within terms of all types.

ftv_typexpr :: "typexpr => typvar list"

ftv_typscheme :: "typscheme => typvar list"

ftv_G :: "G => typvar list"

11 Locally-nameless representation

The Coq backend of Ott includes experimental support for a locally-nameless representation (and co-
finite quantification).

The user must specify which metavariables require a locally-nameless representation via the repr-locally-nameless
hom, e.g.:

metavar x ::= {{ repr-locally-nameless }} {{ com term variable }}

As usual, metavariables can be bound in productions, using the bindspec language, as in the lam pro-
duction below:

grammar

t :: ’t_’ ::= {{ com term }}

| x :: :: Var {{ com variable }}

| \ x . t :: :: Lam (+ bind x in t +) {{ com abstraction }}

| t t’ :: :: App {{ com application }}

| ( t ) :: S :: paren {{ coq [[t]] }}

| { t / x } t’ :: M :: tsub {{ coq (t_subst_t [[t]][[x t’]]) }}

This definition gives rise to the datatype term below (here with option -coq names in rules false):

Inductive term : Set :=

| term_var_b : nat -> term

| term_var_f : var -> term

| term_lam : term -> term

| term_app : term -> term -> term.

Remarks:

1. Productions containing metavariables susceptible to be bound (e.g., term var) give rise to two
distinct constructors, one (term var b) for de Bruijn indices to be used when the metavariable is
bound, one (term var f) for ”free” variables. The type var, together with decidable equality and
several useful lemmas and functions, is defined in the Metatheory library.

In the current implementation, metavariables susceptible to be bound in a symbolic term (eg. the
x in the term var production) must be the only element of the production.

2. Binder metavariables are erased from productions (eg. term lam), as in de Bruijn representation.

31



Ott automatically generates the appropriate open functions and lc predicates to test if terms are locally-
closed. The other support functions for substitutions and free-variables (subst and fv) are generated
once the user declares the relevant substitutions and freevars sections.

Ott automatically compiles the symbolic terms that appear in rule definitions into the appropriate terms
in locally-nameless style. For instance, the typing rule for the simply-typed lambda-calculus:

E,x:S |- t : T

------------------ :: lambda

E |- \x.t : S->T

is compiled into its locally-nameless representation:

Inductive typing : env -> term -> type -> Prop := (* defn typing *)

| ...

| typing_lambda : forall (L:vars) (E:env) (t:term) (S T:type),

(forall x, x \notin L -> typing (E & x ~ S) (open_term_wrt_term t (term_var_f x)) T) ->

typing E (term_lam t) (type_arrow S T).

For that, Ott follows the algorithm below. For each rule,

1. for each nonterminal that appears in the rule, compute the maximal set of binders under which it
appears: for example, in the rule lambda above, the maximal set of binders for the nonterminal t
is the singleton x, and it is empty for all the other nonterminals;

2. for each pair nonterminal / maximal binder set collected in phase 1., go over all the occurrences of
the nonterminal in the rule and open them with respect to all the variables in the maximal binding
set except those under which this particular occurrence is bound. In the example, this amounts to
opening the occurrence of t in the premise with respect to the metavariable x;

3. quantify using cofinite-quantification each metavariable that has been used to open a nonterminal;

4. add hypothesis about local-closure to guarantee the invariant that if a derivation holds, then the
top-level terms involved are locally-closed.

In some cases the user may want a finer control on which nonterminals are opened and with respect to
which metavariables. Consider for instance the CBV beta-reduction rule:

-------------------------- :: ax_app

(\x.t1) v2 --> {v2/x}t1

A naive application of the algorithm described above would open the right hand side occurrence of t1
with respect to a cofinitely-quantified x. Substitution should then be used to replace the occurrences of
x with v2, resulting in the awkward term

reduce (term_app (term_lam t1) v2) (subst_term v2 x (open_term_wrt_term t1 (term_var_f x)))

Instead, an idiomatic translation of CBV beta-reduction rule would directly rely on the open function
to substitute v2 for the bound occurrences of x in t1, as in:

reduce (term_app (term_lam t1) v2) (open_term_wrt_term t1 v2)

A special syntax for production homomorphisms allow the user to specify this translation:

| { t / x } t’ :: M :: tsub {{ coq (t_subst_t [[t]][[x t’]]) }}

In the homomorphism the nonterminal t’ is referred to with [[x t’]] instead of the usual [[t’]]: the
prefixed x specifies that occurrences of t’ should not be opened with respect to the metavariable x. If
this homomorphism is specified, then the translation of the ax app rule is exactly idiomatic Coq shown
above.

Current limitations: support for single binders only, no auxfn, Coq only.

Disclaimer: to compile rule definitions, Ott applies blindly the algorithm described above. Although in
most of the cases, this generates a correct and idiomatic representation of the language, some language
constructs might not be faithfully translated. Please, let us know if you find one of these cases.

32



E ⊢ e1 : t1 ... E ⊢ en : tn
E ⊢ field name1 : t → t1 ... E ⊢ field namen : t → tn
t = ( t ′1 , ... , t

′

l ) typeconstr name

E ⊢ typeconstr name ⊲ typeconstr name : kind {field name ′

1 ; ... ; field name ′

m }
field name1 ...field namen PERMUTESfield name ′

1 ...field name ′

m

length ( e1 ) ... ( en ) ≥ 1

E ⊢ {field name1 = e1 ; ... ; field namen = en } : t
JTe record constr

E |- e1 : t1 ... E |- en : tn

E |- field name1 : t->t1 ... E |- field namen : t->tn

t = (t1’, ..., tl’) typeconstr name

E |- typeconstr name gives typeconstr name:kind {field name1’; ...; field namem’}

field name1...field namen PERMUTES field name1’...field namem’

length (e1)...(en)>=1

-------------------------------------------------------------------------- :: record constr

E |- {field name1=e1; ...; field namen=en} : t

Figure 13: A sample OCaml semantic rule, in LATEX and Ott source forms

If Ott is invoked with the -coq lngen option, then the generated locally-nameless Coq code is compatible
with Aydemir’s lngen tool (http://www.cis.upenn.edu/ baydemir/papers/lngen/).

12 List forms

Ott has direct support for lists, both as dot forms such as t1, . . . , tn and as list comprehensions such

as ti
i∈1..n

. Figure 13 shows an example semantic rule taken from our OCaml fragment semantics, as
both the generated LATEX and its Ott source, that involves several dot forms. Other types commonly
used in semantics, e.g. finite maps or sets, can often be described with this list syntax in conjunction
with type and metaproduction homs to specify the proof assistant representation. When using list
forms, one usually also wants to add a list-of-formula production to the formula grammar, e.g. (as in
test17.10.ott):

formula :: formula_ ::=

| judgement :: :: judgement

| formula1 .. formulan :: :: dots

The proof assistant code generation for such a production (which must be named formula_dots) is
special-cased to a list conjunction.

12.1 List dot forms

Example productions for record types, record terms, and record patterns are shown below, in both Ott
source and LATEX, taken from our F<: example.

T, S, U :: ’T_’ ::= {{ com type }}

| { l1 : T1 , .. , ln : Tn } :: :: Rec {{ com record }}

t :: ’t_’ ::= {{ com term }}

| { l1 = t1 , .. , ln = tn } :: :: Rec {{ com record }}

| let p = t in t’ :: :: Let (+ bind b(p) in t’ +) {{ com pattern binding}}

p :: ’P_’ ::= {{ com pattern }}

| x : T :: :: Var (+ b = x +) {{ com variable pattern }}

| { l1 = p1 , .. , ln = pn } :: :: Rec (+ b = b(p1 .. pn) +) {{ com record pattern }}

33



T , S , U ::= type
| { l1 : T1 , .. , ln : Tn } record

t ::= term
| { l1= t1 , .. , ln = tn } record
| let p= t in t ′ bind b(p) in t ′ pattern binding

p ::= pattern
| x : T b = x variable pattern
| { l1=p1 , .. , ln =pn } b = b(p1..pn) record pattern

Dot forms can be used in symbolic terms in semantic rules:

Γ ⊢ t1 : T1 .. Γ ⊢ tn : Tn

Γ ⊢ {l1=t1, .. , ln=tn} : {l1 : T1, .. , ln : Tn}
Ty Rcd

Individually indexed projections from dot forms can be mentioned, eg the lj below:

Γ ⊢ t : {l1 : T1, .. , ln : Tn}
Γ ⊢ t .lj : Tj

Ty Proj

Symbolic terms can also include concatenations of two dot forms with a singleton in between:

t −→ t ′

{l1=v1, .. , lm=vm , l=t , l ′1=t
′

1, .. , l
′
n=t

′
n} −→ {l1=v1, .. , lm=vm , l=t ′, l ′1=t

′

1, .. , l
′
n=t

′
n}

reduce Ctx record

Multiple dot forms within the same semantic rule can share bounds (e.g. 1..m):

∀i ∈ 1..m.∃j ∈ 1..n.(li=kj ∧match (pi , vj )=σi)

match ({l1=p1, .. , lm=pm}, {k1=v1, .. , kn=vn})=σ1, .. , σm

M Rcd

In more detail, productions can have dot tokens interspersed between the elements. Dot tokens consist
of two, three or four consecutive dots (.., ..., or ....), indicating lists with minimum lengths 0, 1,
and 2 respectively (these length minimums are respected only when parsing concrete lists; they are not
present in Isabelle/Coq/HOL output). The tool identifies the maximal sequence of elements on either
side of the dots that are identical modulo anti-unification of some index. Optionally, there may also be
a single terminal on either side of the dot token, separating instances of the repeated unit. For example,
in the test7.ott production

| { l1 = t1 , .. , ln = tn } :: :: Rec

there is such a terminal (the ‘,’). The tool identifies that l1 = t1 and ln = tn can be anti-unified as
(roughly) l_ = t_, taking _ to be the bounds 1 and n. A single production may contain multiple dot
forms, but they must not overlap; nested dot forms (including those with multiple changing indices) are
not currently supported.

Homomorphisms and binding specifications are generalised to match: an mse can involve a dot form of
metavariables; a dot form of nonterminals; or an auxiliary function applied to a dot form of nonterminals
(e.g. the b(p1..pn) above). Dot forms on the right of a bind are not currently supported.

LATEX homomorphisms should not refer to dot forms, as either an error or bad output will be generated.
(For LATEX, there should really be some means to specify a homomorphism for the repeated expression,
and also data on how any list separators should be typeset. This would require more special-case
treatment, which is not currently supported.)

34



12.2 List comprehension forms

Lists can also be expressed as explicit list comprehensions, for more concise typesetting. Three different
styles are supported, with no bounds, an upper bound, or a lower and upper bound. For example, in a
symbolic term, instead of the dot form

G |- t1:T1 .. G |- tn:Tn

one can write any of the following

</ G |- ti:Ti // i />

</ G |- ti:Ti // i IN n />

</ G |- ti:Ti // i IN 1 .. n />

Similar comprehensions can be used in productions, for example lines 2–4 below. In addition, compre-
hensions in productions can specify a terminal to be used as a separator in concrete lists, as in lines 5–7
below. (These examples are taken from test17.10.ott.)

| l1 = t1 , .. , ln = tn :: :: Rec {{ com dots }}

| </ li = ti // i /> :: :: Rec_comp_none {{ com comp }}

| </ li = ti // i IN n /> :: :: Rec_comp_u_none {{ com compu }}

| </ li = ti // i IN 1 .. n /> :: :: Rec_comp_lu_none {{ com complu }}

| </ li = ti // , // i /> :: :: Rec_comp_some {{ com comp with terminal }}

| </ li = ti // , // i IN n /> :: :: Rec_comp_u_some {{ com compu with terminal }}

| </ li = ti // , // i IN 1 .. n /> :: :: Rec_comp_lu_some {{ com complu with terminal }}

In Coq, HOL or Isabelle output, list dot forms and the various list comprehension forms are treated
almost identically. In LaTeX output, comprension forms are default-typeset with overbars. For example,
the rules below

G|- t:l1:T1,..,ln:Tn

----------------------- :: Proj_dotform

G|- t.lj : Tj

G|- t: </ li:Ti // i/>

---------------------------------- :: Proj_comp

G|- t.lj : Tj

G|- t: </ li:Ti // i IN n/>

---------------------------------- :: Proj_comp_u

G|- t.lj : Tj

G|- t: </ li:Ti // i IN 1..n/>

---------------------------------- :: Proj_comp_lu

G|- t.lj : Tj

are typeset as follows.

Γ ⊢ t : {l1 : T1, .. , ln : Tn}
Γ ⊢ t .lj : Tj

Ty Proj dotform

Γ ⊢ t : { li : Ti

i }
Γ ⊢ t .lj : Tj

Ty Proj comp

Γ ⊢ t : { li : Ti

i<n }
Γ ⊢ t .lj : Tj

Ty Proj comp u

Γ ⊢ t : { li : Ti

i∈1..n }
Γ ⊢ t .lj : Tj

Ty Proj comp lu

35



Upper bounds of the form n− 1 are also permitted, e.g. with

G|- t:l0:T0,..,ln-1:Tn-1

----------------------- :: Proj_dotform_minus

G|- t.lj : Tj

G|- t: </ li:Ti // i IN 0..n-1/>

---------------------------------- :: Proj_comp_lu_minus

G|- t.lj : Tj

typeset as below. More complex arithmetic expressions are not currently supported.

Γ ⊢ t : {l0 : T0, .. , ln−1 : Tn−1}
Γ ⊢ t .lj : Tj

Ty Proj dotform minus

Γ ⊢ t : { li : Ti

i∈0..n−1 }
Γ ⊢ t .lj : Tj

Ty Proj comp lu minus

A list form used in a symbolic term does not have to be in the same style as that in the corresponding
production. However, if a metavariable or nonterminal occurs in multiple different list forms in the same
inference rule, they must all be in the same style and with the same bounds. Moreover, in a production,
a list form in a bindspec or homomorphism must be in the same style and with the same bounds as the
corresponding list form in the elements of the production.

The comprehension form without an upper bound, e.g. </ G |- ti:Ti // i />, typeset as Γ ⊢ ti : Ti

i
,

is not standard notation, but is often very useful. Many semantic rules involve lists of matched length,
e.g. of the ti and Ti here, but do not need to introduce an identifier for that length; omitting it keeps
them concise.

The default visual style for typesetting list comprehensions can be overridden by redefining the LATEX
commands \ottcomp, \ottcompu, and \ottcomplu in an embed section, as in Section 4.3.

In some cases one could make the typeset notation even less noisy, by either omitting the superscript i
or omitting both the superscript i and the subscript i’s on t and T . The first is unambiguous if there
is at most one index on each element in the comprehension; the second if all the elements are indexed
by the same thing (not the case for this example, but common for comprehensions of single elements,
e.g. << Ti // i>> for T ). It is arguable that that should be automated in future Ott releases, though
it would bring the typeset and ASCII versions out of step.

List comprehension forms can also be used in bindspecs and in homomorphisms.

12.3 Proof assistant code for list forms

12.3.1 Types

We have to choose proof assistant representations for productions involving list forms. For example, for
a language with records one might write

metavar label, l ::= {{ hol string }} {{ coq nat }}

indexvar index, n ::= {{ hol num }} {{ coq nat }}

grammar

term, t :: ’t_’ ::=

| { l1 = t1 , .. , ln = tn } :: :: record

In HOL and Isabelle we represent these simply with contructors whose argument types involve proof-
assistant native list types, e.g. the HOL list of pairs of a label and a t:

val _ = Hol_datatype ‘

t = E_record of (label#t) list ‘;

36



For Coq we provide two alternatives: one can either use native lists, or lists can be translated away,
depending on taste. The choice is determined by the -coq_expand_list_types command-line option.
In the former case we generate an appropriate induction principle using nested fixpoints, as the default
principle produced by Coq is too weak to be useful. In the latter case we synthesise an additional type
for each type of lists-of-tuples that arises in the grammar. In the example, we need a type of lists of
pairs of a label and a t:

Inductive

list_label_t : Set :=

Nil_list_label_t : list_label_t

| Cons_list_label_t : label -> t -> list_label_t

-> list_label_t

with t : Set :=

E_record : list_label_t -> t .

These are included in the grammar topological sort, and utility functions, e.g. to make and unmake lists,
are synthesised.

12.3.2 Terms (in inductive definition rules)

Supporting list forms in the rules of an inductive definition requires some additional analysis. For
example, consider the record typing rule below.

Γ ⊢ t0:T0 .. Γ ⊢ tn−1 :Tn−1

Γ ⊢ {l0=t0, .. , ln−1=tn−1}:{l0:T0, .. , ln−1 :Tn−1}
Ty Rcd

We analyse the symbolic terms in the premises and conclusion to identify lists of nonterminals and
metavariables with the same bounds — here t0..tn−1, T0..Tn−1, and l0..ln−1 all have bounds 0..n −
1. To make the fact that they have the same length immediate in the generated code, we intro-
duce a single proof assistant variable for each such collection, with appropriate projections and list
maps/foralls at the usage points. For example, the HOL for the above is essentially as follows, with an
l_t_Typ_list : (label#t#Typ) list.

(* Ty_Rcd *) !(l_t_Typ_list:(label#t#Typ) list) (G:G) .

(EVERY (\b.b)

(MAP (\(l_,t_,Typ_). (Ty G t_ Typ_)) l_t_Typ_list))

==>

(Ty

G

(E_record (MAP (\(l_,t_,Typ_). (l_,t_)) l_t_Typ_list))

(T_Rec (MAP (\(l_,t_,Typ_). (l_,Typ_)) l_t_Typ_list)))

This seems to be a better idiom for later proof development than the alternative of three different list
variables coupled with assertions that they have the same length.

With direct support for lists, we need also direct support for symbolic terms involving list projection
and concatenation. For example, the rule

t −→ t ′

{ l1=v1 , .. , lm =vm , l= t , l ′1= t ′1 , .. , l
′

n = t ′n }
−→ { l1=v1 , .. , lm =vm , l= t ′ , l ′1= t ′1 , .. , l

′

n = t ′n }

Rec

gives rise to HOL code as below — note the list-lifted usage of the is_v_of_t predicate, and the list
appends (++) in the conclusion.

(* reduce_Rec *) !(l’_t’_list:(label#t) list)

(l_v_list:(label#t) list) (l:label) (t:t) (t’:t) .

((EVERY (\(l_,v_). is_v_of_t v_) l_v_list) /\

(( reduce t t’ )))

37



==>

(( reduce (t_Rec (l_v_list ++ [(l,t)] ++ l’_t’_list))

(t_Rec (l_v_list ++ [(l,t’)] ++ l’_t’_list))))

For the Proj typing rule

Γ ⊢ t : { li : Ti

i∈0..n−1 }
Γ ⊢ t . lj : Tj

Proj

we need a specific projection (the HOL EL) to pick out the j’th element:

(* Ty_Proj *) !(l_Typ_list:(label#Typ) list)

(j:index) (G:G) (t:t) .

((( Ty G t (T_Rec (l_Typ_list)) )))

==>

(( Ty

G

(t_Proj t ((\ (l_,Typ_) . l_) (EL j l_Typ_list)))

((\ (l_,Typ_) . Typ_) (EL j l_Typ_list))))

For Coq, when translating away lists, we have to introduce yet more list types for these proof assistant
variables, in addition to the obvious translation of symbolic terms, and, more substantially, to introduce
additional inductive relation definitions to induct over them.

For similar examples in Isabelle, the generated Isabelle for the first three rules of §12.1 is shown below
(lightly hand-edited for format). The first involves an Isabelle variable l_t_T_list, and list maps and
projections thereof.

Ty_RcdI: "

[|(formula_formuladots ((List.map (%(l_,t_,T_).( ( G , t_ , T_ ) : Ty)) l_t_T_list)))|]

==>

( G ,

(t_Rec ((List.map (%(l_,t_,T_).(l_,t_)) l_t_T_list))) ,

(T_Rec ((List.map (%(l_,t_,T_).(l_,T_)) l_t_T_list)))

) : Ty"

Ty_ProjI: "

[| ( G , t , (T_Rec (l_T_list)) ) : Ty|] ==>

( G ,

(t_Proj t (%(l_,T_).l_) (List.nth l_T_list (j - 1))) ,

(%(l_,T_).T_) (List.nth l_T_list (j - 1))

) : Ty"

E_Ctx_recordI: "

[| List.list_all (%(l_,v_).is_v v_) l_v_list ;

( t , t’ ) : E|]

==>

( (t_Rec (l_v_list @ [(l,t)] @ l_’t_’list)) ,

(t_Rec (l_v_list @ [(l,t’)] @ l_’t_’list))

) : E"

The generated code for substitutions and free variables takes account of such list structure.

Note that at present the generated Isabelle code for these functions does not always build without change,
in particular if tuples of size 3 or more are required in patterns.

12.3.3 List forms in homomorphisms

Proof assistant homomorphisms in productions can refer to dot-form metavariables and nonterminals.
For example, the second production below (taken from test17.9) mentions [[x1 t1 ... xn tn]]

in the isa homomorphism. This must exactly match the dot form in the production except that all

38



terminals must be omitted — the metavariables and nonterminals must occur in the same order as in
the production, and the bounds must be the same.

E :: ’E_’ ::= {{ isa ( ident * t ) list }}

| < x1 : t1 , .. , xn : tn > :: :: 2 {{ isa List.rev [[x1 t1 .. xn tn]] }}

formula :: formula_ ::=

| judgement :: :: judgement

| formula1 .. formulan :: :: dots

The generated Isabelle code for symbolic terms mentioning this production will involve a list of pairs.
For example, the rules

defn

|- E :: :: Eok :: Eok_ by

---------------------------- :: 2

|- <x1:t1,..,xn:tn>

|- t1:K1 .. |- tn:Kn

---------------------------- :: 3

|- <x1:t1,..,xn:tn>

generate

consts

Eok :: "E set"

inductive Eok tK

intros

(* defn Eok *)

Eok_2I: " ( List.rev (x_t_list) ) : Eok"

Eok_3I: "[|

(List.list_all (\<lambda> b . b) ( ((List.map (%(x_,t_,K_). ( t_ , K_ ) : tK) x_t_K_list)) ) )|]

==>

( List.rev ((List.map (%(x_,t_,K_).(x_,t_)) x_t_K_list)) ) : Eok"

Note that in the second the list of pairs is projected out from the x_t_K_list list of triples that is
quantified over in the rule.

13 Subrules

Subrule declarations have the form

subrules

nt1 <:: nt2

where nt1 and nt2 are nonterminal roots.

Subrules can be chained, i.e. there can be a pair of subrule declarations nt1 <:: nt2 and nt2 <:: nt3,
and they can form a directed acyclic graph, e.g. with nt0 <:: nt1, nt0 <:: nt2, nt1 <:: nt3, and
nt2 <:: nt3. However, there cannot be cycles, or nonterminal roots for which there are multiple upper
bounds. Subrule declarations should not involve nonterminal roots for which proof-assistant type homs
are specified.

We support the case in which the upper rule is also non-free, i.e. it contains productions that mention
nonterminals that occur on the left of a subrule declaration. In the example below (test11.ott) the t

rule contains a production Foo v.

metavar termvar , x ::=

39



{{ isa string }} {{ coq nat }} {{ coq-equality }} {{ hol string }} {{ ocaml int }}

grammar

t :: ’t_’ ::=

| x :: :: Var

| \ x . t :: :: Lam (+ bind x in t +)

| t t’ :: :: App

| Foo v :: :: Foo

v :: ’v_’ ::=

| \ x . t :: :: Lam

subrules

v <:: t

defns

Jb :: ’’ ::=

defn

Baz t , v :: :: Baz :: ’’ by

--------- :: ax

Baz t , v

In this case generated Isabelle/Coq/HOL/OCaml will define a single type and both is v and is t

predicates, and the generated inductive definition clause for ax uses both predicates. The Isabelle clause
is below.

axI: "[|is_t t ; is_v v|] ==> ( t , v ) : Baz"

14 Context rules

The system supports the definition of single-hole contexts, e.g. for evaluation contexts. For example,
suppose one has a term grammar as below:

t :: ’t_’ ::= {{ com term }}

| x :: :: Var {{ com variable}}

| \ x . t :: :: Lam (+ bind x in t +) {{ com lambda }}

| t t’ :: :: App {{ com app }}

| ( t1 , .... , tn ) :: :: Tuple {{ com tuple }}

| ( t ) :: S:: Paren {{ icho [[t]] }}

| { t / x } t’ :: M:: Tsub

{{ icho (tsubst_t [[t]] [[x]] [[t’]])}}

| E . t :: M:: Ctx

{{ icho (appctx_E_t [[E]] [[t]])}}

{{ tex [[E]] \cdot [[t]] }}

A context grammar is declared as a normal grammar but with a single occurrence of the terminal __ in
each production, e.g. as in the grammar for E below (a rather strange evaluation strategy, admittedly).

E :: ’E_’ ::= {{ com evaluation context }}

| __ t :: :: AppL {{ com app L }}

| v __ :: :: AppR {{ com app R }}

| \ x . __ :: :: Lam {{ com reduce under lambda }}

| ( t1 ( __ t2 ) ) :: :: Nested {{ com hole nested }}

| ( v1 , .. , vm , __ , t1 , .. , tn ) :: :: Tuple {{ com tuple }}

40



A contextrules declaration:

contextrules

E _:: t :: t

causes Ott to (a) check that each production of the E grammar is indeed a context for the t grammar,
and (b) generates proof assistant functions, e.g. appctx_E_t, to apply a context to a term:

(** context application *)

Definition appctx_E_t (E5:E) (t_6:t) : t :=

match E5 with

| (E_AppL t5) => (t_App t_6 t5)

| (E_AppR v5) => (t_App v5 t_6)

| (E_Lam x) => (t_Lam x t_6)

| (E_Nested t1 t2) => (t_App t1 (t_App t_6 t2) )

| (E_Tuple v_list t_list) => (t_Tuple ((app_list_t v_list

(app_list_t (Cons_list_t t_6 Nil_list_t) (app_list_t t_list Nil_list_t)))))

As the Nested production shows, context productions can involve nested term structure.

Note also that here the E grammar is not free (it mentions the subrule nonterminal v) so an isvalue
predicate is_E_of_E is also generated.

In general, context rule declarations have the form

contextrules

ntE _:: nt1 :: nt2

where ntE, nt1, and nt2 are nonterminal roots. This declares contexts ntE for the nt1 grammar, with
holes in nt2 positions.

Just as for substitutions, the context application function is typically used by adding a metaproduction
to the term grammar. Here we add a production E.t to the t grammar with an icho hom that uses
appctx_E_t.

t :: ’t_’ ::= {{ com term }}

...

| E . t :: M:: Ctx

{{ icho (appctx_E_t [[E]] [[t]])}}

{{ tex [[E]] \cdot [[t]] }}

That can then be used in relations:

t --> t’

-------------- :: ctx

E.t --> E.t’

One would typically also define a terminals production for the hole terminal __, e.g. here we typeset
the hole as [·].
terminals :: ’terminals_’ ::=

| __ :: :: hole {{ tex [\cdot] }}

15 Functions

Ott includes experimental support for writing function definitions. As a simple example, consider the
Ott file below:

grammar

n :: ’n_’ ::=

| 0 :: :: Zero

| S n :: :: Succ

41



funs

Add ::= {{ hol-proof ... }}

fun

n1 + n2 :: n :: add {{ com a function of type num -> num -> num }}

by

0 + n2 === n2

S n1 + n2 === n1 + S n2

Here the add function is compiled into the following Coq code:

Fixpoint add (x1:num) (x2:num) : num:=

match x1,x2 with

| n_zero , n2 => n2

| (n_succ n1) , n2 => (add n1 (n_succ n2) )

end.

More in detail, the fun n1 + n2 :: n :: add by declaration specifies:

• the name of the function: add

• the symbolic term that defines the lhs: n1 + n2

• the non-terminal that defines the rhs: n

The type of the arguments of the function is defined by the non-terminals appearing in the lhs, the return
type by the rhs non-terminal (so num → num → num in the above example). As side-effect, whenever a
function of type symb_term → nt is defined, a production nt ::= symb_term is added to the definition
of the non-terminal nt (in the above example, the production n1 + n2 is added to the grammar of num).

Functions are then defined by case analysis, where the lhs and the rhs are separated by the reserved
symbol ===.

The {{ hol-proof }} hom allows the specification of a termination proof, which is required by Hol.
Mutually recursive functions can be defined in the same funs block, analogously to mutually recursive
rule definitions.

Disclaimer: the different treatment of partial functions by the different provers can result in a function
definition being compiled correctly to one prover but not to others.

16 Parsing Priorities

Symbolic terms that can have more than one parse tree are typically considered erroneous; however,
certain classes of parse trees are ignored in order to support common idioms that are ambiguous. For
example, the production

Γ ::= Γ1, ..,Γn

might be used to allow a list of typing contexts to be appended together, but it is highly ambiguous.
The following restrictions forbid many unwanted parses that could otherwise occur.

• All parses in which a nonterminal derives itself without consuming any input are ignored. For
example, in the production above, the list could otherwise be of length one so that Γ directly
derives Γ giving rise to a vacuous cycle, and an infinite forest of parse trees. This restriction
ensures that only the tree without the vacuous cycle is considered.

• The parser for a list form ignores parses that unnecessarily break up the list due to (direct or
indirect) self reference. For example, Γ1,Γ2,Γ3,Γ4 will not parse as a two element sequence of two
element sequences (Γ1,Γ2), (Γ3,Γ4) given the production above.

• User supplied priority annotations in a parsing section rule out certain trees as follows:

– prodname1<=prodname2: Parse trees where a prodname1 node is a child of a prodname2 node
are ignored.

42



– prodname1 right prodname2: Parse trees where a prodname1 node is the leftmost child of a
prodname1 node are ignored.

– prodname1 left prodname2: Parse trees where a prodname2 node is the rightmost child of a
prodname1 node are ignored.

In addition to immediate children, these priority annotations also prohibit parse trees where the
forbidden child node occurs underneath a chain of derivations from the specified parent when the
chain does not consume any input. Figure 16 demonstrates a typical use of a parsing section; the
declarations have effect as follows:

– Line #1: n + n + n parses as (n + n) + n, but not n + (n + n);

– Line #3: n + n - n parses as (n + n) - n, but not n + (n - n);

– Line #9: -n + n parses as (-n) + n, but not -(n + n);

– Line #15: n + n n parses as n + (n n), but not (n + n) n; n n + n parses as (n n) + n,
but not n (n + n);

– Line #20: n, n n, n parses as n, (n n), n, but not (n, n) (n, n).

Currently, the parsing section supports only these relatively low level and verbose declarations.

17 Combining multiple source files

Ott can be invoked with multiple source files. Input filenames with extensions .tex, .v, .thy, .sml,
or ml are simply copied into the relevant output (LATEX, Coq, Isabelle, HOL, or OCaml). By default
the source-file and command-line order of blocks is preserved, for grammar, embeds, and inductive
definitions.

The prover output can be split into multiple output files: each prover output file specified with -o

<filename> will contain the material from the previous input files specified with -i (since the last -o
for the same prover).

Alternatively, one can add a -merge true command-line option, in which case the productions of multiple
grammars that share the same header are merged into a single grammar, and the rules of multiple
inductive definitions that share the same header are merged into a single inductive definition. This
rudimentary form of modularity can be very useful, either to split a language definition into separate
features, or to define reusable Ott components to define standard formulae, LATEX pretty printing of
terminals, or LATEX styles. For example, Figure 15 shows the Ott source file for a let feature in
isolation, taken from our Ott development of some languages from Pierce’s TAPL [Pie02]. The original
TAPL languages were produced using TinkerType [LP03] to compose features and check for conflicts.
In examples/tapl we build a system, similar to the TinkerType sys-fullsimple, from ott source files
that correspond roughly to the various TinkerType components, each with syntax and semantic rules
for a single feature.

18 Hom blocks

Bindspecs and homomorphisms for productions, and any homomorphisms for definitions, can appear in
an Ott source file either attached to the production or definition, as we have shown earlier, or in separate
hom blocks. For example, one can write

homs ’t_’

:: Lam (+ bind x in t +)

homs ’t_’

:: Var {{ com variable }}

:: Lam {{ com abstraction }}

43



metavar n ::=

grammar

e :: e_ ::=

| n :: :: num

| - e :: :: neg

| e1 + e2 :: :: add

| e1 - e2 :: :: sub

| e1 e2 :: :: mul

| e1 / e2 :: :: div

| e1 , .. , e2 :: :: tup

| ( e ) :: M :: par {{ icho [[e]] }}

parsing

e_add left e_add % #1

e_sub left e_sub

e_add left e_sub % #3

e_sub left e_add

e_mul left e_mul

e_div left e_div

e_mul left e_div

e_div left e_mul

e_neg <= e_add % #9

e_neg <= e_sub

e_neg <= e_mul

e_neg <= e_div

e_neg <= e_tup

e_add <= e_div

e_add <= e_mul % #15

e_add <= e_tup

e_sub <= e_div

e_sub <= e_mul

e_sub <= e_tup

e_mul <= e_tup % #20

e_div <= e_tup

Figure 14: An Ott source file for basic arithmetic using the typical parsing priorities

44



grammar

t :: Tm ::= {{ com terms: }}

| let x = t in t’ :: :: Let (+ bind x in t’ +) {{ com let binding }}

defns

Jop :: ’’ ::=

defn

t --> t’ :: :: red :: E_ {{ com Evaluation }} by

----------------------------- :: LetV

let x=v1 in t2 --> [x|->v1]t2

t1 --> t1’

---------------------------------- :: Let

let x=t1 in t2 --> let x=t1’ in t2

defns

Jtype :: ’’ ::=

defn

G |- t : T :: :: typing :: T_ {{ com Typing }} by

G |- t1:T1

G,x:T1 |- t2:T2

------------------------ :: Let

G |- let x=t1 in t2 : T2

Figure 15: An ott source file for the let fragment of TAPL

:: App {{ com application }}

:: paren {{ ich [[t]] }}

:: tsub {{ ich ( tsubst_t [[t]] [[x]] [[t’]] ) }}

homs ’’

:: reduce {{ com [[t1]] reduces to [[t2]] }}

Each of these begins with a prefix and then has a sequence of production name or definition name kernels,
each followed by a sequence of bindspecs and then a sequence of homomorphisms.

The test10_homs.ott example, in Fig. 16, shows this. It is semantically equivalent to the test10.ott
example of Fig. 8, but the homs have been moved into hom blocks.

19 Isabelle syntax support

Ott has limited facilities to allow the Isabelle mixfix syntax support and xsymbol to be used. The
example test10_isasyn.ott shows this in use.

Non-meta productions can be annotated with isasyn and/or isaprec homomorphisms. For example,
test10_isasyn.ott contains the production

| t t’ :: :: App {{ isasyn [[t]]\<bullet>[[t’]] }} {{ isaprec 50 }}

The two homs are used to output the Isabelle syntax annotation in the t_App clause of the datatype
definition below.

t =

t_Var "termvar"

| t_Lam "termvar" "t" ("\<lambda> _ . _" 60)

45



metavar termvar , x ::=

{{ isa string }} {{ coq nat }} {{ coq-equality }} {{ hol string }} {{ lex alphanum }}

{{ tex \mathit{[[termvar]]} }} {{ com term variable }}

grammar

t :: ’t_’ ::= {{ com term }}

| x :: :: Var

| \ x . t :: :: Lam

| t t’ :: :: App

| ( t ) :: S :: paren

| { t / x } t’ :: M :: tsub

v :: ’v_’ ::= {{ com value }}

| \ x . t :: :: Lam

terminals :: ’terminals_’ ::=

| \ :: :: lambda {{ tex \lambda }}

| --> :: :: red {{ tex \longrightarrow }}

homs ’t_’

:: Lam (+ bind x in t +)

homs ’t_’

:: Var {{ com variable }}

:: Lam {{ com abstraction }}

:: App {{ com application }}

:: paren {{ ich [[t]] }}

:: tsub {{ ich ( tsubst_t [[t]] [[x]] [[t’]] ) }}

homs ’’

:: reduce {{ com [[t1]] reduces to [[t2]] }}

subrules

v <:: t

substitutions

single t x :: tsubst

defns

Jop :: ’’ ::=

defn

t1 --> t2 :: :: reduce :: ’’ by

-------------------------- :: ax_app

(\x.t12) v2 --> {v2/x}t12

t1 --> t1’

-------------- :: ctx_app_fun

t1 t --> t1’ t

t1 --> t1’

-------------- :: ctx_app_arg

v t1 --> v t1’

Figure 16: Hom Sections: test10 homs.ott46



| t_App "t" "t" ("_\<bullet>_" 50)

Definitions can be annotated with isasyn and/or isaprec homomorphisms similarly, e.g. as below.

defn

t1 --> t2 :: :: reduce :: ’’ {{ isasyn [[t1]] ---> [[t2]] }} by

This generates syntax and translations blocks as below.

inductive_set reduce :: "(t*t) set"

and "reduce’" :: "t => t => bool" ("_ ---> _" 50)

where "(t1 ---> t2) == ( t1 , t2 ) : reduce"

Symbolic terms in definitions are printed using any production or definition syntax. This (especially
with xsymbol turned on) makes the current goal state during Isabelle proof development much more
readable.

Further, there is a command line option -isa_syntax true. If this is set then the tool generates Isabelle
syntax annotations from the source syntax. For example, the source file production for the t_Lam clause
is

| \ x . t :: :: Lam {{ isaprec 60 }}

and the terminals grammar contains a mapping from \ to \<lambda>:

terminals :: ’terminals_’ ::=

| \ :: :: lambda {{ tex \lambda }} {{ isa \<lambda> }}

| --> :: :: red {{ tex \longrightarrow }} {{ isa ---> }}

This is used (just as for LATEX homs) to generate the ("\<lambda> _ . _" 60) in the datatype definition
above.

This functionality is limited in various ways: (1) the full range of Isabelle precedence and associativity
specifications are not supported; (2) the automatically generated syntax annotations are somewhat crude,
especially w.r.t. spacing and parenthesisation; (3) syntax annotation on meta productions is not propertly
supported; and (4) it would be desirable to have more fine-grain control of whether to automatically
generate annotations: per-production, per-rule, and per-file.

20 Isabelle code generation example

The Isabelle/Coq/HOL code generation facilities can be sometimes used to generate (variously) OCaml
and SML code from the Isabelle/Coq/HOL definitions produced by Ott.

For example, the test10st_codegen.thy file uses Isabelle code generation to produce SML code to
calculate the possible reductions of terms in the test10st.ott simply typed lambda calculus.

theory test10st_codegen

imports test10st_snapshot_out Executable_Set

begin

ML "reset Codegen.quiet_mode"

(* Code generation for the test10st simply typed lambda calculus. *)

constdefs

ta :: t

"ta == (t_App (t_Lam ’’z’’ (t_Var ’’z’’))) (t_Lam ’’y’’ (t_Var ’’y’’))"

;

code_module Test10st_codegen file "test10st_codegen.ml" contains

(*is_v

tsubst_T

47



tsubst_t*)

reduce_ta = "(ta,_):reduce"

(* ...to build and demo the resulting test10st_codegen.ml code...

Isabelle test10st_codegen.thy

...‘use’ that...

...in a shell...

isabelle

use "test10st_codegen.ml";

open Test10st_codegen;

...a test term...

ta;

val it = t_App (t_Lam (["z"], t_Var ["z"]), t_Lam (["y"], t_Var ["y"]))

...a sample reduction...

DSeq.hd(reducep__1 ta);

val it = t_Lam (["y"], t_Var ["y"]) : Test10st_codegen.t

*)

end

21 Reference: Command-line usage

A good place to get started is one of the test make targets in the ott directory, e.g.

test10: tests/test10.ott

bin/ott \

-i tests/test10.ott \

-o out.thy -o out.v -o outScript.sml \

-o out.tex \

-parse ":t: (\z.z z) y" \

&& ($(LATEX) out; $(DVIPS) out -o)

When make test10 is executed, ott:

• reads the source file tests/test10.ott

• (if one also specifies -show post sort true and -show defns true) prints on standard output
various diagnostic information, including ASCII versions of the grammar and inductive definitions.
By default these are coloured (using vt220 control codes) with metavariables in red, nonterminals
in yellow, terminals in green, and object variables in white. Scanning over this output quickly picks
up some common errors.

• parses the symbolic term (\z.z z) y using the t grammar and prints the result to standard output

• generates Isabelle definitions in the file out.thy

• generates Coq definitions in the file out.v

• generates HOL definitions in the file outScript.sml

• generates a LATEX document in the file out.tex, with a standard document preamble to make it
self-contained.

That LATEX document is then compiled and converted to postscript.

48



For convenience, input files can also be listed at the end of the command line:

ott [options] <file1> ... <filen>

is equivalent to

ott -i <file1> ... -i <filen> [options]

The %.out Makefile target runs ott with common defaults on the file %.ott, so for example executing
make tests/test10.out runs ott on tests/test10.ott, generating all outputs. There are also targets
%.coq.out, %.hol.out, and %.isa.out, to generate just LaTeX and the code for one proof assistant,
and %.tex.out, to generate just LaTeX.

The ott command-line options (with default values where applicable) are shown below.

Ott version 0.21.2 distribution of Fri Jan 13 11:45:17 GMT 2012

usage: ott <options> <filename1> .. <filenamen>

(use "OCAMLRUNPARAM=p ott ..." to show the ocamlyacc trace)

(ott <options> <filename1> .. <filenamen> is equivalent to

ott -i <filename1> .. -i <filenamen> <options>)

-i <filename> Input file (can be used multiple times)

-o <filename> Output file (can be used multiple times)

-writesys <filename> Output system definition

-readsys <filename> Input system definition

-tex_filter <src><dst> Files to TeX filter

-coq_filter <src><dst> Files to Coq filter

-hol_filter <src><dst> Files to HOL filter

-isa_filter <src><dst> Files to Isabelle filter

-ocaml_filter <src><dst> Files to OCaml filter

-merge <false> merge grammar and definition rules

-parse <string> Test parse symterm,eg ":nontermroot: term"

-fast_parse <false> do not parse :rulename: pseudoterminals

-signal_parse_errors <false> return >0 if there are bad defns

-picky_multiple_parses <false> Picky about multiple parses

-colour <true> Use (vt220) colour for ASCII pretty print

-show_sort <false> Show ASCII pretty print of syntax

-show_defns <false> Show ASCII pretty print defns

-tex_show_meta <true> Include meta prods and rules in TeX output

-tex_show_categories <false> Signal production flags in TeX output

-tex_colour <true> Colour parse errors in TeX output

-tex_wrap <true> Wrap TeX output in document pre/postamble

-tex_name_prefix <string> Prefix for tex commands (default "ott")

-isabelle_primrec <true> Use "primrec" instead of "fun"

for functions

-isabelle_inductive <true> Use "inductive" instead of "inductive_set"

for relations

-isa_syntax <false> Use fancy syntax in Isabelle output

-isa_generate_lemmas <false> Lemmas for collapsed functions in Isabelle

-coq_avoid <1> coq type-name avoidance

(0=nothing, 1=avoid, 2=secondaryify)

-coq_expand_list_types <true> Expand list types in Coq output

-coq_lngen <false> lngen compatibility

-coq_names_in_rules <true> Copy user names in rule definitions

-coq_use_filter_fn <false> Use list_filter instead of list_minus2 in substitutions

-ocaml_include_terminals <false> Include terminals in OCaml output (experimental!)

-pp_grammar (debug) print term grammar

-dot <filename> (debug) dot graph of syntax dependencies

-alltt <filename> (debug) alltt output of single source file

49



symterm, st ::=
| stnb

| nonterm

symterm node body , stnb ::=
| prodname(ste1, .. , stem)

symterm element , ste ::=
| st

| metavar

| var : mvr

Figure 17: Mini-Ott in Ott: symbolic terms

-sort <true> (debug) do topological sort

-process_defns <true> (debug) process inductive reln definitions

-showraw <false> (debug) show raw grammar

-ugly <false> (debug) use ugly ASCII output

-no_rbcatn <true> (debug) remove relevant bind clauses

-help Display this list of options

--help Display this list of options

22 Reference: The language of symbolic terms

A syntax definition conceptually defines two different languages: that of concrete terms of the object
language, and that of symbolic terms over the object language. The former includes concrete variables
(if nontrivial lex homs have been specified for metavariables). The latter includes the former but also
allows symbolic metavariables and nonterminals. Symbolic terms may also include the production-name
annotations mentioned in §3. For a syntax definition with list forms (c.f. §12) symbolic terms also include
various list constructs. A simplified abstract syntax of symbolic terms is shown in Figure 17, omitting
list forms. In this section we give an informal definition of the full concrete syntax of symbolic terms.

The premises and conclusions of inductive definition rules are symbolic terms. The language of sym-
bolic terms is defined informally below, with interpretation functions [[ ]] that map defined entities into
grammar clauses.

For a rule rule =
nontermroot1 , .. , nontermrootn:: ’’ ::= prod1 .. prodm

we have
[[rule]] ::=

| nontermrootsuffix (1)
| [[prod1]]
| ..
| [[prodm ]]

(1) for each nontermroot in the set {nontermroot1 , .. , nontermrootn} and for each nontermroot defined
by any rule ′ which is declared as a subrule of this rule.

For a production prod =
| element1 .. elementm :: :: prodname

we have
[[prod ]] ::=

| [[element1]] .. [[elementm ]]
| :prodname: [[element1]] .. [[elementm ]]

For an element there are various cases.

50



1. For a terminal terminal
[[terminal ]] ::= terminal

2. For a nonterminal nontermroot suffix

[[nontermroot suffix ]] ::= [[rule]]

where rule includes nontermroot among the nonterminal roots it defines. (Note that this does not
depend on what suffix was used in the grammar, and similarly for the metavar case below.)

3. For an index variable indexvarroot

[[indexvarroot ]] ::= indexvarroot ′

for each indexvarroot ′ defined by the indexvar definition that defines indexvarroot .

4. For a metavariable metavarroot suffix

[[metavarroot suffix ]] ::=
| metavarroot ′suffix (1)
| variable

(1) for each metavarroot ′ defined by the metavar definition that defines metavarroot . (2) where
variable ranges over all the strings defined by the lex regexp of the metavar definition that defines
metavarroot , except for any string which can be parsed as a nonterminal, metavariable or terminal
of the syntax definition.

5. A list form element element could be any of the following, either without a separating terminal:

element1..elementn dots element ′1..element ′n
</ element1..elementn // indexvar />
</ element1..elementn // indexvar IN indexvar

′ />

</ element1..elementn // indexvar INnumber dots indexvar ′ />
</ element1..elementn // indexvar INnumber dots indexvar ′-1 />

or with a separating terminal:

element1..elementn terminal dots terminal element ′1..element ′n
</ element1..elementn // terminal // indexvar />
</ element1..elementn // terminal // indexvar IN indexvar ′ />
</ element1..elementn // terminal // indexvar INnumber dots indexvar ′ />
</ element1..elementn // terminal // indexvar INnumber dots indexvar ′-1 />

In any of these cases the interpretation [[element ]] is the lists (separated by the terminal if one was
specified) of concrete list entries and of list forms. Without a separating terminal , this is:

[[element ]] ::= (concrete list entry|list form)∗ (2), (3)

concrete list entry ::= [[element1]] .. [[elementn]]

list form ::=
| [[element1]] .. [[elementn]] dots

′ [[element ′1]] .. [[element ′n]] (1)
| </ [[element1]]..[[elementn]] // indexvar

′′ />

| </ [[element1]]..[[elementn]] // indexvar
′′ IN indexvar ′′′ />

| </ [[element1]]..[[elementn]] // indexvar
′′ INnumber ′ dots ′ indexvar ′′′ />

| </ [[element1]]..[[elementn]] // indexvar
′′ INnumber ′ dots ′ indexvar ′′′-1 />

This is subject to constraints: (1) that [[element1]] .. [[elementn]] and [[element ′1]] .. [[element ′n]] can
be anti-unified with exactly one varying index; (2) if the list has only concrete entries (i.e., no list
forms), its length must meet the constraint of any dots in the element .

With a separating terminal , we have:

[[element ]] ::= ǫ|(concrete list entry|list form)(terminal(concrete list entry|list form))∗

51



In the above
dots ::= ..|...|....
number ::= 0|1
suffix ::= suffix item∗

suffix item ::=
| (0|1|2|3|4|5|6|7|8|9)+ (longest match)
|
| ’

| indexvar
| indexvar-1

Further, whitespace (’ ’|’\010’|’\009’|’\013’|’\012’) is allowed before any token except a those in
a suffix, and nonterminals, metavariables, index variables, and terminals that end with an alphanumeric
character, must not be followed by an alphanumeric character.

The tool also builds a parser for concrete terms, with fake nonterminal roots concrete ntr for each
primary ntr of the syntax definition. One can switch to concrete-term parsing with a :concrete:

annotation, as in the example

\[ [[ :concrete: \Z1<:Top. \x:Z1.x ]]\]

shown in Figure 10. Below such an annotation, only concrete terms are permitted, with no further
annotation, no symbolic nonterminals or metavariables, no list dot forms or comprehensions, etc.

Parsing of terms is done with a scannerless GLR parser over character-list inputs. The parser searches
for all parses of the input. If none are found, the ASCII and TeX output are annotated no parses, with
a copy of the input with *** inserted at the point where the last token was read. This is often at the
point of the error (though if, for example, a putative dot form is read but the two element lists cannot
be anti-unified, it will be after the point of the error). If multiple parses are found, the TeX output is
annotated multiple parses and the different parses are output to the console in detail during the Ott
run.

The GLR parser achieves reasonable performance on the small symbolic terms that are typical in semantic
rules. Its performance on large (whole-program size) examples is untested.

23 Reference: Generation of proof assistant definitions

This section briefly summarises the steps involved in the generation of proof assistant definitions from an
Ott source file. For a description of the locally-nameless backend, refer to http://moscova.inria.fr/ zappa/projects/ln

23.1 Generation of types

• The primary metavariable roots and primary nonterminal roots are used directly as the names of
proof assistant types, except where they have a hom specifying a root-overriding string.

• Type abbreviation declarations are produced for metavars, in the source-file order, skipping metavars
or nonterminals defined with phantom.

• Type generation considers each rule of the user’s source grammar except those for formula and
terminals (or the synthesized rules for the syntax of judgements or user_syntax).

• The subrule order is analysed to identify the top elements. For each of those, a proof assistant type
will be generated — either a free type (coq: inductive, isa: datatype, hol: Hol_datatype),
or if there is a type hom for the proof assistant in question, a type abbreviation. No types are
generated for the non-top elements, as they will be represented as predicates over the top free type
above them.

• For the former, each non-meta production of the rule gives rise to a constructor. The production
name (with any per-rule prefix already applied) is used directly as the constructor name. The

52



(curried) constructor argument types are taken from the types associated with the metavariables
and nonterminals mentioned in the production body.

• Rules (within each grammar block, if -merge false, or all rules, if -merge true) are topologically
sorted according to the dependency order (a free-type rule directly depends on another if one of
its non-meta productions includes a nonterminal of the other; dependencies for rules with a type-
hom for the proof assistant in question are obtained from a crude lexing of the body of the type
hom). We then generate mutually recursive type definitions for connected components, in an order
consistent with the dependencies.

• For productions that involve list dot forms or list comprehension forms, for HOL and Isabelle we
produce constructors with argument types that involve native list types. For Coq, however, we
synthesise an additional inductive type for each list-of-tuples that arises (both for those that occur
in the grammar and for others required in the translations of inductive definitions) and include
them in the topological sort.

23.2 Generation of functions

A small number of library functions (list_mem, list_minus,...) are included in the output if they are
required.

Several Coq list functions (map, make, unmake, nth, app) are generated for each synthesized list type.

The definitions of the more interesting functions (subrule predicates, binding auxiliaries, free variable
functions, and substitutions) are generated over the free types generated for the maximal elements of the
subrule order (generation of these functions for rules with type homs is not supported). The definitions
are by pattern-matching and recursion. The patterns are generated by building canonical symbolic
terms from the productions of each relevant rule. The recursion is essentially primitive recursion: for
Coq we produce Fixpoints or Definitions (the latter is sometimes needed as the former gives an error
in the case where there is no recursion); for Isabelle we produce primrecs (or, experimentally, funs);
for HOL we use an ottDefine variant of the Define package. In general we have to deal both with the
type dependency (the topologically sorted mutually recursive types described above) and with function
dependency — for example, for subrule predicates and binding auxiliaries we may have multiple mutually
recursive functions over the same type.

For Coq the function generation over productions that involve list types must mirror that, so we generate
auxiliary functions that recurse over those list types.

For Isabelle the primrec package does not support definitions involving several mutually recursive func-
tions over the same type, so for these we generate single functions calculating tuples of results, define the
intended functions as projections of these, and generate lemmas (and simple proof scripts) characteris-
ing them in terms of the intended definitions. Further, it does not support pattern matching involving
nested constructors. We therefore generate auxiliary functions for productions with embedded list types.
Isabelle tuples are treated as iterated pairs, so we do the same for productions with tuples of size 3 or
more. Isabelle also requires a function definition for each recursive type. In the case where there are
multiple uses of the same type (e.g. several uses of t list in different productions) all the functions
we wish to generate need identical auxiliaries. As yet, the tool does not generate the identical copies
required.

If the option -isabelle_primrec is set to false, then Ott uses the fun package instead of the primrec
package. Since at the time of writing Isabelle 2008 is not capable of proving automatically termination
of all the funs that Ott generates, this feature should be considered experimental.

For HOL the standard Define package tries an automatic termination proof. For productions that involve
list types our generated functions involve various list functions which prevent those proofs working in all
cases. We therefore use an ottDefine variant (due to Scott Owens), with slightly stronger support for
proving termination of definitions involving list operators.

53



23.2.1 Subrule predicates

We generate subrule predicates to carve out the subsets of each free proof assistant type (from the
maximal elements of the subrule order) that represent the rules of the grammar. The non-free rules are
the least subset of the rules that either (1) occur on the left of a subrule (<::) declaration, or (2) have a
(non-meta) production that mentions a non-free rule. Note that these can include rules that are maximal
elements of the subrule order, e.g. if an expression grammar included a production involving packaged
values. The subrule predicate for a type is defined by pattern matching over constructors of the maximal
type above it — for each non-meta production of the maximal type it calculates a disjunction over all
the productions of the lower type that are subproductions of it, invoking other subrule predicates as
appropriate.

23.2.2 Binding auxiliaries

The binding auxiliary functions calculate the intuitive semantics of auxiliary functions defined in bind-
specs of the Ott source file. Currently these are represented as proof assistant lists of metavariables or
nonterminals (arguably set types should be used instead, at least in Isabelle).

23.2.3 Free variables

The free variable functions simply walk over the structure of the free proof assistant types, using any
bind specifications (and binding auxiliaries) as appropriate. For these, and for substitutions, we simplify
the generated functions by using the dependency analysis of the syntax to exclude recursive calls where
there is no dependency.

23.2.4 Substitutions

The generated substitution functions also walk over the structure of the free proof assistant types. For
each production, for each occurrence of a nonterminal nt within it, we first calculate the things (of
whatever type is in question) binding in that nt, i.e. those that should be removed from the domain of
any substitution pushed down into it. There are two cases: (1) the mse’ from any bind mse’ in nt;
(2) nt itself if it occurs in the mse’’ of any bind mse’’ in nt’’, i.e. nt itself if it is directly used to
bind elsewhere. List forms within bindspecs are dealt with analogously.

The substitution function clause for a production is then of one of two forms: either (1) the production
comprises a single element, of the nonterminal or metavariable that we are substituting for, and this is
within the rule of the nonterminal that it is being replaced by, or (2) all other cases. For (1) the element
is compared with the domain of the substitution, and replaced by the corresponding value from the range
if it is found. For (2) the substitution functions are mapped over the subelements, having first removed
any bound things from the domain of the substitution.

This is all done similarly, but with differences in detail, for single and for multiple substitutions.

23.3 Generation of relations

The semantic relations are defined with the proof-assistant inductive relations packages (coq: Inductive,
isa: inductive, hol: Hol_reln). They use the mutual recursion structure that is given by the user,
with each defns block giving rise to a potentially mutually recursive definition of each defn inside it.
(It is debatable whether it would be preferable to do an automatic dependency analysis and topological
sort, as for the syntax.) Each definition rule gives rise to an implicational clause, essentially that the
premises (Ott formulas) imply the conclusion (an Ott symbolic term of whichever judgement is being
defined). In addition:

• Symbolic terms are transformed in various different ways:

54



– Nodes of non-meta productions are output as applications of the appropriate proof-assistant
constructor (and, for a subrule, promoted to the corresponding constructor of a maximal rule).

– Nodes of meta productions are transformed with the user-specified homomorphism.

– Nodes of judgement forms are represented as applications of the defined relation in Coq and
HOL, and as set-membership assertions in Isabelle.

– Lists of formulae (the formula_dots production) are special-cased.

• For each nonterminal of a non-free syntax rule (as in §23.2.1) that occurs, e.g. a usage of v’

where v<::t, an additional premise invoking the subrule predicate for the non-free rule is added,
e.g. is_v v’.

• The set of symbolic terms of the definition rule are analysed together to identify list forms with
the same bounds. A single proof assistant variable is introduced for each such, with appropriate
projections and list maps/foralls at the usage points.

• For Coq, auxiliary defined relations are introduced for list forms.

• For Coq, as the projections from list forms involve (Ott-generated) nth functions that return option
types, for any such projection a pattern-match against Some is introduced as an additional premise.

• For Coq and HOL, explicit quantifiers are introduced for all variables mentioned in the rule.

24 Reference: Summary of homomorphisms

Homomorphisms can appear in various positions in an Ott source file. The table below summarises their
meanings. A

√
indicates that arguments are meaningful for that usage (e.g. [[e1]] in a production

mentioning a nonterminal or metavariable e1).

a metavar or indexvar declaration, after one of the defined metavar/indexvar roots, or
a rule, after one of the defined nonterminal roots
tex

√
LATEX typesetting for symbolic variables with that root

isa/coq/hol/ocaml Isabelle/Coq/HOL/OCaml root overriding string (1)
repr-locally-nameless use a locally-nameless representation (Coq backend only)

a metavar or indexvar declaration, after the ::=
isa Isabelle representation type
coq Coq representation type
hol HOL representation type
ocaml OCaml representation type
tex

√
LATEX typesetting for symbolic variables

com comment to appear in LATEX syntax definition
coq-equality Coq proof script to decide equality over the representation type
repr-locally-nameless (Coq only) use a locally-nameless representation
phantom suppress the representation type definition in theorem prover output
lex regular expression for lexing concrete variables
texvar

√
LATEX typesetting for concrete variables

isavar
√

Isabelle output for concrete variables
holvar

√
HOL output for concrete variables

ocamlvar
√

OCaml output for concrete variables

55



a rule, after the ::=
isa Isabelle representation type, if a non-free type is required
coq Coq representation type, if a non-free type is required
hol HOL representation type, if a non-free type is required
ocaml OCaml representation type, if a non-free type is required
tex

√
LATEX typesetting for symbolic variables

com
√

comment to appear in LATEX syntax definition
coq-equality Coq proof script to decide equality over the representation type
coq-universe Coq universe (e.g. Type) for the representation type
phantom suppress the representation type definition in theorem prover output
icho

√
shorthand for identical coq, isa, hol, and ocaml homs

ich
√

shorthand for identical coq, isa and hol homs
ic

√
shorthand for identical coq and isa homs

ch
√

shorthand for identical coq and hol homs
ih

√
shorthand for identical isa and hol homs

a production
isa

√
Isabelle output, for a non-free (meta) production

coq
√

Coq output, for a non-free (meta) production
hol

√
HOL output, for a non-free (meta) production

ocaml
√

OCaml output, for a non-free (meta) production
tex

√
LATEX typesetting for symbolic terms

com
√

comment to appear in LATEX syntax definition
order

√
specify order of arguments to prover or Ocaml constructor

isasyn
√

Isabelle mixfix syntax output
isaprec Isabelle mixfix syntax precedence string
ich

√
shorthand for identical coq, isa and holhoms

ic
√

shorthand for identical coq and isa homs
ch

√
shorthand for identical coq and hol homs

ih
√

shorthand for identical isa and hol homs

a production of the terminals grammar
isa Isabelle output, for terminals in default generated Isabelle mixfix declarations
tex LATEX default typesetting for terms
com

√
comment to appear in LATEX syntax definition

a defn, before the by
tex

√
LATEX typesetting for symbolic terms

com
√

comment to appear in LATEX syntax definition
isasyn

√
Isabelle mixfix syntax output

isaprec Isabelle mixfix syntax precedence string

a homs section clause (for a production or a definition)
as in the above production and defn forms

a group of defns, after the ::=
coq-universe Coq universe (e.g. Type) for the representation type

56



an embed section
isa embedded Isabelle output
coq embedded Coq output
hol embedded HOL output
ocaml embedded OCaml output
tex embedded LATEX output
tex-preamble embedded LATEX output, appearing in the LATEX preamble
coq-lib do not generate definitions for the listed helper functions
isa-auxfn-proof Isabelle proof script
isa-subrule-proof Isabelle proof script

in a subrule, substitution or function definition
isa-proof Isabelle proof script

(1) This is occasionally useful to work around a clash between a metavar or nonterminal primary root
and a proof assistant symbol, e.g. value in Isabelle or T in HOL.

25 Reference: The Ott source grammar

This is automatically generated (by mly-y2l) from the ocamlyacc grammar for Ott.

The lexing of Ott source files is context-dependent; this does not show that.

Not everything in the grammar is fully supported — in particular, option element forms, non-dotted
element list forms, the three names distinctness forms of bindspecs, and context rules.

26 Reference: Examples

The project web page

http://www.cl.cam.ac.uk/users/pes20/ott/

gives a variety of examples. Some of these, and additional small examples, are included in the distribution
in the tests directory. Typically they can be built using the Makefile in the ott directory, e.g. typing
make test10 or (more generally) make tests/test10.out) there.

test10.ott untyped CBV lambda
test10st.ott simply typed CBV lambda
test8.ott ML polymorphism example
test7a.ott POPLmark Fsub example (without records)
test7b.ott POPLmark Fsub example (with records)
leroy-jfp96.ott Leroy module system
lj.ott LJ: Lightweight Java
test7t.mng whole-document tex mng source

(make test7afilter to build)
test7tt.mng fragment tex mng source
test11.ott subrule example
test12.ott topological sort example
test13.ott small bindspec fragment
test10st_snapshot_out.thy snapshot of generated Isabelle from test10st.ott

test10st_metatheory_autoed.thy Isabelle proof script for type preservation and progress
test10st_codegen.thy Isabelle code generation script for reduction
test10_isasyn.ott Isabelle mixfix syntax example
test10st_metatheoryScript.sml HOL proof script for type preservation and progress
test17.10.ott list comprehension examples

57



The examples/tapl directory contains several examples taken from the book ‘Types and Programming
Languages’ by Benjamin Pierce. The make targets, listed below, combine Ott source files following
roughly the TinkerType component structure used in TAPL.

sys-bool booleans (p34)
sys-arith arithmetic expressions (p41)
sys-untyped untyped lambda-calculus with booleans
sys-puresimple simply-typed lambda-calculus
sys-tybool typed booleans
sys-sortoffullsimple

sys-roughlyfullsimple

sys-puresub

sys-purercdsub

Other examples can be found on the locally-nameless backend web page.

Acknowledgements

We thank the Ott users for their feedback, especially Matthew Parkinson; the other members of the
POPLmark team, especially Benjamin Pierce, Stephanie Weirich, and Steve Zdancewic, for discussions;
and Keith Wansbrough, Matthew Fairbairn, and Tom Wilkie, for their work on various Ott predecessors.

We acknowledge the support of EPSRC grants GR/T11715, EP/C510712 and EP/F036345, a Royal
Society University Research Fellowship (Sewell), an EPSRC Leadership Fellowship (Sewell), and ANR
grant ANR-06-SETI-010-02 (Zappa Nardelli).

References

[ABF+05] Brian E. Aydemir, Aaron Bohannon, Matthew Fairbairn, J. Nathan Foster, Benjamin C.
Pierce, Peter Sewell, Dimitrios Vytiniotis, Geoffrey Washburn, Stephanie Weirich, and
Steve Zdancewic. Mechanized metatheory for the masses: The POPLmark Challenge. In
Proc. TPHOLs, LNCS 3603, 2005.

[FGL+96] Cédric Fournet, Georges Gonthier, Jean-Jacques Lévy, Luc Maranget, and Didier Rémy. A
calculus of mobile agents. In Proc. CONCUR ’96, LNCS 1119, 1996.

[Ler96] Xavier Leroy. A syntactic theory of type generativity and sharing. Journal of Functional
Programming, 6(5):667–698, 1996.

[LP03] Michael Y. Levin and Benjamin C. Pierce. Tinkertype: A language for playing with formal
systems. Journal of Functional Programming, 13(2), March 2003.

[Pie02] Benjamin C. Pierce. Types and Programming Languages. MIT Press, 2002.

[SSP07] Rok Strnǐsa, Peter Sewell, and Matthew Parkinson. The Java Module System: core design
and semantic definition. In Proceedings of OOPSLA 2007, the 22nd ACM SIGPLAN Inter-
national Conference on Object-Oriented Programming, Systems, Languages and Applications
(Montreál), October 2007. 15pp.

[SZNO+07] Peter Sewell, Francesco Zappa Nardelli, Scott Owens, Gilles Peskine, Thomas Ridge, Susmit
Sarkar, and Rok Strnǐsa. Ott: Effective tool support for the working semanticist. In Pro-
ceedings of ICFP 2007: the 12th ACM SIGPLAN International Conference on Functional
Programming (Freiburg), October 2007. 12pp.

[SZNO+10] Peter Sewell, Francesco Zappa Nardelli, Scott Owens, Gilles Peskine, Thomas Ridge, Susmit
Sarkar, and Rok Strnǐsa. Ott: Effective tool support for the working semanticist. Journal of
Functional Programming, 20(1):70–122, January 2010. Invited submission from ICFP 2007.

58


