
Rigorous Protocol Design in Practice: An Optical
Packet-Switch MAC in HOL

Adam Biltcliffe∗, Michael Dales†, Sam Jansen†, Thomas Ridge∗, Peter Sewell∗

∗Computer Laboratory
University of Cambridge

First.Last@cl.cam.ac.uk

†Intel Research
Cambridge

{Michael.W.Dales,Sam.Jansen}@intel.com

Abstract— This paper reports on an experiment in network
protocol design: we use novel rigorous techniques in the design
process of a new protocol, in a close collaboration between
systems and theory researchers.

The protocol is a Media Access Control (MAC) protocol for
the SWIFT optical network, which uses optical switching and
wavelength striping to provide very high bandwidth packet-
switched interconnects. The use of optical switching (and the
lack of optical buffering) means that the protocol must control
the switch within hard timing constraints.

We use higher-order logic to express the protocol design,
in the general-purpose HOL automated proof assistant. The
specification is thus completely precise, but still concise, read-
able, and without accidental overspecification. Further, we test
conformance between the specification and two implementations
of the protocol: an NS-2 simulation model and the VHDL code of
the network hardware. This involves: (1) proving, within HOL,
that the specification is equivalent to an algorithmically-checkable
version; (2) using automatic code-extraction to generate a testing
oracle; and (3) applying that oracle to traces of the implemen-
tation.

This design-time use of rigorous methods has resulted in a
protocol that is better specified and more correct than it would
otherwise be, with relatively little effort.

I. INTRODUCTION

Network protocols are often designed using informal prose
specifications of the intended behaviour, as found in most
RFCs, coupled with experimental implementation code. This
dependence on prose specifications has several problems:
• they are imprecise, so there may be misunderstandings

among designers and implementors as to exactly what the
specification means;
• there is no way to test conformance of an implementa-

tion directly against the specification, so implementation
differences tend to proliferate unchecked; and
• they make it hard to see the protocol as a whole,

to identify any unnecessary complexity or unexpected
interactions between features.

In response to these problems, there has been a great deal
of work on mathematically rigorous techniques for expressing
protocol behaviour, and on various kinds of formal verifica-
tion. Even now, though, most formal work deals with highly
idealised protocols, and most practical protocol design is
unsupported by rigorous descriptions of endpoint behaviour.

In previous research we established specification and auto-
mated testing techniques that are effective for complex real-
world protocols, with a detailed and accurate model of TCP,
UDP, and the Sockets API [5], [6]. That work was post hoc,
describing the behaviour of existing protocols. In contrast, this
paper reports on an experiment in rigorous protocol design,
and the related specification and testing techniques, in an
ongoing systems project. The benefits of rigorous behavioural
description at design-time are potentially much greater than for
post hoc work, as infelicities in the protocol can be identified
and fixed very early, but it requires an agile process. We
describe how we have achieved this, with a close collaboration
between systems and theory researchers.

THE PROTOCOL The protocol we address is a Media Access
Control (MAC) protocol for a high-capacity optically-switched
packet-switched network: the SWIFT network [12], [16]. It is
described informally in §II.

The SWIFT network seeks to meet ongoing high-capacity
interconnect requirements by making the end-to-end data-path
all optical, replacing electronic switching components with
optical ones. At very high data rates the electronics required
to switch high speed data will become increasingly expensive
and power hungry. Optical switches remove the need to
process the data on the network electronically, providing both a
performance and power advantage. However, optical switches
fundamentally alter how the network is managed. There is no
optical equivalent of RAM, so buffering in switches can no
longer be relied upon to resolve contention for output ports.
Instead, in order to guarantee delivery of frames, an end-to-end
light path must be constructed before the frame is injected into
the network. This, coupled with the inability to process packet
headers in the traditional manner due to the limits of optical
header reading, lead to new network structure requirements
for optically switched networks [7].

These changed constraints mean that more complex MAC
protocols are needed to manage such interconnects. In addition
to typical start-of-day and management tasks, the network
control protocol now has to explicitly manage setting up the
network for delivery of frames from one host to another —
no longer is it sufficient to fire a frame into the network
immediately and rely on the network to simply deliver it
correctly.

First.Last@cl.cam.ac.uk
{Michael.W.Dales,Sam.Jansen}@intel.com

The protocol is a good target for an experiment in design: it
involves new and subtle properties and is moderately complex,
but is not as large as (say) TCP.

RIGOROUS DESIGN TECHNIQUES Our design approach is
explained in §III. It has two main components: a mathemat-
ically rigorous style for defining the protocol, and a semi-
automated technique for testing conformance between this
definition and implementations. For this to be practical, the
specification style has to be:
• clear, concise, and readable by all those involved, as

its primary use is to facilitate communication among the
designers;
• expressive enough to describe the key aspects of the pro-

tocol behaviour, especially the timing constraints, without
leading the designers to overspecify aspects of behaviour
which they wish to leave open; and
• machine-processed, as pen-and-paper mathematics on

this scale becomes hard to keep consistent (especially for
an evolving protocol design), and to support conformance
testing.

Higher-order logic and HOL We use higher-order logic to
express the specification, mechanised using the HOL auto-
mated proof assistant [14]. Higher-order logic is similar to
conventional first-order logic, with the normal connectives
and quantifiers, etc., but with the addition of a rich type
structure (functions, lists, sets, numeric types), and the ability
to quantify over any of these types. It is extremely expres-
sive, allowing one to write more-or-less arbitrary mathematics
idiomatically.

HOL is a system for manipulating higher-order logic def-
initions, type-checking them, and performing proof. Large
libraries of mathematics have already been developed in it.
Automatic type-checking is invaluable, quickly detecting many
simple errors, and automatic typesetting prevents transcription
errors. The system provides the user with a wide variety of
decision procedures and tactics, which assist the process of
proof construction. HOL is not a fully automatic theorem
prover, or model checker, since the expressiveness of higher-
order logic means that sophisticated proofs are hard to discover
automatically. However, various fragments, such as first order
logic, are fully automatic. Machine-processed mathematics in
a system such as HOL, in a well-defined logic, is currently
the most rigorous form of definition possible.

The use of higher-order logic may be unfamiliar at first
sight, potentially making the specification less accessible. In
practice, however, our experience is that this is not a problem.
It is important to have some members of the design team
fluent in its use, but the more systems-oriented researchers
have quickly become sufficiently familiar with it to be able
to discuss their intended design in terms of the formalised
properties. Thus, whilst less accessible than informal English,
the use of formal logic is not the barrier to accessibility that
it might appear, whilst it brings with it great benefits in terms
of rigour.

Conformance testing by proof and code extraction The
specification is written to be as clear as possible, and con-
sequently is not algorithmically checkable. For conformance
testing, therefore, we prove, within HOL, that the specification
is equivalent to a conformance-checking algorithm. We then
use the automatic code-extraction facilities of HOL [14] to
generate a testing oracle: an ML program that reads a trace of
events and checks whether or not it meets the specification.
This is described in §V.

We have applied this to two implementations of the pro-
tocol: an NS-2 simulation model and the VHDL code of the
network hardware. In each case we generate traces from the
implementation (and for the first aiming for as much coverage
as possible), and then use the oracle to check them.

Process The whole process is flexible and lightweight. The
informal descriptions of the protocol, the formal specification,
and the initial implementations complement each other; they
have been developed hand-in-hand (we are not advocating
writing a specification in isolation and then handing it over to
implementors). Simply writing the formal specification clari-
fied many important issues in the protocol, and (as we discuss
in §VI and §VIII) conformance testing has identified errors
both in the specification and in the implementation. Changing
the specification is straightforward (though re-proving the
algorithmic characterisation of the specification does require
some work), and re-running the conformance tests when the
implementation changes is automated and reasonably fast.

SUMMARY OF CONTRIBUTION

• We describe a successful experiment in design-time use
of rigorous techniques, with a lightweight design-for-test
approach, for a novel real-world protocol.
• We construct a testing oracle directly from the specifi-

cation, using a combination of mechanised proof (within
HOL) and automatic extraction of code from the resulting
algorithmic specification. This provides very high confi-
dence in the correctness of the oracle.
• Our approach exposed a variety of errors during the

design process, in both specification and implementation,
both during discussion about the specification and from
use of the test oracle on NS-2 and VHDL implementa-
tions. We give illustrative examples.

II. SWIFT OPTICAL NETWORK OVERVIEW

There is increasing demand for high-bandwidth, short-scale
interconnects, as currently exemplified by Infiniband, Fibre
Channel, Gigabit and 10 Gigabit Ethernet, and PCI-Express.
Whilst these networks are currently heading into the tens of
gigabits, to reach hundreds of gigabits or terabits it is likely
that such interconnects will need to turn to optical technolo-
gies [10], [13]. In addition to the obvious route of using optical
fibre links, with the high capacity that multiplexing several
channels over a single fibre can provide, such networks will
benefit also from optical switching, in both performance and
power.

2

GENERAL OVERVIEW The SWIFT network architecture is
designed to provide a short-range, end-to-end optical, packet-
switched, high-bandwidth interconnect. Potential applications
include intra- and inter-server backplanes and small LANs.
This context imposes a different set of requirements from that
of conventional (i.e., long-haul) optical network design. In
addition to the network design goals SWIFT has been de-
signed such that it can be constructed using close-to-available
technology, and with an eye to keeping the network’s cost
down. An interconnect that is aimed at potential deployment
on motherboards must be relatively cheap.

A SWIFT interconnect is based around a single switch,
which is suitable for the limited domains SWIFT is aimed
at. We use electrically driven optical devices called Semicon-
ductor Optical Amplifiers (SOAs). By chaining these devices
together an optical switch fabric can be constructed. We have
successfully demonstrated an optical packet switch constructed
from SOAs under electronic control working at 100 Gbps [11].

To achieve these levels of high capacity the SWIFT network
uses Wavelength Division Multiplexing (WDM) to send data
over multiple wavelengths simultaneously. Typically, in long-
haul networks, WDM is used to carry multiple independent
channels of data, but in SWIFT we use a technique called
wavelength striping, where all wavelengths are used for a
single channel of data. This allows us to scale the network
easily by adding more wavelengths in addition to the typical
approach of adding faster transceivers. Because all wave-
lengths are switched simultaneously, this simplifies the switch
fabric design, removing the need for wavelength sensitive
devices.

To perform contention resolution before packets enter the
network, as there is no optical buffering, hosts connected to
a switch use a reserved wavelength on the fibre as a control
channel between the host and the switch. This control channel
is used by a host to request access to the network for a unit of
transmission, and only when an end-to-end light-path has been
constructed for this packet does the switch tell the host that it
is free to transmit. This is similar to Optical Burst Switching
(OBS) which has been proposed for long-haul networks [17].
However, because of the larger network diameter OBS does
not wait for a clear to transmit signal, so cannot guarantee
delivery — the smaller scale of the SWIFT network allows us
to achieve this.

An overview of the SWIFT architecture can be seen in
Fig. 1. The network consists of a number of hosts connected
to a single switch. Hosts stripe data packets over n − 1
wavelengths in the network interface, with the remaining
wavelength for point-to-point control channels between the
arbiter and each host. All the data wavelengths are simulta-
neously optically switched to the appropriate output port on
the switch. The switch fabric is managed by the arbiter, which
accepts transmission requests from hosts over the respective
control channels and will set up the switch fabric appropriately.

The switch fabric is configured for a fixed duration called a
slot, which is long enough to allow transmission of a maximum
sized packet. Many light-paths may be valid through the switch

Fig. 1. Overview of the SWIFT network

fabric in a given slot. When the arbiter schedules light-paths
to allow hosts to communicate it does so on a slot by slot
basis. Note there is no global clock or notion of a slot: only
the arbiter works in terms of slots; the hosts know only to
transmit when they are granted permission. For each new slot,
the switch fabric is reconfigured and all the hosts than can
now transmit during this configuration are sent appropriate
grant messages telling them who they can send to. The policy
used for scheduling slots can be altered to suit the network
usage pattern, ranging from simple round robin scheduling, a
priority based scheduler, or a scheduler that attempts to deliver
quality of service guarantees.

The arbiter is also responsible for the configuration man-
agement of the network. To allow for the most efficient use of
the network possible the switch will measure the Round Trip
Time between itself and each host, and offset grant messages
appropriately. It also carries out basic network configuration
tasks such as assigning MAC addresses to hosts.

THE SWIFT MAC PROTOCOL The MAC protocol operates
on the control channel and controls access to the data plane.
There are three basic processes involved: ping/pong messages,
used to assess network liveness and measure link delays;
start-of-day messages, used to carry out network configuration
such as link layer address assignment; and basic operation
messages, which allow hosts to deliver packets to other hosts.

The arbiter sends periodic ping messages out on all ports
continuously, with the periodic interval changing depending
on whether the link is deemed active or inactive. Initially the
link is assumed to be inactive; once a response to the ping
(a pong) is received, the arbiter knows the port to be active.
The ping interval is smaller when a link is inactive to ensure
a fast response time when a host is connected to the network,
and then the frequency of ping messages is reduced so as
not to clog the control channel while ensuring the host is
still alive. Ping and pong messages include an identifier used
when calculating Round Trip Time (RTT): the RTT between
arbiter and host over the control channel is the time between
ping and pong packets with the same identifier on a port —
this allows the host to offset time-sensitive messages suitably
to take into account propagation delays. Ports are marked as
inactive when the fibre goes dark or a host has not responded

3

Data
channel

Control
channel

Request

Fabric configured

Grant

Data

Host

Arbiter

Fabric

Host

8
>><
>>:

8
>><
>>:

Fig. 2. Requesting a slot and sending data in the SWIFT network

to ping messages for a period.
Once a host has received a ping message and replied, it

requests a MAC address from the arbiter. The arbiter responds
with a MAC address assignment packet. Once the host is
assigned a MAC address it can request to send data to other
MAC addresses. A host may also request the MAC address of
the address master, a host that is assigned to answer Address
Resolution Protocol (ARP) look-ups. ARP for the SWIFT
network is not covered here, as it not part of the MAC protocol.

When a host is instructed to send a packet, the packet is
buffered and a Data Request message containing a destination
MAC address is sent to the arbiter. The arbiter will schedule
that request into a future slot, and at some point reply with
a Data Grant message just prior to that slot (offset by one
RTT) to indicate that the switch fabric has been appropriately
configured to create a light-path between the source and
destination, and the host may now transmit the packet. Data
Request messages may be made at any time by the host,
asynchronous of any activity on the data plane. However,
Data Grant messages are sent just prior to the switch fabric
configuration for the appropriate light-path.

Fig. 2 shows the timing relationship between the activities
on the control channel and the data plane. Initially the host
sends a request message saying it wants to send a frame, and
the arbiter will schedule that request for some time later. Some
time before the slot starts the arbiter sends a grant message,
such that the switch fabric will be configured correctly when
the data sent by the host arrives at the switch.

The MAC protocol is designed on the assumption that the
control channel is reasonably reliable, with few bit errors. Thus
the protocol does not specify acknowledgements for messages,
but rather optimises for the common case where messages will
be successfully delivered. However, because there will be some
possibility of loss, the protocol is designed such that timeouts
will be used to force the hosts to resend messages in the event
they do not get a reply.

III. FORMAL, MECHANISED SPECIFICATION

In this section we explain the overall structure of the
specification and the idioms used, with a few representative
excerpts. The full mechanized specification is around 650 non-
comment lines of HOL; it is available online [4].

CHOICE OF OBSERVATIONS In writing a specification, we
must first choose which events of the system to model, and

at what level of abstraction. Our main goal is to capture the
behaviour of the components that is required for satisfactory
operation of the network. We therefore model the interactions
between the hosts, the arbiter, the switch, and the connecting
channels, specifying the allowable behaviour of each of these.
We also model the interactions between a host and its higher-
level device (and device driver, etc.), but do not constrain
the behaviour of the device. In particular, we assume some
higher-level mechanism which takes care of MAC address
resolution.We model individual messages abstractly, omitting
low-level details such as their bit-level layout. One could
include such details (indeed, earlier versions of the spec did
so), but for this protocol they are simple enough that they
can be unambiguously specified separately. We therefore focus
on the timing and high-level content of messages, for ex-
ample D2H SEND(mac, data), for a device-to-host message
requesting that data be sent to mac.

The main components of the model are shown below,
together with the messages sent between them. Each kind of
message is defined as a separate HOL type (e.g. a2h msg)
so that HOL typechecking can catch many simple errors. The
diagram shows only one host, but the specification deals with
an arbitrary number.

Host

D2H SEND(mac, data)
D2H INVALIDATE MY MAC

A
FA

B
R

IC
(fa

b
ric

sta
te

)

Device

Arbiter

H2S DATA(data)

S2H DATA(data)

Channel

A2H DATA GRANT(mac)
A2H PING(pingid)
A2H MAC GRANT(mac)
A2H MASTER IS(mac)

H2D RECV(data)
H2D WEDGED
H2D I AM(mac option)

Channel

H2A DATA REQUEST(mac)
H2A PONG(pingid)
H2A MAC REQUEST
H2A WHO IS MASTER

Switch

GLOBAL TRACE-BASED SPECIFICATION The specification
is phrased as a predicate on traces of the whole system.
Such a trace is a sequence of network labels, each of which
is an element of the HOL type below. This is roughly a
disjoint union of the messages shown above (some tagged with
their port using the HOL pair type constructor #), and three
additional cases: N DUR(time), representing the passage of
(real-valued) time; N DARK(port), indicating that port has
gone dark; and N TAU, a null event.

n lbl =
N TAU

4

| N DUR of time
| N FABRIC of fabric state
| N DARK of port
| N A2CA of port#a2h msg#time
| N CA2H of port#a2h msg
| N H2CA of port#h2a msg#time
| N CA2A of port#h2a msg
| N D2H of port#d2h msg
| N H2D of port#h2d msg
| N H2CS of port#h2s msg#time
| N CS2S of port#h2s msg
| N S2CS of port#s2h msg#time
| N CS2H of port#s2h msg

For modularity, the specification is phrased as a conjunction
of properties: a trace is admissible if its projections onto the
host, arbiter and switch components each satisfy the relevant
properties. The specification is additionally parameterised on
the ports of the arbiter. The top level is therefore as below.

spec ports(t : net trace) =

arbiter spec ports(arbiter trace t) ∧
switch spec(switch trace t) ∧
(∀p.mem p ports =⇒

host spec(host trace p t) ∧
arbiter channel spec(arbiter channel trace p t))

Syntax HOL definitions resemble standard mathematical
definitions, and include the full range of propositional con-
nectives ∧,∨,¬,⇒,⇔ as well as the usual quantifiers ∀x,∃x.
Application of a function f to an argument x, which is often
informally written f(x), is written without brackets in HOL,
f x. A trace t is an infinite sequence of events, expressed as a
function from the natural numbers to the set of events. Thus,
if t is a trace, the application t n gives the event at position
n in t. If t is a trace, and P is a property, P t expresses that
P holds of trace t.

The specification of each component is then expressed
simply as a conjunction of properties on traces of events that
occur at that component. The arbiter is shown below; the host
has a similar definition.

arbiter spec ports(t : arbiter trace) =

grants correctly arbitered t ∧
starts pinging ports t ∧
continues pinging t ∧
pings correctly spaced t ∧
pingids not reused too soon t ∧
data requests get granted t ∧
only talk to ports with macs t ∧
one mac per port t ∧
mac requests are granted t ∧
one port per mac t

The definitions of these properties are the heart of the spec.
Before we examine their formal statements, we give brief
informal descriptions of some of the arbiter properties, taken
from comments in the spec.
• grants correctly arbitered: if the arbiter sends a grant,

then the switch must be configured for the associated light
path for a certain interval of time.
• starts pinging: the arbiter must send a ping on all ports

before UNCONNECTED PING REPEAT TIME has
elapsed.
• continues pinging: all pings on a port are eventually

followed by another ping on the same port.
• pings correctly spaced: the interval between consecu-

tive pings on a given port is determined by the arbiter’s
view of the status of the host on that port.
• pingids not reused too soon: the arbiter does not reuse

pingids within MIN PING REUSE TIME.
• data requests get granted: if the arbiter receives a

data-request, it eventually sends a data-grant.
• only talk to ports with macs: the arbiter does not

send anything (except MAC-grants and pings) to ports
with no assigned MAC.
• one mac per port: the arbiter does not send two con-

flicting MACs to the same port withoutsomething to
invalidate the MAC inbetween.
• mac requests are granted: if the arbiter receives a

MAC-request, it eventually sends a MAC-grant.
• one port per mac: the arbiter never assigns the same

MAC to more than one port.
Let us consider one of the simpler properties,

starts pinging, in more detail.

starts pinging ports(t : arbiter trace) =

∀p.mem p ports =⇒
∃n pingid .(t n = A A2H(p,A2H PING pingid)) ∧
a time t n ≤ UNCONNECTED PING REPEAT TIME)

Line by line, the property says the following. starts pinging
is a property of an arbiter trace parameterised by a set of
ports (those that are physically connected to the arbiter). If p
is a member of the set of ports, then there must exist a point
n, and a pingid such that t n is a ping event with that pingid.
Moreover, the time at which this event occurs must be less than
or equal to UNCONNECTED PING REPEAT TIME.

A more complex property that the arbiter must satisfy is
grants correctly arbitered, informally described above.

grants correctly arbitered t =

∀n psrc mac.
(t n = A A2H(psrc,A2H DATA GRANT mac)) =⇒
let rtt est = a rtt estimate t psrc n in

5

case rtt est of ∗ → F ‖ ↑ rtt →
mac ∈ dom((port of mac t n)) ∧
let pdst = (port of mac t n)[mac] in
let tn = a time t n in
let low time = tn + max (rtt − SLOP TIME)0 in
let high time =

tn + rtt + TRANSMISSION TIME + SLOP TIME in
∃low high. a time t low ≤ low time ∧
high time ≤ a time t high ∧
∀n.low ≤ n ∧ n ≤ high =⇒ (psrc, pdst) ∈ a fabric t n

This property states that, if the arbiter sends on port psrc an
A2H DATA GRANT for destination host identified by mac
then the optional rtt estimate rtt est for psrc cannot be null
(written ∗), but must actually be set to some value rtt . If so,
it must also be the case that the destination host mac can be
identified with a port by the arbiter, using auxiliary function
port of mac, i.e. mac is in the domain of this function, and
pdst is the result of applying the function to mac. We then
consider a time interval between low time and high time
inclusive. low time , the start of the interval, is the current
time tn plus the rtt minus the SLOP TIME, except in case
SLOP TIME is bigger than rtt , in which case, low time is
just the current time. high time is set similarly. We require
two points in the trace, low , high which contain this interval,
and such that at every point inbetween, the pair psrc, pdst is
a configured path in the switch fabric.

SPECIFICATION STYLE In writing the specification, there
were several interesting technical choices of what mathemati-
cal idiom to use. These choices were driven by the particular
nature of this protocol. For one example, the protocol is
asynchronous, without a global clock that is shared between
arbiter and hosts, but with real-time constraints on when
the switch fabric must be set up. Further, these constraints
must allow for varying fibre propagation delays (as they heat
and cool). We therefore use traces of instantaneous events
interleaved with real-time-passage events, rather than clocked
traces with events at fixed intervals. For another example, the
state of the arbiter and host is left implicit, with the properties
in terms only of observable events. This makes it easier to
avoid accidental overspecification and is appropriate for this
protocol — in contrast to our earlier work on TCP, where the
state structure (TCP control block variables etc.) is needed for
the description of congestion control algorithms.

IV. IMPLEMENTATIONS

We have worked with two implementations of the protocol
(written by two different authors), described briefly here.

VHDL IMPLEMENTATION A prototype of the SWIFT net-
work has been built at Intel Research, with a three-port
optical switch and three hosts. The switch electronics and host
electronics have been implemented using Xilinx Virtex-II Pro
FPGAs, with the custom hardware required being written in
VHDL, a very popular hardware description language. They
total over 8600 lines of VHDL.

Ideally conformance testing of the hardware implementa-
tion would be carried out at two points. Firstly, during the
simulation stage of hardware development, where the VHDL
code is executed in a tool such as the popular Modelsim
from Mentor Graphics. Hardware simulation is the primary
way of debugging hardware before it goes to manufacture.
Because hardware mistakes are very expensive to correct,
simulation tests need to be as complete as possible. Thus using
conformance testing at this stage is ideal. The second point to
carry out conformance testing is on the actual hardware when
it is built. This allows the designers to confirm that what they
have built still conforms to the specification. This stage would
require capture of data on the links which could then be turned
into a trace.

In this paper we have carried out conformance testing at
the first stage. Augmenting the VHDL code with additional
debug output to generate a trace suitable for consumption by
the checker is relatively straightforward, and can be seen as
just an extension of existing debugging of the design. Although
it would be ideal to also capture the traces of the live network,
the optical nature of the links means that additional splitters
in the lines would be necessary. This would affect the optical
power budget for the network, and also would require much
expensive monitoring. This would be feasible in a commercial
environment, but is beyond the time/cost constraints for a
research project such as SWIFT.

NS-2 IMPLEMENTATION NS-2 is an object oriented packet-
based network simulator written in C++ and OTcl [2]. It
includes models for local area networks which define channels,
physical interfaces, MAC and link layers. The model for the
SWIFT network is built on these base classes with close
to 5,000 lines of combined C++ and OTcl. The models
implement the specification of the network along with a full
address resolution protocol. Simulation scripts written in OTcl
are able to modify timing parameters and algorithms used for
the various components of the network.

The data and control planes are simulated with two separate
sets of network connections, which is logically the same
as using different wavelengths. The arbiter can be selected
from a set of arbitration policies such as round-robin granting
of switch configurations and a simple queue of requests
(used to generate the traces tested). It is easy to add tracing
functionality to the simulation models; all output is written to
a file if tracing is enabled. A short example trace is as follows.

example trace = [N DUR(10 ∗USEC),
N A2CA(n2w 0,A2H PING(n2w 901), 84 ∗NSEC),
N DUR(10 ∗USEC),
N A2CA(n2w 0,A2H PING(n2w 902), 84 ∗NSEC),
N DUR(85 ∗NSEC),
N CA2H(n2w 0,A2H PING(n2w 902)),
N H2CA(n2w 0,H2A PONG(n2w 902), 84 ∗NSEC),
N H2CA(n2w 0,H2A MAC REQUEST, 84 ∗NSEC),
N DUR(85 ∗NSEC),
N CA2A(n2w 0,H2A PONG(n2w 902)),
N DUR(80 ∗NSEC),

6

N CA2A(n2w 0,H2A MAC REQUEST),
N A2CA(n2w 0,A2H MAC GRANT(n2w 50), 84 ∗NSEC)]

V. EXPERIMENTAL VALIDATION, TRACE CHECKING

In order to check traces for conformance, we transform
our specification to a checkable version, which we prove
equivalent to the original. We then use the automatic code
extraction facility of HOL to generate an ML program that
checks that a trace conforms to our original specification. We
use this in a distributed setting to check many traces in parallel.

TRANSFORMING THE SPECIFICATION, AND PROVING COR-
RECTNESS The specification is not directly usable to test
conformance of implementations for two reasons. First, the
specification involves infinite sets, functions and other math-
ematical structures that may not be executable. For example,
the specification may talk about two infinite sets being equal,
whereas in general there is no way to check equivalence of
infinite sets programmatically. Second, the specification talks
about infinite traces, whereas observed implementation traces
are finite.

The first problem can be solved by replacing logical ex-
pressions with equivalent expressions that are programmatic.
For example, we can prove that all sets mentioned by the
specification are in fact finite when considered in the context of
a finite trace, and then replace expressions that talk about sets
with equivalent expressions that talk about finite sets, which
can be handled programmatically.

The second problem is more serious. First we define what
it means for a finite trace to satisfy the specification, then we
manually state an executable specification for finite traces and
prove that it is equivalent to the original specification.

We say that a finite trace tfin satisfies the specification
iff the finite trace tfin extended with an infinite sequence of
null (τ) events satisfies the specification. There are reasonable
alternatives, but this definition seemed the simplest. However,
if an implementation trace ends prematurely (say, a host was
about to reply to a ping), it may trivially fail to satisfy a
property in the specification (say, that pings are followed by
pongs). We therefore informally ensure that the traces we
check, as far as possible, do not terminate until the network
quiesces. In the case of non-quiescent properties, such as the
requirement that every ping is followed by another, we relax
the specification somewhat. For example, we require that every
ping is followed by another as long as time keeps increasing.

We then manually write a transformed version of the spec-
ification which is executably checkable. We prove in HOL
that the executable version is equivalent to the original, given
our definition of what it means for a finite trace to satisfy
the specification. Since spec is a essentially a conjunction of
many properties Pi, it suffices to derive, for each property P ,
an equivalent executable property P ′.

For example, suppose we wish to check the property that
every ping is followed by a pong. In an infinite trace, a ping

could occur anywhere, so to check this property would require
checking an infinite number of points in the trace. Obviously,
when dealing with a finite trace, only a finite number of points
have to be checked. The correctness of this transformation
rests on the simple observation that beyond a certain point,
the finite trace extended with τs contains no pings.

Another example that arose very often relates to the way
functions are defined. For example, the time at a point in the
trace takes into account what has happened up to, but not
including, the event at that point. Thus, to check whether some
time corresponds to a point in a finite trace, one must check
all points in the finite trace, and one point beyond the end
of the finite trace, to take account of the possibility that the
last event was a time passage event. When we manually write
our checkable version of a property, this introduces numerous
possibilities for “off by one” errors.

These examples are simple, but in general the correctness
of the various transformations we make are far from straight-
forward, and the proofs are often significant. For example,
some of the properties place constraints on several intervals
in a trace. To prove the executable version equivalent involves
several nested case splits on whether the intervals intersect
the τ part of the extended finite trace. Such case splits can
easily become unmanageable without mechanical support. The
combination of several of these transformations produces even
more complexity.

We made further transformations to make the checker more
efficient, altering the logical structure of properties so that
tests would pass or fail more quickly. More advanced trans-
formations aim at precomputing various quantities to avoid
unnecessary recalculation by the checker. These performance
optimisations had a great impact. For example, early versions
of the checker took over 5 minutes to check some properties of
relatively short traces. This time was reduced to less than 30
seconds using fairly straightforward optimisations. Standard
complexity analysis suggests that the checker runs in time
which is polynomial in the length of the trace, typically of
order O(n4) or less. We believe that this time could be
made almost linear with further optimisations. However, the
additional proof burden becomes significantly greater as the
optimisations become more involved, and we can already
check traces of reasonable length using the current checker.

We place great emphasis on the benefit of a formal proof of
correctness for the checker. The specification contains many
complicated properties, and the associated checker is even
more complicated and convoluted because of the transforma-
tions above which are made for reasons, such as efficiency,
which oppose clarity. Sometimes we ran the checker without
formally proving it correct, and almost always it contained
errors which could cause a trace to pass even though it did not
satisfy the specification, or to fail even though it did satisfy the
specification. For our final verified checker, these possibilities
could be discounted because we formally proved that the
checker did not have errors. This is born out by experience: of
the many thousands of traces we checked, we never found an
error in the verified checker code. This represents an advance

7

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 0 200 400 600 800 1000 1200 1400 1600 1800 2000

Ti
m

e
to

 c
he

ck
 tr

ac
e

(m
in

ut
es

)

Trace length (events)

Time to check trace properties vs. trace length

afm
cp

drgg

gcaf
mrag

nd

npa
ompp
oppm

ottpwm
pcs

pnrts

rr
rtg
rtp

sog
sp

Fig. 3. Checker performance

over similar tools that were developed on our earlier TCP work
[5], [6], where, if a trace did not pass the checker, it may have
been due to an incompleteness or bug in the checker.

CODE EXTRACTION We have described how we trans-
formed the specification into an algorithmically checkable
version. We could execute this algorithm within HOL, using
rewriting. For performance reasons, however, we use the
automatic code extraction facility of HOL to produce an ML
program which checks the executable specification on finite
traces. This program is then compiled to produce a relatively
efficient checker. If there is any doubt about the correctness of
the extraction step, we can recheck the property within HOL,
but much more slowly.

DISTRIBUTED CHECKER ARCHITECTURE, FORMAT OF RE-
SULTS The checker validates 18 properties of a trace.
Checking a trace is computationally intensive but naturally
parallel: each property is checked independently with a sepa-
rate invocation of the checker process. A distribution architec-
ture shares the checking load amongst a set of Intel R© XeonTM

3.0GHz workstations. A central computer runs the distribution
server. Clients connect to this to obtain a trace to check. The
client then runs the checker over the trace file with the property
specified by the server and sends back the checker output.

The server machine includes a web interface to control the
traces being checked and to view the results of checker runs. A
table presents the name of a trace file and 18 columns next to
it corresponding to the properties being checked. These boxes
are either green or red to show whether the property passed
the checking process. When the box is red an annotated trace
may be viewed where erroneous events are highlighted to help
diagnose the problem with the trace.

The client also returns the time taken for each check run.
This information is graphed for checker runs of a simple
scenario and presented in Fig. 3. Each line on the graph
corresponds to a checker property. The traces are generated
from NS-2 simulations of networks of different sizes being
configured with MAC addresses and performing start-of-day
operations.

VI. TEST RESULTS

The trace checker was used to check many traces produced
by the two different implementations of the protocol. To date
our checking work has focused primarily on the NS-2 model.
For this we generated a total of 574 traces, dealing with start-
of-day operations, communication between hosts, removal and
addition of hosts to and from the network and random loss of
messages on the control channel. The specification describes
18 different host and arbiter properties. By the end of the
checking process all 18 properties were shown to hold for all
574 generated traces.

For the VHDL implementation, at the time of writing we
have generated and checked only a few traces, demonstrating
that the process is feasible, but not yet aiming for broad
coverage.

During development of the specification and implementa-
tions, a failing trace could mean either that the trace described
a behaviour we did not wish to permit, due to some error
in the implementation that produced the trace, or that the
specification was incorrect, in that it did not assert what the
protocol designer had in mind (or both). We discovered errors
of both sorts. To give an intuition for how discriminating the
test process can be, we give some examples below.

ERRORS IN THE IMPLEMENTATION TRACES Failures result-
ing from traces describing an illegal behaviour arose for two
reasons: either because the implementation itself was flawed
(which is the kind of error we would most like the process
to detect); or the implementation might behave correctly but
the instrumentation and transcription of its behaviour could be
erroneous.

A number of errors of the first kind were discovered in the
NS-2 implementation.
• The specification forbids sending a grant message to a

host which has not yet successfully responded to a ping
message with a pong, as, without a good RTT estimate,
it is not possible to know how much to offset a Data
Grant message for a particular switch fabric slot. Early
versions of the arbiter employed an imprecise approach
to scheduling grants, which was found to violate this
property.
• A subtle timing error in the host logic was found which

meant that hosts reissued requests slightly earlier than
was legal according to the specification.
• The arbiter was found to to send pings incorrectly during

startup.
Additionally, a small number of errors of the second type

were revealed, mostly early on in the process, to do with in-
correct recording of MAC and port identifiers and events being
logged in the wrong order, leading to impossible behaviours.

ERRORS IN THE SPECIFICATION The testing process also
revealed errors in the specification itself. For example, the
property only talk to ports with macs restricts the arbiter to
only send messages to ports which have been assigned MAC

8

identifiers. To allow MACs to be assigned in the first place,
the specification makes an exception to this rule, and allows
A2H MAC GRANT messages to be sent to ports without an
assigned MAC. However, after trace generating and testing, it
became clear that A2H PING messages must also be allowed,
so that start-of-day host discovery could take place.

As a further example, the protocol requires that when a
grant is issued by the arbiter, the switch should maintain
the corresponding light path for the duration of a particular
interval calculated from the RTT. As initially written, this
interval could sometimes begin before the grant was issued
(due to the addition of a safety margin), even though there
is no way the data could arrive at the switch that early
in the presence of any amount of RTT drift. The arbiter
implementation quite reasonably did not set the light path this
early, which was reported as a discrepancy by the checking
process; accordingly, the specification was changed.

DEALING WITH ERRORS Initially it was the case that most
failures occured in groups — all or almost all of the traces
would exhibit a failure of the same property due to some
fundamental error. After such gross errors had been eliminated,
the remaining failures usually occured singly, being the result
of a highly specific combination of circumstances.

If an implementation error was detected, the implementation
was modified, and a new set of traces were generated and
checked. If a specification error was detected, the prop-
erty was rewritten, a new executable version was formally
proved correct, and a new checker program was automatically
extracted and rerun on the traces. This produced a cyclic
workflow, where traces were checked, errors detected, spec-
ification/implementation corrected and trace checking rerun.
This cycle was conducted relatively quickly. The interface to
the trace checker indicated which property was failing and
the points in the trace that it failed, and it was then a simple
matter to decide whether the specification or the implemen-
tation was broken. Changing the specification, reproving an
executable property correct, and extracting the checker could
be carried out in an hour or two. Similarly, changes to the
implementations could be carried out relatively quickly.

VII. RELATED WORK

Related work on optically-switched networking has already
been discussed in §II. On the formal side, there is a huge
literature on many different techniques, including process
calculi, IO automata, term rewriting, model-checking, etc.,
and we make no attempt to survey it here. To the best of
our knowledge no other work uses a combination of proof
and automated code extraction to generate oracles for protocol
testing.

Only a rather small fraction of other formal work relates to
non-idealised (real-world) protocols. We discuss formal work
related to TCP, for example, in [5]. A different small fraction
makes use of expressive logics and theorem proving techniques
such as HOL. This includes work on security protocols,
e.g. that by Paulson [15], but little on lower-level network

issues, and little also on formalisation at design time. Notable
exceptions include the work of Bargavan et al., using HOL
and SPIN to verify properties of the RIP standard [3], and
of Goodloe et al., using the Maude tool for formal simulation
during the design of a protocol for setting up IPsec associations
[8]. Hickey et al. proved properties of the Ensemble distributed
communication layer using IO automata in NuPRL [9].

VIII. DISCUSSION

In this section we reflect on this experiment in lightweight
rigorous protocol design and mention some possible future
work.

OUR EXPERIENCE We found, in designing the protocol, that
the formal component of our design process lent it several
advantages over a more conventional approach.

For one thing, the necessity of specifying the protocol in
HOL notation meant that ambiguities and inconsistencies in
design choices were revealed almost as soon as they arose.
Examples of unanswered questions which were brought to our
attention quickly due to formalisation included:
• how hosts were expected to discover one another’s MAC

addresses;
• whether it was legal for the arbiter to reuse MAC

addresses which had been invalidated;
• how the arbiter should respond to a request to send data

to a non-existent address (one version of the protocol
mandated that the arbiter ignore the request and the host
then continue to reissue it ad infinitum);
• how the arbiter was to correctly deduce which of its

ping messages a particular pong was in response to, in
order to obtain RTT estimates; and
• whether and how the arbiter or hosts could usefully

respond to observing ‘light’ on a link (they respond to
noticing ‘darkness’, i.e. losing the link, but noticing the
reappearance of the light is not taken to be a sufficient
indication that the other end of the link is functioning
correctly).

Formalising the specification also forced us to consider
whether particular intervals and timeouts in the sample imple-
mentation should be considered to be concrete requirements
or merely one of a range of possibilities, and in the latter case,
what the bounds of that range were.

Since changes made to the specification during the testing
process had to be immediately inserted into the HOL spec-
ification, it was usually very obvious when some proposed
‘fix’ would have conflicted with or invalidated an existing
requirement, and the consequences of rephrasing a particular
rule or definition could be much more easily investigated in
terms of their effect on the protocol as a whole. Additionally,
when discussing what we believed to be invariants of the
system, it was much easier to look at the specification than
the code to determine whether such a property was actually
guaranteed to hold.

9

TEST COVERAGE Any testing process is clearly only useful
if the generated traces provide good coverage of the protocol
behaviour. We believe that our NS-2 trace set gives reasonably
good coverage, and the fact that testing has found subtle errors
supports this, but they do not explore all interesting aspects of
the protocol. Improving coverage further may require checking
longer traces, which (as one can see from Fig. 3) may require
improving the performance of the checker. That could be
done in several ways: most simply by targetting a high-
performance ML implementation such as MLton [1], and
most interestingly by more sophisticated proof about a better-
structured algorithmic specification.

COMPARISON WITH TRADITIONAL VERIFICATION Our ap-
proach is in contrast to much traditional work on formal
verification, which focuses on proving correctness properties.
The standard safety property for a protocol such as this would
be that, between any two devices, the network behaves like
a buffer. Ideally this property would be proven within HOL.
A verification of this sort would greatly increase confidence
in the protocol. However, such proofs are extremely time
consuming, and require substantial skill on the part of the
verifier. We believe that our approach, while it does not guar-
antee this kind of correctness property, provides substantial
benefits and is relatively lightweight. It stresses not the relation
between the correctness statement and the model, but between
the model and the real world; we have demonstrated that it
is practically feasible to apply it during design, while the
protocol is changing. An investment in full verification may
be appropriate at a slightly later stage, when some confidence
in the correctness and implementability of the protocol has
already been established.

On the other hand, simply stating a formal end-to-end
correctness property may be worthwhile early on, as a precise
characterisation of what a protocol is intended to achieve. We
have outlined such properties for the SWIFT MAC protocol,
but do not detail them here.

The approach we describe here is rather different from
traditional model checking. In particular, we have been able
to use the full expressiveness of higher-order logic to write
the specification as clearly as possible, and have been able to
validate the correspondence between specification and imple-
mentation with only mild changes (for instrumentation) to the
implementations. It would be interesting to try model-checking
approaches on this example to contrast the two in more detail.

SPECIFICATION COMPLETENESS A good specification
should be in some sense complete: it should be tight enough
that any implementation that matches it is satisfactory in
practice, e.g. that it will interoperate with any other conformant
implementation. Our testing process does not establish this,
whereas proof of an end-to-end correctness property would.
Pragmatically, it would be interesting to have unrelated teams
build implementations based on the spec. This would establish
useful confidence in its completeness, and also test whether
our choice of formalism and idiom is sufficiently clear.

CONCLUSION We have demonstrated that a lightweight
style of rigorous specification, with automated conformance
testing, is feasible for new real-world protocol designs.

We did so using global trace-based idioms in HOL; building
a conformance checker by a combination of HOL proof and
code extraction (thereby establishing high confidence in the
correctness of the checker); writing the specification with test-
ing in mind; designing the specification and implementations
hand-in-hand (so checking can find errors in both); and in-
volving both semantics and systems researchers, so discussion
during the process can find omissions and misconceptions
early. This was for a protocol of moderate complexity, but
there are no obvious difficulties with scaling it up to larger
protocols. Indeed, our expectation is that the benefits over a
purely informal approach would be disproportionately greater
for more complex protocols.
ACKNOWLEDGEMENTS We acknowledge support from a Royal Society
University Research Fellowship (Sewell), EPSRC grant EP/C510712, and
APPSEM 2.

REFERENCES

[1] MLton. http://mlton.org/.
[2] ns-2. http://www.isi.edu/nsnam/ns/.
[3] K. Bhargavan, D. Obradovic, and C. A. Gunter. Formal verification of

standards for distance vector routing protocols. J. ACM, 49(4):538–576,
2002.

[4] A. Biltcliffe, M. Dales, S. Jansen, T. Ridge, and
P. Sewell. SWIFT MAC protocol: HOL specification.
www.cl.cam.ac.uk/users/pes20/optical/spec.pdf.

[5] S. Bishop, M. Fairbairn, M. Norrish, P. Sewell, M. Smith, and K. Wans-
brough. Rigorous specification and conformance testing techniques
for network protocols, as applied to TCP, UDP, and Sockets. In
Proc. SIGCOMM 2005 (Philadelphia), Aug. 2005.

[6] S. Bishop, M. Fairbairn, M. Norrish, P. Sewell, M. Smith, and K. Wans-
brough. Engineering with logic: HOL specification and symbolic-
evaluation testing for TCP implementations. In Proceedings of POPL
2006 (Charleston), Jan. 2006.

[7] M. Dales, M. Glick, and D. McAuley. Considerations for Control Planes
in High-Capacity, Low-Latency, Optically-Switched Interconnects. In
High-Performance Networking: The Terabit Challenge, 2006.

[8] A. Goodloe, C. A. Gunter, and M.-O. Stehr. Formal prototyping in
early stages of protocol design. In Workshop on Issues in the Theory of
Security, 2005.

[9] J. Hickey, N. A. Lynch, and R. van Renesse. Specifications and proofs
for Ensemble layers. In Proc. TACAS, LNCS 1579, 1999.

[10] D. Huang, T. Sze, A. Landin, R. Lytel, and H. L. Davidson. Optical
Interconnects: Out of the Box Forever? IEEE Journal of Selected Topics
in Quantum Electronics, 9(2):614–623, March/April 2003.

[11] T. Lin, K. A. Williams, P. V. Penty, I. H. White, M. Glick, and
D. McAuley. Self-Configuring Intelligent Control for Short Reach
100GB/s Optical Packet Routing. In Optical Fiber Communications
Conference, 2005.

[12] D. McAuley. Optical Local Area Network. In Computer Systems:
Theory, Technology and Applications, pages 159–166, December 2003.

[13] E. Mohammed, A. Alduino, T. Thomas, H. Braunisch, D. Lu, J. Heck,
A. Liu, I. Young, B. Barnett, G. Vandentop, and R. Mooney. Optical
interconnect system integration for ultra-short reach networks. Intel
Technology Journal, 8:115–128, 2004.

[14] M. Norrish and K. Slind. HOL-4 Manuals, 1998-2006. Available at
http://hol.sourceforge.net/.

[15] L. C. Paulson. Proving security protocols correct. In Proc. 14th LICS,
pages 370–381. IEEE, 1999.

[16] G. F. Roberts, K. A. Williams, R. V. Penty, I. H. White, M. Glick,
D. McAuley, D. J. Kang, and M. Blamire. Monolithic 2x2 amplifying
add/drop switch for optical local area networking. In 29th European
Conference on Opitical Communication, September 2003.

[17] S. Verma, H. Chaskar, and R. Ravikanth. Optical Burst Switching: A
Viable Solution for Terabit IP Backbone. IEEE Network, pages 48–53,
November/December 2000.

10

http://mlton.org/
http://www.isi.edu/nsnam/ns/
www.cl.cam.ac.uk/users/pes20/optical/spec.pdf

	Introduction
	SWIFT Optical Network Overview
	Formal, Mechanised Specification
	n_lbl
	spec
	arbiter_spec
	starts_pinging
	grants_correctly_arbitered

	Implementations
	example_trace

	Experimental Validation, Trace Checking
	Test Results
	Related Work
	Discussion
	References

