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Abstract. Memory safety bugs continue to be a major source of secu-
rity vulnerabilities in our critical infrastructure. The CHERI project has
proposed extending conventional architectures with hardware-supported
capabilities to enable fine-grained memory protection and scalable com-
partmentalisation, allowing historically memory-unsafe C and C++ to
be adapted to deterministically mitigate large classes of vulnerabilities,
while requiring only minor changes to existing system software sources.
Arm is currently designing and building Morello, a CHERI-enabled pro-
totype architecture, processor, SoC, and board, extending the high-per-
formance Neoverse N1, to enable industrial evaluation of CHERI and
pave the way for potential mass-market adoption. However, for such a
major new security-oriented architecture feature, it is important to es-
tablish high confidence that it does provide the intended protections, and
that cannot be done with conventional engineering techniques.

In this paper we put the Morello architecture on a solid mathemat-
ical footing from the outset. We define the fundamental security prop-
erty that Morello aims to provide, reachable capability monotonicity, and
prove that the architecture definition satisfies it. This proof is mechanised
in Isabelle/HOL, and applies to a translation of the official Arm spec-
ification of the Morello instruction-set architecture (ISA) into Isabelle.
The main challenge is handling the complexity and scale of a production
architecture: 62,000 lines of specification, translated to 210,000 lines of
Isabelle. We do so by factoring the proof via a narrow abstraction cap-
turing essential properties of arbitrary CHERI ISAs, expressed above
a monadic intra-instruction semantics. We also develop a model-based
test generator, which generates instruction-sequence tests that give good
specification coverage, used in early testing of the Morello implementa-
tion and in Morello QEMU development, and we use Arm’s internal test
suite to validate our model.

This gives us machine-checked mathematical proofs of whole-ISA se-
curity properties of a full-scale industry architecture, at design-time. To
the best of our knowledge, this is the first demonstration that that is
feasible, and it significantly increases confidence in Morello.
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1 Introduction

Memory safety bugs continue to be a major source of security vulnerabilities, re-
sponsible for around 70% of those addressed by Microsoft security updates, and
around 70% of the high-severity bugs impacting Chromium [30,14]. Their root
causes are well-known legacy design choices and limitations of normal practice:
pervasive uses of systems programming languages that do not enforce memory
protection; hardware that enforces only coarse-grain protection, using virtual
memory; and test-and-debug development methods that cannot provide high as-
surance. These are baked in to the critical systems codebase across the industry,
and the result, in today’s adversarial environment, is that programming errors
can often lead to exploitable vulnerabilities.

There are many possible approaches to improving this situation, including
development of safer programming languages, techniques for full functional-
correctness verification, and better bug-finding tools. Each is the subject of much
research in programming languages and semantics, and all are worthwhile, but
the legacy investment, the need for systems code to work close to the machine,
and the inability of bug-finding to provide high assurance, have made it very
hard to radically improve mass-market systems.

Another path, less well explored, is to change the architectural interface to
provide hardware mechanisms that enable better enforcement of memory pro-
tection. Over the last twelve years, the CHERI project [1] has been extend-
ing conventional hardware Instruction-Set Architectures (ISAs) with new archi-
tectural features to enable fine-grained memory protection and highly scalable
software compartmentalisation. The CHERI memory protection features allow
historically memory-unsafe programming languages such as C and C++ to be
adapted to have quite different semantics, replacing many unpredictable unde-
fined behaviour (UB) cases with predictable fail-stop traps, to provide strong
and efficient protection against many currently widely exploited vulnerabilities.
Crucially, this requires only minor changes to the sources of existing systems
software. The CHERI scalable compartmentalisation features enable the fine-
grained decomposition of operating-system (OS) and application code, to limit
the effects of security vulnerabilities.

CHERI provides these via hardware support for unforgeable capabilities: in
a CHERI ISA [54], instead of using simple 64-bit machine-word virtual-address
pointer values to access memory, restricted only by the memory management
unit (MMU), one can use 128+1-bit capabilities that encode a virtual address
together with the base and bounds of the memory it can access. Encoding these
within the capability enables a fast access-time check, faulting if there is a safety
violation. A one-bit tag per capability-sized and aligned unit of memory, cleared
in the hardware by any non-capability write and not directly addressable, en-
sures capability integrity by preventing forging, and the ISA design lets code
shrink capabilities but never grow them. This architectural mechanism, along
with additional sealed-capability features for secure encapsulation, can be used
by programming language implementations and systems software in many ways.
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Previous academic work on CHERI has developed CHERI-MIPS and CHERI-
RISC-V architectures, FPGA processor implementations, and system software
including adaptions of Clang/LLVM, linkers, debuggers, FreeRTOS, FreeBSD,
and WebKit. The CHERI processor prototypes implement techniques such as
compressed capability bounds [58], and a tag controller and cache [26] required
to implement memory tagging on off-the-shelf DRAM. The software prototypes
use CHERI’s architectural features to implement memory-safe CHERI C/C++
programming languages [55], fine-grained spatial memory safety [15], heap tem-
poral memory safety [15], and scalable software compartmentalisation [57]. An
analysis of vulnerabilities reported to the Microsoft Security Response Center
(MSRC) in 2019 suggested that CHERI memory safety would have determinis-
tically mitigated 30%–70%, depending on the usage scenario [27], and porting
the FreeBSD kernel and userspace to CHERI required changes only to 0.18%
and 0.04% LoC respectively. Analysis of an open-source desktop stack [53] esti-
mated a 73.8% vulnerability mitigation rate through a combination of memory
protection and software compartmentalisation requiring a 0.026% LoC change.

Achieving widespread adoption of any substantial new architectural feature
is also challenging, of course, but the issues differ from those for adoption of
a new high-level programming language. It needs coordinated hardware and
software change, which is hard to arrange, but on the plus side there are very
few architecture vendors, so if a feature becomes (say) part of the mainline Arm
architecture, and there is pull from major partners, then it will be implemented
in all conforming Arm implementations and become ubiquitously available in
devices. For CHERI, the academic results are encouraging, but achieving such
adoption first needs an industry-scale evaluation of a high-performance silicon
processor implementation and software stack above it, to demonstrate viability
and enable that pull. This is beyond what can be done academically, but hard to
justify as a purely commercial project. The 2019–24 UKRI Digital Security by
Design (DSbD) challenge resolves this chicken-and-egg difficulty with a combined
public-sector and industry (£70m+117m) programme to build and evaluate such
demonstration platform, and support research and development above it [52].

Arm, supported in part by DSbD, is currently designing and building Morello,
a CHERI-enabled prototype architecture, processor, system-on-chip (SoC), and
development board, extending the Armv8.2-A architecture and the high-perfor-
mance Neoverse N1 processor [6,8]. The Morello processor and SoC implement
the CHERI ISAv8 protection model, and utilise CHERI’s compressed capabil-
ity bounds and tagged memory approaches. As of 2021-01, the architecture,
emulators, initial development boards with Morello silicon, and initial software
toolchains, have all been developed. This will allow evaluation of the CHERI
mechanisms in a variety of configurations and use cases on a state-of-the-art
hardware platform, and paves the way for the potential adoption of CHERI into
future production architectures and devices.

In this paper, we describe work to put the Morello architecture and its se-
curity properties on a solid mathematical footing from the outset, and to use
semantics to ease conventional engineering.



4 T. Bauereiss et al.

Morello
ASL

Morello
Sail

asl_to_sail

Morello
Isabelle Isabelle

Abstract CHERI

sail

isla

sail

isla−testgen

Morello
SMT

Checking Morello

Isabelle

Security Proofs

ISA tests
asm

Testing of Morello

h/w and QEMU

Morello
C emulator

Validation wrt

compression

Morello ACK

Fig. 1. From Morello ASL source (blue) to auto-generated artifacts (yellow) and veri-
fication outcomes (green)

For a new architecture that aims to provide security guarantees, it is es-
pecially important to provide high assurance that it actually does. Otherwise,
any security flaw in the architecture will be present in any conforming hardware
implementation, quite likely impossible to fix or work around after deployment,
and the resulting loss of confidence might make further adoption impossible.

For Morello, this is challenging in two ways. First, CHERI needs to be deeply
integrated into each base architecture it gets adapted to, most obviously by mod-
ifying all virtual-memory-accessing instructions to check bounds and permissions
of capabilities, and by adding instructions to explicitly manipulate capabilities,
but also in more subtle ways relating to exceptions, virtualisation, and so on.
Second, the architecture specification is large and complex. The base Armv8-A
architecture is defined in an 8200-page manual [7], to which the Morello archi-
tecture supplement adds 1200 more [8]. Fortunately, Arm have recently shifted
to using an executable version of their ASL language for instruction-set archi-
tecture specification [40,41]. The sequential behaviour is all defined in ASL, and
this is what appears in instruction descriptions and auxiliary functions (e.g. for
capability compression and address translation) in the documentation. However,
it remains very large, 62 000 non-whitespace lines of specification (LoS), and ASL
does not itself have a mechanised semantics.

The main intended security property of the Morello architecture is reachable
capability monotonicity, with the intuition that the available capabilities cannot
be increased during normal execution (i.e., they are monotonically decreasing).
This is a whole-system property about arbitrary machine execution, and conven-
tional techniques cannot provide high assurance that the architecture satisfies
it. Instead, it needs proof. We translate the Arm ASL definition via the Sail [9]
language into Isabelle/HOL [39], extending previous work for Armv8-A, and give
a mechanised statement and proof that the property holds of the architecture.

We deal with the challenge of scale by factoring the proof via a narrow
abstraction: four relatively simple properties of arbitrary CHERI instruction ex-
ecution that capture essential aspects of their behaviour. Our intra-instruction
semantics focusses on the behaviour of instructions in isolation, interacting with
registers and memory, rather than viewing each thread as a single state machine;
this monadic interface lets us conveniently express these abstract-CHERI prop-
erties of instructions in terms of their register and memory effects. We prove
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capability monotonicity for arbitrary sequences of instructions above this ab-
straction, and we instantiate the abstraction for Morello and prove that its many
instructions satisfy the required properties. Manual proof effort was required for
a number of helper functions defined in the architecture for manipulating and
using capabilities, but the bulk of the architecture is handled by automatic proof
tools and tactics. Previous work by Nienhuis et al. [38] proved similar results for
the much simpler and smaller (6k LoS) CHERI-MIPS architecture with a dif-
ferent approach, manually defining a larger set of abstract actions and proving
that those do abstract the instruction semantics. That let one capture instruc-
tion intentions more explicitly, but needed more ad hoc machinery, while the
new approach we follow here handles the 10x scale-up successfully.

Our proof was developed while the architecture and hardware design were
still evolving, using weekly snapshots of Arm’s ASL specification, with our au-
tomation letting us quickly adapt to changes. This let us identify a number of
bugs that could be fixed before the architecture and hardware were finalised.

To validate the ASL-to-Sail translation of the Morello specification, we used
the C emulator automatically generated from the Sail model to compare it
against Arm’s internal Architecture Compliance Kit (ACK) test suite.

Finally, we developed a test generator, using the Isla symbolic execution tool-
ing for Sail [10], to automatically generate interesting instruction-sequence tests,
aiming at good specification coverage. These complemented Arm’s test suite and
were used by Arm as part of their pre-tape-out validation, and were used as the
main test suite for development of a Morello version of the QEMU emulator.
This helped uncover some bugs in our own tooling as well as discrepancies be-
tween different Morello models and emulators. We also used Isla and an earlier
Sail-to-SMT flow for quick checking of properties of capability compression.

To summarise, our contributions are:
– A formal and executable semantics of the Morello ISA (§3), automatically

translated from the Arm ASL to Sail, Isabelle, and C, and validated against
the Arm ACK (§6).

– An abstract characterisation of the essential properties of CHERI ISA in-
structions, expressed over their intra-instruction semantics (§4).

– A mechanised proof of capability monotonicity for the full sequential Morello
ISA specification (including all instructions, system registers, capability com-
pression, etc.), with large parts of the proof automatically generated, making
the proof more maintainable as the architecture was developed (§5).

– Automatic ISA test generation from the specification (§7).
This gives us machine-checked mathematical proofs of whole-ISA security

properties of a full-scale industry architecture, at design-time. To the best of our
knowledge, this is the first demonstration that that is feasible, and it significantly
increases confidence in Morello.

The main proof took only around 24 person-months, by two people between
2020-03 and 2021-07, following around 23 person-months of preliminary work
to get the model into usable Sail and Isabelle forms, to develop our CHERI
abstraction in the context of earlier CHERI architectures, and on our Sail-to-
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SMT flow. Test generation and ACK validation took an additional 17 person-
months, including Morello-specific work on Isla. This suggests that such proof
could be not just technically but also economically viable for new architecture
design, particularly as doing this routinely, as an established flow, would reduce
the effort substantially.

As a side benefit, our well-validated Morello semantics is reusable for future
software or hardware verification. The Armv8-A ISA is, along with x86, one
of the two most important low-level programming languages, and if Morello is
successful, then one would expect CHERI extensions to be similarly widely used.

Sail and Isabelle versions of the Morello specification, as well as our definitions
and proofs, are available online [3].

Non-goals and limitations (1) Our results establish confidence that the Morello
instruction set architecture design satisfies its fundamental intended security
properties. We do not address correctness of the Morello hardware implemen-
tation of that architecture, which would be an extremely challenging hardware
verification task, and we do not cover system components that are not specified
by the ISA itself, e.g. the Generic Interrupt Controller (GIC). (2) The archi-
tecture, as usual, expresses only functional correctness properties, not timing
or power properties, to allow hardware implementation freedom. Properties and
proofs about the architecture therefore cannot address side channels, but see [56]
for discussion of side-channels and CHERI. (3) We consider only the sequential
architecture. Studying concurrency effects would require a more complex system
model integrating the Morello sequential semantics with a whole-system concur-
rency memory model, which we leave to future work, but we expect the capability
properties to be largely orthogonal to concurrency issues, as long as the write
of a capability body and tag appear atomic. (4) We assume an arbitrary but
fixed translation mapping. CHERI capabilities are in terms of virtual addresses,
so system software that manages translations has to be trusted or verified. We
also assume that the privileged capability creation instructions are disabled and
no external debugger is active, because these features can in general be used to
circumvent the capability protections, as discussed in §5.1. (5) Our capability
monotonicity property is the most fundamental property one would expect to
hold of a CHERI architecture, but it is by no means the only such property.
However, stronger properties typically involve specific software idioms, e.g. call-
ing conventions or exception handlers, and their proofs use techniques that have
not yet been scaled up to full architectures. We return to this in §8. (6) We
prove monotonicity of the Morello specification formally in Isabelle, however,
our proof depends on an SMT solver as an oracle for one lemma, as discussed in
§5. (7) Our conversion from ASL via Sail to Isabelle is not subject to verification,
as neither ASL nor Sail have an independent formal semantics – their semantics
is effectively defined by this translation. However, it is nontrivial, and there is the
possibility of mismatches with the Sail-generated C emulator used for validation;
we do not attempt to verify that correspondence. (8) The ASL specification is
subject to the limitations documented by Arm in [7, Appendix K14], e.g. with
respect to implementation-defined behaviour.
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2 Overview of the Morello CHERI Architecture

CHERI is an architectural protection model that extends ISAs with a new data
type, the architectural capability [54]. The Morello architecture adds CHERI
capabilities to Armv8.2-A, the ISA implemented by the Neoverse N1 CPU on
which the Morello hardware implementation is based [8].

2.1 CHERI Capabilities on Morello

CHERI capabilities are twice the natural address size of the architecture plus an
out-of-band tag bit, which is not independently addressable; for Morello, capa-
bilities are 128+1 bits. The lower 64 bits are the “value”, which in most cases rep-
resents a virtual address. The upper 64 bits encode metadata, including bounds,
permissions, and other mechanisms. The tag provides integrity protection: it is
preserved only by legitimate operations on capabilities, and cleared by others.
A capability can only be used as such, e.g. for a dereference, if its tag is set.

0127

perms[17:2] eg otype[14:0] bounds[86:56]

value[63:0]

A sophisticated compression scheme allows a capability to include 64-bit
lower and upper virtual-address bounds, encoded into 87 bits in total, with 56 of
those shared with the value field (see [8, §2.5.1],[58] for details). Small regions can
be described precisely, with an arbitrary size in bytes, while for larger regions,
only certain bounds and sizes are expressible. The capability value must be either
within the bounds or within a certain range above or below, allowing for common
C idioms that transiently construct (but do not dereference) slightly out-of-
bounds pointers; other combinations of value and bounds are not representable.
This scheme trades off bounds precision for reduced capability size: supporting
arbitrary bounds would require more than 128+1 bits per capability, which would
have unacceptable performance costs.

Four of the 18 permission bits are reserved for software, while the others have
architecturally defined meaning. The Load, Store, and Execute permissions con-
trol whether a capability can be used for loading or storing data or fetching
instructions. Permission bits for loading and storing capabilities, as opposed to
data, also exist. The System permission controls access to system registers and
operations, in addition to the access control mechanisms of the base Arm archi-
tecture. Capabilities can also be sealed, making them immutable and unusable
for anything but branching to them; this allows controlled transitions between
different security domains. Sealing (or unsealing) a capability requires an au-
thority capability with the Seal (or Unseal) permission; more on this below.

2.2 Capabilities in Registers and Memory

Morello extends the Armv8-A general-purpose integer register file, as well as cer-
tain control and status registers, from 64 bits to 128+1 bits. Memory is extended
with a tag bit for each 128-bit sized and aligned unit of DRAM.



8 T. Bauereiss et al.

The Program Counter (PC) is extended to become a Program-Counter Ca-
pability (PCC), constraining instruction fetch as well as PC-relative loads (e.g.,
of global variables). A new Default Data Capability (DDC) special register con-
trols and transforms memory accesses relative to machine-word pointer values
by legacy (non-capability) instructions, for legacy code using integer pointers.

2.3 Capability-aware Instructions

Morello extends Armv8-A with new instructions and modifies existing instruc-
tions to use and respect capabilities. For example, a Load capability (literal)
instruction LDR <Ct>,<label> calculates an address from the PCC value and an
immediate offset, loads a capability from memory, and writes it to capability
register Ct [8, §4.4.76]. If the PCC capability does not have the load permission,
or the calculated address is outside its bounds, a capability fault exception is
raised. The tag of the PCC capability is also checked (as part of instruction
fetching). Most other instructions authorise loads and stores via a capability in
an explicitly identified register, or use DDC, rather than implicitly use PCC.

Conventional execution flow is also controlled by capabilities, with branch
instructions to capability destinations (or implicitly w.r.t. the PCC for legacy
instructions). Here too the capability must have its tag set and the target virtual
address must be within the bounds, and in this case it must authorise execution.

Then there are instructions to access and manipulate the fields of a capa-
bility, including arithmetic on its virtual-address value field (corresponding to
conventional pointer arithmetic), comparisons, and other operations to extract
and manipulate its permissions and other data.

2.4 Domain Transition

CHERI distinguishes between sealed and unsealed capabilities. An unsealed ca-
pability can be used directly (e.g. to load and store), but a sealed capability can
only be used to request actions be taken by other software. This feature can be
used in the context of protection domains or software compartments, in which
whole subsystems are given access to a limited subset of memory.

Domain X may have no direct authority to domain Y, but may call into
domain Y by invoking one or more sealed capabilities originally sealed by (or
for) Y. The invocation will install unsealed versions of the invoked capabilities
in registers. This always includes replacing the current PCC, thus, this performs
a jump to a specific code entry point provided by domain Y. These domain
transitions are non-monotonic and must be treated specially in our proof.

Variations on this sealing and invocation mechanism enable slightly different
calling styles. When sealing capabilities, they can be labelled with an object type,
if the authorising capability has that object type in its bounds. The “branch to
sealed capability pair” instruction invokes a given code capability and also an ar-
gument data capability, checking their object types match, providing object-style
encapsulation. Three kinds of specialised sentry (sealed entry) capabilities may
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be used transparently by direct branch instructions, memory-indirect branch
instructions, and memory-indirect branch-to-pair instructions, respectively.

2.5 Exceptions and the Memory Management Unit

In addition to compiler-facing instructions, system functionality such as virtual
memory, cache management, and exception handling is also extended, e.g. adding
new exception cause codes, and page-table permission bits for loading or storing
capabilities. Because exception handling is able to restore reserved registers dur-
ing exception-level transitions, it is also a form of domain transition, as reserved
registers may contain capabilities not available to the executing code.

2.6 Using CHERI in Software

For context, we sketch how CHERI’s capability mechanisms are used by soft-
ware to control and constrain execution. The CHERI team has adapted a large
open-source software stack to CHERI, including the LLVM compiler, linkers,
debuggers, multiple OSs, and application suites. The verification in this paper
is motivated by this software usage, but is itself purely about the architecture.

One of the main uses of capabilities is fine-grain memory protection. Spatial
memory safety is achieved in CHERI C/C++ by implementing explicit point-
ers (those visible in the language, e.g. variables with pointer type) and implied
pointers (used by the generated code and runtime, e.g. the stack pointer, PLT en-
tries, and Global Offset Table pointers) with capabilities instead of conventional
machine-word integers. These are protected (from corruption or reinjection) by
the CHERI tag mechanism and monotonicity, and hence the memory contents
they point to are protected, by the capability permissions and bounds checks,
so long as no other capabilities give undesired access to them. This relies on
compiler-generated code, the kernel, run-time linker, and C runtime (e.g., heap
allocator) narrowing capability bounds and permissions during execution as ap-
propriate. This protects against many cases in which a C/C++ coding error
could lead to an exploitable vulnerability.

Temporal memory safety, additionally protecting against reuse-after-reallo-
cation errors, is not directly supported by the architecture, but there are a
variety of techniques to implement it, especially for heap memory, using CHERI’s
features [22]. Morello extends the page-table mechanism to allow capability flow
to be tracked through memory, supporting revocation of old capabilities.

The other main use of CHERI is software compartmentalisation, splitting the
address space into different compartments running separate software. The capa-
bility monotonicity property ensures these components are contained in their
compartment boundaries. Domain transitions are possible via the sealed capa-
bility mechanism, which can be used to set up various inter-compartment inter-
faces. Often these transitions will all be to a privileged control component, but
the architecture also supports direct transition between two mutually distrusting
pieces of code. Various software models are supported, from implementing fast
inter-process IPC to sandboxed libraries within processes.
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1 function clause __DecodeA64 ((pc, ([bitone,bitzero,bitzero,bitzero,bitzero,bitzero,

2 bitone,bitzero,bitzero,bitzero,_,_,_,_,_,_,_,_,_,_,_,_,_,_,_,_,_,_,_,_,_,_]

3 as __opcode)) if SEE < 99) = {

4 SEE = 99; let imm17 = Slice(__opcode, 5, 17); let Ct = Slice(__opcode, 0, 5);

5 decode_LDR_C_I_C(imm17, Ct) }

6
7 val decode_LDR_C_I_C : (bits(17), bits(5)) -> unit

8 function decode_LDR_C_I_C (imm17, Ct) = {

9 let ’t = UInt(Ct);

10 let offset : bits(64) = SignExtend(imm17 @ 0b0000, 64);

11 execute_LDR_C_I_C(offset, t) }

12
13 val execute_LDR_C_I_C : forall (’t:Int),(0<=’t & ’t<=31). (bits(64),int(’t)) -> unit

14 function execute_LDR_C_I_C (offset, t) = {

15 CheckCapabilitiesEnabled();

16 let base : VirtualAddress = VAFromCapability(PCC);

17 let address : bits(64) = Align(VAddress(base) + offset, CAPABILITY_DBYTES);

18 VACheckAddress(base, address, CAPABILITY_DBYTES, CAP_PERM_LOAD, AccType_NORMAL);

19 data : bits(129) = MemC_read(address, AccType_NORMAL);

20 let data : bits(129) = CapSquashPostLoadCap(data, base);

21 C_set(t) = data }

22
23 val VACheckAddress : forall (’size : Int).

24 (VirtualAddress, bits(64), int(’size), bits(64), AccType) -> unit

25 function VACheckAddress (base, addr64, size, requested_perms, acctype) = {

26 c : bits(129) = undefined;

27 if VAIsBits64(base) then { c = DDC_read() }

28 else { c = VAToCapability(base) };

29 __ignore_15 = CheckCapability(c, addr64, size, requested_perms, acctype) }

30
31 val CheckCapability : forall (’size : Int).

32 (bits(129), bits(64), int(’size), bits(64), AccType) -> bits(64)

33 function CheckCapability (c, address, size, requested_perms, acctype) = {

34 let el : bits(2) = AArch64_AccessUsesEL(acctype);

35 let ’msbit = AddrTop(address, el);

36 let s1_enabled : bool = AArch64_IsStageOneEnabled(acctype);

37 addressforbounds : bits(64) = address; [...7 lines setting addressforbounds...]

38 fault_type : Fault = Fault_None;

39 if CapIsTagClear(c) then { fault_type = Fault_CapTag }

40 else if CapIsSealed(c) then { fault_type = Fault_CapSeal }

41 else if not_bool(CapCheckPermissions(c, requested_perms))

42 then { fault_type = Fault_CapPerm }

43 else if (requested_perms & CAP_PERM_EXECUTE) != CAP_PERM_NONE

44 & not_bool(CapIsExecutePermitted(c)) then { fault_type = Fault_CapPerm }

45 else if not_bool(CapIsRangeInBounds(c, addressforbounds, size[64 .. 0]))

46 then { fault_type = Fault_CapBounds };

47 if fault_type != Fault_None then {

48 let is_store : bool = CapPermsInclude(requested_perms, CAP_PERM_STORE);

49 let fault : FaultRecord = CapabilityFault(fault_type, acctype, is_store);

50 AArch64_Abort(address, fault) };

51 return(address) }

Fig. 2. Sample Morello instruction semantics, in Sail, for parts of the LDR (lit-
eral) instruction [8, §4.4.76] for loading a capability from a PCC-relative address.
Lines 1–5 are the relevant opcode pattern-match clause. That calls the decode func-
tion on Lines 7–11, which calls the execute function on Lines 13–21. That uses
auxiliary function VACheckAddress (Lines 23–29) to check that the PCC capability
(wrapped in a VirtualAddress structure) has the right bounds and permissions, rais-
ing an exception otherwise (Lines 47–50). MemC_read (Line 19) performs the load, and
CapSquashPostLoadCap (Line 20) performs additional checks, in particular clearing the
tag of the loaded capability if the authorising capability does not have capability load
permission.
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3 Concrete Semantics of Morello

The basis for our verification and validation work for Morello is the ISA speci-
fication written by Arm in their ASL language. It includes sequential semantics
of the capability mechanisms and instructions, along with all of the Armv8-A
AArch64 base architecture and its extensions supported by Morello, e.g. float-
ing point and vector instructions, system registers, exceptions, user mode, sys-
tem mode, hypervisor mode, some debugging features, and virtual memory ad-
dress translation. In total, the Morello ASL specification is around 62 000 non-
whitespace lines, covering 409 instructions, 1050 encodings, 600 automatically
generated accessor functions for reading and writing system registers, and 1500
additional helper functions. Arm provided weekly snapshots of the ASL specifi-
cation while it was being developed.

ASL is a first-order imperative language with exceptions. Originally a pa-
per language only, it was made executable by Reid et al. [40,41]. It supports
bitvectors of computed sizes, but bitvector indexing is not statically checked;
it also supports mathematical integers and some limited structured types. The
Arm documentation provides an informal description of the language [7, Ap-
pendix K14], but does not provide a formal semantics. We obtain a formal se-
mantics of Morello by translating the ASL specification into Sail [9], a similar
language but with a richer type system and open-source tooling, and thence into
Isabelle/HOL, as 90 000 and 210 000 LoS respectively. Fig. 2 shows parts of the
Sail semantics for the Morello LDR (literal) instruction for loading a capability
from a PCC-relative address. This is just an iceberg-tip of the whole semantics,
even just for this instruction: the MemC_read involves all of address translation,
and the call graph of the definitions shown amounts to 7 300 lines of Sail.

We reused the existing open-source Sail tooling and ASL-to-Sail transla-
tion [9,10] mostly as-is, with only minor improvements and some engineering
work needed to handle Morello. In addition to the Isabelle definitions, we gen-
erate a C emulator for validation (§6) using the Sail tool, and we reuse the Isla
symbolic execution engine for Sail [10] to generate tests (§7).

4 Abstract Formal Model of Capability Monotonicity

The main challenge in proving whole-ISA security properties of Morello is the
scale and complexity of the model. Rather than a direct proof above the 210 000-
line Isabelle specification, we factor the proof via an abstraction (instantiated
for Morello in §5) that captures the essential properties of arbitrary instruction
behaviour in any CHERI ISA. It has to spell out aspects of CHERI in some
detail, e.g. the different kinds of non-monotonic domain transitions (cf. §2.4), but
it abstracts away ISA details not directly relevant for capability monotonicity.

4.1 ISA Abstraction

The abstraction is defined as properties of an arbitrary sequential ISA semantics,
encoded in a monadic type with a trace semantics that exposes the individual
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register and memory effects of instructions. This interface was originally designed
to connect Sail ISA semantics to relaxed memory models, but we found the
factorisation via effects useful for reasoning even in a simple sequential setting.

The monad essentially corresponds to a free monad over an effect datatype.
It is parameterised with a return type ’a, an exception type ’e, and a sum type
of register value types ’regval (automatically generated by Sail for each ISA):
type M ’regval ’a ’e =

| Done of ’a | Fail of string | Exception of ’e

| Read_memt of kind * addr * nat * ((bytes * tag) -> M ’regval ’a ’e)

| Read_reg of register_name * (’regval -> M ’regval ’a ’e)

...

Finished outcomes either indicate successful termination with a return value a

(denoted as Done a), an exception (Exception e) which can be caught using a
try_catch combinator, or a failure (Fail msg), e.g. due to a failed assertion. Ef-
fect outcomes carry a continuation that expects a response and returns the next
monadic outcome. Monadic return wraps a value in Done, while bind just nests
the outcomes without interpreting the effects. We also define a corresponding
type of events, e.g. E_read_reg (with only concrete values, not continuations),
along with an effect trace semantics for monadic expression. We define our re-
quirements on CHERI ISAs in terms of constraints on these traces in §4.4.

4.2 CHERI ISA Parameters

In addition to the ISA semantics themselves, our properties are parameterised on
aspects of the ISA relevant to CHERI. This includes names of special registers,
in particular the program counter capability register PCC, the invoked data
capability register IDC (capability register 29 on Morello, r31 on CHERI-RISC-
V), registers holding capabilities to exception handlers (VBAR_ELn on Morello),
and privileged registers requiring system register access permission.

Moreover, we need to know which instructions may perform sealed capability
invocations, as this potentially constitutes a non-monotonic security domain
transition. We model this as functions taking an instruction identifier and an
effect trace of a particular execution, and returning, respectively, the directly or
indirectly invoked sealed capabilities in the trace. For example, the Morello BRS

instruction invokes the sealed capabilities in its two input registers, and other
branch instructions can also invoke sealed capabilities if they are sentries.

Finally, the mapping from virtual to physical memory addresses is captured
by a pure partial function taking a virtual address and a (partial) instruction
execution trace, from which it can extract the required information about the ad-
dress mapping to determine the physical address, if any. This is needed because
capabilities are in terms of virtual addresses, but the memory effects produced
by the ISA semantics are in terms of physical addresses, so we need a way to
translate between those when formulating requirements on memory accesses in
the abstract model. We also assume another function as a parameter to distin-
guish memory operations that happen as part of an in-memory translation table
walk, as the constraints on them differ from those on other memory operations.
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4.3 Capability Abstraction

We capture capabilities in the abstract model via a typeclass that provides meth-
ods for accessing the various fields of capabilities, as well as sealing and unseal-
ing operations. We also define a notion of derivability that serves as an upper
bound on the capability manipulations that instructions are normally allowed
to perform. Starting from a set of capabilities C, e.g. provided as inputs to an
instruction, the set of capabilities derivable from C is defined inductively as the
smallest set that contains C itself as well as capabilities obtained from other
derivable ones via one of the following:

– manipulating an unsealed capability c into c′ such that bounds or permissions
are not increased, formalised using an ordering where c′ ≤ c iff either c′ = c,
or c′ is untagged, or both are tagged and unsealed and the bounds and
permissions of c include those of c′;

– turning a capability into a sealed entry capability;
– sealing a capability using another derivable sealing authority capability, set-

ting the object type of the sealed capability to the current address value of
the authority capability (interpreted as an object type), if the authorising
capability is tagged and unsealed, has sealing permission, and its value (and
therefore the object type) is within its bounds; or

– unsealing a capability using another derivable unsealing authority capability,
if the latter is tagged and unsealed, has unsealing permission, and its value
is within bounds and matches the object type of the sealed capability.

Of these operations, unsealing is the only one that may grant new privileges that
are not already granted by the input capabilities. However, unsealing requires
specific authority. An operating system, for example, can control what capabil-
ities a user-space process can unseal by only handing out unsealing authority
capabilities with a limited set of object types in their bounds.

4.4 CHERI ISA Intra-instruction Properties

Our abstraction is defined as the conjunction of four instruction-local properties.
They are relatively straightforward to verify for a concrete ISA, and we will
describe the proof for Morello in §5. At the same time, the properties imply the
whole-ISA property of reachable capability monotonicity, as explained in §4.5.
Hence, they serve as a useful intermediate abstraction layer for structuring the
overall proof.

The central security guarantee that CHERI ISAs aim to provide is that
software cannot forge capabilities and thereby escalate its privileges. Hence, we
require that instructions only produce capabilities via the above derivation rules,
except for the effects of well-defined transition mechanisms for switching control
to another security domain.

Property 1 (Capability register writes). In any execution trace of a single in-
struction, for every write of a tagged capability to a register at a given point in
the trace, one of the following holds:
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1. The capability is derivable from the capabilities that the instruction has
available at this point in the trace.

2. The capability is an invoked capability and written to the PCC or IDC
register as part of a sealed capability invocation.

3. The capability has been loaded from an exception handler base register and
is written to the PCC register as part of raising an ISA exception.

The first case permits the normal operation of instructions, manipulating
capabilities according to the above derivability rules. We allow instructions to
use their available capabilities in these operations, which normally includes ca-
pabilities read from registers or loaded from memory up to the given point in
the trace, with some exceptions: First, capabilities read from privileged registers
are unavailable unless the system access permission is also available, i.e. if a
tagged and unsealed capability with that permission has been read from PCC
before. Second, we exclude capabilities loaded as part of translation table walks,
as those loads are not subject to capability checks (although none of the existing
CHERI ISAs attempt to load capabilities during translation table walks). Third,
capabilities used in a domain transition, e.g. capabilities loaded from memory
as part of an indirect sealed capability invocation, are unavailable for normal
operations and handled separately by the other cases of Property 1 as follows.

The sealed capability invocation case applies when the capability being writ-
ten is an invoked capability of the current instruction, as declared when instan-
tiating the CHERI ISA abstraction (see §4.2). Such an invocation performs a
branch to the unsealed code capability by writing it to the PCC register, and
possibly writes an unsealed data capability to IDC. One of the following cases
must hold, representing the different supported kinds of capability invocation:

Sealed pair A pair of capabilities sealed with the same, non-sentry object type
and with BranchSealedPair permission is available, the capability that is
being written is an unsealed version of one of those, and it is written either
to PCC and it has the execute permission, or it is written to the invoked
data capability register IDC and does not have the execute permission.

Direct sentry The capability is written to PCC, and a version of it that is
sealed with a sentry object type is available to the instruction.

Indirect sentry An indirect sentry capability is available and used to load ei-
ther two capabilities from memory that may be written to the PCC and IDC
registers, or one capability that may be written to PCC while the unsealed
version of the indirect sentry itself may be written to IDC.

The ISA exception case is signalled in the Morello model by the helper func-
tion AArch64.TakeException throwing a (Sail language) exception after setting
up the branch to the exception handler. In this case, we allow a capability to the
exception handler to be read from a privileged exception handler base register
and written to PCC, even if system register access permission is not available.
However, the definition of available capabilities together with our properties
guarantee that this capability is not used for any other operations.
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let store_cap_reg_axiom ISA has_ex invoked_caps invoked_indirect_caps t =
let use_mem_caps = (invoked_indirect_caps = {}) in
(∀ i c r . (writes_to_reg_at_idx i t = Just r ∧ c ∈ (writes_reg_caps_at_idx ISA i t))
−→
(∗ Only store monotonically derivable capabilities to registers ∗)
(cap_derivable (available_caps ISA use_mem_caps i t) c ∨
(∗ ... or perform one of the following non− monotonic register writes : ∗)
(∗ Exception ∗)
(has_ex ∧ c ∈ exception_targets_at_idx ISA i t ∧ r ∈ ISA.PCC ) ∨
(∗ Capability pair invocation ∗)
(∃ cc cd . ((c ≤ (unseal cc) ∧ r ∈ ISA.PCC ) ∨ (c ≤ (unseal cd) ∧ r ∈ ISA.IDC )) ∧

cap_derivable (available_caps ISA use_mem_caps i t) cc ∧
cap_derivable (available_caps ISA use_mem_caps i t) cd ∧
invokable cc cd ∧ c ∈ invoked_caps) ∨

(∗ Direct sentry invocation ∗)
(∃ cs. c ≤ (unseal cs) ∧ is_sentry cs ∧ is_sealed cs ∧ r ∈ ISA.PCC ∧
cap_derivable (available_caps ISA use_mem_caps i t) cs ∧
c ∈ invoked_caps) ∨

(∗ Indirect sentry invocation (writing the unsealed sentry to IDC) ∗)
(∃ cs. c ≤ (unseal cs) ∧ r ∈ ISA.IDC ∧ is_indirect_sentry cs ∧ is_sealed cs ∧
cap_derivable (available_reg_caps ISA i t) cs ∧
c ∈ invoked_indirect_caps) ∨

(∗ Indirect capability (pair) invocation ∗)
(∗ (writing the loaded capability/capabilities to PCC/IDC) ∗)
(∃ c′. ((c ≤ (unseal c′) ∧ is_sealed c′ ∧ is_sentry c′ ∧ r ∈ ISA.PCC ) ∨

(c ≤ c′ ∧ r ∈ (ISA.PCC ∪ ISA.IDC ))) ∧
cap_derivable (available_mem_caps ISA i t) c′ ∧
c ∈ invoked_caps ∧ invoked_indirect_caps 6= {})))

Fig. 3. Formal definition of capability register write Property 1, slightly simplified

We formalise Property 1 as a predicate on traces, given in Fig. 3. It takes
a number of arguments that we instantiate using the CHERI ISA parameters
of §4.2, e.g. with invoked_caps set to the capabilities that the given instruction
invokes in the given trace. The predicate details the different cases (and invoca-
tion subcases) of Property 1 for all capabilities written to registers, using helper
definitions such as available_caps or invokable (checking permissions and object
types of a pair of sealed capabilities).

The other three properties state that capabilities stored to memory must be
derivable from available capabilities (here there are no non-monotonic exception
cases), and that accesses to memory or privileged registers must be authorised
by capabilities with sufficient permissions and bounds.

Property 2 (Capability stores). Every tagged capability stored to memory at a
given point in an execution trace of a single instruction is derivable from the
available capabilities at that point in the trace.

Property 3 (Privileged registers). Reads from or writes to privileged registers
in an execution trace of a single instruction happen only after a tagged and
unsealed capability with system register access permission has been read from
PCC, unless an ISA exception is raised in the trace and the event is a read from
an exception handler base register.
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Property 4 (Memory accesses). For every load or store event at a given point in
an execution trace of a single instruction, there is a tagged capability available at
that point in the trace that authorises the memory operation (further explained
below), unless the event is part of a translation table walk. The authorising ca-
pability must be unsealed, unless it is an indirect sentry capability being invoked
in this trace and the event is a load. If the event is a load or a store of a tagged
capability, then the address must be aligned to the capability size.

The authorising capability for memory accesses must be tagged and have the
right bounds and permissions: the latter must include load/store permission,
and there must be a virtual address range covered by the bounds of the capabil-
ity that translates to the physical address range covered by the memory event.
Loading/storing capabilities (and not just untagged data) requires additional
permission bits. The authorising capability must also normally be unsealed; the
only allowed case of using a sealed capability for a memory operation is the
invocation of an indirect sentry capability. In that case, Property 1 allows the
loaded capability (or pair of capabilities) to be written to PCC (or IDC). How-
ever, due to the definition of available capabilities, the loaded capabilities will in
this case be unavailable for other purposes. Only capabilities loaded via unsealed
authorising capabilities can be used for regular operations.

In addition to the instruction semantics, our ISA models also contain ASL/Sail
code defining instruction fetch and decode behaviour. We use this for generating
emulators, but also for stating the whole-ISA monotonicity theorem below with
respect to multi-instruction traces produced by a fetch-decode-execute loop. For
the fetch segments of these traces, we require the same properties to hold as
for individual instruction execution traces, with the only difference being in the
authorisation of memory loads: we assume that instruction fetching only loads
instructions from memory, so we do not allow instruction fetching to perform
capability memory loads, and we require that it checks for the execute rather
than the load permission in the authorising capability.

4.5 Capability Monotonicity Theorem

The above single-instruction properties are sufficient to prove a whole-ISA mono-
tonicity theorem for reachable capabilities. This set of reachable capabilities for a
given state of the system is defined inductively as the smallest set that includes:

– capabilities in non-privileged registers, and those in privileged registers if a
tagged and unsealed capability with system access permission is reachable;

– in-memory capabilities at capability-aligned virtual addresses, if there is a
reachable capability that authorises loading the capability; and

– capabilities derivable from reachable capabilities via the rules of §4.3, i.e. re-
stricting bounds or permissions, creating sentry capabilities, or sealing/un-
sealing capabilities (if a suitable authorising capability is also reachable).

This set is intended to provide an upper bound on the set of capabilities that
software can construct (on its own) when starting execution in the given state,
and the monotonicity theorem confirms that it is indeed an upper bound.
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We assume a sequential setting and state the theorem with respect to ex-
ecutions of a sequential fetch-decode-execute loop; reasoning about concurrent
behaviour is beyond the scope of this paper. Executing an effect trace t from
a state s leading to a state s′, written s t−→ s′, is possible if the register and
memory contents in read events along the trace t correspond to the last written
values, if any, or the contents in the initial state s otherwise, and if s′ results
from s by updating register and memory contents with the values in t.

Proving the instruction-local properties of the last subsection for a concrete
ISA might also require certain architecture-specific assumptions. We allow the
specification of both a capability invariant that is preserved by capability deriva-
tion and assumed to hold initially, and a predicate on traces capturing further
assumptions, e.g. about system registers. We say that an architecture is a CHERI
ISA if all possible traces of instruction execution and fetching that satisfy the
architecture-specific trace assumptions, and that read only capabilities satisfy-
ing the architecture-specific capability invariants, satisfy the properties of §4.4.
Reachable capability monotonicity then holds for executions of arbitrary se-
quences of instructions, unless and until a transition to another security domain
occurs via an ISA exception or sealed capability invocation.

Theorem 1 (Reachable Capability Monotonicity). Let t = tf1 · te1 · tf2 ·
te2 · . . . be a trace of the fetch-decode-execute loop of a CHERI ISA, alternating
fetch/decode traces tfi and instruction execution traces tei, and let s be a state
such that s t−→ s′. If all of the following hold:

1. all traces tfi and tei satisfy the architecture-specific assumptions,
2. the capabilities in s satisfy the architecture-specific capability invariants,
3. none of the fetch and execute traces tfi and tei raise an ISA exception,
4. the address translation mapping stays invariant along t, and
5. unsealed versions of the invoked sealed capabilities in t are reachable in s,

the set of capabilities reachable in s′ is a subset of the capabilities reachable in s.

This guarantees that software cannot escalate its privileges by forging capa-
bilities that are not reachable from the starting state. Non-monotonic changes
in the set of reachable capabilities are limited to the specific mechanisms defined
above for transferring control to another security domain, i.e. ISA exceptions
or sealed capability invocations, installing capabilities belonging to the new do-
main in the PCC (and possibly IDC) register. The monotonicity guarantee stops
before such a domain transition happens. Sealed capability invocations within
a security domain are monotonic, however; the theorem does cover capability
invocation instructions, e.g. branch instructions taking sentry capabilities, if the
unsealed invoked capability is reachable in the current security domain (con-
dition 5 above). The translation invariance assumption (condition 4) rules out
non-monotonicity due to the interpretation of capabilities changing when the
memory mapping changes. It is assumed to hold for the duration of the given
intra-domain trace, but after a domain transition and return, e.g. a system call,
one could continue using this theorem with a modified translation mapping.
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The proof of Theorem 1 starts with an induction on the number of instruc-
tions in the trace. For each individual subtrace t of an instruction fetch or exe-
cution with s t−→ s′, we show that the available capabilities at any point in t are
reachable in s, as the definition of available capabilities excludes non-monotonic
cases and only includes capabilities that are accessed with suitable permission
due to the properties we require. Hence, state updates along t leading to s′ (only
writing available or invoked, but reachable capabilities due to the requirements
and assumptions) are monotonic.

5 Proof of Capability Monotonicity in Morello

5.1 Instantiation of the Abstract Model

In order to instantiate Theorem 1 for Morello, we instantiate the parameters of
the abstract model, e.g. the set of privileged registers or the concrete capability
representation. We do not currently instantiate the address translation mapping,
effectively treating address translation as a black box and assuming an arbitrary
but fixed partial mapping, together with a predicate on events to capture as-
sumptions on register and memory contents, under which the mapping produced
by the ASL address translation code is guaranteed to coincide with the given
mapping. A candidate for instantiating this is the purely functional character-
isation of address translation presented in [9, §8] and proved correct there for
the base Armv8.3 architecture, under some assumptions about control registers.
Using this would also allow (and require) us to substantiate the translation in-
variance assumption of Theorem 1. In particular, since the translation control
registers are protected by the system register access permission, code running
without that permission and without write access to the in-memory translation
tables cannot modify the translation mapping.

For the monotonicity proof, the main architecture-specific assumption we
make is that two privileged system features that could be used to violate mono-
tonicity are inactive: external debuggers, and the experimental instructions SCTAG
and STCT that allow setting tags of arbitrary capability bit patterns. Hence, we
make assumptions on the contents of certain control registers to disable these
(e.g. EDSCR.STATUS = 2 to model non-debug state); the tag setting instructions
can also be disabled by removing the system access permission.

The capability invariant that we assume in the initial state is that bounds
do not go beyond the 64-bit address space and that their length is non-negative,
e.g. to rule out memory accesses that wrap around the edge of the address
space. There exist capability encodings that violate this property, but the only
way to generate them on Morello is via the tag setting instructions or an external
debugger, which we assume to be disabled.

We also assume that the PCC capability is initially unsealed, if it is tagged,
which the ASL code relies on in a few places. We proved this as an invariant
after a bug we found in a branching helper function (see §5.4) was fixed.

Finally, we have to limit certain kinds of “constrained unpredictable” be-
haviour. For example, the LDP instruction loads a pair of words into two desti-
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nation registers. However, if the same register index is used for both destination
register arguments to the instruction, then it is left underspecified what value is
written to the destination register, if any. One might expect this to be either the
original register value or one of the loaded values, but Morello inherits from the
base Armv8-A architecture the specification that the register value may be set to
an architecturally UNKNOWN value in such cases. For capabilities, the Morello spec-
ification [8] further constrains this in rule TSNJF: “If an UNKNOWN value is written
to a capability register or to capability-tagged memory, the write does not in-
crease the Capability defined rights available to software.” We formalise this by
adding an assumption that, in traces for which we want to use the monotonicity
theorem, all UNKNOWN capabilities used (appearing in traces in nondeterministic
choice events) are reachable from the initial state of the trace.

5.2 Manual Proofs about Capability Encoding Functions

We have to prove that the various functions that make changes to the concrete
129-bit capability representation (as used by the instruction semantics) do so in
a monotonic way. The challenging aspect is the compressed capability bounds
encoding introduced in [58] and used by Morello (as opposed to the version of
CHERI-MIPS targeted by previous verification work [38], which used a simpler,
uncompressed 256+1-bit encoding). The compression scheme allows the capa-
bility address value and both bounds, three 64-bit values, to be encoded in less
than 128 bits. This exploits the fact that in well-behaved code the address should
be within the bounds or nearby, so the bounds can be expressed as smaller off-
sets from it. They are encoded in a floating-point style, with an exponent and a
floating “mantissa” window. Typical smaller capabilities have precise bounds, but
large capabilities require aligned bounds, to save encoding space; the encoding
uses various optimisations to maximise precision [58], [8, §2.5.1].

We initially SMT-checked the encoding functions using Sail’s existing SMT
backend. This provided early design feedback, including discovering an issue in
the CapSetBounds function (see §5.4).

When moving from SMT checks to Isabelle proofs that can be integrated
into the overall proof, one challenging function is CapIsRepresentableFast, which
checks that an update to the capability value by an offset does not change
the decoding of the bounds. It is important for performance that this check is
done quickly. This fast version only considers the offset arithmetic within the
mantissa window, making pessimistic assumptions about overflow/underflow in
lower bits. We can prove that this check is sufficient, using algebraic methods in
Isabelle/HOL without bit-blasting or SMT proofs.

The most challenging function for us to verify is called CapSetBounds, and is
used to narrow capability bounds. The function checks that the requested new
bounds fit monotonically in the existing bounds. It also picks an appropriate
exponent, aligns to that exponent, and encodes an updated capability.

The main complication is that aligning the bounds to an exponent changes
the length slightly, which may be an increase that requires a higher exponent.
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The core argument for monotonicity here is non-trivial: the chosen alignment
is the minimum one for which bounds can be encoded which enclose the requested
bounds. Since the original capability also enclosed this range, its alignment can-
not be less than this minimum, thus the bounds of the original capability are
already aligned to the selected exponent. This finally implies that coercing the
requested bounds to the selected exponent does not move them across the orig-
inal bounds. A part of the proof of this lemma involved a brute-force split into
cases for all possible selected exponents and reducing the cases to SMT bitvector
lemmas which we pass to the CVC4 SMT solver [11]. This relies on the solver
as an oracle, as replay of bitvector proofs in Isabelle is only experimental. Initial
work on the CHERI compression scheme [58] included HOL4 proofs about these
two functions, but this is the first time the crucial monotonicity proof has been
done for the set-bounds function.

5.3 Proof Engineering

With the model instantiation and lemmas about auxiliary functions in place, the
remaining task is to prove that the rest of the ISA uses these functions correctly
and satisfies the properties defined in §4.4. We tackle this using a combination
of custom proof tactics within Isabelle and an external tool that automatically
generates lemmas about the functions and instructions in the architecture. This
simple approach worked sufficiently well that we were able to keep up with weekly
snapshots of the ASL specification while it was being developed. Re-running the
lemma generation tool mostly worked without affecting the existing manually
written parts of the proof, with only few exceptions, e.g. when a refactoring of
the (crucial) VACheckAddress function broke some lemmas about it.

The generated lemmas are stated in terms of predicates that reformulate the
properties of §4.4 into properties of partial traces, taking an additional param-
eter that summarises the capabilities available at the start of this part of the
trace. This allows us to split up an instruction proof into proofs that the auxiliary
functions satisfy the properties and that they are used correctly, e.g. that a func-
tion performing a memory store is only called if a suitable authorising capability
is available. Most of these proofs are automatically handled by straightforward
proof tactics, but our tooling allows manually overriding specific parts of gener-
ated lemmas where necessary. We do this for about 100 of the ASL functions and
instructions, generally taking the form of small patches, e.g. giving additional
hints to the proof tactics, such as additional simplification rules or loop invari-
ants, or adding side conditions to lemma statements, such as assumptions about
capability checks for memory-accessing helper functions. The tool outputs the
generated lemmas in theory files which are then checked by Isabelle; hence, the
external tool does not need to be trusted. The proof consists of around 37 000
generated lines, 8 600 manually written lines, as well as 8 900 lines for the ab-
stract model, monotonicity proof, and proof tools. The proof executes in 7hrs
20mins CPU time on an i7-10510U CPU at 1.80GHz, but only 3hrs 23mins real
time thanks to parallel execution, with peak memory consumption of 18GB.
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5.4 Bugs and Issues Found

Our verification work uncovered several bugs and issues in the ASL specification.
During our initial SMT-checking of the capability manipulation helper func-

tions, one issue we discovered that was not known previously was a bug in the
top-byte normalisation logic of the CapSetBounds function, which could have led
to some of the top bits of the lower or upper bound of a capability changing when
modifying some of their lower bits, even if the requested bounds were within the
original bounds of the input capability, thereby violating monotonicity.

Our Isabelle proof uncovered a bug in the BranchToCapability function where
the branch target capability was modified without a check that it is unsealed.
Hence, branch instructions could have modified sealed capabilities. The result
would not have been directly available to the code that performed the branch,
because the modified sealed capability would be installed into PCC, and the
subsequent instruction fetch would fault with a sealed capability exception, but
as part of exception handling the modified sealed capability would then have been
written to the CELR register and become accessible to the exception handler.

Another issue we found was a case of missing capability checks in the im-
plementation of the DC ZVA instruction. This would have allowed software to
overwrite memory regions with zeros without capability authorisation.

We also found various issues that were already known to Arm, e.g. the STP

instruction checking the tag of the wrong capability, as well as functional bugs
not directly affecting our proof of security properties, e.g. a bug in the LDNP and
STNP instructions where the wrong memory access type was used.

We reported all of our findings to Arm, and the issues have been fixed.

6 Validating the Concrete Semantics

Confidence in our results about Morello’s security properties relies on our trans-
lation of the specification (from ASL into Sail and Isabelle) accurately reflecting
the intended architecture. A key part of ensuring that hardware designs imple-
ment Arm architectures correctly is to test against Arm’s internal Architectural
Compliance Kit (ACK); to validate our translation we ran a large collection of
tests from the Morello ACK against a Sail generated C emulator. This approach
was also taken with an earlier AArch64 Sail model [9]. These tests are typically
self-contained executables that can be run directly after processor reset without
an operating system or peripherals, except for a simple serial device for reporting
results and diagnostic information. Each test executes tens or even hundreds of
thousands of instructions, so using our fast C emulator was essential.

The ACK covers Morello-specific functionality alongside the relevant parts of
the base Arm-v8.2 architecture in more than 25000 tests. Its scope is wider than
the ASL model, including features such as performance counters, debug, and
tracing, where the ASL has only interfaces or partial information, leaving the
detailed specification to prose descriptions. There are also tests for the generic
interrupt controller (GIC), a distinct system-on-chip component with a separate
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specification which is not part of the ISA. Moreover, for the Morello-feature
suites, the “implementation defined” behaviour expected by the tests is more
constrained than normal to match the single Morello hardware design.

To manage this complexity we first obtained baseline results from a Morello
Arm Fast Model simulator, without the additional support normally used in the
ACK testing environment. This matches the contents of the ASL specification
more closely. We then excluded tests which required features that are not fully
modelled, and adjusted the “implementation defined” portions of the specification
to approximate the hardware. By comparing the results from our Sail generated
emulator against the baseline we could identify and repair faults in both the ASL
specification and our translation. Repairing these issues was important both to
ensure that our understanding of the problem was correct and to ensure that
tests could run to completion to rule out further issues.

Specific issues that we encountered involved minutiae about how system reg-
ister bits behave when features are not present (such as AArch32 instructions),
a couple of missing cases in our built-in operations used by SIMD instructions, a
variable shadowing issue in our translation tools, corner cases in the ASL speci-
fication handling of page table capability tracking, and a few exception handling
problems. None of these issues affect capability monotonicity.

The resulting pass rate was 98.1% compared with the baseline. The discrepan-
cies were mostly due to limitations of the ASL model, such as limited debugging
support, corner cases in address space handling, and the lack of secure memory;
a few details with some SIMD instructions and particular processor exceptions
require further investigation, but again, they do not affect monotonicity.

7 Model-based Test Generation

In addition to the ACK, and before we had access to it, we generated a test
suite from the model to check core instruction and capability functions against
the implementations; and also to adapt QEMU to support most of Morello. We
use symbolic execution, well-established as a way to generate high coverage test
suites [12,43] and used previously for a much simpler CHERI architecture [13],
both to perturb the initial state to explore different instruction behaviours and
to control whether processor exceptions are taken. The latter is particularly
useful for CHERI ISAs because most input values would trivially fault at one
of the capability checks (e.g. see CheckCapability in Fig. 2). Instruction set
specifications are good candidates for symbolic execution because the languages
tend to be relatively simple and the number of paths for any given instruction
is bounded. To build a test generator for Morello we were able to reuse the Isla
symbolic execution tool, which was already being developed for work combining
Sail ISAs with relaxed memory models [10].

The test generator operates on traces of instructions, partially or fully chosen
at random from the encoding diagrams included in the original ASL. Isla’s sym-
bolic execution was extended with a simple sequential memory model using SMT
arrays for the main memory and tags. In outline, the generator: 1. initialises the
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model by running the processor reset function in the symbolic executor (this
is deterministic and does not involve any symbolic state); 2. alters the state so
that the parts the test harness can change are symbolic, and fix other values as
necessary (e.g., for memory translation); 3. symbolically executes each instruc-
tion in turn to find feasible behaviours and pick one; 4. passes the accumulated
path conditions to the Z3 SMT solver [16] to find suitable concrete values for the
initial and final states; and 5. constructs the final test with the instructions and
the test harness which will set up the initial state and check the final state after
execution. This harness is hand-written (although automatically producing it in
the style of Martignoni et al. [29] would be interesting to explore), so to accel-
erate development we first restricted our attention to fault-free behaviours with
memory management turned off, then gradually added support for exceptions,
for a simple fixed memory mapping, and checks of more of the processor state
after execution.

Our coverage goal for test generation was to ensure that all of the specifi-
cation code for manipulating capabilities and for instructions that were added
or modified for Morello would be executed in some test. This was complicated
by non-determinism in parts of the specification. Some instructions have “con-
strained unpredictable” forms which can have one of several effects; e.g., a load-
pair where both destination registers are the same might write UNKNOWN to them,
do nothing, or take a fault. In principle allowing for all of these is possible, but
the resulting disjunctions are likely to be much more difficult to solve, and the
behaviours themselves are not very interesting, so we discarded these paths.

Another area of non-determinism in the specification is the load/store ex-
clusive instructions that are used for synchronisation. Even during single-core
execution these instructions have such behaviour due to the particular mem-
ory architecture choices, which are left as unimplemented primitive operations
in the specification. To test these instructions we added a simple model of the
guaranteed behaviour in Sail, which includes assertions to avoid uncertain cases.

While the number of paths to explore in any instruction is bounded, the num-
ber of paths found for some instructions remains impractically large. The main
cause is the case splits in the capability compression scheme. We reduce these
to a single path by pushing the decisions into the SMT solver using Isla’s lin-
earisation feature, extended to support more of the language, which transforms
functions with no side effects into a single SMT expression. This was sufficient
to perform large-scale test generation with the Morello model.

We checked our progress against our coverage goal using the Sail C back-
end’s coverage measurement support, counting, for each expression in a Sail
specification, the number of tests that exercise it. Once we had enough tests
that the accumulated coverage began to level out, it was apparent that certain
instructions and corner cases were not exercised enough. Overriding the ran-
dom instruction choice filled in most of the gaps, and temporarily disabling the
linearisation allowed exhaustive testing of a key capability function.

The tests found a few minor issues in our tooling and some more bugs in
the original ASL specification: several undefined variants of instructions were
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included, a new load-pair that should have been marked “constrained unpre-
dictable”, a set-bounds operation could read the wrong register, and a translation
fault could be missed in a load-tags instruction. Corrections were made to the
specification for these issues; a couple also arose in one of the implementations
of Morello, which were then fixed.

Comparing the coverage of these tests with the ACK is instructive. As we
used the Sail coverage as a goal, we hit a few gaps in the ACK, such as the
set-bounds issue, and a rare corner case in a core capability function. However,
the ACK’s coverage goals included semantic notions that we cannot capture
easily. For example, if a conditional is supposed to be false because the first
of three checks will fail, human-authored coverage includes the other checks
passing, whereas our generator does not reason about the other checks because
the symbolic execution does not reach them.

The generated test suite was also used as the basis for test-driven develop-
ment of an extension of QEMU’s Armv8-A support to Morello. After adding
basics, such as tagged memory and the expanded register file, the tests guided
which features to implement, easing development. Small errors were picked up
automatically, such as confusing the stack pointer and zero registers (which share
an encoding) and sign extension bugs, including one in the pre-existing QEMU
code where a previous attempt to fix it had missed a subtle issue.

The adapted QEMU now boots CheriBSD, a version of FreeBSD with capa-
bility support, although this required some fixes for issues that were not found
by the generated test suite. A few involved parts of the state that were not
explicitly included in the self-test, particularly around exception handling, but
most of them concerned out-of-scope system features.

8 Related Work

Nienhuis et al. [38] proved similar results for the CHERI-MIPS architecture,
above the Isabelle generated from L3 [23]. CHERI-MIPS is much smaller than
Morello (6k LoS), and much simpler, without page tables, virtualisation, vector
instructions, etc. They identified 9 properties of the ISA semantics that sufficed
to show reachable capability monotonicity and a secure encapsulation result.
These captured the capability-relevant intentions of instructions explicitly, but
were expressed in terms of a conventional whole-system semantics, instead of
the intra-instruction semantics we use here, and that was key to scaling. Each
instruction had to be annotated with its intention, extensive work was needed
to prove commutativity results, and the properties were MIPS-specific.

The other most closely related work, proving properties of capability archi-
tectures, establishes stronger results but for highly idealised architecture defi-
nitions. While our monotonicity theorem is about arbitrary machine execution
up to a domain crossing, Skorstengaard et al. and Georges et al. [46,47,49,48,24]
establish logical-relation methods for reasoning about combinations of arbitrary
and known code, the latter mechanised in Iris [28], but for idealised machines
rather than full architectures. These add new features to help enforcing strong
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properties, but with unclear hardware implementation cost. Strydonck et al. [50]
and El-Korashy et al. [19] study secure compilation in similarly idealised settings.
Ultimately one would like to scale all these methods to production CHERI archi-
tectures. de Amorim et al. [5,4] verify information-flow properties of their SAFE
architecture, also for a simplified model.

Capabilities have also been used in the interfaces of numerous operating sys-
tems. PSOS [37] uses a similar hardware tag bit to CHERI, but all capability
operations are implemented in the OS rather than hardware. Various other oper-
ating system use standard hardware but have capabilities as part of their inter-
faces. These systems are very different to CHERI, but their security models have
many similarities. Proofs that a (simplified) OS interface matches an abstract
capability security model have been done for the EROS OS [45] and for the seL4
kernel [20]. A subsequent proof connects to the seL4 implementation [44]. Each
of these abstract models somewhat resembles ours, e.g. with notions of reachable
and derivable capabilities. Our observation that domain-crossing events create
extra complications also seems to apply to seL4.

There is a great deal of work devoted to other approaches to improve mem-
ory safety which we cannot detail here, but see the review [51]. For just a sam-
ple, many projects have developed software-implemented variants of C or C++
that provide greater safety, but typically with rather different performance and
code-porting costs to CHERI, and without considering whole-system aspects
outside a single C/C++ program [25,36,34,35,17,42,21]. Then there are many
hardware-accelerated approaches, e.g. MPX and WatchdogLite, Watchdog, and
Hardbound [33,32,31,18]. A different line of work aims at bug-finding rather than
deterministic mitigation, e.g. AddressSanitizer [2] and many others.

If widely adopted, Morello would radically change the landscape for such
work, and for computer security more generally.
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