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Abstract
This work develops an integrated approach to the verification of
behaviourally rich programs, founded directly on operational se-
mantics. The power of the approach is demonstrated with a state-
of-the-art verification of a core piece of distributed infrastructure,
involving networking, a filesystem, and concurrent OCaml code.
The formalization is in higher-order logic and proof support is pro-
vided by the HOL4 theorem prover.

Difficult verification problems demand a wide range of tech-
niques. Here these include ground and symbolic evaluation, local
reasoning, separation, invariants, Hoare-style assertional reason-
ing, rely/guarantee, inductive reasoning about protocol correctness,
multiple refinement, and linearizability. While each of these tech-
niques is useful in isolation, they are even more so in combination.
The first contribution of this paper is to present the operational ap-
proach and describe how existing techniques, including all those
mentioned above, may be cleanly and precisely integrated in this
setting.

The second contribution is to show how to combine verifica-
tions of individual library functions with arbitrary and unknown
user code in a compositional manner, focusing on the problems of
private state and encapsulation.

The third contribution is the example verification itself. The
infrastructure must behave correctly under arbitrary patterns of
host and network failure, whilst for performance reasons the code
also includes data races on shared state. Both features make the
verification particularly challenging.

Categories and Subject Descriptors D.1.3 [Concurrent Pro-
gramming]: Distributed programming; F.3.1 [Specifying and Ver-
ifying and Reasoning about Programs]

General Terms Performance, reliability, theory, verification.

Keywords Distributed, infrastructure, persistent queue, opera-
tional semantics, HOL, OCaml, network protocol, ground and
symbolic evaluation, local reasoning, separation, invariants, Hoare-
style assertions, rely/guarantee, inductive reasoning, refinement,
linearizability.

1. Introduction
The verified computing stack is gradually becoming a reality. At
the bottom of the stack, (partial) processor verification is routine.
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Higher up, verified operating systems and compilers are emerging.
However, at the top of the stack, there is a huge gap between ab-
stract mathematical models of programs and implementations in
real code. Distributed infrastructure exemplifies this gap. The ide-
alised models of distributed components may be reasonably clean,
but implementations, forced to contend with failing hosts, failing
network connections etc, while retaining good performance, are of-
ten significantly more complex. Formal techniques are rarely capa-
ble of addressing the full complexity of such implementations. This
paper describes the successful application of operational methods
to mechanically verify a core piece of distributed infrastructure.
This sets a new high-water-mark for the verification of executable
code in a behaviourally rich language and environment, demon-
strating that such verification is feasible. At the same time it es-
tablishes a challenge to make such proofs more automatic, and to
develop verification techniques that can address even richer pro-
grams.

The distributed infrastructure in question is a persistent message
queue [29]. Persistent message queues provide reliable message
delivery in the presence of host and network failure. As such,
they are a core piece of enterprise computing infrastructure and
are widely deployed in many large companies. They are included
in several enterprise application stacks, such as J2EE [8], and
marketed by competing vendors such as TIBCO and IBM.

The implementation discussed here was written by the author
to exhibit many of the issues that would be expected in a produc-
tion implementation, albeit on a somewhat smaller scale. Its perfor-
mance is reasonably good and competitive with other implementa-
tions. Excerpts from the code are given in Section 2.

To verify such code, one needs a formal model of the system.
This includes a model of the implementation language or languages
(in this case OCaml), a model of a live host (in this case including
mutexes, condition variables, the store, network connections, and
the filesystem), and a model of the network, including hosts which
may crash and network connections which may fail.

Section 3 describes these models. In this work, all models are
expressed using operational semantics, as popularized by Plotkin
[24, 23]. The models build on much previous work, both formal and
informal, including the model of OCaml in higher-order logic by
Owens [18]; the very detailed model of TCP/IP, also in higher-order
logic, by the NetSem team (which includes the current author)
[2, 3, 27]; a previous operational verification of OCaml code by
the author [26]; and POSIX manuals and OpenGroup specifications
[1].

A key choice was to model the code directly, as a program in
an executable programming language equipped with an operational
semantics, instead of some idealised state-machine or algorithm.
Thus, the executable code is verified, subject only to the assump-
tions that the compiler is correct with respect to the operational
semantics, and that the models of the filesystem, host and network
are accurate.



Section 4 contains a brief overview of the verification, which
sets the scene for the later sections. The verification involves rea-
soning directly about the operational semantics, rather than the
more usual approach via a program logic, primarily for the prag-
matic reason that operational reasoning can support all the tech-
niques that were needed for the verification. The overhead of using
these techniques is very low: one can omit the separate definition
of a program logic and the accompanying soundness proof and in-
stead work within the flexible environment of higher-order logic.
Moreover, the uniform foundation allows these techniques to be in-
tegrated together cleanly, as described later.

In Section 5 the specification of the persistent queue is pre-
sented. This specification is further refined in Section 6. The queue
is not a whole program that runs in its own process, but a concur-
rent library intended for use by user applications. The infrastruc-
ture must perform correctly whatever actions the user application
performs. The specification therefore needs to address library cor-
rectness in arbitrary context, which is a form of compositionality.
The infrastructure is distributed, so the specification needs to de-
tail what happens when other hosts crash or the network fails. The
specification crucially also needs to support proofs of correctness of
user applications which use the library, since this is one of the main
purposes of a specification. The specification establishes complex
properties far removed from simple generic safety properties such
as memory safety.

To prove that the implementation meets the specification in-
volves several existing techniques, which need to be integrated and
used in combination. In Section 7 I recall these existing techniques,
show how they are expressed formally in an operational setting (as
lemmas and proof idioms about the operational semantics rather
than as proof rules in some program logic), and most importantly
show how they are integrated together to provide strong support
for verification. In Section 8 a particularly interesting part of the
correctness proof involving data races on shared state is discussed.

In Section 9 several new techniques are developed, which cap-
ture intuitive notions of privacy and encapsulation. These are used
when reasoning about the composition of the queue library code
(which involves private state shared between several library func-
tions) and arbitrary user code. These notions are simple and gen-
eral: several of the main lemmas are applicable to arbitrary OCaml
code, and can therefore be reused in future verifications.

The verifications of the queue API methods are independent of
each other, and these verifications are composed with a verification
of arbitrary user code to give a correctness proof for the whole
system. This process of composition is described in Section 10.
References to related work are included in the body of the paper,
and further references appear in Section 11. Finally I evaluate what
has been achieved, draw conclusions, and look to the future in
Section 12.

Reasoning directly about the operational semantics is only fea-
sible with machine assistance. Most of the arguments described in
this paper, including the refinement of the abstract queue to the
alternating bit protocol, the verification of the individual OCaml
functions, and the verification of the privacy metatheory, have been
mechanized in HOL4. The part of the proof that deals with host
and network failure at the implementation level has so far not been
been mechanized, although these behaviours are dealt with at the
intermediate level of the alternating bit protocol.

2. Implementation code
The queue is written in OCaml and makes use of the OCaml Unix
and Thread libraries. The signature for the queue is given in Fig. 1,
the code shared between sender and receiver in Fig. 2, and the code
for the sender in Fig. 3. The code for the receiver is similar to that
for the sender and so is omitted.

type filename = string

type ip = Unix.inet_addr

type port = int

type quad = ip*port*ip*port

type rqueue = ...

type squeue = ...

val listen : quad → filename → rqueue

val available : rqueue → bool

val peek : rqueue → string

val remove : rqueue → unit

val connect : quad → filename → squeue

val send : squeue → string → unit

Figure 1. Queue signature (OCaml)

type queue = {
(* shared state *)

lock : Mutex.t ;

cond : Condition.t ;

msgs : (string list) ref ;

(* active thread local state *)

b : bool ref ;

fd : Message.conn option ref ;

(* constant *)

quad : quad ;

fn : string ;

}

let mk_queue quad fn is_sender = {
lock = Mutex.create () ;

cond = Condition.create () ;

msgs = ref [] ;

b = ref is_sender ;

fd = ref None ;

quad = quad ;

fn = fn ;

} in

let init q =

let _ = Mutex.lock q.lock in

let _ =

try

let ( b :: msgs ) = File.read q.fn in

let _ = q.b := bool_of_string b in

let _ = q.msgs := msgs in

()

with _ → () in

let _ = Mutex.unlock q.lock in

() in

let save q =

let b = string_of_bool ( ! ( q.b ) ) in

try

File.write q.fn ( b :: ( ! ( q.msgs ) ) ) ; None

with

| File.Exception → Some File.Exception in ...

Figure 2. Queue shared sender/receiver code (OCaml)

The queue endpoints communicate over TCP/IP, using a proto-
col based on the alternating bit protocol, and log their state to per-
sistent store. To abstract slightly from the details of TCP/IP and the
filesystem, we use two libraries for messaging (Message) and file
access (File). The messaging library allows communication us-
ing strings rather than a byte stream. The file library allows atomic
file update by first writing to a temporary file and then renaming
to the real target (POSIX-compliant filesystems provide atomic file
rename). Although small, these libraries are written above rather
complex APIs, so that their correctness is far from obvious. Ideally
they should also be verified, but in this work their correctness is
assumed.



let private_send q =

let _ = Mutex.lock q.lock in

let _ =

while ! ( q.msgs ) = [] do

Condition.wait q.cond q.lock

done

in

let _ = Mutex.unlock q.lock in

let msgs = [ string_of_bool ( ! ( q.b ) ) ;

List.hd ( ! ( q.msgs ) ) ] in

let _ = Message.send ( dest_Some ( ! ( q.fd ) ) ) msgs in

() in

let private_recv q =

let msg = List.hd ( Message.recv ( dest_Some ( ! ( q.fd ) ) ) ) in

if ! ( q.b ) = bool_of_string msg then (

let _ = Mutex.lock q.lock in

let _ = q.msgs := List.tl ( ! ( q.msgs ) ) in

let _ = q.b := not ( ! ( q.b ) ) in

let e = save q in

let _ = Mutex.unlock q.lock in

maybe_raise e

) else () in

let sender q =

while true do

try

q.fd := Some ( Message.connect q.quad ) ;

while true do

private_send q ;

private_recv q

done

with

| Message.Exception → (

match ! ( q.fd ) with

| None → ()

| Some fd → ( Message.close_noerr fd ; q.fd := None ) )

| e → ( raise e )

done in

let _connect quad fn =

let q = mk_queue quad fn true in

let _ = init q in

let _ = Thread.create sender q in

q in

let _send q s =

let _ = Mutex.lock q.lock in

let _ = q.msgs := ( ( ! ( q.msgs ) ) @ [ s ] ) in

let e = save q in

let _ = Mutex.unlock q.lock in

let _ = Condition.broadcast q.cond in

let _ = maybe_raise e in

() in

let connect quad fn =

let q = _connect quad fn in

_send q in

let send q s = q s in ...

Figure 3. Queue sender code (OCaml)

A queue endpoint is created when the user callslisten or
connect. In both cases, the user supplies a quad, identifying the
local and remote endpoint addresses, and the filename of the log
file used to store persistent information about the endpoint state.
In the case ofconnect, a call is made to the auxiliary function
connect, which creates and initializes the queue and then starts

up the active management thread which runs thesender function.
The thread sits in an outer loop, initializing and reinitializing the
TCP/IP connection to the other endpoint, and then running an inner
loop until an exception is raised. On each iteration of the inner loop,
the sender sends the first pending message to the other endpoint
(private send) then waits for the subsequent acknowledgement
(private recv).

’a exp =

Wrap of ’a

| Var of var

| Lam of (var # exp)

| App of (exp # exp)

| LetVal of (var # exp # exp)

| ...

expr = unit exp

closure = Cl of expr#((var#closure)list)

hole_or_clo = Hole | Clo of closure

context = hole_or_clo exp

framestack = context list

Figure 4. Core OCaml datatypes (HOL)

The queue is asynchronous: a call toconnect may return a
queue before any network communication has taken place, whilst a
call tosend affects only the local endpoint. The active management
thread handles all communication with the other endpoint.

3. Formal models
The correctness of the queue is a formal statement in higher-order
logic. Before this statement can be constructed, the various parts
of the system must be formally defined. At the heart of the model
is an operational semantics for a pure OCaml expression. This is
extended to a model of arbitrarily many individual threads exe-
cuting in the context of a host. Threads can create other threads
dynamically. Threads share access to a store, mutexes and condi-
tion variables, a filesystem, and a set of network connections. At
the next level up, a network consists of many hosts communicat-
ing using messages sent over TCP/IP. To capture the transient na-
ture of hosts and network connections, the model allows them to
fail at any time, although host filesystems persist. All code ex-
cerpts from now on are written in the HOL4 syntax of higher-
order logic, which is similar to the syntax of OCaml. The pair
type constructor is written#. Finite map update is writtenFUPDATE
f (arg,result) or alternativelyf |+ (arg,result). Records
are written<| fld:=val; fld’:=val’ |>. List append is writ-
tenxs++ys. Logical negation is written as a tilde.

OCaml expressionsPrevious work by the author [26] used flat
expressions, whereas here the operational semantics for OCaml is
based closely on the CEK machine [5], which uses closures and a
framestack. The use of closures and a framestack introduces more
structure into the representation of program state, which is helpful
for verification. For example, substitution instances of a function
are easier to identify because, using a closure representation, the
body of the function remains constant. The fragment of OCaml that
is modelled is sufficient to express the implementation code given
previously. The most important omission is the OCaml module
language.

The HOL datatype for a core subset of OCaml expressionsexp

is given in Fig. 4. If we ignore theWrap constructor, this gives a
standard “flat” datatype for expressions. TheWrap constructor is
used to modelclosures,contexts, andframestacks.

The reduction rules for a closurecl in a framestackfs are
given in Fig. 5. A thread is a pair where the second component is a
framestack, and the first component is either the currently executing
closure or a blocking system call. System calls are the interface be-
tween threads and the rest of the host. System calls include those re-
lated to the store (egSC Assign), locks and condition variables (eg
SC Mutex Lock), the filesystem (egSC File Write), and network



reduce raise (cl,fs) =

case fs of [] → NONE || f::fs → (

case f of

TryWith(Wrap(Hole),Wrap(Clo(cl2))) → (

case push env cl of Raise(Wrap(cl)) →
SOME(cl2,App(Wrap(Hole),Wrap(Clo cl))::fs)

|| → NONE)

|| → SOME(cl,fs))

reduce nonval (cl,fs) =

let add fs = λ (cl,f). (cl,f::fs) in

let new cl fs push env cl = case push env cl of

App (Wrap(cl1),Wrap(cl2)) →
SOME(cl2, App(Wrap(Clo(cl1)),Wrap Hole))

|| LetVal (x,Wrap(cl1),Wrap(cl2)) →
SOME(cl1, LetVal(x,Wrap Hole,Wrap(Clo(cl2))))

|| While (Wrap(cl1),Wrap(cl2)) → (

let cl’ = mk cl (LetVal(" ",Var"do",Var"while"))

[("do",cl2);("while",cl)] in

SOME(cl1,IfThenElse(Wrap Hole,Wrap(Clo(cl’)),

Wrap(Clo unit))))

|| ...

in

...

reduce val (cl,fs) = ...

reduce (cl,fs) =

let e = cl to e cl in

if is Raise e then reduce raise (cl,fs)

else if is val e then reduce val (cl,fs)

else reduce nonval (cl,fs)

Figure 5. OCaml reduction (HOL)

host = <|

cs : (connectionid,connection)finite map;

ts : (threadid,thread)finite map;

s : store;

m : (mutexid,threadid option)finite map;

w : condition set;

f : filesystem

|>

Figure 6. Host type (HOL)

communication (egSC Listen). Finally thetrans t function ties
these components together to give the transitions for a thread.

trans t t = case (t:thread) of

(T Run(cl),fs) → (case dest Call (cl to e cl,fs) of

NONE → (OPTION MAP (λ (cl,fs). (T Run(cl),fs))

(reduce (cl,fs)))

|| SOME(call,fs) → SOME(T Block(call),fs))

|| (T Block(call),fs) → failwith NONE "trans t"

The host In Fig. 6 the typehost includes threads, a store, a set of
mutexes and condition variables, a filesystem, and a set of network
connections. The behaviour of the host is also defined using small-
step operational semantics; an excerpt describing mutex transitions
appears in Fig. 7.

The network A network consists of hosts communicating using
TCP/IP. As mentioned previously, the model assumes a thin mes-
saging layer on top of TCP/IP that allows hosts to communicate us-
ing strings rather than a byte stream. The transitions of the network
consist of transitions of host threads, transitions where a connec-
tion on the host sends a message to the network, transitions where
a message is received from the network, and transitions represent-
ing host and connection failure. An excerpt is given in Fig. 8.

4. Verification overview
In Section 5 an abstract model of a queue is defined. Informally
the OCaml implementation is said to be correct if it behaves in the

trans mutex (h,tid,call) = case call of

SC Mutex Create → (

let l = free (FDOM h.m) in

let m’ = FUPDATE h.m (l,NONE) in

[(h with <| m:=m’ |>, SC Ret(mk con "Mut" l))])

|| SC Lock(l) → (

option case [] (λ x. case x of

NONE → (

(* acquire the mutex *)

let m’ = FUPDATE h.m (l,SOME tid) in

[(h with <| m:=m’ |>, SC Ret unit)])

|| SOME →
(* mutex owned by another thead *)

[])

(FLOOKUP h.m l))

|| SC Unlock(l) → (

option case [] (λ x. case x of

(* mutex is not held *)

NONE → [(h,SC Ret mutex exception)]

(* mutex is held *)

|| SOME tid’ → (

if tid = tid’ then

(* we hold the mutex, so unlock it *)

let m’ = FUPDATE h.m (l,NONE) in

[(h with <| m:=m’ |>, SC Ret unit)]

else

(* mutex owned by another thead *)

[(h,SC Ret mutex exception)]))

(FLOOKUP h.m l))

|| → []

Figure 7. Host mutex transitions (HOL)

msg trans ((quad:quad),(msg:msg)) (n:net) =

let (i1,p1,i2,p2) = quad in

let hid = i2 in

let h1 = FLOOKUP n.hs hid in

case h1 of

NONE → {}
|| SOME(H Dead ) → {}
|| SOME(H Alive h) → (

(* expected connection state, given msg *)

let st = case msg of

SYN → LISTEN

|| SYNACK → SYN SENT

|| ACK → SYN RECV

|| DATA → ESTABLISHED

in

(* relevant (connectionid,connection) pair *)

let cidc = get cidc quad st h.cs in

(* updated connection and new messages *)

let g (cid,c) =

let quad’ = rev quad quad in

let (c’,msgs) = case msg of

SYN →
(c with <| st:=SYN RECV |>,[(quad’,SYNACK)])

|| SYNACK →
(c with <| st:=ESTABLISHED |>,[(quad’,ACK)])

|| ACK →
(c with <| st:=ESTABLISHED |>,[])

|| DATA(ss) →
(c with <| in :=(c.in ++[ss]) |>,[])

in

((cid,c’),msgs)

in

(* updated network *)

option case {}
(set eta o cmsgs in n n (hid,H Alive h) o g)

cidc)

Figure 8. Network transitions for messages received (HOL)

same way as this abstract queue. Formally an abstraction function
maps concrete implementation states to abstract queue states. Every
transition of the implementation must map, via the abstraction
function, to a transition of the abstract queue.



The proof is factored into an abstraction function from the con-
crete OCaml implementation to an intermediate specification, and
a further abstraction function from the intermediate specification
to the abstract queue. The composition gives the single abstraction
function we seek. In Section 6 this intermediate specification is de-
fined. It captures the communication protocol used by the queue,
which is a version of the alternating bit protocol (ABP). The func-
tion from the ABP to the abstract queue is also defined, but the
standard proof that it is an abstraction function is omitted. The in-
teresting part of the verification involves the abstraction function
from the implementation to this intermediate specification. Defin-
ing this function is straightforward because the states of the imple-
mentation and the ABP are closely related: the OCaml code is a
direct implementation of the ABP. The main proof obligation is to
check that this function is indeed an abstraction function. This is an
invariant property, that is, a property of all reachable states.

We examine all reachable states using symbolic evaluation. The
reachable states are too complicated to use symbolic evaluation
directly, so we use rely/guarantee to rephrase the transition system
from the point of view of some arbitrary threadt. Whereas the
original system used an interleaving model of concurrency, in this
new system, steps oft alternate with steps of interference from
other threads, the host, and the network.

We are now in a position to execute through a trace of the system
from the point of view of a threadt. There are two possibilities for
t. Either it is the active management thread, or it is some other
user thread. If it is the active management thread, the thread state is
largely known, eg for the sender endpoint it is the functionsender,
with a symbolic value for theq parameter. In this case, we can
execute the code, checking the reachable states as we go.

The other possibility is thatt is a user thread. There are two
further possibilities. Either the user thread calls a queue API
method, or it executes some arbitrary user code. For each queue
API method, the state of the threadt is again largely known: it
is the code for the queue method itself. As before, we execute
the code, checking each state in turn. Verification ends when the
method returns to user code. For a transition involving arbitrary
user code, queue resources are private and inaccessible, so the state
of the queue is unchanged.

5. Abstract specification
The abstract queue is formed by concatenating the pending mes-
sages at the sender endpoint (as recorded on the host filesystem) to
those at the receiver endpoint, taking care to avoid duplicate mes-
sages. The abstract specification of a queue is straightforward.

abstract queue trans xs xs’ = ∃ msg msgs.
(* msg appended to end *)

( (xs =msgs ) ∧
(xs’=msgs++[msg])) ∨

(* msg removed from front *)

( (xs =[msg]++msgs) ∧
(xs’= msgs))

How is this a useful specification? In the simplest scenario, user
code establishes a send queue andsends a messagemsg to the
receiver endpoint. During the execution ofsend, themsg is written
to the log file on the sender endpoint. The change to the sender’s
filesystem translates, via the abstraction function, to a change in
the abstract queue, so that the abstract queue now containsmsg.
On the receiver endpoint, user code establishes the corresponding
receive queue and thenpeeks at the contents. Ifpeek returns, it is
because the head of the pending messages on the receiver endpoint
was non-empty. The head of the pending messages corresponds,
via the abstraction function, to the head of the abstract queue.
Since the front of the abstract queue is the messagemsg, thepeek
must returnmsg. This reasoning is completely independent of the

abp host = <| b:bool; ss:string list |>

abp net = <|

s : abp host;

msgs : (bool#string) list;

r : abp host;

acks : bool list

|>

abp trans sender n n’ = ∃ n0 s0 b s ss acks msgs.
(* a user thread makes a send call transition *)

((n =n0 with <| s:=s0 with <| ss:=ss |> |>) ∧
(n’=n0 with <| s:=s0 with <| ss:=(ss++[s]) |> |>)) ∨
(* a msg moves to the network *)

((n =n0 with <| s:=s0 with <| b:=b; ss:=(s::ss) |>;

msgs:=msgs |>) ∧
(n’=n0 with <| s:=s0 with <| b:=b; ss:=(s::ss) |>;

msgs:=(msgs++[(b,s)]) |>)) ∨
(* an ack for previous msg is received *)

((n =n0 with

<| s:=s0 with <| b:=b |>; acks:=(˜b::acks) |>) ∧
(n’=n0 with

<| s:=s0 with <| b:=b |>; acks:= acks |>)) ∨
(* an ack for current msg is received *)

((n =n0 with

<| s:=s0 with <| b:= b; ss:= ss |>; acks:=(b::acks) |>) ∧
(n’=n0 with

<| s:=s0 with <| b:=˜b; ss:=TL ss |>; acks:=( acks) |>))

abp trans receiver n n’ = ...

abp trans n n’ = ∃ n0 xs ys zs.
abp trans sender n n’

∨ abp trans receiver n n’
∨ (* host or connection failure, transient messages lost *)
( (n = n0 with <| msgs:=(xs++ys++zs) |>) ∧
(n’ = n0 with <| msgs:=(xs++zs) |>))

Figure 9. Alternating bit protocol (HOL)

internal functioning of the queue, including the details of how the
message makes its way from the sender endpoint to the receiver
endpoint.

6. The alternating bit protocol
The queue endpoints use a version of the alternating bit protocol
(ABP) to communicate. The ABP is described in [13]. The proto-
col can be verified independently of the implementation, so we in-
troduce an intermediate system between the abstract specification
and the concrete implementation which captures the ABP. This sys-
tem is defined in Fig. 9. The relationship between the ABP and the
abstract queue is expressed as an abstraction function.

abp to abstract queue n =

n.r.ss++(if n.s.b=n.r.b then TL n.s.ss else n.s.ss)

The abstraction function takes the pending messages at the
receiver,n.r.ss, and appends the pending messages at the sender,
n.s.ss to form the abstract queue. If theb values at the endpoints
are equal, then the message at the head of the sender’s queue
has already been accepted onto the receiver’s queue, and as a
result the message is omitted when forming the abstract queue.
The proof that this abstraction function respects transitions uses
inductive reasoning to establish protocol correctness, in the style of
Paulson [20]. Because it is a well understood technique, the details
of the proof are omitted, and inductive reasoning about protocol
correctness is not discussed further.

How does the ABP relate to the OCaml implementation? The
endpoint state in the ABP,b andss, corresponds to the endpoint
state in the implementation,b andmsgs, as recorded on the host
filesystem. Themsgs and acks at the ABP level correspond to
transient messages, on the network, in connection objects on hosts,
and even in the active management threads before pending changes



to state have been logged to disk. Thus, a connection failure may
result in messages being lost from the network, but messages in the
connection object on the receiving host, and in the active thread,
remain. Similarly, a single endpoint failure still leaves messages
on the network and on the other endpoint that can be received
by that endpoint’s active thread. For space reasons, details of the
abstraction functionabstract from the implementation to the
ABP model are omitted.

The main property we want to prove is that transitions of the
OCaml implementation, when mapped by the abstraction function,
are respected by the ABP. Formally we have the invariantinv main

below. This invariant is parameterized bynps, which records infor-
mation such as the quad for the queue that we are interested in.
Where this invariant is used, the staten’ is a successor ofn.

inv main nps n n’ =

let trns = RC abp trans in (* reflexive closure *)

let abstrct = abstract nps in

trns (abstrct n) (abstrct n’)

This invariant is further decomposed into several invariants cov-
ering common situations. For example, the case where a thread on
the sender endpoint takes a step is dealt with by the following in-
variant. The parameterps records information about the endpoint.
For example,ps.tid is the thread id of the active management
thread.

inv main sender ps h h’ =

let trns = RC abp trans sender in (* reflexive closure *)

let abstrct = abstract sender to abp net ps in

trns (abstrct h) (abstrct h’)

7. Proof techniques and their integration
This section describes several existing proof techniques, how they
were used in the verification, and how they were integrated together
on top of the operational foundation.

Basic setupAt the heart of the operational approach to verifica-
tion is symbolic evaluation. Program execution deals with ground
terms. Symbolic evaluation deals with parametric terms, where
subterms are replaced by variables (logical, not program). While
ground evaluation can enumerate the reachable states of a particu-
lar instance of a program, such asfact 5, symbolic evaluation can
deal with the reachable states of all possible instances of a program,
such asfact n.

Symbolic execution can be automated fairly easily (although the
current implementation in HOL4 is rather slow). This affects the
structure of proofs: rather than describe the behaviour of a func-
tion in a way that echoes the operational semantics, we can simply
execute the function. For example, consider anincrement func-
tion that takes a mutable variable and increments its value by one.
The behaviour ofincrement as given by the operational seman-
tics cannot be abstracted in any meaningful way. Such functions are
handled directly rather than by separating out their properties as a
lemma. In the case of the queue, the functionsmk queue, init and
save are like this.

The queue code is structured into functions, some of which are
part of the queue API, and some of which are internal to the queue
itself. It is natural to structure the proof similarly, and so the bulk
of the verification consists of separate lemmas, with each lemma
corresponding to a particular function in the code. This makes
the proof modular, and, since the verification of each function is
independent of the others, one can hope that the effort scales with
the number of functions.

Each function is verified by symbolically executing it. Global
invariants are assumed to hold initially, and verification must es-
tablish that they hold at successor states. The operational semantics
uses an interleaving model of concurrency, and other threads may

interfere with the thread executing the function. Rely/guarantee
style reasoning can be used to rephrase the transition systems so
that every step of the thread executing the function is followed by a
single “rely” step which represents interference from other threads.
The cost of this transformation is that the corresponding “guaran-
tee” of the thread in question must be show to hold at each step.

Symbolic executionSymbolic execution is used to explore the set
of reachable states. A reachable state lies at the end of a finite se-
quence, or trace, whose head is a start state, and whose consecu-
tive states are related by the transitions of the system. Symbolic
execution works with such tracesp, wherepn is a symbolic repre-
sentation of the system at stepn. It is important to note that these
symbolic states are characterized by arbitrary HOL formulae. Each
of the positions in the trace is dealt with in turn, using information
aboutpn to derivepn+1.

If the system is non-deterministic, ie there is more that one
successor state, then there is a corresponding branch in the proof.
In fact, a network involving a queue is highly concurrent and
non-deterministic, so rely/guarantee is used to mitigate this non-
determinism: as mentioned previously, every step of a thread is
followed by a step representing interference from other threads and
the environment.

Loops and recursion are handled using induction. Typically,
traces are allowed to start in any state that may recur, and before
symbolic execution commences, there is an outer induction on the
length of the tracep. If a state recurs as the head of some suffixp′ of
p, the induction hypothesis is invoked to deduce that the invariant
holds on the remainderp′ of p.

Auxiliary variables and Hoare-style assertionsHistory variables
[15] are used to record facts about previous states. For example,
a proof might note the value ofpm, which is later used when
examiningpm+n. At its simplest,pm is used to determinepm+1.
Since the whole trace is directly accessible at any point in the proof,
prophecy variables can also be used freely: when examiningpm

one is free to case split on the value ofpm+n. If, as is often the
case,n is not known exactly, one can case split on the firstn such
that some useful propertyP holds ofpm+n. Prophecy variables are
not used in this work, but history variables are used extensively.

Hoare-style assertions [7] are used in a similar way to history
variables. Rather than record the exact valuepm of a previous state,
the assertionP (pm) is established, whereP is some predicate of
interest. This information is used at some later stage, typically to
derive some further assertionP1(pm+1), which is itself used to
deriveP2(pm+2), and so on. In Section 8 there is an example of
the use of history variables and Hoare-style assertions.

Invariants Invariants are properties which hold of every reachable
state. As an example, the following invariant describes how the
state of the queue in memory relates to the state of the queue as
recorded on the host filesystem.

inv mem disk none ps h =

let q1 = mem queue of host ps h in

let q2 = disk queue of host ps h in

(h.m ’ ps.lock = NONE)

−→ ((q1.msgs,q1.b) = (q2.msgs,q2.b))

The variableps.lock identifies the queue lock. Given this, the
invariant may be paraphrased “if the queue lock is not held, then the
in-memory queue1 and the on-disk queue are the same”. Because
the queue code contains data races, a further invariant is required to
characterize the relationship between the in-memory and on-disk
representations when the lock is held by a user thread.

inv mem disk some ps h =

1 Rather, the fieldsmsgs andb of the relevant queues.



let q1 = mem queue of host ps h in

let q2 = disk queue of host ps h in

∀ tid. tid IN FDOM h.ts ∧ ˜ (tid = ps.tid)
−→ (h.m ’ ps.lock = SOME tid)

−→ (q1.msgs = q2.msgs) ∨ (∃ msg. q1.msgs = q2.msgs++[msg])

The other interesting invariant relates to encapsulation and the
contents of the store, and is described in Section 9. Further invari-
ants deal with wellformedness conditions. All host invariants are
combined in a single invariantinv h.

Rely/guaranteeRely/guarantee [9] is a core technique for reason-
ing about concurrent systems. The standard reference is Jones’ PhD
thesis [9]. Jones helpfully maintains an annotated bibliography on
rely/guarantee online2. Given a particular thread of interest, the
idea is to characterize the interference that may be caused by other
threads. As an example, the following rely condition describes how
interference affects the value of the in-memory list of pending mes-
sages at the sender endpoint.

rly msgs non empty ps tid h h’ =

let q = mem queue of host ps h in

let q’ = mem queue of host ps h’ in

(tid = ps.tid)

−→ ˜ (q.msgs = [])

−→ ˜ (q’.msgs = []) ∧ (HD q’.msgs = HD q.msgs)

A rely condition characterizes the interference caused by a
thread transition from a hosth to a hosth’. This rely condition
is parameterized by two variables,ps andtid. The variabletid
is the thread identifier of the thread that may assume the rely
condition, whileps.tid identifies the active management thread
on the host. The conditiontid = ps.tid implies that this rely is
trivial unless the thread identified bytid is the active management
thread. The rely condition can therefore be paraphrased: “If you
are the active management thread, you may assume that ifmsgs is
non-empty and other threads take steps and so interfere with the
system state, thenmsgs will still be non-empty, and moreover the
head ofmsgs will be preserved”. If the queue correctly maintains
the privacy of its internal data structures, then this is obvious from
the code: user threads on the sender endpoint can call the queue API
functionsend to add messages to the end ofmsgs, but the active
management thread is the only one that can remove messages from
the front ofmsgs.

A rely condition should be reflexive and transitive because it
represents zero or more steps of interference.

is rly gty rg = reflexive rg ∧ transitive rg

is_rly_gty (rly_msgs_non_empty ps tid)

There is no need to state the guarantee conditions separately. A
rely conditionrly is parameterized by the thread identifiertid. If
the host state ish, and other threads take steps causing the state
to change toh’, then threadtid can rely on propertyrly tid
h h’. Conversely, when threadtid itself takes a step from state
h causing the state to change toh’, it must be sure to guarantee
rly tid’ h h’ for all other threadstid’. There is an example
of this in the statement ofsend lemma below. Thus, if the thread
identifier is made explicit, then the rely and guarantee conditions
become identical. This clarifies the often observed symmetry be-
tween rely/guarantee conditions.

What is the benefit of using rely/guarantee style reasoning?
Usually a threadt executes in parallel with other threads. Instead of
interleaving steps of other threads with those oft, one can instead
interleave steps of interference. If the interference is reflexive and
transitive, then one can follow each step oft with a single step of

2homepages.cs.ncl.ac.uk/cliff.jones/ftp-stuff/rg-hist.pdf

interference. The reachability of this system is at least that of the
original. Thus, any invariant of this system is an invariant of the
original. Crucially, this approach abstracts from the details of the
other threads, making verification significantly more manageable.

Linearizability Linearizability [6] is the requirement that an ac-
tion composed of multiple atomic actions appear to happen at a
single point in time. The use of an abstraction function from a
concrete implementation to an abstract specification often requires
reasoning about linearizability, since an atomic action of the spec-
ification may require several steps in the implementation. In this
paper, linearizability is dealt with using invariants, auxiliary vari-
ables, Hoare-style assertions, and rely/guarantee. The proof of the
correctness of the code with data races in Section 8 illustrates lin-
earizability in detail.

Integration The verification is only made possible by using these
techniques in combination. The key to integration is to express all
the techniques using the core techniques of symbolic evaluation
and invariants.

Symbolic execution is used to explore the state space of the sys-
tem. During symbolic evaluation, Hoare-style assertions are used to
abstract from the details of a particular state, and history variables
are used to record details of previously seen states.

The property that the OCaml implementation refines the ABP
specification is also an invariant: recall that the implementation re-
fines the ABP specification if, for every reachable implementation
state and every transition from that state there is a corresponding
transition of the specification.

Rely/guarantee states that for a given threadtid and for all
reachable implementation host statesh, any successor stateh’
arising from a transition of a threadtid’6=tid satisfiesrly tid
h h’. Again, this is an invariant of implementation statesh. As
with refinement, the invariant makes reference to successor states.

There are therefore three different kinds of invariant. For each
transition of a threadtid, we must prove the guarantee correspond-
ing to the rely, the correctness of the abstraction function, and the
other basic invariants. For example, the part of the verification deal-
ing with thesend queue API method involves the following typical
goal, parts of which have been omitted for clarity.

send lemma p = ∀ ps tid tid’ h h’.
... (* variables are set appropriately *)

−→ inv h ps h

−→ inv h ps h’ ∧ rly h ps tid’ h h’ ∧ inv main sender ps h h’

The aim is to prove that for any pathp, if the last two statesh
andh’ in the path arise as a transition of threadtid, then assuming
the basic invariantsinv h hold of stateh, we must show that they
hold of stateh’ (inv h ps h’), that the transition of threadtid
guarantees the relies of other threadstid’ (rly h ps tid’ h
h’), and that there is a corresponding transition of the ABP model
(inv main sender ps h h’). In this way, all techniques used in
the proof, including privacy (part ofinv h), rely/guarantee, and
refinement, are cleanly combined.

8. Data races
Races on shared resources are dangerous, but they can be pre-
vented using locks. For performance reasons, it is important to hold
locks for the shortest time possible. The queue uses locks wherever
shared state may be accessed concurrently, with one interesting ex-
ception. In order to improve performance, theprivate send func-
tion permitsq.msgs to be dereferenced outside the locked region
(private send is reproduced below). In the rest of this section,
I discuss why this might cause problems, why it does not cause
problems in this case, and how this is handled in the proof.

Recall that the main property we are proving is that, from
a reachable state, every step of the implementation corresponds

homepages.cs.ncl.ac.uk/cliff.jones/ftp-stuff/rg-hist.pdf


to a step of the alternating bit protocol. The possible problem
arises in the last line ofprivate send, when a message is sent
to the network (in fact, its immediate destination is the relevant
connection object on the host). The alternating bit protocol requires
that the message that is sent at this point is the first message
pendingat this point. However, the dereference of the head of the
pending messages,List.hd ( ! ( q.msgs ) ), occurs some
steps before the message is sent. Potentially the head ofq.msgs

could have changed in the intervening time, in which case the
dereferenced value would not be current, and there would be no
corresponding step of the alternating bit protocol. The problem is
one of linearizability.

It is important to realise that even ifq.msgs were dereferenced
inside the locked region, the fact that the send occurs outside the
locked region still causes problems. If both the dereference and
the send occur inside the locked region, then there is no problem.
However, depending on the size of the message, the send may take
a long time, and thus impact performance considerably.

Fortunately the code is correct as it stands. The function
private send is executed only by the active management thread.
Although other threads may read and updateq.msgs, they can
only add messages to the end. Onceq.msgs is non-empty, the
head remains constant until the active management thread itself
removes it in response to a new acknowledgement received from
the other endpoint. Thus, it does not matter thatq.msgs is deref-
erenced some time before the send occurs since the value will
not change in the intervening time. The situation is only slightly
more complicated by the fact that the abstraction to the alternating
bit protocol uses the on-disk rather than in-memory queue. For-
tunately theinv mem disk none, inv mem disk some invariants
guarantee that the two representations are the same (or, at least,
that the head of the in-memory queue is the same as the head of the
on-disk queue, since a user thread may be callingsend, which has
appended a message to the in-memory queue, but not yet logged
the results to disk).

The reasoning may be presented slightly more formally using
Hoare-style assertions. Because the invariantsinv mem disk none,
inv mem disk some are involved in the reasoning, I also show how
they are preserved.

let private_send q =

(* 1 *)

let _ = Mutex.lock q.lock in

(* 2 *)

let _ = while ! ( q.msgs ) = [] do

Condition.wait q.cond q.lock done in

(* 3 *)

let _ = Mutex.unlock q.lock in

(* 4 *)

let msgs = [ string_of_bool ( ! ( q.b ) ) ;

List.hd ( ! ( q.msgs ) ) ] in

(* 5 *)

let _ = Message.send ( dest_Some ( ! ( q.fd ) ) ) msgs in

() in

At 1, the global invariant holds by assumption. In particular,
we restrict attention to the relevant part of the global invariant,
inv mem disk none and inv mem disk some. At 2, the thread
has successfully taken the lock. Immediately prior to this step, the
lock is not held, so the condition of the invariantinv mem disk none
is satisfied, and the in-memory and on-disk queues are the same.
This is not altered by the lock being taken, so immediately af-
ter the lock is taken, the in-memory and on-disk queues are still
the same. Other threads may interfere at this point, but they guar-
antee not to alter (the shared parts of) the queue state while the
lock is taken. Thus, while the lock is held, the conclusion of
inv mem disk none remains true.inv mem disk some is trivially
true since the condition is false, and this remains the case while the
lock is held. At 3, the lock is still taken, andq.msgs is non-empty.

Again, other threads may interfere, but the active thread can rely
onrly msgs non empty to ensure that the head ofq.msgs is con-
stant. In fact, the head of the queue remains constant also because
the lock is held, indicating thatrly msgs non empty is really only
necessary outside the locked region. This is related to the fact that
the mutex and condition variable are used here primarily for inter-
thread communication, not to protect shared access to resources. At
4 the lock is released. The conclusion ofinv mem disk none holds
immediately before the lock is released, soinv mem disk none
holds immediately after the lock is released.inv mem disk some
is trivially true because the condition is false. From this point on,
user threads may interfere, and the lock may be free, or taken by a
user thread. However,rly msgs non empty guarantees that the
head of the list remains constant. At 5,q.b and q.msgs have
been dereferenced. The only thread that can alter the value of
q.b is the sender thread, which we are currently executing, and
rly msgs non empty ensuresq.msgs remains current. When the
send finally occurs, the lock can either be free, or held by one of the
user threads (nothing can make the lock be held by the active sender
thread). The invariantsinv mem disk none, inv mem disk some
ensure that, regardless of whether the lock is held or not, the pre-
viously read valuesq.b andList.hd ( ! ( q.msgs ) ) corre-
spond to the values currently on disk. There is thus a corresponding
transition of the alternating bit protocol respecting the abstraction
function.

9. Context, privacy and encapsulation
The queue is intended to be used as a library by other applica-
tions. It should behave correctly regardless of the context in which
it is called. This is achieved by keeping queue resources private. If
resources are private, then invariants on the resources can be en-
forced. In this work, resources are unforgeable references to host
state, typically store locations, mutex identifiers, condition variable
identifiers and network connection identifiers. Even a thread iden-
tifier might be considered a resource, although in the current model
of OCaml there is no way to manipulate a thread via its identifier, so
whether thread identifiers are private or not is immaterial. The exact
nature of a resource is orthogonal to privacy concerns— nothing is
lost by considering all resources to be store locations.

The idea of privacy is very simple. A single resourcer is
private to a functionf if, wherever it occurs, it is syntactically
within the body off . For example, locationLoc i is private to
function λ x. Loc i in App(λ x. Loc i, unit). In general
there may be more than one resource and more than one function.
For example, the queue API methods for the receiver all share the
same resources.

A resourcer may be private tof initially, but subsequentlyf
may leakr to user code. Possible waysf can leakr are by making
r accessible via shared store, or by returningr to user code (either
normally, or during exceptional return). To ensure thatr remains
private throughout an execution,f must beprivacy-preserving. In
particular,f must not returnr to user code (directly, or during
an exceptional return). In a single-threaded setting,f must ensure
that r is not accessible via other locations in the store whenf
finishes executing. In a concurrent settingf must ensure thatr
is not accessible to other threads via other locations in the store
at any point during execution. For the queue, resources are never
accessible via other locations in the store. Thus, as far as privacy is
concerned, verification must establish that the queue API functions
do not return private resources to user code.

OCaml can support notions of privacy for in-memory data struc-
tures. However, the queue also uses the network and the filesystem.
External restrictions must be placed on how these are used by the
context. For example, no user thread should write directly to the
log files otherwise chaos might ensue.



The definition of privacy The first definition gives all subclosures
of a closurecl, omitting those that match one of the functionsfns.
This is then lifted to contexts and framestacks in the obvious way.

subcls fns cl =

if cl IN fns then [] else cl::(case cl of Cl(e,env) →
FLAT (MAP (λ (v,cl). subcls fns cl) env))

A set of resourcesrs are private to a set of functionsfns if,
when occurrences offns are removed, there are no occurrences of
rs.

private cl fns rs cl = ∀ r. r IN rs −→ ˜ (MEM r (subcls fns cl))

private fs fns rs fs = ∀ r. r IN rs −→ ˜ (MEM r (subcls fs fns fs))

private clfs fns rs (cl,fs) =

private cl fns rs cl ∧ private fs fns rs fs

Recall that thread state consists of a pair, where the second
component is a framestack, and the first component represents a
running thread evaluating a closure, or a thread blocking on a
system call.

private thread fns res t =

let rs = res to cls res in

case t of

(T Run cl,fs) → private clfs fns rs (cl,fs)

|| (T Block call,fs) →
private fs fns rs fs ∧ case call of
SC Ref(cl) → private cl fns rs cl

|| SC Deref(l) → ˜ (l IN res.locs)

|| SC Assign(l,cl) →
˜ (l IN res.locs) ∧ private cl fns rs cl

|| ...

Store invariant Queue resources are never accessible from other
store locations, either while user code executes or while queue API
functions execute. This is captured by the following invariant. The
definitionprivate cl is first lifted to the host store.

private store fns res s =

let rs = res to cls res in

∀ loc:loc. loc IN FDOM s −→ private cl fns rs (s ’ loc)

inv private store ps h =

let res = ps to res ps in

let fns = qfns ps in

private store fns res h.s

The invariant is checked while user code executes and while
queue API functions execute. Since the resources are private to
user code, there is no way user code can write them into the store
(except by writing a queue API function itself into the store, but
this preserves privacy). For the queue API functions it is clear from
the code that this invariant is satisfied.

Privacy verification Verification starts by considering an arbitrary
thread, with resourcesres private to functionsfns. In this work,
fns are the queue API functions. There are two cases. Either a
function executes, or arbitrary user code executes. For arbitrary
user code, by considering all possible cases, one can show that after
a step of execution the resources remain private, and the state of
the resources is unchanged. This is described in more detail below.
Since the proof is independent of the resourcesres and the set of
functionsfns, the result is OCaml metatheory and may be reused
in other verifications.

The second case arises when one of the queue API functions
fns executes. For each function, verification must establish that
resources are not written to the store while the function executes,
nor returned to user code when the function finishes executing. The
functions are specific to the code being verified, in this case the
queue, and therefore this part of the verification cannot be reused.

Resources remain private while executing user codeThe follow-
ing lemma describes the case that arbitrary user code executes with
resourcesres private to functionsfns.

user lemma = ∀ tid h h’ t t’ fns res.
... (* variables are set appropriately *)

−→ ˜ (∃ fs f arg.
f IN fns ∧ (t = (T Run f,App(Wrap Hole,Wrap(Clo arg))::fs)))

−→ private thread fns res t ∧ private store fns res h.s
−→ h’ IN set (trans h tidt h (tid,t))

−→ private thread fns res t’ ∧ private store fns res h’.s
∧ (eval res res h’ = eval res res h)

Threadt is identified by thread identifiertid. The first condi-
tion restricts threadt to user code rather than (an application in-
volving) one of thefns. The inductive assumption is that the re-
sources are private in both the thread statet and in the host store
h.s. The next condition restrictsh’ to a successor ofh (within h,
the thread making the transition ist). The conclusion is that re-
sources remain private in both the thread statet’ and in the host
storeh’.s, and moreover the value of any resource is unchanged.
This lemma is proved by analysing all the possible cases for the
user code, and all the possible ways each case might evaluate.

Resources remain private after executing queue API functions
Recall that the proof consists of two cases: either arbitrary user
code executes, or one of the queue API methods executes. Prior
to this case split, there is an outer induction on the length of the
tracep, as described in Section 7. In the case that a queue API
method executes, resources are private to functions in the frames-
tack contextfs. The function executes, private queue resources may
be manipulated, and eventually the method returns a value to the
user code contextfs. Providing the method has not returned private
resources to user code, the remaining suffixp′ of p satisfies the in-
ductive assumption that atp′

0 resources are private to the queue API
functions. The inductive assumption is invoked to conclude that on
p′, the remainder ofp, the resources remain private.

10. Proof skeleton, composing the fragments
The previous sections detail the verification of the internal queue
function private send, the queue API methodsend, and arbi-
trary user code. How are these separate verifications combined?

When we talk about verifying a function, we really mean veri-
fying a function executed by a thread. Similarly, verifying arbitrary
user code means verifying a thread executing arbitrary user code.
The task of composing the verification fragments involves assem-
bling the individual thread verifications into a verification of the
host.

The host is more than a set of threads. Most of the components
of the host are passive, that is, they do not of themselves cause
transitions to occur. The store is an example. Some parts of the host
are active, such as the network connections. Network connections
cause transitions, but they do not directly affect threads— a thread
has to make an explicit system call to interact with a connection
object. Some parts of the host are active and directly affect the
threads. For example, a thread might be sleeping, waiting on a
condition variable, and the system may decide to wake the thread
up, even if the condition has not been signalled3. Moreover, the
system behaviour is not just the behaviour of the hosts. Clearly the
additional behaviours of the host and the behaviour of the network
are important; however, in this section we limit the discussion to
host thread transitions only. Further composition steps treat the
additional host behaviours and the network behaviour.

3 This is the reasonwaits are wrapped inwhile loops. Modern implemen-
tationsmay not exhibit this traditional behaviour, but of course, it issafer to
assume they do.



We first define a state transition system whose reachability is at
least that of the system we are interested in.

sender endpoint thread starts ps tid (int,h) =

let t = h.ts ’ tid in

let fns = qfns ps in

let res = ps to res ps in

(int = T)

∧ case tid = ps.tid of
T → (t = sender active thread ps)

|| F → (private thread fns res t)

sender endpoint thread trans ps tid (int,h) (int’,h’) =

let t = h.ts ’ tid in

(int’ = ˜ int)

∧ case int of
T → ((rly h ps tid) h h’ ∧ inv h ps h’)
|| F → (h’ IN set (trans h tidt h (tid,t)))

sender endpoint thread sts ps tid =

let s = sender endpoint thread starts ps tid in

let t = sender endpoint thread trans ps tid in

(s,t)

The sender endpoint thread sts describes transitions of
the network from the point of view of threadtid. As usual, we use
symbolic execution to examine tracesp of this system. The start
statessender endpoint thread starts constrain p0. Recall
thatps.tid is the active management thread. The first case split on
tid = ps.tid (from sender endpoint thread starts) deter-
mines whether we are executing the active thread, or a user thread.
If we are executing the active thread we use the verification of
the sender function. Otherwise we are executing a user thread.
The start states are further constrained byprivate thread fns
res t. Recall that this predicate, defined in Section 9, says that
resourcesres are private to queue API functionsfns in threadt.
Then either the currently evaluating closure is one of the functions
fns or it is not. If it is not, then arbitrary user code executes, and
we invoke the metatheory from Section 9. Otherwise we case split
on which of the queue API functions fromfns the closure is and
invoke the appropriate queue API method verification.

11. Related work
Operational semantics is a standard technique for defining pro-
gramming languages and proving metatheory, but is less often used
directly as a basis for program verification. An example of a large
operational semantics is the formal description of TCP/IP [27, 2].
Symbolic evaluation is a natural counterpart to operational seman-
tics. For example, the work on TCP/IP involved significant testing
using symbolic evaluation inside a theorem prover [3].

One researcher who has advocated reasoning directly about the
operational semantics is Moore, although he explicitly recognizes
that this approach has only recently become feasible: “had there
been decent theorem provers in the 1960s, Floyd and Hoare would
never have had to invent Floyd-Hoare semantics!”4 His work [12]
focuses on Java programs, which have first been compiled to byte-
code. Correctness properties are phrased as properties of the byte-
code, and reasoning occurs above the bytecode, not above the orig-
inal Java program. The examples treated, such as an “add one” pro-
gram and a Java function that implements factorial, are significantly
simpler than the work presented here.

A rare example of operational reasoning applied to a high-level
language is the work of Compton [4], who verifies a version of
Stenning’s protocol for a restricted model of Caml and UDP. This
work is similar, but again much simpler, than that presented here.

The most directly related piece of work is the author’s ver-
ification of Peterson’s algorithm for mutual exclusion [26]. This
work was simpler than that presented here, but several of the core

4http://www.cs.utexas.edu/users/moore/best-ideas/vcg/.

techniques, including symbolic evaluation and rely/guarantee, were
used in the same way that they are here.

Hoare popularized the use of assertions for reasoning about pro-
gramming languages [7]. Owicki and Gries extended Hoare’s work
to treat concurrent systems [19]. Since then, many variations on
the original Hoare logic have been proposed. For example, a recent
mechanization of a novel Hoare logic for recursive procedures and
unbounded nondeterminism is [16]. Hoare logic has been used to
reason about real languages such as Java [17].

Completeness of the refinement approach is considered by Lam-
port and Abadi [15]. The authors note that the technique of refine-
ment is not new and point to the slightly earlier application of re-
finement by Lynch and Tuttle [14] and even earlier work of Lam-
port [11] and Lam and Shankar [10].

In this work, linearizability arises because of the need to match
many implementation transitions to a single specification transi-
tion. However, linearizability has been proposed as a form of spec-
ification independent of refinement [6]. This avoids the overhead
of defining an abstract model; however, in this paper the abstract
model (the alternating bit protocol) is also used to reason about
protocol correctness.

Local reasoning, separation, privacy and encapsulation are
currently areas of rapid growth in theoretical computer science.
The most popular approaches derive from Reynolds’ separa-
tion logic [25]. Like its ancestor, Hoare logic, separation logic
has been adapted in various directions, for example, to include
rely/guarantee style reasoning [28]. A more operational approach
to local state and privacy has been pursued by Pitts and others
[22, 21].

12. Conclusion and future work
This work presented the operational approach to verification, in-
cluding details of how it was applied to verify a persistent queue.
The mechanization involves around 3000 lines of definitions, and
3000 of proof, representing approximately 6 months of effort. The
proof scripts take about an hour to process, with most of that time
spent evaluating symbolic expressions.

The proof was constructed to suit mechanization. Essentially all
the proof obligations were reduced to checking a single invariant
of the reachable states of a transition system. Symbolic evaluation
was used to generate the reachable states, and invariant checking
was based on HOL4’s rewriting and simplification.

The heavy reliance on symbolic evaluation had advantages and
disadvantages. The main advantage was that mechanization was
fairly straightforward. In the common case where a single step of
evaluation does not affect the rest of the host state, all invariants are
proved automatically. This makes the scripts robust against trivial
changes to the queue code and the OCaml semantics. The main dis-
advantage of this approach is the slow speed of symbolic evaluation
in HOL4. Much effort, was spent trying to address this problem,
both in terms of writing specialized tactics and in reshaping the
proof. Even so, it can take 10 seconds or more to execute a single
step of the system (including automatically discharging invariants),
and a single queue API function may require hundreds of steps to
execute. Thus, it takes a long time to construct an initial proof, and
to rework existing proofs. Moreover, waiting for symbolic evalu-
ation to complete results in low productivity for the human being
driving the proof process. An obvious conclusion is that to make
the operational approach more feasible would require investment in
theorem prover infrastructure, particularly in the areas mentioned.

Several aspects of the case study make it particularly suited to
the operational approach. The abstract queue in Section 5 has a
natural operational specification, as does the intermediate model
of the alternating bit protocol. At the implementation level, opera-
tional semantics is the standard for defining realistic programming
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languages such as OCaml, and can also be used to describe the rest
of the system, including the hosts and the network. The OCaml im-
plementation is a direct refinement of the alternating bit protocol,
and checking the existence of such a refinement is well suited to
mechanization. The techniques that were needed in the verification
were all easily expressed and integrated above the operational se-
mantics. Furthermore, new techniques, such as the simple approach
to privacy and encapsulation, could also be developed above the
operational foundation. For this case study at least, operational rea-
soning was a natural approach, which proved flexible, and imposed
little overhead on the proof process. Presumably similar systems
could be handled in a similar manner.

This work addresses the question of what is needed to reason
about systems that have been defined operationally. Since opera-
tional semantics is the standard for formally defining complex sys-
tems, this is a natural and important question. Since most verifica-
tion is not based directly on operational semantics, it is natural to
wonder why. Hopefully this work demonstrates some of the poten-
tial of operational reasoning, as well as indicating to some extent
where problems lie. There is much scope for future work.

More complex examplesThere are many exciting opportunities
for verifying implementations of interesting algorithms. For ex-
ample, Amazon currently use an implementation of the Paxos al-
gorithm as a core part of their network infrastructure. Reports
suggest that most errors are errors introduced while refining the
Paxos specification to production code. Using the techniques pre-
sented here, I believe that implementations of such complex algo-
rithms are now well within reach of mechanized verification. Other
interesting targets are concurrency libraries, such as Doug Lea’s
java.util.concurrent.

Other languagesAlthough this work treats the case of two OCaml
endpoints, the queue could just as easily have been written in, say,
Java. The model of OCaml would be replaced by a model of Java,
but the rest of the model would remain unchanged. Moreover, the
ABP model and abstract specification are language neutral, and the
notion of privacy would be the same, so the general structure of the
proof should be preserved. Given a reasonable definition of the Java
operational semantics, it should even be straightforward to treat a
queue where one endpoint is implemented in OCaml and the other
in Java, giving a verified proof of interoperability.

Other approaches to privacyThe approach to privacy and encap-
sulation presented here is based on restricting access to (mutable)
resources. In a typed setting it is more natural perhaps to restrict ac-
cess to values through types ie by using abstract types or signatures
to hide type information. There are obvious similarities between
these approaches. The approach of this paper restricts resources
to appear only within a known set of functions. The type-based
approach allows resources to appear anywhere, but only within a
known set of functions can they be accessed and manipulated. The
type-based approach is supported by the language itself, which is
one reason it is more natural. To support the type-based approach
would require a model of OCaml modules, together with details
of the module type system, so the initial overhead is higher. The
higher initial overhead was the reason that the type-based approach
was not taken here. However, modelling these parts of OCaml is
certainly a long term aim of this work.

Models The models of OCaml, hosts and the network are abstract,
but reasonably realistic. For example, the control messages on the
network are modelled directly on those used by TCP/IP. However,
the models could be improved further.

The model of core OCaml should be linked to that of Owens
[18]. That model was not used directly because it is based on
flat expressions, whereas this work required a more structured
representation based on closures and framestacks. Owens’ work

includes a definition of the OCaml type system and a proof of type
soundness. The verification described above makes no use of types,
although type information can make verification easier. It would
also be good to incorporate other static analyses, not only those
based on types, into this framework.

The current model of the host includes several unrealistic as-
sumptions. For example, the model assumes an infinite number
of file descriptors, none of which are ever re-allocated. Conse-
quently, errors involving file descriptor exhaustion, wrap-around
or re-allocation are not addressed in this work. A long term aim
is to make the model of the host more detailed and realistic. This
should be possible without modelling the operating system or the
network stack in detail (although these make interesting comple-
mentary projects).

The model of networking is based on the author’s previous
work [26], although there is no formal connection. The current
model does not fully reflect the behaviour of TCP/IP; for example,
it omits certain rare behaviours such as simultaneous connection.
The previous work includes these behaviours, but is not abstract
enough: the size of the specification alone makes it difficult to
use in verification. The previous work needs to be revisited and
abstracted even further with an eye to replacing the current network
model.

Alternative queue implementationsThe current OCaml imple-
mentation of the queue could be improved in several ways. Rewrit-
ing the whole log file every time state changes is clearly unnec-
essary. A better approach would be to store individual updates in
separate files. Lock contention could be reduced by splitting the
endpoint queue in half, with API functions accessing one half, and
the active management thread accessing the other. Only when the
half used by the active thread becomes empty would a lock need
to be taken, and the contents of the other half copied over. A final
improvement would be to send more than one message at a time.
This would involve changing from an implementation based on the
alternating bit protocol to one based on the sliding window pro-
tocol. Unfortunately the sliding window protocol is significantly
more complicated to work with because it requires restrictions on
the rate at which messages are sent, in order to avoid wrapping
the message identifier too quickly. Indeed, despite lots of attention,
the sliding window protocol has yet to be verified satisfactorily,
ie including precise conditions on the rate that messages are sent.
On the other hand, the standard sliding window protocol assumes
messages can be reordered, whereas the underlying TCP used here
guarantees that no messages are reordered, so that it should be pos-
sible to avoid issues of identifier wrap-around altogether.

LivenessThis work treats safety properties of the queue, but it
would also be good to tackle liveness. Although the use of locks
is fairly elementary (there is only one lock per queue) liveness is
still non-obvious. Even during normal operation, liveness depends
on invariants about the way the network is used. In the presence of
host and network failure, liveness is not obvious. Liveness should
be verified.

Denotational semanticsIn the functional programming commu-
nity, there is a tradition of algebraic reasoning, using equalities
between (purely functional) program fragments. The absence of
side-effects and the restriction to terminating functions justifies this
form of reasoning. Higher-order theorem provers, such as HOL4
and Coq, directly support such equational reasoning for their own
internal (pure) languages. Operational reasoning stresses the step-
by-step nature of computation, which handles side-effects well,
but is ill-suited to this form of reasoning. For the pure fragment
of OCaml it is important to support such reasoning. Therefore, a
long term goal is to reason about the theorem prover equivalents
of structures such as lists, and then to transfer the results directly



to the OCaml code. For example, in the pure fragment of OCaml
we can already prove that list append is associative. The next step
is to show that any equality concerning lists, that is established in
the theorem prover, is valid for the purely functional fragment of
OCaml. This avoids the need to transfer results individually, in-
stead making the full range of HOL equalities available to reason
about OCaml code, thereby providing strong support for algebraic
reasoning.
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