
A Separation Logic for Fictional Sequential
Consistency

Filip Sieczkowski1, Kasper Svendsen1,
Lars Birkedal1, and Jean Pichon-Pharabod2

1 Aarhus University
{filips, ksvendsen, birkedal}@cs.au.dk

2 University of Cambridge
Jean.Pichon@cl.cam.ac.uk

Abstract. To improve performance, modern multiprocessors and pro-
gramming languages typically implement relaxed memory models that
do not require all processors/threads to observe memory operations in
the same order. To relieve programmers from having to reason directly
about these relaxed behaviors, languages often provide efficient synchro-
nization primitives and concurrent data structures with stronger high-
level guarantees about memory reorderings. For instance, locks usually
ensure that when a thread acquires a lock, it can observe all memory
operations of the releasing thread, prior to the release. When used cor-
rectly, these synchronization primitives and data structures allow clients
to recover a fiction of a sequentially consistent memory model.
In this paper we propose a new proof system, iCAP-TSO, that captures
this fiction formally, for a language with a TSO memory model. The
logic supports reasoning about libraries that directly exploit the relaxed
memory model to achieve maximum efficiency. When these libraries pro-
vide sufficient guarantees, the logic hides the underlying complexity and
admits standard separation logic rules for reasoning about their more
high-level clients.

1 Introduction

Modern multiprocessors and programming languages typically implement re-
laxed memory models that allow the processor and compiler to reorder memory
operations. While these reorderings cannot be observed in a sequential setting,
they can be observed in the presence of concurrency. Relaxed memory mod-
els help improve performance by allowing more agressive compiler optimizations
and avoiding unnecessary synchronization between processes. However, they also
make it significantly more difficult to write correct and efficient concurrent code:
programmers now have to explicitly enforce the orderings they rely on, but en-
forcing too much ordering negates the performance benefits of the relaxed mem-
ory model.

To help programmers, several languages [2, 1] provide standard libraries that
contain efficient synchronization primitives and concurrent data structures. These

constructs restrict the reordering of low-level memory operations in order to ex-
press more high-level concepts, such as acquiring or releasing a lock, or pushing
and popping an element from a stack. For instance, the collections provided by
java.util.concurrent enforce that memory operations in a first thread prior
to adding an element to a collection cannot be reordered past the subsequent
removal by a second thread. Provided the library is used correctly, these high-
level guarantees suffice for clients to recover a fiction of a sequentially consistent
memory model, without introducing unnecessary synchronization in client code.

The result is a two-level structure: At the low-level we have libraries that
directly exploit the relaxed memory model to achieve maximum efficiency, but
enforce enough ordering to provide a fiction of sequential consistency; at the
high-level we have clients that use these libraries for synchronization. While we
have to reason about relaxed behaviors when reasoning about low-level libraries,
ideally we should be able to use standard reasoning for the high-level clients. In
this paper we propose a new proof system, iCAP-TSO, specifically designed to
support this two-level approach, for a language with a TSO memory model.

We focus on TSO for two reasons. Firstly, while the definition of TSO is
simple, reasoning about TSO programs is difficult, especially modular reasoning.
Reasoning therefore greatly benefits from a program logic, in particular with the
fiction of sequential consistency we provide. Moreover, a logic specifically tailored
for TSO allows us to reason about idioms that are valid under TSO but not
necessarily under weaker memory models, such as double-checked initialization
(see examples).

In the TSO memory model, each thread is connected to main memory via a
FIFO store buffer, modeled as a sequence of (address, value) pairs, see, e.g., [21].
When a value is written to an address, the write is recorded in the writing
thread’s store buffer. Threads can commit these buffered writes to main memory
at any point in time. When reading from a location, a thread first consults its
own store buffer; if it contains buffered writes to that location, then the thread
reads the value of its last buffered write to that location; otherwise, it consults
main memory. Each thread thus has its own subjective view of the current state
of memory, which might differ from other threads’.

In contrast, in a sequentially consistent memory model, threads read and
write directly to main memory and thus share an objective view of the current
state of the memory. In separation logics for languages with sequentially con-
sistent memory models we thus use assertions such as x 7→ 1, which express an
objective property of the value of location x. Since in the TSO setting each thread
has a subjective view of the state, in order to preserve the standard proof rules
for reading and writing, we need a subjective interpretation of pre- and postcon-
ditions. The first component of our proof system, the SC logic (for sequentially
consistent), provides exactly this kind of subjective interpretation.

In the SC logic we use specifications of the form {P} e {r.Q}, which express
that if e is executed by some thread t from an initial state that satisfies P from
the point of view of t and e terminates with some value v, then the terminal
state satisfies Q[v/r] from the point of view of thread t. Informally, an assertion

P holds from the point of view of a thread t if the property holds in a heap
updated with t’s store buffer. Additionally, to ensure that other threads’ store
buffers cannot invalidate the property, no store buffer other than t’s can contain
buffered writes to the parts of the heap described by P. In particular, x 7→ v
holds from the point of view of thread t, if the value of x that t can observe is v.
We shall see that this interpretation justifies the standard separation logic read
and write rules.

What about transfer of resources? In separation logics for sequentially con-
sistent memory models, assertions about resources are objective and can thus
be transferred freely between threads. However, since assertions in the SC logic
are interpreted subjectively, they may not hold from the point of view of other
threads. To transfer resources between threads, their views of the resources must
match. Thus, the SC logic is not expressive enough to reason about implemen-
tations of low-level concurrency primitives. To verify such data structures, we
use the TSO logic, which allows us to reason about the complete TSO machine
state, including store buffers. Importantly, in cases where the data structure
provides enough synchronization to transfer resources between two threads, we
can verify the implementation against an SC specification. This gives us a fiction
of sequential consistency and allows us to reason about the clients of such data
structures using the SC logic.

Example. To illustrate, consider a simple spin-lock library with acquire and
release methods. We can specify the lock in the SC logic as follows.

∃isLock, locked : PropSC × Val→ PropSC. ∀R : PropSC. stable(R) ⇒
{R} Lock() {r. isLock(R, r)}

∧ {isLock(R, this)} Lock.acquire() {locked(R, this) ∗ R}
∧ {locked(R, this) ∗ R} Lock.release() {>}
∧ valid(∀x : Val. isLock(R, x)⇔ isLock(R, x) ∗ isLock(R, x))

∧ ∀x : Val. stable(isLock(R, x)) ∧ stable(locked(R, x))

Here PropSC is the type of propositions of the SC logic, and isLock and locked
are thus abstract representation predicates. The predicate isLock(R, x) expresses
that x is a lock protecting the resource invariant R, while locked(R, x) expresses
that the lock x is indeed locked. Acquiring the lock grants ownership of R, while
releasing the lock requires the client to relinquish ownership of R. Since the re-
source invariant R is universally quantified, this is a very strong specification; in
particular, the client is free to instantiate R with any SC proposition. This speci-
fication requires the resource invariant to be stable, stable(R). The reason is that
R could in general refer to shared resources and to reason about shared resources
we need to ensure we only use assertions that are closed under interference from
the environment. This is what stability expresses.

Note that this specification is expressed in the SC logic and the specifica-
tion of the acquire method thus grants ownership of the resource R from the
caller’s point of view. Likewise, the release method only requires that R holds
from the caller’s point of view. This specification thus provides a fiction of se-

quential consistency, by allowing transfer of SC resources. Crucially, since the
lock specification is an SC specification, we can reason about the clients that use
it to transfer resources entirely using the standard proof rules of the SC logic.
We illustrate this by verifying a shared bag in Section 3.

Using the TSO logic we can verify that an efficient spin-lock implementation
satisfies this specification. The spin-lock that we verify is inspired by the Linux
spin-lock implementation [3], which allows the release to be buffered. To verify
the implementation we must prove that between releasing and acquiring the lock,
the releasing and acquiring threads’ views of the resource R match. Intuitively,
this is the case because if R holds from the point of view of the releasing thread,
once the buffered release makes it to main memory, R holds objectively. This
style of reasoning relies on the ordering of buffered writes. To capture this intu-
ition, we introduce a new operator in the TSO logic for expressing such ordering
dependencies. This operator supports modular reasoning about many of the or-
dering dependencies that arise naturally in TSO-optimized data structures. In
Section 5 we illustrate how to use the TSO logic to verify the spin-lock and
briefly discuss other case studies we have verified.

iCAP iCAP-TSO builds on iCAP [23], a recent extension of higher-order
separation logic [5] for modular reasoning about concurrent higher-order pro-
grams with shared mutable state. While the meta-theory of iCAP is intricate,
understanding it is not required to understand this paper. By building on iCAP,
we can use higher-order quantification to express abstract specifications that
abstract over both internal data representations and client resources (such as
the resource invariant R in the lock specification). This is crucial for modular
verification, as it allows libraries and clients to be verified independently against
abstract specifications and thus to scale verification to large programs. In addi-
tion, by abstractly specifying possible interference from the environment, iCAP
allows us to reason about shared mutable state without having to consider all
possible interleavings.

Summary of Contributions. We provide a new proof system, iCAP-TSO,
for a TSO memory model, which features:

– a novel logic for reasoning about low-level racy code, called the TSO logic;
this logic features new connectives for expressing ordering dependencies in-
troduced by store buffers;

– a standard separation logic, called the SC logic, that allows simple reasoning
for clients that transfer resources through libraries that provide sufficient
synchronization;

– a notion of fiction of sequential consistency which allows us to provide SC
specifications for libraries that provide synchronized resource transfer, even
if the implementations exhibit relaxed behaviors.

Moreover, we prove soundness of iCAP-TSO. We use the logic to verify efficient
spin-lock and bounded ticket lock implementations, double-checked initialization
that uses a spin-lock internally, a circular buffer, and Treiber’s stack against SC
specifications. Crucially, this means that we can reason about clients of these
libraries entirely using standard separation logic proof rules!

Val 3 v ::= x | null | this | o | n | b | ()
Exp 3 e ::= v | let x = e1 in e2 | if v then e1 else e2 | new C(v̄)

| v.f | v1.f := v2 | v.m(v̄) | CAS(v1.f, v2, v3) | fence | fork(v.m)

Fig. 1. Syntax of the programming language. In the definition of values, n ranges over
machine integers, b over booleans, and o over object references. In the definition of
expressions, f ranges over the field names, and m over the method names.

Outline. In Section 2 we introduce the programming language that we rea-
son about and its operational semantics. Section 3 illustrates how the fiction of
sequential consistency allows us to reason about shared resources using standard
separation logic. Section 4 introduces the TSO logic and connectives for reason-
ing about store buffers. In Section 5 we illustrate the use of the TSO logic to
verify an efficient spin-lock and briefly discuss the other case-studies we have
verified. In Section 6 we discuss the iCAP-TSO soundness theorem. Finally, in
Sections 7 and 8 we discuss related work and future work and conclude. Details
and proofs can be found in the accompanying technical report [22]. The technical
report is available online at http://cs.au.dk/~filips/icap-tso-tr.pdf.

2 Language

We build our logic for a simple, class-based programming language. For simplicity
of both semantics and the logic, the language uses let-bindings and expressions,
but we keep it relatively low-level by ensuring that all the values are machine-
word size. The values include variables, natural numbers, booleans, unit, object
references (pointers), the null pointer and the special variable this. The expres-
sions include values, let bindings, conditionals, constructor and method calls,
field reads and writes, atomic compare-and-swap expressions, a fork call and
an explicit fence instruction. The syntax of values and expressions is shown in
Figure 1. The class and method definitions are standard and therefore omitted;
they can be found in the accompanying technical report.

To simplify the construction of the logic, we follow the Views framework [10]
and split the operational semantics into two components. The first is a thread-
local small-step semantics labeled with actions that occur during the step, the
second — an action semantics that defines the effect of each action on the ma-
chine state, which in our case consists of the heap and the store buffer pool. In
the thread-local semantics, a thread, which consists of a thread identifier and
an expression, takes a single step of evaluation to a finite set of threads that
contains besides the original thread also the threads spawned by this step. It
also emits the action that describes the interaction with the memory. For in-
stance, the Write rule in Figure 2 applies when the expression associated with
thread t is an assignment (possibly in some evaluation context). It reduces by
replacing the assignment with a unit value, and emits a write action that states
that thread t wrote the value v to the field f of object o.

(t, E[o.f := v])
write(t,o,f,v)−−−−−−−−→ {(t, E[()])}

Write
(t, E[o.f])

read(t,o,f,v)−−−−−−−→ {(t, E[v])}
Read

(t, E[CAS(o.f, vo, vn)])
cas(t,o,f,vo,vn,r)−−−−−−−−−−→ {(t, E[r])}

CAS
(t, e)

flush(t)−−−−→ {(t, e)}
Flush

body(C,m) = (unit m() = e) t 6= t′

(t, E[fork(o.m)])
fork(t,o,C,t′)−−−−−−−−→ {(t, E[()]), (t′, e[o/this])}

Fork

Fig. 2. Selected cases of the thread-local operational semantics.

The non-fault memory state consists of a heap — a finite map from pairs of
an object reference and a field to semantic values (i.e., all the values that are
not variables) — and a store buffer pool, which contains a sequence of buffered
updates for each of the finitely many thread identifiers. The memory can also
be in a fault state (written �), which means that an error in the execution of the
program has occurred. The action semantics interprets the actions as functions
from memory states to sets of memory states: if it is impossible for the action
to occur in a given state, the result is an empty set; if, however, the action may
occur in the given state but it would be erroneous, the result is the fault state.
Consider the write action emitted by reducing an assignment. In Figure 3 we can
see the interpretation of the action: there are three distinct cases. The action is
successful if there is a store buffer associated with the thread that emitted the
action and the object is allocated in the heap, and has the appropriate field.
In this case, the write gets added to the end of the thread’s buffer. However,
the write action can have two additional outcomes: if there is no store buffer
associated with the thread in the store buffer pool, the initial state had to be
ill-formed, and so the interpretation of the action is an empty set; however, if
the thread is defined, but the reference to the field o.f is not found in the heap,
the execution will fault.

The state of a complete program consists of the thread pool and a memory
state, and is consistent if the memory state is a fault, or the domain of the
store buffer pool equals the domain of the thread pool. The complete semantics
proceeds by reducing one of the threads using the thread-local semantics, then
interpreting the resulting action with the action semantics, and reducing to a
memory state in the resultant set:

t ∈ domT (t, T (t))
a−→ T ′ µ′ ∈ JaK(µ)

(µ, T)→ (µ′, (T − t)] T ′)

Note how in some cases, notably read, this might require “guessing” the return
value, and checking that the guess was right using the action semantics. Some
of the cases of the semantics are written out in Figures 2 and 3. In particular,
we show the reduction and action semantics that correspond to the (nondeter-
ministic) flushing of a store buffer: a flush action can be emitted by a thread at
any time, and the action is interpreted by flushing the oldest buffered write to

Jread(t, o, f, v)K(h, U) =
{(h, U)} if (o, f) ∈ domh and lookup(o.f, U(t), h) = v

∅ if t 6∈ domU or (o, f) ∈ domh and lookup(o.f, U(t), h) 6= v

{�} if (o, f) 6∈ domh

Jwrite(t, o, f, v)K(h, U) =
{(h, U [t 7→ U(t) · (o, f, v)])} if (o, f) ∈ domh and t ∈ domU

{�} if (o, f) 6∈ domh

∅ if t 6∈ domU

Jcas(t, o, f, vo, vn, r)K(h, U) =

{(flush(h, U(t) · (o, f, vn)), U [t 7→ ε])} if (o, f) ∈ domh, r = true

and lookup(o.f, U(t), h) = vo

{(flush(h, U(t)), U [t 7→ ε])} if (o, f) ∈ domh, r = false

and lookup(o.f, U(t), h) 6= vo

{�} if (o, f) 6∈ domh

∅ otherwise

Jflush(t)K(h, U) ={
{(h[(o, f) 7→ v], U [t 7→ α])} if U(t) = (o, f, v) · α and (o, f) ∈ domh

∅ if t 6∈ dom(U), U(t) = ε, or (o, f) 6∈ domh

Fig. 3. Selected cases of the action semantics. The lookup function finds the newest
value associated with the field, including the store buffer, while the flush function
applies all the updates from the store buffer to the heap in order.

the memory. Note also the rules for the compare-and-swap expression: similarly
to reading, the return value has to be guessed by the thread-local semantics.
However, whether the guess matches the state of the memory or not, the whole
content of the store buffer is written to main memory. Moreover, if the compare-
and-swap succeeds, the update resulting from it is also written to main memory.
Thus, this expression can serve as a synchronization primitive.

Note that our operational semantics is the usual TSO semantics of the
x86 [21] adapted to a high-level language. The only difference is that we have
a notion of allocation of objects, which does not exist in the processor-level se-
mantics. Our semantics allocates the new object directly on the heap to avoid
different threads trying to allocate the same object.

3 Reasoning in the SC logic

The SC logic of iCAP-TSO allows us to reason about code that always uses
synchronization to transfer resources using standard separation logic, without
having to reason about store buffers. Naturally, this also includes standard mu-

table data structures without any sharing. We can thus easily verify a list library
in the SC logic against the standard separation logic specification as it enforces a
unique owner. Crucially, within the SC logic we can also use libraries that provide
synchronized resource transfer. For instance, we can use the specification of the
spin-lock from the Introduction and the fiction of sequential consistency that it
provides. We illustrate this point by verifying a shared bag library, implemented
as a list protected by a lock.

The SC logic. The SC logic is an intuitionistic higher-order separation
logic. Recall that the SC logic features Hoare triples of the form {P} e {r. Q},
where P and Q are SC assertions. Formally, SC assertions are terms of type
PropSC. SC assertions include the usual connectives and quantifiers of higher-
order separation logic and language specific assertions such as points-to, x.f 7→ v,
for asserting the value of field f of object x.

Recall that SC triples employ a subjective interpretation of the pre- and
postcondition: {P} e {r. Q} expresses that if thread t executes the expression
e from an initial state where P holds from the point of view of thread t and e
terminates with value v then Q[v/r] holds for the terminal state from the point
of view of thread t. An assertion P holds from the point of view of a thread t
if P’s assertions about the heap hold from the point of view of t’s store buffer
and main memory and no other thread’s store buffer contains a buffered write
to these parts of the heap. The assertion x.f 7→ v thus holds from the point of
view of thread t if

– the value of the most recently buffered write to x.f in t’s store buffer is v
– or t’s store buffer does not contain any buffered writes to x.f and the value

of x.f in main memory is v

and no other threads store buffer contains a buffered write to x.f. The condition
that no other thread’s store buffer can contain a buffered write to x.f ensures
that flushing of store buffers cannot invalidate x.f 7→ v from the point of view of
a given thread.

If x.f 7→ v holds from the point of view of thread t and thread t attempts to
read x.f it will thus read the value v either from main memory or its own store
buffer. Likewise, if x.f 7→ v1 holds from the point of view of thread t and thread
t writes v2 to x.f, afterwards x.f 7→ v2 holds from the point of view of thread t.
We thus get the standard rules for reading and writing to a field in our SC logic:

{x.f 7→ v} x.f {r. x.f 7→ v ∗ r = v}
S-Read

{x.f 7→ v1} x.f := v2 {r. x.f 7→ v2}
S-Write

Using SC specifications: a shared bag To illustrate how we can use
the lock specification from the Introduction, consider a shared bag implemented
using a list. Each shared bag maintains a list of elements and a lock to ensure
exclusive access to the list of elements. Each bag method acquires the lock and
calls the corresponding method of the list library before releasing the lock.

We take the following specification, which allows unrestricted sharing of the
bag, to be our specification of a shared bag. This is not the most general spec-
ification we can express — we discuss a more general specification of a stack

in Appendix A — but it suffices to illustrate that verification of the shared bag
against such specifications is standard. Since the specification allows unrestricted
sharing (the bag predicate is duplicable), no client can know the contents of the
bag; instead, the specification allows clients to associate ownership of additional
resources (expressed using the predicate P) with each element in the bag.

∃bag : Val× (Val→ PropSC)→ PropSC. ∀P : Val→ PropSC.

(∀x : Val. stable(P(x))) ⇒
{>} Bag() {r. bag(r,P)} ∧
{bag(this,P) ∗ P(x)} Bag.push(x) {>} ∧
{bag(this,P)} Bag.pop() {r. (P(r) ∨ r = null)} ∧
∀x : Val. valid(bag(x,P)⇔ bag(x,P) ∗ bag(x,P))

Pushing an element x thus requires the client to transfer ownership of P(x) to
the bag. Likewise, either pop returns null or the client receives ownership of the
resources associated with the returned element.

To verify the implementation against this specification, we first have to define
the abstract bag representation predicate. To define bag we first need to choose
the resource invariant of the lock. Intuitively, the lock owns the list of elements
and the resources associated with the elements currently in the list. This is
expressed by the following resource invariant Rbag(xs,P), where xs refers to the
list of elements.

Rbag(xs,P)
def
= ∃l : list Val. lst(xs, l) ∗~y∈mem(l)P(y)

The bag predicate asserts read-only ownership of the lock and elms fields, and
that the lock field refers to a lock with the above resource invariant.

bag(x,P)
def
= ∃y, xs : Val. x.lock 7→ y ∗ x.elms 7→ xs ∗ isLock(Rbag(xs,P), y)

Now, we are ready to verify the bag methods. The most interesting method is
pop, as it actually returns the resources associated with the elements it returns.
A proof outline of pop is presented below. The crucial thing to note is that since
locks introduce sufficient synchronization, they can mediate ownership trans-
fer. Thus, once a thread t acquires the lock, it receives the resource invariant
Rbag(xs,P) from the point of view of t. Since it now owns the list, t can call the
List.pop method, and finally — again using the fiction of sequential consistency
provided by the lock — release the lock.

class Bag {
Lock lock; List elms;

Object pop() =

{bag(this,P)}
let x = this.lock in let xs = this.elms in x.acquire();

{this.elms 7→ xs ∗ locked(Rbag(xs,P), x) ∗ Rbag(xs,P)}
let z = xs.pop() in

{locked(Rbag(xs,P), x) ∗ Rbag(xs,P) ∗ (z = null ∨ P(z))}

x.release();

{isLock(Rbag(xs,P), x) ∗ (z = null ∨ P(z))}
z

{r. r = null ∨ P(r)}
...

}

This example illustrates the general pattern that we can use to verify clients
of libraries that provide fiction of sequential consistency. As long as these clients
only transfer resources using libraries that provide sufficient synchronization, the
verification can proceed entirely within the SC logic.

4 TSO logic and connectives

In this section we describe the TSO logic and introduce our new TSO connectives
that allow us to reason about the kinds of relaxed behaviors that occur in low-
level concurrency libraries.

We can express the additional reorderings that the memory model allows by
extending the space of states over which the assertions are built. In the case
of our TSO model, we include the store buffer pool as an additional compo-
nent of the memory state. However, reasoning about the buffers directly would
be extremely unwieldy and contrary to the spirit of program logics. Hence, we
introduce new logical connectives that allow us to specify this interference ab-
stractly, and provide appropriate reasoning rules.

The triples and assertions of the TSO logic First, however, we need
to consider how the TSO logic is built. As mentioned in the Introduction, its
propositions extend the propositions of SC logic by adding the store buffer pool
component. Just like SC assertions, this space forms a higher-order intuitionistic
separation logic, with the usual rules for reasoning about assertion entailment.
However, we are still reasoning about the code running in a particular thread
and we often need to state properties that hold of its own store buffer. Thus,
formally, the typing rule for the TSO logic triples is as follows:

P : TId→ PropTSO Q : TId→ Val→ PropTSO

[P] e [Q] : Spec

where TId is the type of thread identifiers and Spec is the type of specifications.
We usually keep this quantification over thread identifiers implicit, by introduc-
ing appropriate syntactic sugar for the TSO-level connectives. The logic also
includes another family of Hoare triples, the atomic triples, with the following
typing rule:

atomic(e) P : TId→ PropTSO Q : TId→ Val→ PropTSO

〈P〉 e 〈Q〉 : Spec

As the rule states, these triples can only be used to reason about atomic ex-
pressions — read, write, fence, and compare-and-swap. This feature is inherited

from iCAP, as a means of reasoning about the way the shared state changes at
the atomic updates. We give an example of such reasoning in Section 5.

Note that the triples above use a different space of assertions than the SC
triples introduced in Section 3. Hence, in order to provide the fiction of sequential
consistency and prove SC specifications for implementations whose correctness
involves reasoning about buffered updates, we need to use of both of these spaces
in the TSO logic. To this end we define two embeddings of PropSC into PropTSO.

The subjective embedding The subjective embedding is denoted p− in
−q : PropSC × TId → PropTSO. Intuitively, pP in tq means that P holds from the
perspective of thread t — including the possible buffered updates in the store
buffer of t, but forbidding buffered updates that “touch” P by other threads.
Thus, it means that if the buffer of thread t is flushed to the memory, P will
hold in the resulting state. Note that this corresponds to the interpretation of
the assertions in the SC triples.

For a concrete example of what this embedding means, consider an assertion
x.f 7→ v : PropSC. Clearly, we can use our embedding to get px.f 7→ v in tq. This
assertion requires that the reference x.f is defined, and there are no buffered
updates in store buffers of threads other than t. As for t’s store buffer, the last
update of x.f has to set its value to v or, if there are no buffered updates of
x.f, the value associated with it in main memory is v. This means that from the
point of view of thread t, x.f 7→ v holds, but from the point of view of the other
threads, the only information is that x.f is defined.

The objective embedding The objective embedding is denoted p−q :
PropSC → PropTSO. The idea is that pPq holds in a state that does include store
buffers if P holds in the state where we ignore the buffers and none of the buffers
contain buffered updates to the locations mentioned by P. The intuition behind
this embedding is that P should hold in main memory, and as such from the point
of view of all threads. This makes it very useful to express resource transfer: an
assertion that holds for all threads can be transferred to any of them.

Using the points-to example again, px.f 7→ vq means precisely that the refer-
ence x.f is defined, its associated value in the heap is v, and there are no buffered
updates in any of the store buffers to the field x.f.

Semantics of assertions and embeddings In the following, we provide a
simplified presentation of parts of the model for the interested reader, to flesh out
the intuitions given above. We concentrate on the interpretation of TSO-specific
constructs and elide the parts inherited from iCAP, which are orthogonal.

Following the Views framework [10], TSO assertions (terms of type PropTSO)
are modeled as predicates over instrumented states. In addition to the under-
lying machine state, instrumented states contain shared regions, protocols and
phantom state. The instrumented states form a Kripke model in which worlds
consist of allocated regions and their associated protocols. Since iCAP-TSO in-
herits iCAP’s impredicative protocols [23], worlds need to be recursively defined.
Hence we use a meta-theory that supports the definition of sets by guarded re-
cursion, namely the so-called internal language of the topos of trees [6]. We refer
readers to the accompanying technical report [22] for details and proofs.

Propositions are interpreted as subsets of instrumented states upwards-closed
wrt. extension ordering. The states are instrumented with shared regions and
protocols which we inherit from iCAP. In the following these are denoted with
X, and we elide their definition.

JPropTSOK
def
= P↑(LState × SPool ×X) JPropSCK

def
= P↑(LState ×X)

In these definitions LState denotes the local state, including the partial physi-
cal heap, while SPool is the store-buffer pool that directly corresponds to the
operational semantics. Note that the interpretation of PropSC does not consider
store buffer pools, only the local state and the instrumentation. This allows us
to interpret the connectives at this level in a standard way.

At the level of PropTSO, we have several important connectives, namely sepa-
rating conjunction, and both embeddings we have introduced before. These are
defined as follows:

lfd(l, U)
def
= ∀t, v. ∀(o, f) ∈ dom(l). (o, f, v) 6∈ U(t)

JpPqK def
= {(l, U, x) | ∃l′ ≤ l. (l′, x) ∈ JPK ∧ lfd(l′, U)}

JpP in tqK def
= {(l, U, x) | (flush(l, U(t)), U [t 7→ ε], x) ∈ JpPqK}

JP ∗ QK def
= {(l, U, x) | ∃l1, l2. l = l1 • l2 ∧ (l1, U, x) ∈ JPK ∧ (l2, U, x) ∈ JQK}.

The embeddings are defined using the auxiliary “locally flushed” lfd(l, U) predi-
cate, which ensures that no updates to dom(l) are present in U . We only require
this on a sub-state of the local state to ensure good behavior with respect to
the extension ordering. The subjective embedding is then defined in terms of
the objective one, with all the updates in the corresponding store-buffer flushed.
Finally, the separating conjunction is defined as a composition of local states.
Separating conjunction does not split the instrumentation or store-buffer pool
and both conjuncts thus have to hold with the same pools of buffered updates.

Reasoning about buffered updates To effectively reason about the store
buffers, we need an operator that describes how the state changes due to an
update. To this end, we define − U− − : PropTSO × TId × PropTSO → PropTSO.
Because of its role, this connective has a certain temporal feel: in fact, it behaves
in a way that is somewhat similar to the classic “until” operator. Intuitively,
P Ut Q means that there exists a buffered update in the store buffer of thread
t, such that until this update is flushed the assertion P holds, while after the
update gets written to memory, the assertion Q holds. Thus, it can be used to
describe the ordering dependencies introduced by the presence of store buffers.
This intuition should become clearer by observing the proof rules in Figure 4
(explained in the following).

Again, let us consider a simple example. In the state described by px.f 7→ 1q Ut
px.f 7→ 2q, we know that the value of x.f in the heap is 1, and that there exists a
buffered update in thread t. Before that update there are no updates to x.f, due
to the use of p−q, so it has to be the first update to x.f in the store buffer of t.
Additionally, after it gets flushed px.f 7→ 2q holds — so the update must set x.f

to 2. Since the right-hand side of Ut also uses p−q, we also know that there are
no further buffered updates to x.f. This means that the thread t can observe the
value of x.f to be 2, while all of the other threads can observe it to be 1. Note
that, since Ut is a binary operator on PropTSO, it is possible to use it to express
multiple buffered updates.

The semantics of the until operator follow very closely the intuition given
above. Note that for some assertions and states, several choices of the update
would validate the conditions. However, this rarely occurs in practice due to the
use of the objective embedding, which requires no updates in its footprint.

JP Ut QK def
={(l, U, x) | ∃α, β, o, f, v. U(t) = α · (o, f, v) · β ∧

(l, U [t 7→ α], x) ∈ JPK ∧ (flush(l, α · (o, f, v)), U [t 7→ β], x) ∈ JQK}

Relating the two embeddings The two embeddings we have defined are
in fact quite related. Since an assertion under an objective embedding holds
from the perspective of any thread, we get pPq ⇒ pP in tq. We also have
P Ut pQq ⇒ pQ in tq: since there is a buffered update at which pQq starts to
hold, Q holds from t’s perspective.

Since most of the time we are reasoning from the perspective of a particular
thread, we also include some syntactic sugar: U is a shorthand for an update
in the current thread, while Uo is a shorthand for an update in some thread
other than the current one. We also use P as a shorthand for pP in tq, where t
is the current thread. To make the syntax simpler, whenever we need to refer to
the thread identifier explicitly, we use an assertion iam(t). This is just syntactic
sugar for a function λt′. t = t′ : TId → PropTSO, which allows us to bind the
thread identifier of the thread we are reasoning about to a logical variable.

Reading and writing state. The presence of additional connectives that
mention the state makes reading fields of an object and writing to them more
involved in the TSO logic than in standard separation logic. We deal with this
by introducing additional judgments that specify when we can read a value and
what the result of flushing a store buffer will be. Intuitively, P `rd(t) x.f 7→ v
specifies that thread t can read the value v from the reference x.f — precisely
what we need for reading the state. The other new judgment, P `fl(t) Q, means
that if we flush thread t’s store buffer in a state specified by P, the resulting
state will satisfy Q. This action judgment is clearly useful for specifying actions
that flush the store buffer: compare-and-swap and fences. However, it is also
used to specify the non-flushing writes. To see this, consider the rule A-Write
in Figure 4. Since the semantics of assignment will introduce a buffered update,
we know that after this new update reaches main memory, all the other updates
will also have reached it. Thus, at that point in time, Q will also hold, since it is
disjoint from the reference x.f. The other interesting rules are related to the CAS
expression. In A-CAS-True, we do not need to establish the read judgment,
since the form of the flush judgment ensures that the value we can observe is vo.
Aside from that, the rule behaves like a combination of writing and flushing. The
rule A-CAS-False, on the other hand, requires a separate read judgment. This
is because it does not perform an assignment, and so the current value does not

.px.f 7→ v in tq `rd(t) x.f 7→ v
Rd-Ax

P `rd(t) x.f 7→ v t 6= t′

P Ut′ Q `rd(t) x.f 7→ v
Rd-U-NEq

.pP in tq `fl(t) pPq
Fl-Ax

P(t) `fl(t) px.f 7→ −q ∗ Q(t)

〈P ∗ iam(t)〉 x.f := v 〈 . P U (Q ∗ px.f 7→ vq)〉C
A-Write

Q `fl(t) R

P Ut Q `fl(t) R
Fl-U-Eq

P(t) `rd(t) x.f 7→ v

〈P ∗ iam(t)〉 x.f 〈r. P ∗ r = v〉C
A-Read

P(t) `fl(t) px.f 7→ voq ∗ Q(t)

〈P ∗ iam(t)〉 CAS(x.f, vn, vo) 〈r. r = true ∗ Q ∗ px.f 7→ vnq〉C
A-CAS-True

P(t) `rd(t) x.f 7→ v P(t) `fl(t) Q(t) v 6= vo

〈P ∗ iam(t)〉 CAS(x.f, vn, vo) 〈r. r = false ∗ Q〉C
A-CAS-False

〈P〉 e 〈Q〉C atomic(e)

[P] e [Q]
A-Start

[P] e1 [r. Q(r)] [Q(x)] e2 [r. R(r)]

[P] let x = e1 in e2 [r. R(r)]
Bind

[P] e [Q] stable(R)

[P ∗ R] e [Q ∗ R]
Frame

[P] e [Q]

{P} e {Q}
S-Shift

Fig. 4. Selected rules of the TSO logic.

need to appear in the right-hand side of the flush assumption, like in A-Write
and A-CAS-True rules.

Also of interest are some of the proof rules for the read and flush judgments.
Note how in rules Rd-Ax and Fl-Ax the later operator (.) appears. This arises
from the fact that the model is defined using guarded recursion to break cir-
cularities, and later is used as a guard. However, since the guardedness is tied
to operational semantics through step-indexing and atomic expressions always
take one evaluation step, later can be removed at the atomic steps of the proof,
as expressed by the rules. Moreover, the rules also match the intuition we gave
about the store buffer related connectives. First, the judgment means that all
the updates in t’s store buffer are flushed: thus, it is enough to know pP in tq
holds to get pPq in Fl-Ax, and similarly we only look to the right-hand side of
U in the rule Fl-U-Eq. Note also, that we can reason about updates buffered
in other threads, as evidenced by the rule Rd-U-NEq, where we “ignore” the
buffered update and read from the left-hand side of U .

Stability and stabilization. There is one potentially worrying issue in the
definition of the Ut operator given in this section: since at any point in the
program a flush action can occur nondeterministically, how can we know that
there still exists a buffered update as asserted by Ut? After all, it might have been
flushed to the memory. This is the question of stability3 of the until operator
— and the answer is that it is unstable by design. The rationale behind this
choice is simple: Suppose we had made it stable by allowing the possibility that

3 Recall an assertion is stable, if it cannot be invalidated by the environment.

the buffered update has already been flushed. Then, if we were to read a field
that had a buffered write to it in a different thread, we would not know whether
the write was still buffered or had been flushed, and so we would not know
what value we read. With the current definition, when we read, we know that
the update is still buffered and so the result of the read is known. However, we
only allow reasoning with unstable assertions in the atomic triples, i.e., when
reasoning about a single read, write or compare-and-swap expression. Hence, we
need a way to make U stable. For this reason, we define an explicit stabilization
operator, L−M. It is a closure operator, which means we have P ` LPM. Moreover,
for stable assertions, the other direction, LPM ` P, also holds. The important
part, however, is how stabilization behaves with respect to U : provided P and Q
are stable, we have LP Ut QM a` (P Ut Q) ∨ Q. This does indeed correspond to
our intuition — even for stable assertions P and Q, the interference can flush the
buffered update that is asserted in the definition of U , which would transition
to a state in which Q holds. However, since P and Q are stable, this is also the
only problem that the interference could cause.

Explicit stabilization has been explored before in separation logic, most often
in connection with rely-guarantee reasoning. In particular, Wickerson studies
explicit stabilization in RGSep in his PhD thesis [27, Chapter 3], and Ridge [19]
uses it to reason about x86-TSO.

Semantically, stability is defined through the notion of interference, which
expresses the effect that the environment can have on a state. In iCAP-TSO there
are two classes of interference. Firstly, other threads can concurrently change the
state of shared regions. This source of interference is inherited from iCAP; we
reason about it by considering the states of shared regions, and the transitions
the environment is allowed to make. As an example, after releasing a lock we
cannot be certain it remains unlocked, since other threads could concurrently
acquire it. The protocol for a lock is described in Section 5. A second class of
interference is related to the TSO nature of our semantics, and includes the
interference that arises in the memory system: we refer to this class as store-
buffer interference. It is defined through three possible actions of the memory
system: allocation of a new store-buffer (which happens when a fork command
gets executed), adding a new buffered update to a location outside the assertion’s
footprint to a store-buffer, and committing the oldest buffered update from one
of the buffers. Stability under allocation of new store-buffers and under buffering
new updates is never a problem. Most of the connectives we use are also stable
under flushing — both embeddings are specifically designed in this way. As
we mentioned above, U is unstable under flushing by design, and we stabilize
it explicitly. For the formal definition of the interference relation we refer the
reader to the technical appendix [22].

Interpretation of the SC logic. As we have already mentioned, the intu-
ition that lies behind the SC logic, discussed in the previous section, is precisely
expressed by the p− in tq embedding. This is more formally captured by the
rule S-Shift in Figure 4 (recall P is syntactic sugar for λt. pP in tq), which
states that the two ways of expressing that a triple holds from the perspective of

Lock {
bool locked;

Lock() = this.locked := false; fence; this

unit acquire() =

let x = CAS(this.locked, true, false) in

if x then () else acquire()

unit release() = this.locked := false

}

LU

Rel

Acq

Fig. 5. Left: spin-lock implementation. Right: lock protocol.

the current thread are equivalent. In fact, we take this rule as the definition of
the SC triples, and so we can prove that the SC triples actually form a standard
separation logic by proving that the proof rules of the SC logic correspond to
admissible rules in the TSO logic. This is expressed by the following theorem:

Theorem 1 (Soundness of SC logic). The SC logic is sound wrt. its inter-
pretation within the TSO logic, i.e., the proof rules of the SC logic composed with
the rule S-Shift are admissible rules of the TSO logic.

For most of the proof rules, the soundness follows directly; the only ones that
require additional properties to be proved are the frame, consequence, and stan-
dard quantifier rules, which additionally require the following property:

Lemma 1. The embeddings p−q and p− in tq distribute over quantifiers and
separating conjunction, and preserve entailment.

The formal statement of this property, along with the proof, can be found in the
accompanying technical report.

5 Reasoning in the TSO logic

In Section 3 we illustrated that the fiction of sequential consistency provided by
the lock specification allows us to reason about shared mutable data structures
shared through locks, without explicitly reasoning about the underlying relaxed
memory model. Of course, to verify a lock implementation against this lock
specification, we do have to reason about the relaxed memory model. In this
section we illustrate how to achieve this using our TSO logic. We focus on the
use of the TSO connectives introduced in Section 4 to describe the machine states
of the spin-lock and elide the details related to the use of concurrent abstract
predicates.

The spin-lock implementation that we wish to verify is given in Figure 5.
It uses a compare-and-swap (CAS) instruction to attempt to acquire the lock,
but only a primitive write instruction to release the lock. While CAS flushes the
store buffer of the thread that executes the CAS, a plain write does not. To verify
this implementation, we thus have to explicitly reason about the possibility of
buffered releases in store buffers.

Specification. In the Introduction we introduced a lock specification ex-
pressed in our SC logic. When verifying the spin-lock implementation, we actu-
ally verify the implementation against the following slightly stronger specifica-
tion, from which we can easily derive the SC specification.

∃isLock, locked : PropSC × Val→ PropSC. ∀R : PropSC. stable(R) ⇒

[R] Lock() [r. isLock(R, r)]

∧ [isLock(R, x)] Lock.acquire() [locked(R, x) ∗ pRq]

∧ [locked(R, x) ∗ R] Lock.release() [>]

∧ valid(∀x : Val. isLock(R, x)⇔ isLock(R, x) ∗ isLock(R, x))

∧ ∀x : Val. stable(isLock(R, x)) ∧ stable(locked(R, x))

Note that this stronger specification is expressed using TSO triples. This speci-
fication of the acquire method is slightly stronger: this specification asserts that
upon termination of acquire, the resource invariant R holds in main memory and
there are no buffered writes affecting R in any store buffer (pRq). The weaker
SC specification only asserts that the resource invariant R holds from the point
of view of the acquiring thread and that there are no buffered writes affecting R
in any of the other threads’ store buffers (R).

Lock protocol. To verify the spin-lock implementation against the above
specification, we first need to define the abstract representation predicates isLock
and locked. Following CAP [11] and iCAP [23], to reason about sharing iCAP-
TSO extends separation logic with shared regions, with protocols governing the
resources owned by each shared region. In the case of the spin-lock, upon allo-
cation of a new spin-lock the idea is to allocate a new shared region governing
the state of the spin-lock and ownership of the resource invariant.

Conceptually, a spin-lock can be in one of two states: locked and unlocked.
In iCAP-TSO we express this formally using the transition system in Figure 5.
This labeled transition system specifies an abstract model of the lock. To relate
it to the concrete implementation, for each abstract state (L and U), we choose
an assertion that describes the resources the lock owns in that state.

Since acquiring the lock flushes the store buffer of the acquiring thread, the
locked state is fairly simple. In the locked state the spin-lock owns the locked
field, which contains the value true in main memory and there are no buffered
writes to locked in any store buffer. The spin-lock x with resource invariant R
thus owns the resources described by IL(x,R, n) in the abstract locked state.

IL(x,R, n) = px.locked 7→ trueq

Due to the possibility of buffered releases in store buffers, the unlocked state is
more complicated. In the unlocked state,

– either locked is false in main memory and there are no buffered writes to
locked in any store buffer

– or locked is true in main memory, and there is exactly one store buffer with
a buffered write to locked, and the value of this buffered write is false

Furthermore, in case there is a buffered write to locked that changes its value from
true to false, then, once the buffered write reaches main memory, the resource
invariant holds in main memory. Since the resource invariant must hold from the
point of view of the releasing thread before the lock is released any buffered writes
affecting the resource invariant must reach main memory before the buffered
release. We can express this ordering dependency using the until operator:

IU(x,R, n) = ∃t : TId. Lpx.locked 7→ trueq Ut px.locked 7→ false ∗ R ∗ [Rel]n1qM

Here [Rel]n1 is a CAP action permission used to ensure that only the current
holder of the lock can release it. Since this is orthogonal to the underlying mem-
ory model, we refer the interested reader to the technical report [22] for details.

Since both arguments of Ut are stable, as explained in Section 4, IU(x,R, n)
is equivalent to the following assertion.

∃t : TId. px.locked 7→ false ∗ R ∗ [Rel]n1q ∨
(px.locked 7→ trueq Ut px.locked 7→ false ∗ R ∗ [Rel]n1q)

The first disjunct corresponds to the case where the release has made its way to
main memory and the second disjunct to the case where it is still buffered.

The definition of isLock in terms of IL and IU now follows iCAP.4 The isLock
predicate asserts the existence of a shared region governed by the above labeled
transition system, where the resources owned by the shared region in the two
abstract states are given by IL and IU. It further asserts that the abstract state
of the shared region is either locked or unlocked and also a non-exclusive right
to acquire the lock.

Proof outline. To verify the spin-lock implementation, it remains to verify
each method against the specification instantiated with the concrete isLock and
locked predicates. To illustrate the reasoning related to the relaxed memory
model, we focus on the verification of the acquire method and the compare-and-
swap instruction in particular. The full proof outline is given in the accompanying
technical report.

As the name suggests, the resources owned by a shared region are shared be-
tween all threads. Atomic instructions are allowed to access and modify resources
owned by shared regions, provided they follow the protocol imposed by the re-
gion. In the case of the spin-lock, the spin-lock region owns the shared locked
field and we thus need to follow the spin-lock protocol to access and modify the
locked field. Since the precondition of acquire asserts that the lock is either in
the locked or unlocked state, we need to consider two cases.

If the spin-lock region is already locked, then the compare-and-swap fails and
we remain in the locked state. This results in the following proof obligation:

〈.IL(this,R, n) ∗ iam(t)〉 CAS(this.locked, true, false) 〈r. . IL(this,R, n) ∗ iam(t) ∗ r = false〉

That is, if locked contains the value true from the point of view of a thread t,
then CAS’ing from false to true in thread t will fail. This is easily shown to hold
by rule A-CAS-False.

4 See the accompanying technical report for a formal definition of isLock.

If the spin-lock region is unlocked, then the compare-and-swap may or may
not succeed, depending on whether the buffered release has made it to main
memory and which thread performed the buffered release. If it succeeds, the
acquiring thread transitions the shared region to the locked state and takes
ownership of the resource invariant; otherwise, the shared region remains in the
unlocked state. This results in the following proof obligation:

〈.IU(this,R, n) ∗ iam(t)〉 CAS(this.locked, true, false) 〈r. ∃y. . Iy(this,R, n) ∗ iam(t) ∗Q(y, r, n)〉

where Q(y, r, n)
def
= (y = U∗r = false) ∨ (y = L∗ [Rel]n1∗pRq∗r = true). Rewriting

the explicit stabilization to a disjunction and commuting in ., this reduces to
the following proof obligation:

〈iam(t) ∗ (∃t′ : TId. . px.locked 7→ false ∗ R ∗ [Rel]n1q ∨
(.px.locked 7→ trueq Ut′ .px.locked 7→ false ∗ R ∗ [Rel]n1q))〉
CAS(this.locked, true, false)

〈r. ∃y ∈ {U, L}. . Iy(this,R, n) ∗ iam(t) ∗Q(y, r, n)〉

In case the second disjunct holds and there exist buffered releases in the store
buffer of t′, the CAS will succeed if executed by thread t′ and fail if executed by
any other thread. To prove this obligation, we thus do case analysis on whether
t′ is our thread or not, i.e., whether t = t′. This leaves us with three proof
obligations (after strengthening the post-condition):

– either the buffered release is in our store buffer

〈(.pthis.locked 7→ trueq U .px.locked 7→ false ∗ R ∗ [Rel]n1q) ∗ iam(t)〉
CAS(this.locked, true, false)

〈r. . IL(this,R, n) ∗ [Rel]n1 ∗ pRq ∗ iam(t) ∗ r = true〉

– or in some other thread’s store buffer

〈(.pthis.locked 7→ trueq Uo .px.locked 7→ false ∗ R ∗ [Rel]n1q) ∗ iam(t)〉
CAS(this.locked, true, false)

〈r. . IU(this,R, n) ∗ iam(t) ∗ r = false〉

– or it has already been flushed

〈.px.locked 7→ false ∗ R ∗ [Rel]n1q ∗ iam(t)〉
CAS(this.locked, true, false)

〈r. . IL(this,R, n) ∗ [Rel]n1 ∗ pRq ∗ iam(t) ∗ r = true〉

These three proof obligations are easily discharged using rules A-CAS-True
and A-CAS-False.

Note that our logic makes us consider exactly those four cases that intuitively
one has to consider when reasoning operationally in TSO.

Logical atomicity and relaxed memory

Although shared-memory concurrency introduces opportunity for threads to in-
terfere, concurrent data structures are often written to ensure that all operations
provided by the library are observably, or logically atomic. That is, for clients

of the concurrent data structure, any concurrent execution of operations pro-
vided by the library should behave as if it occurred in some sequential order.
This property immensely simplifies client-side reasoning, since the clients need
not reason about any internal states of the library. One way of ensuring logical
atomicity is by using coarse-grained synchronization, for instance by wrapping
the whole data structure in a lock. However, this is far from efficient, and many
real-life concurrent data structures opt to use fine-grained synchronization, such
as compare-and-swap, while still being logically atomic. Since the simplification
of the client-side reasoning one can obtain by exploiting the logical atomicity can
be significant, any truly modular proof system that supports fine-grained con-
currency should support logical atomicity. This is a known and well-researched
problem in the sequentially consistent setting; here we discuss its interplay with
relaxed memory and sketch how our system tackles it.

One of the approaches to express logical atomicity is to develop a program
logic that internalizes the concept, i.e., in which one can express atomicity as
a specification and prove that implementations satisfy such a spec within the
logic. Several of the more recent program logics go this route, in particular
TaDA and iCAP [9, 23]. In this work we follow iCAP, which uses a reasonably
simple specification pattern to encode abstract atomicity. The crux of the idea
is for the data structure to provide an abstract mathematical model of its state,
and to model the (possibly non-atomic) updates of the concrete state with an
atomic update of the abstract state. Since the abstract state is only a model, it
can be updated after any atomic step of the program, and thus any update of
the abstract state can be considered atomic.

Since iCAP-TSO inherits most of the properties of iCAP, one could imag-
ine that we inherit iCAP’s specification pattern for logical atomicity verbatim.
This, however, would lead to problems. If we ported the pattern to the relaxed
setting directly, we would gain a way to express logical atomicity, but lose all
the information about the flushing behavior of the data structure—and in effect
we would not be able to derive an SC specification, even if the data structure
provided a fiction of sequential consistency. The idea for how one can adjust
the specification pattern hinges on using the SC assertions and the embeddings
described earlier to describe the state of the store-buffers when the abstract up-
date happens. We refer the interested reader to Appendix A for an explanation
of how to extend the iCAP pattern to the TSO setting and the accompanying
technical report [22] for the formal proofs and technical details.

Other case studies

In addition to the spin-lock, we have verified several other algorithms in the
TSO logic against SC specifications. Below we discuss the challenges of each
case-study. Full proofs are included in the accompanying technical report.

Treiber’s stack Treiber’s stack is a classic fine-grained concurrent stack im-
plementation. We verify this data structure against a specification that provides
logical atomicity, based on the one given in [23]. From this general specification
we derive two classic specifications: a single-owner stack and a shared-bag that

provides a fiction of sequential consistency. The challenge, as explained in the
preceding section, is to provide a specification pattern that provides both logical
atomicity and fiction of sequential consistency.

Double-checked initialization. Double-checked initialization [20] is a de-
sign pattern that reduces the cost of lazy initialization by having clients only
use a lock if the wrapped object has not been initialized yet, to their knowledge.
We verify this algorithm against a specification that ensures that the wrapped
object is initialized only once. The challenge is to capture the fact that holding
the lock ensures that there are no buffered updates to the object.

Ticket lock. A bounded ticket lock [17] is a fair locking algorithm where
threads obtain a ticket number and wait for it to be served, and where the ticket
number goes back to zero when it reaches its bound. We verify this algorithm
against a specification that allows a bounded number of clients to transfer re-
sources. The challenge is to ensure that a thread’s ticket will not be skipped and
reissued to another thread, despite the fact that in TSO, the increment to the
serving number in the release can be buffered, as for the spinlock.

Circular buffer. A circular buffer [14] is a single-writer single-reader re-
source ownership transfer mechanism based on an array viewed circularly. This
algorithm is interesting in TSO because it does not need any synchronisation:
the FIFO behavior of store buffers is enough. Because there are no synchroni-
sation operations, a thread can be ahead of main memory in the array, and the
challenge is to ensure that despite that, the writer does not overtake the reader.

6 Soundness

We prove soundness of iCAP-TSO with respect to the TSO model of section 2.
Soundness is proven by relating the machine semantics to an instrumented se-
mantics that, for instance, enforces that clients obey the chosen protocols when
accessing shared state. This relation is expressed through an erasure function,
b−c, that erases an instrumented state to a set of machine states.

The soundness theorem is stated in terms of the following eval(µ, T, q) predi-
cate, which asserts that for any terminating execution of the thread pool T from
initial state µ, the predicate q must hold for the terminal state and thread pool.
The eval predicate is defined as a guarded recursive predicate (the recursive oc-
currence of eval is guarded by .), to express that each step of evaluation in the
machine semantics corresponds to a step in the topos of trees.

eval(µ, T, q)
def
= (irr(µ, T)⇒ (µ, T) ∈ q) ∧

(∀T ′, µ′. (µ, T)→ (µ′, T ′)⇒ .eval(µ′, T ′, q))

Here irr(µ, T) means that (µ, T) is irreducible. We can now state the soundness
of iCAP-TSO.

Theorem 2 (Soundness). If [P] e [r. Q] and µ ∈ bJPK(t)c then

eval(µ, [t 7→ e], λ(µ′, T). µ′ ∈ bJQK(t)(T (t))c)

This theorem expresses that if a specification [P] e [r. Q] holds and the execution
of the thread pool [t 7→ e] with a single thread t from an initial state µ in the
erasure of P terminates (including threads spawned by t), then the execution has
finished in a proper terminal state (i.e., did not fault), which is in the erasure of
Q instantiated with the return value T (t) of thread t.

7 Related work

Our work builds directly on iCAP [23], which is an extension of separation logic
for modular reasoning about concurrent higher-order programs with shared mu-
table state. Our work extends the model of iCAP with store buffers to implement
a TSO memory model, extends the iCAP logic with TSO-connectives for rea-
soning about these store buffers and crucially, it reduces to standard concurrent
separation logic for sequentially consistent clients.

Rely/Guarantee reasoning over operational models. Conceptually,
iCAP-TSO is a Rely/Guarantee-based proof system for reasoning about an op-
erational semantics with a relaxed memory model. This approach has also been
explored by Ridge [19], Wehrman [26], and Jacobs [15].

Ridge [19] and Wehrman [26] both propose proof systems for low-level reason-
ing about racy TSO programs based on Rely/Guarantee reasoning. In Ridge’s
system [19] the Rely/Guarantee is explicit, while in Wehrman’s system [26] it is
expressed implicitly through a separation logic. To reason in the presence of a
relaxed memory model, both systems enforce a rely that includes possible inter-
ference from write buffers. Consequently, both systems support reasoning about
racy code. However, in the case where a library includes sufficient synchroniza-
tion, neither system is able to take advantage of the stronger rely provided by
this synchronization to simplify client proofs. This is exactly what our fiction of
sequential consistency allows.

Jacobs [15] proposes to extend separation logic with “TSO spaces” for rea-
soning about shared resources in a TSO setting. While the exact goals of his
approach remain a bit unclear, it seems that Jacobs is also aiming for a sys-
tem that reduces to standard separation logic reasoning when possible. How-
ever, to ensure soundness Jacobs’ proof system lacks the usual structural rules
for disjunction and existentials. This results in non-standard reasoning even for
non-racy clients.

Recovering sequential consistency. There are several other approaches
for recovering sequentially consistent reasoning about clients in the presence of
a relaxed memory model.

Cohen and Schirmer [8] propose a programming discipline based on own-
ership, which ensures that all TSO program behaviors can be simulated by a
sequentially consistent machine. Unfortunately, the proposed discipline enforces
too much synchronization. In particular, an efficient spin-lock implementation
with a buffered release, like the one we verify in Section 5, does not obey their
programming discipline. Their approach is thus unable to deal with such code
without introducing additional synchronization.

Owens [18] defines a trace property on the set of SC behaviors of a pro-
gram which ensures that all TSO behaviors can be simulated by an SC machine.
Owens shows how this property allows clients of synchronization primitives to
reason using SC semantics, despite racy implementations of these synchroniza-
tion primitives. However, in contrast to our appraoch, Owens’ approach is non-
compositional: while Owens proves similar results for multiple synchronization
primitives in isolation, these results do not apply to clients that combine two or
more of these synchronization primitives.

Gotsman et al. [13] propose another approach for providing clients with a
fiction of sequential consistency, based on linearizability. By relating racy li-
brary implementations on a TSO architecture with abstract specifications on
an SC architecture, they can reason about data-race free clients that call racy
libraries using an SC memory model. Their approach is only compositional for
non-interacting libraries (libraries that do not interact through the heap) and
further requires libraries and clients to be non-interacting. Their approach can
also relate fine-grained implementations with coarse-grained implementations,
which provides similar advantages to our logical atomicity.

Our approach does not suffer from the compositionality problems of [18, 13]
or the need for unnecessary and potentially expensive synchronization required
by [8]. In particular, iCAP-TSO allows racy libraries that interact through the
heap to be verified independently.

Reasoning over axiomatic models. Relaxed memory models are often
defined using relations over read and write events that enforce certain consisten-
cy/visibility constraints.

Alglave et al. [4] proposes the use of such axiomatic models to support effi-
cient model-checking in the context of relaxed memory models. The use of an
axiomatic semantics avoids the need to consider all the possible interleavings in-
troduced by operational models with explicit buffers and caches. Alglave et al.’s
approach supports fully automatic verification of simple correctness properties
of realistic C code. Alglave et al.’s approach is non-modular in the sense that
it only supports whole-program verification and thus lacks support for verifying
modules independently.

While our logic is based on an operational model with explicit buffers, we
use Rely/Guarantee reasoning to avoid the explosion in interleavings observed
by Alglave et al. Our fiction of sequential consistency is specifically designed to
strengthen the rely (and implicitly, reduce the number of possible interleavings
that have to be considered) when the code enforces sufficient synchronization.

More recently, Turon et al. [25] has proposed GPS, a proof system over the
axiomatic C11 memory model. GPS extends separation logic with per-location
protocols which internalize some of the properties of the underlying visibility
properties between read and write events. GPS supports two of the C11 access
modes: non-atomics and release/acquire. Reasoning about non-atomics reduces
to standard separation logic. However, ownership transfer requires the use of
release/acquire and explicit reasoning about visibility of memory events. GPS
lacks support for logical atomicity and thus cannot express canonical specifica-

tions for concurrent data structures such as the specification of Treiber’s stack
in Appendix A.

8 Conclusion and future work

We have presented a new proof system, iCAP-TSO, to support modular and
scalable reasoning for a language with a TSO memory model. The proof system
consists of two logics. The TSO logic supports reasoning about libraries with low-
level racy code. In cases where the libraries provide sufficient synchronization,
they can be verified against SC specifications. Clients that only do resource
transfer through such libraries can then be verified entirely within the SC logic,
which uses standard separation logic rules.

We use the TSO logic to verify an efficient spin-lock implementation against
an SC specification. We use this to verify a shared bag library, implemented
using a spin-lock, in the SC logic. We also verify a double-checked initialization
wrapper, a bounded ticket lock, and a circular buffer against SC specifications.
Lastly, we verify Treiber’s stack against a specification that showcases how logical
atomicity can be extended to TSO.

We think of iCAP-TSO as a first step towards more automated/interactive
tools for reasoning about the TSO memory model. In this paper we have focused
on the foundational issues of constructing a logic that allows simple reasoning
for well-behaved code. As future work it would be interesting to try to extend
tools like [7, 12] to support mostly automated verification in the SC logic and
interactive verification in the TSO logic. We believe that the fiction of sequential
consistency could be really beneficial in this area: one could imagine that the
lock-free concurrency libraries would be verified by hand, while automated tools
could verify properties of client programs. Since the rules of the SC logic are
standard, the whole range of techniques developed for automating separation
logic could be applicable. The open question here is how one could infer the
instantiations of higher-order specifications, for instance the invariants for locks,
and this should be investigated.

Acknowledgements

We thank Mark Batty, Aleš Bizjak, Susmit Sarkar, and Peter Sewell for helpful discus-
sions on this work. This research was supported in part by the ModuRes Sapere Aude
Advanced Grant from The Danish Council for Independent Research for the Natural
Sciences (FNU).

References

1. Intel threading building blocks documentation: Fenced data transfer. https://

software.intel.com/en-us/node/506122. Accessed: 25 June 2014.
2. java.util.concurrent API. http://docs.oracle.com/javase/7/docs/api/java/

util/concurrent/package-summary.html. Accessed: 25 June 2014.
3. Linux kernel mailing list, Nov. 1999. spin unlock optimization(i386).
4. J. Alglave, D. Kroening, and M. Tautschnig. Partial Orders for Efficient Bounded

Model Checking of Concurrent Software. 2013.

5. B. Biering, L. Birkedal, and N. Torp-Smith. BI-Hyperdoctrines, Higher-order Sep-
aration Logic, and Abstraction. ACM TOPLAS, 2007.

6. L. Birkedal, R. Møgelberg, J. Schwinghammer, and K. Støvring. First Steps in
Synthetic Guarded Domain Theory: Step-Indexing in the Topos of Trees. In Proc.
of LICS, 2011.

7. A. Chlipala. Mostly-automated Verification of Low-level Programs in Computa-
tional Separation Logic. In Proc. of PLDI, 2011.

8. E. Cohen and B. Schirmer. From Total Store Order to Sequential Consistency: A
Practical Reduction Theorem. In Proc. of ITP, 2010.

9. P. da Rocha Pinto, T. Dinsdale-Young, and P. Gardner. TaDA: A logic for time
and data abstraction. In ECOOP, 2014.

10. T. Dinsdale-Young, L. Birkedal, P. Gardner, M. Parkinson, and H. Yang. Views:
Compositional Reasoning for Concurrent Programs. In Proc. of POPL, 2013.

11. T. Dinsdale-Young, M. Dodds, P. Gardner, M. J. Parkinson, and V. Vafeiadis.
Concurrent Abstract Predicates. In Proc. of ECOOP, 2010.

12. A. Gotsman, J. Berdine, B. Cook, and M. Sagiv. Thread-modular Shape Analysis.
In Proc. of PLDI, 2007.

13. A. Gotsman, M. Musuvathi, and H. Yang. Show No Weakness: Sequentially Con-
sistent Specifications of TSO Libraries. In Proc. of DISC, 2012.

14. D. Howells and P. E. McKenney. Circular buffers. Available at
https://www.kernel.org/doc/Documentation/circular-buffers.txt.

15. B. Jacobs. Verifying TSO Programs. Technical report, May 2014. Report CW660.
16. B. Jacobs and F. Piessens. Expressive Modular Fine-Grained Concurrency Speci-

fication. In Proc. of POPL, 2011.
17. J. M. Mellor-Crummey and M. L. Scott. Algorithms for scalable synchronization

on shared-memory multiprocessors. ACM TOCS, 9(1):21–65, Feb. 1991.
18. S. Owens. Reasoning about the Implementation of Concurrency Abstractions on

x86-TSO. In Proc. of ECOOP, 2010.
19. T. Ridge. A Rely-Guarantee proof system for x86-TSO. In Proc. of VSTTE, 2010.
20. D. C. Schmidt and T. Harrison. Double-checked locking - an optimization pattern

for efficiently initializing and accessing thread-safe objects, 1997. Available at
http://www.dre.vanderbilt.edu/~schmidt/PDF/DC-Locking.pdf.

21. P. Sewell, S. Sarkar, S. Owens, F. Zappa Nardelli, and M. O. Myreen. x86-TSO:
A Rigorous and Usable Programmers Model for x86 Multiprocessors. In Commu-
nications of the ACM, 2010.

22. F. Sieczkowski, K. Svendsen, L. Birkedal, and J. Pichon-Pharabod. A Separation
Logic for Fictional Sequential Consistency. Technical report, Aarhus University,
2014. http://cs.au.dk/~filips/icap-tso-tr.pdf.

23. K. Svendsen and L. Birkedal. Impredicative Concurrent Abstract Predicates. In
Proc. of ESOP, 2014.

24. K. Svendsen, L. Birkedal, and M. Parkinson. Modular Reasoning about Separation
of Concurrent Data Structures. In Proc. of ESOP, 2013.

25. A. Turon, V. Vafeiadis, and D. Dreyer. GPS: Navigating Weak Memory with
Ghosts, Protocols, and Separation. In Proc. of OOPSLA, 2014.

26. I. Wehrman. Weak-Memory Local Reasoning. PhD thesis, University of Texas,
2012. Dissertation draft.

27. J. Wickerson. Concurrent verification for sequential programs. PhD thesis, Uni-
versity of Cambridge, 2012.

A Logical atomicity

In Section 5 we explained how reasoning about clients of concurrent libraries can
benefit if one is able to express that the library methods are logically atomic.
In this appendix, we discuss the specification pattern adapted from iCAP that
provides us this expressivity. We also discuss the technical challenges of adapt-
ing the pattern to relaxed-memory setting and reconciling logical atomicity with
fiction of sequential consistency. In the following, we use Treiber’s stack as a
running example, in particular we show how we can derive a shared-bag specifi-
cation used in Section 3 from a specification that supports both logical atomicity
and fiction of sequential consistency.

Specification pattern. To formally capture the notion of logical atomicity
in the SC setting, Svendsen et al. [24] introduced a specification pattern for con-
current data structures (under the name of granularity abstraction), inspired by
previous work of Jacobs et al. [16]. The idea is to relate the non-atomic operation
on the concrete data structure with an atomic operation on an abstraction of
the data structure. This atomic operation is expressed as a logical update of a
phantom field. Phantom fields are similar to auxiliary variables, in that they are
only used for specification purposes; however, unlike auxiliary variables, they are
updated logically rather than through assignments. Hence, they are not subject
to the underlying relaxed memory model and every thread will agree on the
current value of phantom fields.

By storing the current abstract state of the concurrent data structure in
a phantom field we can separate reasoning about the data structure and its
clients: the implementor of the data structure proves that every intermediate
state within each library method is related to the current abstract state stored
in the phantom field. This establishes a simulation between the concrete state
and the abstract state stored in the phantom field. By sharing the phantom field
between the data structure and clients, clients can thus reason about the state of
the shared data structure by reasoning about the state of the phantom field. For
instance, in the case of Treiber’s stack, the abstract state of the stack would be
the list of elements on the stack. In the case of a push operation, the implementor
would thus have to prove that for each intermediate state in the execution of
push there exists an abstract state — a list of elements — that corresponds to
the concrete state of the data structure.

In this setup, we can say that an operation appears atomic if the abstract
state changes directly from the initial abstract state to the terminal abstract
state — such as in the example below.

push(x)

α α x :: α x :: α x :: α

We express this notion formally by specifying that the concrete operation simu-
lates an arbitrary atomic update of the phantom field from the initial abstract

state to the terminal abstract state. We express these atomic updates using view
shifts. A view shift from P to Q, written P v Q, expresses a logical update of
the instrumented state that does not change the underlying machine state. In
particular, for a phantom field xf , one can set it to any value, provided one has
exclusive ownership of the field:

xf
17→ v1 v xf

17→ v2

Here we use xf
π7→ v to assert fractional ownership ownership of the phantom field

xf with fraction π ∈ (0, 1] and that the field currently contains the value v. A
fraction π = 1 corresponds to exclusive ownership. Ownership can be split and

joined arbitrarily: xf
π1+π27→ v ⇔ xf

π17→ v ∗ xf
π27→ v. In our specification pattern we

use this law to split ownership of the phantom field that contains the abstract
state of the data structure between the data structure itself and its clients – they
each own 1/2 of the phantom field.

The constructor returns a stack resource along with a 1/2 fractional permis-
sion for the phantom field containing abstract state of the stack:

[emp] new Stack(−) [r. stack(r) ∗ rcont
1/27−→ ε]

The stack(x) resource expresses that x refers to a stack and is freely duplicable
(stack(x) ⇔ stack(x) ∗ stack(x)) to allow an arbitrary number of clients to use
the stack simultaneously.

Now, we have all the ingredients we need to formally express that an op-
eration is logically atomic, or, that it simulates an arbitrary view shift that
performs the corresponding operation on the phantom field that contains the
abstract state. In the case of a push operation, it appears atomic if it simulates
an arbitrary view shift that updates the abstract state from the list α to y :: α,
when pushing y5:

∀P,Q, α, x, y. stable(P) ∧ stable(Q) ⇒

. xcont
1/27−→ α ∗ P v .(xcont

1/27−→ (y :: α) ∗ Q) ⇒
[stack(x) ∗ P] x.push(y) [stack(x) ∗ Q]

The view shift is taken as an assumption and parameterized with assertions P
and Q, to allow callers to relate their local resources with the abstract state α,
before and after the operation appears to take effect. Note, however, that this
specification does not express the flushing behavior of push: we know nothing
about the state of the store buffers at the time when the update of the abstract
state happens. This is crucial information: to use Treiber’s stack to transfer
resources associated with an element y we need to know that all updates to y have

5 Formally, the specification must also ensure that the client does not update the
stack(x) resource within the provided view shift. Since these conditions are orthogo-
nal to the underlying memory model, we elide them. See the technical appendix for
the complete specification.

been flushed when the abstract state changes from α to y :: α. While the above
specification is valid, it is not strong enough to entail all desired SC specifications;
in particular, it does not entail the SC specification of a shared bag. Thus, we
need to refine the specification pattern to express flushing behavior.

The crucial observation is that we need to express abstractly the ordering
constraints that arise between the beginning of the method and the point at
which the logical update takes place. We already introduced logical connectives
to describe this kind of constraints on store buffers in Section 4. To express the
flushing behavior of Treiber’s stack, it is enough to assert that when the logical
update happens, P holds in main memory. Thus, we can update the specification
to read as follows:

∀P,Q, α, x, y. stable(P) ∧ stable(Q) ⇒

. xcont
1/27−→ α ∗ pPq v .(xcont

1/27−→ (y :: α) ∗ pQq) ⇒
[stack(x) ∗ P] x.push(y) [stack(x) ∗ pQq]

In this version, we express that if P holds from the point of view of the calling
thread initially (P), then by the time the abstract effects of the operation appear
to take effect, P holds objectively, in main memory (pPq). Thus, using embed-
dings we can extend the specification pattern with an abstract way of expressing
the synchronization behavior provided by a concurrent data structure.

Verifying an implementation. One of the motivations for logical atom-
icity is that it separates reasoning about clients from reasoning about internal
data structure invariants, thereby avoiding reproving internal invariants for every
client.

To verify a stack implementation against the abstract stack specification
sketched above, we thus have to prove that the concrete stack representation is
related to the current abstract state of the stack. Reasoning about clients can
then proceed entirely in terms of the abstract state, independently of internal
data structure invariants. To illustrate, we sketch how to prove that Treiber’s
stack satisfies the abstract stack specification.

Figure 6 defines an implementation of Treiber’s stack. Since both push and
pop use a CAS operation to push and pop elements, there will never be a buffered
update to the head pointer or any Node object reachable from head. The invariant
thus expresses that in abstract state α, the concrete state of the stack is a list
representing the mathematical list α, which holds objectively in main memory.
The stack(x) resource thus asserts the existence of a shared region governed by a
labelled transition system with a single state s and the following interpretation
function:

I(s) = ∃y : Val. ∃α : list Val. px.head 7→ y ∗ lstr(y, α) ∗ .xcont
1/27−→ αq,

where lstr(y, α) is a read-only list resource representing the list α. This last
predicate is definable as follows by induction on the second argument:

lstr(x, ε) = x =Val null

lstr(x, y :: α) = ∃z : Val. x.next 7→ z ∗ x.val 7→ y ∗ lstr(z, α)

class Node { Object val; Node next; }
class Stack {
Node head;

Stack() = this.head := null; fence; this

unit push’(Node nHead) =

let oHead = this.head in

nHead.next := oHead;

let t = CAS(this.head, nHead, oHead) in

if t then () else push’(nHead)

unit push(Object x) =

let nHead = new Node() in

nHead.val := x; push’(nHead)

Object pop() =

let oHead = this.head in if oHead = null then ()

else let nHead = oHead.next in

if CAS(this.head, nHead, oHead) then oHead.val else pop()

}

Fig. 6. Treiber’s stack.

The list is read-only, since the val and next fields of a Node object never change
once the node has been inserted into the list.

The proof outline for the push method and the push′ helper method is shown
in Figure 7. Note that the view-shift actually happens in the push′ method, after
the successful execution of the compare-and-swap.

Deriving an SC specification. The specification pattern sketched above
provides an abstract way of expressing the synchronization provided by the data
structure. If the data structure provides sufficient synchronization, clients can
thus derive SC specifications that support transfer of resources through the data
structure, without adding additional client-side synchronization. To illustrate,
we sketch how one can derive the SC shared bag specification from Section 3
from the abstract stack specification. Since Treiber’s stack satisfies the abstract
stack specification, it follows that Treiber’s stack also satisfies the SC shared bag
specification.

To derive the shared bag specification, the idea is to allocate a new shared
region that will own the clients’ half of the phantom field that describes the
abstract state and all the resources associated with each element currently in the
bag. Furthermore, these resources should hold objectively in main memory. This
ensures that when a client pops an element, the resources associated with that
element will also hold from that client’s point of view. The bag(x,P) resource thus
asserts ownership of stack(x) and the existence of a shared region governed by a
labelled transition system with a single state s and the following interpretation

unit push(Object x) =

[stack(this) ∗ P(this, x)]
let nHead = new Node(x) in

[stack(this) ∗ P(this, x) ∗ nHead.val 7→ x ∗ nHead.next 7→]

push’(nHead)

[stack(this) ∗ pQ(this, x)q]

unit push’(Node nHead) =

[stack(this) ∗ P(this, x) ∗ nHead.val 7→ x ∗ nHead.next 7→]

let oHead = this.head in

[stack(this) ∗ P(this, x) ∗ nHead.val 7→ x ∗ nHead.next 7→]

nHead.next := oHead;

[stack(this) ∗ P(this, x) ∗ nHead.val 7→ x ∗ nHead.next 7→ oHead]

let t = CAS(this.head, nHead, oHead) in

[stack(this) ∗
((t = true ∗ .pQ(this, x)q) ∨
(t = false ∗ P(this, x) ∗ nHead.val 7→ x ∗ nHead.next 7→ oHead))]

if t then () else push’(nHead)

[stack(this) ∗ pQ(this, x)q]

Fig. 7. Proof outline of the push method.

function:

Ibag(s) = ∃α : list Val. pxcont
1/27−→ α ∗ (~y∈mem(α)P(y))q

To update the abstract state of the stack we thus have to update the phantom
field xcont partially owned by this region. This forces us to transfer ownership of
pP(y)q to this shared region when the abstract state changes from α to y :: α and
allows us to take ownership of pP(y)q when the abstract state changes from y :: α
to α. In the case of push(y), the SC specification of the shared bag only requires
the client to provide P(y). However, the abstract stack specification expresses
that by the time the abstract push operation appears to take effect, the calling
threads buffer will have been flushed and pP(y)q thus holds. This is what allows
us to transfer pP(y)q to the region, and the reason why we needed to express the
synchronization behavior of the stack in the logically atomic specification.

