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Abstract

In the design of mobile agent programming languages there is a tension between the imple-

mentation cost and the expressiveness of the communication mechanisms provided. This paper

gives a static type system for a distributed �-calculus in which the input and output capabilities

of channels may be either global or local. This allows compile-time optimization where possible

but retains the expressiveness of channel communication. Subtyping allows all communications to

be invoked uniformly. Recursive types and products are included. The distributed �-calculus used

integrates location and migration primitives from the Distributed Join Calculus with asynchronous

� communication, taking a simple reduction semantics. Some alternative calculi are discussed.
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2 1 INTRODUCTION

1 Introduction

A common theme, underlying much programming language and system design, is that of restricting
usage of some resource to be local. This can support clean design, provide robustness (against
accidental errors and malicious attacks) and allow efficient implementation. The development of
ubiquitous networking, including technologies such as HTTP and Java, has led to a great deal of
interest in distributed programming, particularly in systems in which executing agents (or simply
units of executable code) are sent across a network (a survey of some recent work can be found in
the volume [VT97]). This brings new kinds of locality to the fore, with resources whose usage is
restricted to, for example:

1. Computation within a single executing agent (which may migrate across a network). Examples
of such resources include pointers to data held within the agent, or channels used for internal
communication.

2. A machine address space. Example resources include access capabilities for low-level in-
put/output primitives.

3. A group of trusted agents. Example resources include cryptographic keys that should be kept
within the group.

In this paper we consider how such usage restrictions, particularly the first, can be enforced at
compile-time by a static type system. We give a type system in which the input and output capabil-
ities for a communication channel can be either global, and therefore usable within any agent, or
restricted to be local, and therefore usable only within the agent where the channel is declared.

Our primary motivation for the type system is to allow efficient implementation of communication
primitives, in programming languages that support migrating agents. The type system allows local
communication to be implemented efficiently, while subtyping and subsumption ensure that, from
the programmer’s point of view, it is not unduly restrictive. The constructs for output and input
along a channel are independent of whether its capabilities are global or local, thus facilitating
programming (indeed, a narrowing result, Lemma 34.8, holds). At the same time the programmer
can distinguish between local and (potentially expensive) global communications via the typing of
channel declarations.

Very similar type systems should be applicable to the enforcement of secrecy properties for crypto-
graphic keys or nonces. There is a strong analogy between the agents discussed in this paper and the
individuals that engage in security protocols, and between the output (resp. input) of values on a
channel and the encryption (resp. decryption) of values with a cryptographic key. Some possibilities
are mentioned in the conclusion; for these the strong reasoning principles that can be licenced by
such a type system will be central.

The design of programming languages that support migrating agents raises many other interesting
issues, including failure modeling, name service semantics, dynamic binding and access control.
Where possible, one would like to study these issues in isolation, and without becoming involved
in the complexities of a real programming language. This can be done by working with simple
calculi that have tractable semantic definitions. In this paper we introduce a distributed �-calculus

that allows the global/local type system to be presented clearly; the other issues mentioned above
appear to be orthogonal to this and are discussed only briefly, if at all. We build on the �-calculus of
Milner, Parrow and Walker [MPW92]. This is a calculus of processes which communicate on named
channels; its distinguishing feature is an operational semantics which allows the declaration of new
channels and treats the sending of channel names themselves, along channels, in a compositional
fashion. There may be many writers and readers on a channel; a message output by a writer is
nondeterministically received by one of the readers.
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The study of simple calculi must be interleaved with experimentation with actual programming
languages. The development of the Pict language, of Pierce and Turner [PT97], is one such effort.
Pict is a concurrent, though not distributed, programming language, closely based on the �-calculus.
It has a rich type system and high-level syntax; the latter is translated (in both the implementation
and the semantic definition) into a variant of the asynchronous �-calculus [Bou92, HT92]. The fact
that this is possible shows that the asynchronous �-calculus is a sufficiently expressive basis for a
programming language, although this does not automatically carry over to the distributed case.

The �-calculus is often described as a calculus of mobile processes. Strictly, however, this refers to
the mobility of the scopes of channel declarations (channels are statically scoped, but their scopes
may change over time as channel names are sent outside their current scopes). There is no other
notion of locality or of identity of processes — in particular the separate identity of processes P and
Q in a parallel composition P jQ is not preserved. This means that to directly model distributed
phenomena, such as migration of agents, failure of machines or knowledge of agents, one must add
primitives for grouping �-calculus processes, into units of migration, failure or shared knowledge
respectively. This was done by Amadio and Prasad [AP94] in order to model an abstraction of the
failure semantics of Facile [TLK96], an extension of ML with distribution primitives. More recently,
Fournet et al have proposed the Distributed Join Calculus and a closely related programming lan-
guage [FG96, FGL+96, FLMR97]. They argue that communication via �-calculus style channels is
inappropriate for distributed programming and so adopt communication based on join patterns to
which primitives for locations, which are units of migration and failure, are added. Locations are
used to model both agents and physical machines.

There is a large design space of calculi with such primitives. For the purposes of this paper, however,
many design choices are not critical — we require only a calculus with reasonably simple seman-
tics that allows the type system to be presented clearly. In Section 2 we give such a distributed
�-calculus, with the communication primitives of an asynchronous �-calculus and location and mi-
gration primitives based on those of the Distributed Join Calculus. Its reduction semantics can be
given as a mild extension of that of the asynchronous �-calculus. Section 2 also contains some
discussion of the design space, and touches on some of the other issues mentioned above. A full
treatment is beyond the scope of this paper, however, so they are not reflected in the calculus.

A number of refined type systems for �-calculi have been studied, addressing polymorphism
[FLMR97, LW95, PS97, Tur96, Vas94], directionality [Ode95, PS96], linearity and receptive-
ness [Ama97, KPT96, San97], deadlock-freedom [Kob97], object encodings [San96], confluence
[Nie96, NS97], type inference [Gay93, VH93] and other phenomena (this is far from exhaustive).
Each allows some particular behavioural discipline of processes to be expressed. It may be useful to
contrast typing for �-calculi with the more standard typing for �-calculi. A simply-typed �-calculus
might have types

T ::= Int

�

�

�

T � T

�

�

�

T !T

with T !T

0 being the type of functions taking arguments of type T and returning results of type
T

0. The type system will, under assumptions on the types of free variables, define the type(s) of any
�-term. In contrast, for �-calculi the fundamental type constructor is not that of functions but of
channels carrying values of given types. One might have types

T ::= Int

�

�

�

T � T

�

�

�

l T

where l T is the type of channels carrying values of type T . A type system will, under assumptions
on the types of free names, define whether a �-term is a well-formed process or not (in most systems
�-terms do not themselves have interesting types). For example, under the assumption that w and x

are the names of channels carrying integers the one-shot buffer w(

y

)

:xy, that reads an integer from
w and writes it to x, is a well-formed process. This would be written

w : l Int; x : l Int ` w

(

y

)

:xy : process
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Of particular relevance is the Input/Output subtyping of Pierce and Sangiorgi [PS96]. They refine
channel types to treat the capabilities for reading and writing on channels separately. Specifically,
they annotate channel types with tags t

T ::= : : :

�

�

�

l

t

T

which are taken from
� +

�

Channel names of type l
+

T (resp. l
�

T ) can be used only for output (resp. input); names of type
l

�

T can be used for both output and input. This gives reasoning principles, notably showing the
correctness of an encoding of the �-calculus into the �-calculus. It also allows some very intuitive
refined typing, hence preventing a class of programming errors. For example a library channel
printi, used for printing integers, can be typed as printi : l

+

Int. Type checking will detect erroneous
attempts to read from this channel.

In this paper we allow input and output capabilities to be not just absent or present but absent, local
or global. Channel types will be of the form

T ::= : : :

�

�

�

l

io

T

where the semi-tags i and o are taken from f�; L;Gg. The intuition is that a G capability may be
used at any location, an L capability may be used only at the location of the channel concerned and
a � capability may not be used at all. We will disallow the tag �� (see Section 3.3), leaving those
below.

L� �L

G�

LL

�G

GL LG

GG

Consider a channel x of type l
io

T , which is located at a location named k (this will be made more
precise later), and the following cases:

x : l

GG

T Channel x is usable at any location, both for input and for output.

x : l

LL

T Channel x is usable only within location k, but still both for input and output.

x : l

LG

T Channel x can be used for output anywhere, but for input only within location k. Such a
channel might be used for sending requests to a server located at k.

x : l

GL

T Channel x can be used for input anywhere, but for output only at location k. Such a channel
might be used for receiving results from servers, or for ‘pushed’ data from an information
source, particularly if it is necessary to change receivers.

The triples GG;G�;�G and LL; L�;�L correspond exactly to �;�;+ for global and local communi-
cation respectively.

In an implementation, channels with tags LL, L� and �L can be implemented with data structures
that are local to a single agent, and so always on the same (albeit possibly changing) machine. Their
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names need not be globally unique, but only unique within their location (note that this implies that
equality testing of channel names should not be available) and need not be registered with global
name services. Channels with tags GL (resp. LG) are subject to fewer optimizations, but still allow
the references to the channel data structures by writers (resp. readers) to be local pointers. The
expressiveness of the system should aid programmers by detecting errors at compile time, including
communications that inadvertently potentially involve network communication.

The type system is introduced in Section 3. In addition to the channel types above it has base types,
products, recursive types (for channels) and a top type. A subtyping order is lifted from the tag
ordering above (with i� and �o contravariant and covariant respectively), allowing subcapabilities
to be communicated. For example if x : l

LG

T then x may be transmitted globally, along channels of
type l

GG

l

�G

T , to readers that are guaranteed to use it only at type l
�G

T . The typing rules involve
two novel features — the formation of certain types must be forbidden by kinding rules and the
capabilities of channels must be compared with capabilities at which they can be used by readers.

The soundness of the type system is proved in Section 4, with some details deferred to Appendix A.
The main soundness result is subject reduction (Theorem 1); in addition one can see by examination
of the typing rules that no well-typed process can immediately use a channel capability that it does
not have (see Proposition 2). As stated above we are primarily interested in using the type system
to allow efficient implementation. In principle one could state stronger soundness results in terms
of optimized abstract machines. This is left for future work. One might also state stronger results in
terms of an annotated labelled transition semantics. It is not clear, however, that for this system the
gain would be worth the heavier definitions. For other applications, such as security, where one is
primarily interested in the reasoning principles satisfied by well-typed processes, the situation would
be different.

Some related work and possible generalisations are discussed in Section 5.

2 A distributed �-calculus

In this section the syntax and operational semantics of our distributed �-calculus (dpi for short) are
given. The operational semantics is a rather mild extension of that for the asynchronous �-calculus.
It is a reduction semantics, defining reductions over process terms (no additional notion of config-
uration is required) using a structural congruence. It differs from an asynchronous � semantics in
only two respects — there is a reduction rule for migration and the standard structural congruence
and reduction rules are adapted to terms containing location information. Some examples are given
in Section 2.3. Section 2.4 contains some discussion — of alternative treatments of location infor-
mation in x2.4.1 and x2.4.2, of fine grain reductions in x2.4.3 and of an action calculus semantics in
x2.4.4.

2.1 Syntax

The location and migration primitives of dpi are based on those of the Distributed Join Calculus
[FGL+96]. Locations are tree-structured, with a root location top. They may be used to model
different entities — in this paper we consider immediate sublocations of top as modeling virtual
machines, with descendants of these modeling executing software agents. Locations are named;
new locations can be created and their names can be scope-extruded by communication just as
�-calculus channel names can be. The semantics and type system can therefore be simplified by
treating new location and channel declarations similarly, taking a single binder

(new x : @

l

T )
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which declares x to be a location (resp. channel) if the type T is the type loc of location names
(resp. a channel type). In the first case x is a sublocation of l. Channels must also be located — a
direct implementation of a �-calculus channel requires a queue of blocked readers or writers to be
maintained. As noted in [AP94], this data structure may be on a different machine to the reader or
writer so, to have an accurate failure or performance model, its location must be represented in the
calculus. In the second case, therefore, channel x is located at l.

2.1.1 Types

To the types of channels and locations introduced above we add pairs, as a first step towards more
interesting datatypes, type variables, allowing discussion of type inference, recursive channel types,
allowing channels to carry names of the same type as themselves, a type to be the top of the subtype
order, base types and unit. We take a countably infinite set TVar of type variables, ranged over by
X;Y , and a set of base types, for example Int, ranged over by B. The pre-types, ranged over by
S; T; U; V , are given by

T ::= B base type
1 unit
T � T pairs
loc the type of location names
> top
l

io

T channel carrying T , with capability io
X type variable
�X T recursive type

As discussed in the introduction, the tag io ranges over

f io j i 2 fG; L;�g ^ o 2 fG; L;�g ^ :(i = � ^ o = �) g

The type variable X in �X T binds in T ; we work up to alpha conversion of bound type variables.
The set of free type variables of a pre-type T will be written ftv(T ). Only some pre-types will be
considered well-formed. The syntax of processes involves types, and hence the reduction semantics
does also. Its definition does not depend on them in any interesting way, however, so we defer the
type formation rules to Section 3.

2.1.2 Processes

We take a countably infinite set X of names, ranged over by a; j; k; l; x; y; z and containing a distin-
guished name top. We let m;n; p; q range over N. We suppose a set jBj of elements of each base
type B, and that the sets jBj, X and fhig are disjoint from each other and from all products. Values,
ranged over by u; v; w, are

v ::= b b 2 jBj value of base type B
hi element of unit type
hv; vi pair
x name

There are two extremal possibilities for adding location information to terms. In one a locator ap-
plies to the largest possible unit, with all co-located subterms gathered into a single subterm. This
is adopted, for example, in the Ambient Calculus of Cardelli and Gordon [CG97]. For dpi, however,
communication is possible across the location tree structure, so to give a reduction semantics (in
which writers and readers at different locations must be brought syntactically adjacent by a struc-
tural congruence) the other extreme is adopted, with each elementary subterm explicitly located
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(intermediate possibilities are discussed in x2.4). Accordingly, processes, ranged over by P;Q;R,
are:

P ::= @

u

vw at location u, output value w on channel v
@

u

v

(

y

)

:P at u, input a value from channel v and bind it to y in P

@

u

! v

(

y

)

:P replicated input
@

u

migrate to v then P migrate location u to become a sublocation of v
@

u

let hy :T; y0 :T 0

i = w in P at u, bind the halves of the pair w to y and y

0 in P

(new y : @

u

T )P declare a new channel or location named y, of type T ,
located at u and binding in P

0 the null process
P jP parallel composition

The names y and y

0 above, which must be distinct in the let case, bind in the respective subterms P
(in particular, in (new y : @

u

T )P the scope of y does not include u); we work up to alpha conversion
of bound names. The free names of a value v and process P will be denoted by fn(v) and fn(P )

respectively. The substitution of a value v for a name x in P will be written fv=xgP . Output values
and input binders of type 1 will often be elided.

The syntax of processes includes some nonsensical terms, which the reduction semantics gives non-
sensical reductions to. They will be formally excluded by the typing rules but two points are worth
mentioning now. Firstly, in well-typed processes the u and v appearing in the grammar will always
be names. They are allowed to be arbitrary values in the syntax so that substitution of values for
names is always defined. Secondly, the syntax includes terms which can teleport after a prefix, e.g.

@

k

x

(

y

)

:@

l

x

(

z

)

:0 @

k

x

(

y

)

:@

y

x

(

z

)

:0

For conceptual simplicity we would like migration to be the only way in which processes may move,
and so want locators @

l

to describe the locations of processes rather than cause them to move.
Teleporting terms are excluded by considering the set of free inhabited locations 
(P ) of a process
P . This is the set of the free location names that are inhabited in P by outputs, inputs, migrates, pair
splits, channels or locations. It is the subset of fn(P ) defined below. The type system will require, in
every prefix located at l with continuation P , that 
(P ) � flg.


(@

u

vw)

def
= fn(u)


(@

u

v

(

y

)

:P )

def
= fn(u) [ (
(P )� fyg)


(@

u

! v

(

y

)

:P )

def
= fn(u) [ (
(P )� fyg)


(@

u

migrate to v then P )

def
= fn(u) [ 
(P )


(@

u

let hy :T; y0 :T 0

i = w in P )

def
= fn(u) [ (
(P )� fy; y

0

g)


((new y :@

u

T )P )

def
= fn(u) [ (
(P )� fyg)


(0)

def
= fg


(P jQ)

def
= 
(P ) [ 
(Q)

2.2 Reduction semantics

Structural congruence � is the least congruence relation over processes satisfying the following.

P j 0 � P (1)

P jQ � Q jP (2)

P j(Q jR) � (P jQ) jR (3)

(new x : @

u

S)(new y : @

v

T )P � (new y : @

v

T )(new x : @

u

S)P x 62 fn(v); y ^ y 62 fn(u) (4)

P j(new x : @

v

T )Q � (new x : @

v

T )(P jQ) x 62 fn(P ) (5)
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The first three equations are standard, allowing parallel compositions to be treated as multisets.
Equation 5 allows scope extrusion, both of channel names and of location names. Equation 4 allows
new-binders to be permuted; the side condition ensures that the location tree structure, and the
locations of channels, are preserved.

The reduction relation �! over processes is the least relation satisfying the following.

@

k

xv j@

l

x

(

y

)

:P �! fv=ygP (1)

@

k

xv j@

l

!x

(

y

)

:P �! fv=ygP j@

l

!x

(

y

)

:P (2)

@

l

let hy
1

:T

1

; y

2

:T

2

i = hv

1

; v

2

i in P �! fv

1

=y

1

gfv

2

=y

2

gP (3)

(new l : @

j

T )(new �)(Q j@

l

migrate to k then P ) �! (new l : @

k

T )(new �)(Q jP ) (4)

if fk; lg \ dom(�) = fg ^ k 6= l

P�!Q

P jR�!Q jR

(5)

P�!Q

(new x : @

l

T )P�!(new x : @

l

T )Q

(6)

P � P

0

P

0

�!Q

0

Q

0

� Q

P�!Q

(7)

where we define (new �)P , for lists of the grammar � ::= �

�

�

�

�; x : @

l

T , by

(new �)P

def
= P

(new �; x : @

l

T )P

def
= (new �)(new x : @

l

T )P

The first two reduction rules are the standard communication rules for an asynchronous �-calculus;
note that the communications can take place irrespective of the locations of the writer, reader and
channel. The third is an unproblematic pair splitting reduction. The fourth is the only substantially
new reduction rule. It allows location l to migrate from being a sublocation of j to become a subloca-
tion of k. After the migration the continuation P is released. The additional context (new �)(Q j ),
which is preserved by the reduction, is required as the scope of l may contain other location and
channel declarations, and processes, that mention l. In particular, note that Q may contain other
subterms @

l

: : : that remain located at l as it migrates. Note also that the side condition means that
the rule is not applicable if k is a sublocation of l. Such migrations, which would introduce a cycle
into the location tree, are blocked, although later migrations may unblock them. The last three rules
are standard.

The sublocation tree of a migrating location is unchanged, and so migrates with it. The unit of
migration is thus a subtree of locations with all their processes and channels. The largest unit that is
guaranteed to stay together (and so always be on the same machine), however, is not a subtree but
just the processes and channels at a single location — its sublocations may migrate away. The tree
structure is therefore essentially orthogonal to global/local typing.

2.3 Examples

We give some simple example processes that will be well-typed in the empty context. Examples
1 and 4 correspond roughly to examples 2 and 4 of [FGL+96]. The syntax of processes contains
redundant location information, for example in @

l

x

(

y

)

:@

l

x

(

y

)

:P the second location must be l and
so the second @

l

could in principle be omitted. Some less verbose possibilities are discussed in
Section 2.4.
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1. A simple server process and client in different locations:

(new printServer :@

top

loc)(new client :@

top

loc)

(new print :@

printServer

l

LG

Int)

@

printServer

! print

(

x

)

: � � �

j

@

client

print7

2. Two copies of a replicated server, together with a client:

(new printServer1 :@

top

loc)(new printServer2 :@

top

loc)(new client :@

top

loc)

(new print :@

top

l

GG

Int)

@

printServer1

! print

(

x

)

: � � �

j@

printServer2

! print

(

x

)

: � � �

j@

client

print7

The reduction semantics allows either server to receive the request, nondeterministically. A
server may exist in multiple locations for reliability or performance reasons, or transiently
during replacement of an old server. Whether an implementation would have satisfactory
behaviour may depend on the fairness properties it guarantees. The location of channel print
is arbitrary, although obviously it may affect performance.

3. A server that returns the result of some computation (in this trivial example it simply pairs the
argument with itself):

(new pairServer :@

top

loc)(new client :@

top

loc)

(new pair : @

pairServer

l

LG

(Int� l

�G

(Int� Int)))

@

pairServer

! pair

(

y

)

:@

pairServer

let hn : Int; c : l
�G

(Int� Int)i = y in @

pairServer

chn; ni

j

(new c : @

client

l

LG

(Int� Int))@

client

pairh7; ci j@

client

c

(

x

)

: � � �

As in the asynchronous �-calculus the result must be returned on a new channel c. A real-
istic programming language would provide higher level syntax (as in Pict) and an optimized
implementation of this. Note the use of subsumption for typing the output @

client

pairh7; ci.

4. A server that, on demand, migrates a copy of an applet to a client:

(new appletServer :@

top

loc)(new client :@

top

loc)

(new getApplet :@

appletServer

l

LG

loc)

@

appletServer

! getApplet

(

l

)

:(new applet :@

appletServer

loc)@

applet

migrate to l then � � �

j

@

client

getApplet client

(As it stands this does not set up channels for the applet and client to communicate.)

5. A rudimentary tracker, that receives location names on a channel move (perhaps provided by
an active badge system controller [HH94]) and migrates to them:

(new l

1

: @

top

loc) � � � (new l

3

: @

top

loc)

(new controller : @

top

loc)

(new move :@

controller

l

GL

loc)

@

controller

move l

1

j � � � j@

controller

move l

3

j

(new follower :@

controller

loc)

@

follower

! move

(

l

)

:@

follower

migrate to l then � � �

j@

follower

� � �
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The channel move could be located at the follower, with type l
LG

loc and presumably with
altered performance. A more realistic tracker would have additional communications so that
the moves could be sequentialised.

2.4 Discussion

2.4.1 Normal forms for implementation

The syntax of x2.1.2 admits a clean reduction semantics but is not directly suited for implementation.
It contains a lot of redundant location information and allows co-located processes, that should be
gathered together at compile time, to be syntactically separated. We give a less redundant syntax as
a step towards an implementation representation. Two isomorphic grammars are below; on the left
is a sub-grammar of processes, on the right is a grammar with redundant locators removed.

P

l

::=0

P

l

jP

l

@

l

xv

@

l

x

(

y

)

:P

l

@

l

!x

(

y

)

:P

l

@

l

migrate to k then P

l

@

l

let hy :S; y0 :S0i = w in P

l

(new �

l

)

(new l

2

: @

k

2

L

2

)(new �

l

2

)

: : :

(new l

n

: @

k

n

L

n

)(new �

l

n

)

P

l

j(P

l

2

j(: : : jP

l

n

))

Q

l

::=0

Q

l

jQ

l

xv

x

(

y

)

:Q

l

!x

(

y

)

:Q

l

migrate to k then Q

l

let hy :S; y0 :S0i = w in Q

l

(new �

l

)

(new l

2

: @

k

2

L

2

)(new �

l

2

)

: : :

(new l

n

: @

k

n

L

n

)(new �

l

n

)

Q

l

jQ

l

2

j : : : jQ

l

n

where n � 1, for j 2 2::n, k
j

is taken from l; l

2

; : : : ; l

j�1

and L

j

+ loc, and

�

l

::= �

�

l

; x : @

l

T where :(T + loc)

�

l

::= �

�

l

; x :T where :(T + loc)

(We anticipate definitions of + and ` from Section 3). Obviously the left form will not be closed
under reduction; we conjecture, however, that there are good abstract machines which manipulate
the terms of the right grammar. The abstract machine step for the last clause will involve the simul-
taneous creation of the subtree of locations l

2

; : : : ; l

n

, together with their channels and processes.
Well-typed processes can be statically put into the left form, as follows.

Proposition 1 If � ` P : process and 
(P ) = fl

1

; : : : ; l

p

g for p � 1 then there exists a term ^

P of the

form below such that P �

^

P .

(new �

l

1

)

: : :

(new �

l

p

)

(new l

p+1

: @

k

p+1

L

p+1

)(new �

l

p+1

)

: : :

(new l

p+q

: @

k

p+q

L

p+q

)(new �

l

p+q

)

P

l

1

j(P

l

2

j(: : : jP

l

p+q

))

where q � 0 and, for j 2 (p+ 1)::(p+ q), k
j

is taken from l

1

; : : : ; l

j�1

and L

j

+ loc.

PROOF Induction on typing derivations. 2
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2.4.2 Process syntax with implicit location

The design of a syntax that is suitable for use by programmers is a separate question. The redundant
location information in that of x2.1.2 is unacceptable, but the syntax of x2.4.1 is rather inflexible.
Instead, one can allow locators to occur anywhere:

P ::= 0

P jP

xw

x

(

y

)

:P

!x

(

y

)

:P

migrate to l then P

let hy :T; y0 :T 0

i = w in P

(new y :T )P

(new y : @

l

T )P

@

l

P

The reduction semantics and type system for this can be defined either directly or via a translation
into the syntax of x2.1.2. A direct reduction semantics involves structural congruence and reduction
rules such as the following

@

l

(P jQ) � (@

l

P ) j(@

l

Q)

@

l

(new x :T )P � (new x : @

l

T )(@

l

P ) l 6= x

@

l

(new x : @

k

T )P � (new x : @

k

T )(@

l

P ) l 6= x

@

k

@

l

P � @

l

P

@

k

0 � 0

@

k

xv j@

l

x

(

y

)

:P �! @

l

fv=ygP

In the reduction rule the continuation P may not be explicitly located, so the right hand side must
repeat the locator @

l

. If P is explicitly located, however, this will introduce vacuous locators,
requiring the fourth structural congruence equation to remove. Some care must be taken to ensure
that the fourth and fifth equations preserve typing; we omit all the details.

A direct type system can be given either by using an additional judgement � ` P : process

l

, indexed
by a location name l at which the process context of P will locate its unlocated subterms, or by
explicitly accumulating constraints on the location of unlocated subterms.

A conceivable alternative would be to identify the constructs for declaring a location and for locating
processes at it, essentially restricting (new l : @

k

loc) and @

l

to always occur together as

(new l : @

k

loc)@

l

This is the approach taken in [FGL+96]. It is not compatible with a reduction semantics expressed
purely with reductions between processes, as location names may be scope-extruded. For a pro-
gramming language the simplicity might be desirable, but there is a loss of expressiveness — one
cannot declare two locations that refer to one another, e.g. as in

@

j

x

(

y

)

:(new k : @

j

loc)(new l : @

j

loc) (@

k

yl j@

l

yk j@

j

y

(

w

)

:0)

Such cross-referencing would have to be established dynamically, by communications on channels
declared outside l.
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2.4.3 Coarse/fine grain communication and failure semantics

The reduction semantics is coarse grain, in that channel communications (rules 1 and 2) happen in
single reduction steps. In a distributed implementation they may require several network commu-
nications. If writer, channel and reader are on machines j, k and l respectively then there might be
three, sending a value from j to k, a request from l to k and the value from k to l. In order to give an
accurate failure model this must be reflected in a finer-grain semantics, following [AP94]. Such fine
grain reduction rules must refer to the locations of channels and so must involve additional context.
Rule 1 could be replaced by the following:

(new x : @

k

T )(Q j@

j

xv) �! (new x : @

k

T )(Q j@

k

xv) j 6= k

(new x : @

k

T )(Q j@

l

x

(

y

)

:P ) �! (new x : @

k

T )(Q j@

k

x

(

y

)

:P ) l 6= k

(new x : @

k

T )(Q j@

k

xv j@

k

x

(

y

)

:P ) �! (new x : @

k

T )(Q jfv=ygP )

The side conditions on the first two rules prevent the introduction of spurious divergencies. Con-
trasting with rule 1, communications can only occur on new-bound channels, not on free channels.
This is perhaps closer to the desired behaviour of a distributed programming language, so is not
problematic. The treatment of requests introduces a delicate relationship between the calculus and
an implementation — in the second and third rule one would not wish to transmit the whole of P
across the network. Consider the example below.

(new x : @

k

T )(@

k

xz j@

l

x

(

y

)

:@

l

y) �! (new x : @

k

T )(@

k

xz j@

k

x

(

y

)

:@

l

y)

�! (new x : @

k

T )@

l

z

The subterm @

k

x

(

y

)

:@

l

y of the intermediate state should correspond, in an implementation, to a
request at location k, for a value from channel x, linked to a blocked reader at location l, containing
the continuation @

l

y abstracted on y. The body of the continuation thus remains at l throughout.
The global/local type system can be adapted to a fine-grain semantics at the cost of an additional
typing rule for such requests.

Instead of adding term contexts to the reduction rules one can give reduction rules over terms
equipped with location-contexts that record the locations of free names. We sketch such a system,
making use of typing contexts � that record both the types and the locations of names. These will
be defined precisely in Section 3. The analogues of the three fine grain rules above are:

�;@

j

xv �! �;@

k

xv � ` x@k ^ j 6= k

�;@

l

x

(

y

)

:P �! �;@

k

x

(

y

)

:P � ` x@k ^ l 6= k

�;@

k

xv j@

k

x

(

y

)

:P �! �; fv=ygP � ` x@k

together with rules for structural congruence (both for processes and for legitimate permutations of
typing contexts) and reduction under parallel composition and new-binders:

�

0

1

; P

0

1

� �

1

; P

1

�

1

; P

1

�!�

2

; P

2

�

2

; P

2

� �

0

2

; P

0

2

�

0

1

; P

0

1

�!�

0

2

; P

0

2

�; P�!�

0

; P

0

�; P jQ�!�

0

; P

0

jQ

(�; x : @

l

T ); P�!(�

0

; x : @

l

0

T ); P

0

�; (new x : @

l

T )P�!�

0

; (new x : @

l

0

T )P

0

The migration rule can also be cast into this style:

(�; k : @

a

S;�; l : @

j

T;�); @

l

migrate to k then P�!(�; k : @

a

S;�; l : @

k

T;�); P

This said, a distributed implementation of any programming language with migration and location-
transparent communication will require a location directory service, for finding the physical ma-
chines of locations. In the large-scale case one must consider failures of the machines and communi-
cation links used for implementing this service, which will give a rather more intricate failure model
at the language level.
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2.4.4 Action calculus semantics

There is a rather large space of possible calculi with reduction semantics. One way of understanding
it, particularly for comparing different calculi, is to put them into a common framework, such as
the Action Calculi of Milner [Mil96]. This provides a well-understood structural congruence, with a
clear graphical intuition, that has been helpful in the design of dpi. As an illustration, we give an
action calculus mDPIC corresponding to the monadic part of dpi, and compare it with the monadic
part of AC(�;out;box; rep) from [Mil96, x5.4] (restricting the ouput arity of box to be zero).

We take the arity monoid (N;+; 0), the names of arity 1 to be X and controls:

mDPIC new
T

: 1! 1 out : 3! 0

a : 1! 0

in(a) : 2! 0

rep(a) : 2! 0

a : 0! 0

mig(a) : 2! 0

mAC(�;out;box; rep) � : 0! 1 out : 2! 0

a : 1! 0

box(a) : 1! 0

rep(a) : 1! 0

The mDPIC arities of new, out, in and rep are obtained by adding one to the source of their corre-
sponding arities; the name binding the new port on a control gives the location of that control. The
reaction rules are:

mDPIC hkxzi

:out
 hlxi : in(a) �! hzi

:

a

hkxzi

:out
 hlxi : rep(a) �! hzi

:

a
 hlxi

: rep(a)

hji

:new
T

:

(l)C

�

[b
 hlki

:mig(a)] �! hki

:new
T

:

(l)C

�

[b
 a]

mAC(�;out;box; rep) hxzi

:out
 hxi : box(a) �! hzi

:

a

hxzi

:out
 hxi : rep(a) �! hzi

:

a
 hxi

: rep(a)

where in the third rule fk; lg \ dom(�) = fg ^ k 6= l and

C

�

def
=

C

�;x : @

l

T

def
= C

�

[hli

:new
T

:

(x) ]

The first two mDPIC reaction rules are obtained by adding (but ignoring) location information. In
both action calculi reaction under controls is not admitted. Note that it is essential that mDPIC is not
a reflexive action calculus, as otherwise the migration rule could introduce cycles into the location
tree structure.

The function [[ ]] below maps processes in the monadic part of dpi to mDPIC actions of arity 0! 0.

[[0]]

def
= id

0

[[P jQ]]

def
= [[P ]]
 [[Q]]

[[@

l

xz]]

def
= hlxzi

:out

[[@

l

x

(

y

)

:P ]]

def
= hlxi

: in((y)[[P ]])

[[@

l

!x

(

y

)

:P ]]

def
= hlxi

: rep((y)[[P ]])

[[@

l

migrate to k then P ]]

def
= hlki

:mig([[P ]])

[[(new x : @

l

T )P ]]

def
= hli

:new
T

:

(x)[[P ]]

We conjecture that this is a bijection, up to structural congruence, that preserves one-step reaction.
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Such a result would not, of course, make the calculus of x2.1.2 obsolete. As with any framework,
there is a cost (notational, if nothing else) in working with an embedding. Moreover some variant
calculi, such as the second system of x2.4.3, do not easily fit into the framework.

3 Global/local subtyping

This section gives the global/local type system. The soundness results are given in Section 4, to-
gether with the intermediate properties they depend on. The type system defines a judgement
� ` P : process which should be read as ‘under assumptions � the process P is well-formed’. As
usual these contexts � contain assumptions on the types of names that may occur free in P . They
must also contain assumptions on the locations of such names (and on the kinds of type variables).
Pre-contexts are therefore lists:

� ::= � the empty context
�; x : @

l

T � extended with name x, located at l, of type T
�; X :K � extended with type variable X of kind K

We now illustrate the three main phenomena that the type system must cope with. Firstly, a channel
name must only be used (for input or output) if it has the appropriate capability, i.e. L or G for
usages at its location; G for usages at other locations. For example, with respect to the context

�

def
= k : @

top

loc; l : @

top

loc; w : @

l

l

�G

1; z :@

l

l

�L

1

we should have
� ` @

l

w : process � ` @

l

z : process

� ` @

k

w : process � 6` @

k

z : process

Secondly, local capabilities must not be sent outside their locations. Consider the context

�

def
= k : @

top

loc; top level location
l : @

top

loc; top level location
z : @

l

l

LL

1; local channel carrying 1, at l
x : @

l

l

GG

l

LL

1 global channel carrying names of local channels carrying 1, at l

and the process P
def
= @

l

xz j@

k

x

(

y

)

:@

k

y. At first sight one might expect � ` P : process, but the
reduction

@

l

xz j@

k

x

(

y

)

:@

k

y�!@

k

z

can send both L capabilities of z out of l — it is clear that � ` @

k

z : process should not hold, and
hence that � ` P : process should not. It is prevented by restricting type formation, ruling out
channel types, such as l

GG

l

LL

1, that can be used to communicate local capabilities globally. This is
done in x3.2.

Thirdly, there must be a restriction on the mention of names outside their locations. This is a little
delicate, as one cannot simply forbid all such mentions of the names of channels that are declared
with some local capability. Consider the two contexts

�

1

def
= k : @

top

loc; l : @

top

loc; x : @

k

l

LL

l

LL

1; z : @

l

l

LL

1

�

2

def
= k : @

top

loc; l : @

top

loc; x : @

k

l

LL

l

�G

1; z : @

l

l

LG

1

We should clearly have �

1

6` @

k

z : process and �

2

` @

k

z : process. Now consider the process Q
def
=

@

k

xz j@

k

x

(

y

)

:@

k

y, which has the reduction

@

k

xz j@

k

x

(

y

)

:@

k

y�!@

k

z
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With respect to �

1

, channel z is declared to be at l and have a local output capability. This is
used by the receiver on x outside l, at k, so we should have �

1

6` @

k

xz : process. On the other
hand, with respect to �

2

, channel z is declared to have a local input capability and a global output
capability. The type of x ensures that the receiver can only use the output capability, so we should
allow �

2

` @

k

xz : process. This would still apply if x was of type l
LL

l

�L

1 — the process @

k

xz

should be well typed iff the capabilities of z and the capabilities at which it can be used by receivers
(determined by the type of x) do not share a local capability (either for input or for output). This is
made precise in x3.4.

The subtype order is discussed in x3.3; the typing rules for processes are given in x3.5.

3.1 Recursive types

Some routine preliminary definitions for dealing with recursive types are required. We wish to allow
recursion only at channel types, disallowing pre-types such as �X X and �X X �X but allowing
�X l

GG

X and �X (l

GG

X) � (l

GG

X). This is done by requiring, in the type formation rule for
�X T , that X is guarded in T .

X guarded in B X guarded in 1

X guarded in T

X guarded in T

0

X guarded in T � T

0

X guarded in loc

X guarded in >
X guarded in l

io

T

X 6= Y

X guarded in Y

X guarded in T

X guarded in �Y T

This ensures that all well-formed types are guarded, defined as follows.

B guarded 1 guarded

T guarded
T

0 guarded

T � T

0 guarded loc guarded

> guarded
T guarded

l

io

T guarded X guarded
T guarded X guarded in T

�X T guarded

At various points recursive types must be unfolded. We define a relation + over pre-types by

B + B 1 + 1 T � T

0

+ T � T

0

loc + loc

> + > l

io

T + l

io

T X + X

T + S S 6= X

�X T + f�X T = XgS

3.2 Kinds, Contexts, Types and Values

In this subsection we define four mutually recursive judgements:

` � ok context � is well-formed
� ` T :K type T has kind K

� ` v :T value v has type T
� ` x@l name x is located at l

The kinds, ranged over by K, are Type


"

where 
 and " range over the 2-point lattices G 6 � and
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E 6 � respectively. They are ordered by the product order

Type

��

Type

G�

Type

�E

Type

GE

The intuition is that types that have a kind Type

G"

are global, with values of such types being freely
communicable between locations. Types that have a kind Type


E

are extensible; new names at these
types may be created by new-binders. We write _ and ^ for the least upper bounds and greatest
lower bounds in these lattices. The formation rules for contexts are:

` � ok

` � ok X 62 dom(�)

` �; X :K ok

� ` T :K

� ` l : loc _ l = top

x 62 dom(�) [ ftopg

` �; x : @

l

T ok

Contexts thus contain location and type assumptions on free names, and kind assumptions on type
variables. The rules ensure that locations are tree structured, with root top. The kinding rules for
types are:

` � ok

� ` B : Type

G�

` � ok

� ` 1 :Type

G�

� ` T : Type


"

� ` T

0

: Type




0

"

0

� ` T � T

0

: Type

(
_


0

)�

` � ok

� ` loc : Type

GE

` � ok

� ` > : Type

GE

� ` T : Type

G"

io 2 fGG;G�;�Gg

� ` l

io

T : Type

GE

� ` T : Type

G"

io 2 fGL; LGg

� ` l

io

T : Type

�E

� ` T : Type


"

io 2 fLL;�L; L�g

� ` l

io

T : Type

�E

` �; X :K;� ok

�; X :K;� ` X :K

�; X :K ` T :K

X guarded in T

� ` �X T :K

� ` T :K

K 6 K

0

� ` T :K

0

The rules for channel types prevent the formation of types that could be used to carry local capabil-
ities between locations. For example, we have:

� ` l

LL

l

LL

1 :Type

�E

� 6` l

GG

l

LL

1 :Type

��

� ` l

LL

l

GG

1 :Type

�E

� ` l

GG

l

GG

1 :Type

GE

and � ` l

io

l

i

0

o

0

1 :Type

�E

iff io 2 fGG;G�;�G;GL; LGg ) i

0

o

0

2 fGG;G�;�Gg, i.e. if io is at all
global then i

0

o

0 must be not at all local. Products are global only if both their components are global.
Base types, unit and > are global, as is loc, so location names may be communicated freely. For
illustration, the types (in boxes) and global types (in double boxes) of the form l

io

1 are shown
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below, and those of the form l

io

l

i

0

o

0

1 are shown in Figure 1.

L� �L

G�

LL

�G

GL LG

GG

The only extensible types are channel types, loc, >, and type variables of kinds Type

E

. The typing
rules for values are straightforward. Recursive types are unfolded, if necessary, in the rule for names;
the typing rules for processes then do not need to mention unfolding.

` �; x : @

l

S;� ok S + T

�; x : @

l

S;� ` x :T

` � ok b 2 jBj

� ` b :B

` � ok

� ` hi : 1

� ` v :T � ` v

0

:T

0

� ` hv; v

0

i :T � T

0

Finally, there is a single rule for the location of names:

` �; x : @

l

T;� ok

�; x : @

l

T;� ` x@l

3.3 Subtyping

The ordering on tags

L� �L

G�

LL

�G

GL LG

GG

induces a subtype order on types — if io 6 i

0

o

0 then a channel of type l
io

T may be used as if it were
a channel of type l

i

0

o

0

T , which has weaker capabilities. As in [PS96], the variance of tags is

covariant(io)

def
, o = �

contravariant(io)

def
, i = �

nonvariant(io)

def
, i 6= � ^ o 6= �

Clearly if io 6 i

0

o

0 then

covariant(io) ) covariant(i

0

o

0

)

contravariant(io) ) contravariant(i

0

o

0

)

covariant(i

0

o

0

) ) covariant(io) _ nonvariant(io)

contravariant(i

0

o

0

) ) contravariant(io) _ nonvariant(io)

nonvariant(i

0

o

0

) ) nonvariant(io)
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Figure 1: The well-formed types. The vertex io i0o0 is boxed if � ` l
io

l

i

0

o

0

1 : Type

�E

, and is in a double box if � ` l
io

l

i

0

o

0

1 :Type

GE

.
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The subtype order is defined coinductively (without recursive types the two unfolding rules below
could be omitted and a least fixed point could be used). If 6 is a binary relation over the guarded
pre-types then _

6 is the least binary relation over the guarded pre-types such that

loc

_

6loc S

_

6>

io 6 i

0

o

0

covariant(i

0

o

0

)) S 6 T

contravariant(i

0

o

0

)) T 6 S

nonvariant(i

0

o

0

)) S 6 T 6 S

l

io

S

_

6 l

i

0

o

0

T

B

_

6B 1

_

61

S

1

6 T

1

S

2

6 T

2

S

1

� S

2

_

6T

1

� T

2

X

_

6X

�X S + S

0

S

0

_

6T

�X S

_

6T

S

_

6T

0

�X T + T

0

S

_

6�X T

The subtype order 6 is taken to be the greatest fixed point of this operator. It is a preorder; in
addition one can show that the quotient of 6 by a recursion-unfolding equivalence is a partial order
(see Proposition 22). If the tag �� was included this would no longer hold. Names of types l

��

T

would be communicable but not usable, so we would have l
��

S 6 l

��

T for all S and T . It seems
cleaner to take a single top type >. The subtype order over well-formed types l

io

l

i

0

o

0

1 is illustrated
in Figure 2. Note that the well-formed types are not up, down or convex-closed under the subtype
order on pre-types.

3.4 Colocality

A tag is local if it contains an L capability; two tags are colocal if they share a common L capability:

local(io)

def
, i = L _ o = L

colocal(io; i

0

o

0

)

def
, (i = L ^ i

0

= L) _ (o = L ^ o

0

= L)

The key properties of these definitions are that colocal(io; io) () local(io) and that, if io 6 i

0

o

0

6

i

00

o

00 and colocal(io; i

00

o

00

), then colocal(io; i

0

o

0

) and colocal(i

0

o

0

; i

00

o

00

). Note that the local tags are
neither up, down or convex closed in the tag ordering. Further, colocal is a symmetric relation but
is not reflexive or transitive, or closed under relational composition with the tag ordering. It does
satisfy colocal(io; i

0

o

0

)) (io 6 i

0

o

0

_ i

0

o

0

6 io). Colocality is lifted from tags to a relation on contexts
and pairs of types, that are well formed in the context and in the subtype relation, as follows. colocal
is the least subset of f�; S; T j � ` S : Type

��

^ � ` T : Type

��

^ S 6 T g satisfying the following

colocal(io; i

0

o

0

)

colocal(�; l

io

S; l

i

0

o

0

T )

colocal(�; S

1

; T

1

) _ colocal(�; S

2

; T

2

)

colocal(�; S

1

� S

2

; T

1

� T

2

)

:(� ` X : Type

G�

)

colocal(�; X;X)

colocal(�; S

0

; T

0

) S + S

0

T + T

0

colocal(�; S; T )

The key properties lift as follows, anticipating the statements of lemmas from Section 4.4.

A type that is colocal with itself is local.

Lemma 23 If colocal(�; T; T ) then :(� ` T : Type

G�

).

Colocality is convex-closed with respect to subtyping (for well-formed types).
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Figure 2: The subtype order over well-formed types l
io

l

i

00

o

00

1. They are ordered by l
io

l

i

00

o

00

1 6 l

i

0

o

0

l

i

000

o

000

1 iff io 6 i

0

o

0 and o

0

= � )

i

0

o

0

6 i

000

o

000, i0 = � ) i

000

o

000

6 i

0

o

0 and o

0

6= � ^ i

0

6= �) i

0

o

0

= i

000

o

000.
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Lemma 24 If T
1

6 T

2

6 T

3

, colocal(�; T
1

; T

3

) and � ` T

2

: Type

��

then colocal(�; T

1

; T

2

) and

colocal(�; T

2

; T

3

).

We define the colocal names of a value with respect to two types that are in the subtype relation: if
� ` v :S, � ` T : Type

��

and S 6 T then colocaln(�; v; S; T ) is the least subset of fn(v) satisfying

colocal(�; S; T )

x 2 colocaln(�; x; S; T )

colocaln(�; v

1

; S

1

; T

1

) [ colocaln(�; v

2

; S

1

; T

1

) � colocaln(�; hv

1

; v

2

i; S

1

� S

2

; T

1

� T

2

)

T + T

0

colocaln(�; v; S; T

0

) � colocaln(�; v; S; T )

If a value has any colocal names with respect to two types then those types are colocal.

Lemma 25 If colocaln(�; v; S; T ) 6= fg then colocal(�; S; T ).

The types of the colocal names of a value are themselves colocal.

Lemma 27 If x 2 colocaln(�; v; V; T ) then there exists S such that � ` x :S and colocal(�; S; S).

3.5 Processes

Finally the typing rules for processes can be given.

OUT

� ` l : loc

� ` x : l

io

T

� ` v :T

0

T

0

6 T

o 6 L

o = L) � ` x@l

8a 2 colocaln(�; v; T

0

; T ) : � ` a@l

� ` @

l

xv : process

(REP-)IN

� ` l : loc

� ` x : l

io

T

�; y : @

l

T ` P : process

i 6 L

i = L) � ` x@l


(P ) � flg

� ` @

l

x

(

y

)

:P : process

� ` @

l

!x

(

y

)

:P : process

MIG

� ` l : loc

� ` v : loc

� ` P : process


(P ) � flg

� ` @

l

migrate to v then P : process

LET

� ` l : loc

� ` v :T

0

�; y

1

: @

l

T

1

; y

2

: @

l

T

2

` P : process

T

0

6 T

1

� T

2

8a 2 colocaln(�; v; T

0

; T

1

� T

2

) : � ` a@l


(P ) � flg

� ` @

l

let hy
1

:T

1

; y

2

:T

2

i = v in P : process

NIL ` � ok

� ` 0 : process

PAR

� ` P : process

� ` Q : process

� ` P jQ : process

NEW

� ` T : Type

�E

�; x : @

l

T ` P : process

� ` (new x : @

l

T )P : process

Most of the premises of these rules are routine; we discuss the others briefly.

OUT � The first premise ensures that l is a location.
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� The second through fifth premises are analogous to those of the OUT rule of [PS96].
Name x must be a channel, value v must be of a subtype of the type carried by the
channel, and the channel must have an output capability (either G or L). The fourth and
fifth premises could be replaced by l

io

T 6 l

�L

T

0.

� The penultimate premise addresses the first phenomenon discussed at the beginning of
this section, ensuring that if x has only a local output capability then it can only be used
at its own location.

� The last premise addresses the third such phenomenon, ensuring that any transmitted
channel names that have a local capability which can be used by receivers on x are located
here.

(REP-)IN This is very similar to OUT except for the premise 
(P ) � flg, which prevents teleportation
after the input. Note that for typing P it is assumed that y is located at l.

NEW This allows new-binding of names at any extensible type, particularly at channel types and
loc, but also at > and suitable type variables.

LET This is similar to a combination of OUT and (REP-)IN (as, indeed, the reduction rule for LET

is).

MIG, PAR, NIL These are all straightforward.

The rules above allow locations and channels, but not processes, to be located at top. This is con-
sistent with the intuition that immediate sublocations of top model physical machines. For other
applications of the calculus different treatments of top are appropriate and should be straightfor-
ward. In the fine grain case if channels can be at top then messages and requests must be allowed
also.

A few examples:

1. Local channels can be sent outside their location (with reduced capabilities) and then back
inside. Their local capabilities cannot then be used, however. For example

�

def
= k : @

top

loc; l : @

top

loc; x : @

top

l

GG

l

�G

1; z : @

l

l

LG

1

P

def
= @

l

xz j@

k

x

(

y

)

:@

k

xy j@

l

x

(

y

)

:Q

We have � ` P : process and P�!�!fz=ygQ, but Q must be typed with respect to
�; y : @

l

l

�G

1 so fz=ygQ cannot use the input capability of z.

2. A name may be assumed to have a local type in a process P and still, if P is placed in a process

context, engage in cross-location communication. For example if P
def
= @

k

y

():

�

def
= k :@

top

loc; l : @

top

loc; x : @

k

l

LL

l

LL

1; z : @

l

l

GG

1

�; y : @

k

l

LL

1 ` P : process

� ` @

l

z j@

k

xz j@

k

x

(

y

)

:P : process

3. The let construct includes an explicit type for its pattern, which may be a supertype of the type
of its value. Without this the set of typable processes would be unduly restricted. With an
untyped let, if � ` v :T

1

� T

2

we would have

� ` @

l

let hy
1

; y

2

i = v in P : process () � ` @

l

let hy
1

:T

1

; y

2

:T

2

i = v in P : process

Consider

�

def
= k : @

top

loc; l : @

top

loc; z : @

k

l

LG

1

and P such that
�; y

1

: @

l

1; y

2

: @

l

l

�L

1 ` P : process
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We have
� ` @

l

let hy
1

: 1; y

2

: l

�L

1i = hhi; zi in P : process

as colocaln(�; hhi; zi; 1� l
�L

1; 1� l

LG

1) = fg, but

� 6` @

l

let hy
1

: 1; y

2

: l

LG

1i = hhi; zi in P : process

as z 2 colocaln(�; hhi; zi; 1� l

LG

1; 1� l

LG

1) and � 6` z@l, so

� 6` @

l

let hy
1

; y

2

i = hhi; zi in P : process

In the input construct the type of the pattern can be left implicit, as it is bounded by the type
of the channel.

4 Soundness

This section gives the outline of the proof of subject reduction, organized as follows. Section 4.1
contains preliminary results about the unfolding of recursive types and Section 4.2 contains results
about the judgements for context formation, kinding of types and typing of values, showing how
these are preserved by context permutation and weakening. These are perhaps best skimmed on a
first reading. Section 4.3 shows that the coinductive definition of subtyping is well-formed, and that
its quotient by a recursion-unfolding equivalence is a partial order. Section 4.4 states the essential
properties of colocality, together with its preservation under context permutation and weakening.
Section 4.5 shows the preservation of process typing under context permutation and weakening.

Sections 4.6, 4.7 and 4.8 are the core of the soundness proof. We must show that process typing
is preserved by relocation (occurring in migration reductions), narrowing (occurring in communica-
tion reductions, when variables are instantiated by values of subtypes) and substitution (occurring
in communication and pair-splitting reductions). The main soundness result shows that typing is
preserved by reduction.

Theorem 1 (Subject reduction) If � ` P : process and P�!Q then � ` Q : process.

This is restated and proved in Section 4.9. The proofs of individual lemmas are in Appendix A, in
corresponding subsections. In addition, we state an immediate-soundness result capturing the most
interesting property guaranteed by the type system, that no well-typed process can immediately use
a local capability outside its location.

Proposition 2 If �;� ` x : l

io

T and �;� ` x@k then

1. if � ` (new �)(@

l

xv jQ) : process and o = L then k = l.

2. if � ` (new �)(@

l

x

(

y

)

:P jQ) : process and i = L then k = l.

3. if � ` (new �)(@

l

!x

(

y

)

:P jQ) : process and i = L then k = l.

PROOF Straightforward examination of the typing rules. 2

4.1 Recursive types

Lemma 3

1. If X guarded in T and T + S then S 6= X .

2. If T guarded then there exists S such that T + S.
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3. If T + S and S 6= Y then fU=Y gT + fU=Y gS.

4. If T + S and T + S

0 then S = S

0.

5. If T guarded then there exists a unique S such that T + S.

Lemma 4

1. If X 62 ftv(T ) then X guarded in T .

2. If Y guarded in T and Y guarded in U then Y guarded in fU=XgT .

3. If S guarded and U guarded then fU=XgS guarded.

4. If Y guarded in fU=XgT and Y 62 fXg [ ftv(U) then Y guarded in T .

5. If fU=XgS guarded then S guarded and X 2 ftv(S)) U guarded.

6. If T + S then ftv(T ) = ftv(S).

7. If T + S then T guarded () S guarded.

Lemma 5

1. If T + S then there do not exist X and S

1

such that S = �X S

1

.

2. If T + S then S + S.

4.2 Kinds, Contexts, Types and Values

Lemma 6 If � ` T :K then

1. ` � ok .

2. T guarded.

3. There exists a unique S such that T + S.

Lemma 7 If � ` v :T then

1. If � ` v :T

0 then T = T

0.

2. ` � ok .

3. T + T .

In the rest of this subsection we show that the basic typing judgements are invariant under legitimate
permutations and weakening of contexts. The results should be unsurprising, although the mutual
dependence of the judgements requires that some care be taken in the order in which they are
proved. We define a permutation equivalence on pre-contexts by �

�

=

� iff:

(I) ` � ok () ` � ok .

(II) � ` X :K () � ` X :K

(III) � ` x :T () � ` x :T .

(IV) � ` x@l () � ` x@l.

In order to show that this is closed under weakening we define an auxiliary preorder on pre-contexts,
saying � . � iff:

(i) ` � ok ) dom(�) = dom(�).



4.2 Kinds, Contexts, Types and Values 25

(ii) ` � ok )` � ok .

(iii) � ` X :K ) � ` X :K

(iv) � ` x : loc) � ` x : loc.

(This will also used to show the basic properties of relocation and narrowing.)

Lemma 8 (Weakening — Contexts) If � . � then

1. �; X :K . �; X :K.

2. � ` T :K ) � ` T :K.

3. �; x : @

l

T . �; x : @

l

T .

4. if ` �;� ok then �;� . �;� and ` �;� ok.

Lemma 9 (Permutation — Types and Values) If � �

=

� then:

1. � . �.

2. ` �;� ok () ` �;� ok.

3. �;�

�

=

�;�.

4. � ` T :K () � ` T :K.

5. � ` v :T () � ` v :T .

Lemma 10 �; X :K;X

0

:K

0

�

=

�; X

0

:K

0

; X :K.

Lemma 11 (Weakening — Types, Values and Locations — by type variable bindings)

1. ` �; X :K ok ^ � ` T :K

0

() �; X :K ` T :K

0

^ X 62 ftv(T )

2. ` �; X :K ok ^ � ` v :T () �; X :K ` v :T

3. ` �; X :K ok ^ � ` x@l () �; X :K ` x@l

Lemma 12 If X 62 ftv(T ) then �; x : @

l

T;X :K

�

=

�; X :K;x : @

l

T .

Lemma 13 (Weakening — Types, Values and Locations — by name bindings)

1. ` �; x : @

l

T ok ^ � ` S :K () �; x : @

l

T ` S :K

2. ` �; x : @

l

T ok ^ � ` v :V () �; x : @

l

T ` v :V ^ x 62 fn(v)

3. ` �; x : @

l

T ok ^ � ` y@k () �; x : @

l

T ` y@k ^ x 6= y

The equivalence �
=

on pre-contexts contains all legitimate permutations. To make this precise we
take the relation � on pre-contexts to be the least equivalence satisfying

�; X :K;X

0

:K

0

;� � �; X

0

:K

0

; X :K;�

�; x : @

l

T;X :K;� � �; X :K;x : @

l

T;� X 62 ftv(T )

�; x : @

k

S; y : @

l

T;� � �; y : @

l

T; x :@

k

S;� x 6= l ^ y 6= k

Lemma 14 If � � � then �

�

=

�.

The implication is strict, as �
=

allows unfolding of recursion and relates any two ill-formed pre-
contexts. For example x : @

top

�X 1

�

=

x : @

top

1.

Type formation is invariant under the unfolding of recursive types.

Lemma 15
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1. If �; X :K ` T :K

0 and � ` U :K then � ` fU=XgT :K

0.

2. If � ` fU=XgS :K and X 2 ftv(S) � dom(�) then there exists K 0 such that � ` U :K

0 and

�; X :K

0

` S :K.

3. If � ` T :K

1

and � ` T :K

2

then � ` T :K

1

^ K

2

.

4. If T + S then � ` T :K () � ` S :K.

Lemma 16 If � ` v :T then � ` T : Type

��

.

4.3 Subtyping

The operator _ is monotonic and well behaved.

Lemma 17

1. If 6
1

�6

2

then _

6

1

�

_

6

2

.

2. id � _

id

3. If 6� _

6 then 6;6� (6;6)

..

The subtype relation can therefore be defined as the greatest fixed point, taking 6
def
= [fR j R �

_

R g.
It is a preorder.

Lemma 18 6=

_

6 and 6 is a preorder.

Subtyping is invariant under the unfolding of recursive types.

Lemma 19 For guarded pre-types T and S, if T + S then T 6 S 6 T .

We now define the natural equivalence relation over guarded pre-types, relating any two types that
have the same infinitary unfolding. If � is a binary relation over the guarded pre-types then �

� is the
least binary relation over the guarded pre-types such that

B

�

�B 1

�

�1

S

1

� T

1

S

2

� T

2

S

1

� S

2

�

�T

1

� T

2

loc

�

�loc

>

�

�> X

�

�X

S � T

l

io

S

�

�l

io

T

�X S + S

0

S

0

�

�T

�X S

�

�T

S

�

�T

0

�X T + T

0

S

�

��X T

The operator � is monotonic and well behaved.

Lemma 20

1. If �
1

��

2

then �

�

1

�

�

�

2

.

2. id � �

id

3. If �� �

� then �;�� (�;�)

...

4. If �� �

� then ��1

� (�

�1

)

...

The equivalence relation can therefore be defined as the greatest fixed point, taking �
def
= [fR j R �

�

R g.

Lemma 21 �=

�

� and � is an equivalence relation.

The quotient of 6 by � is a partial order.

Proposition 22 S 6 T 6 S iff S � T .
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4.4 Colocality

A type that is colocal with itself is local.

Lemma 23 If colocal(�; T; T ) then :(� ` T : Type

G�

).

Colocality is convex-closed with respect to subtyping (for well-formed types).

Lemma 24 If T
1

6 T

2

6 T

3

, colocal(�; T
1

; T

3

) and � ` T

2

: Type

��

then colocal(�; T

1

; T

2

) and

colocal(�; T

2

; T

3

).

If a value has any colocal names with respect to two types then those types are colocal.

Lemma 25 If colocaln(�; v; S; T ) 6= fg then colocal(�; S; T ).

The set of colocal names of a value varies contravariantly with the upper type.

Lemma 26
� ` v :V

� ` S : Type

��

� ` T : Type

��

V 6 S 6 T

colocaln(�; v; V; T ) � colocaln(�; v; V; S)

The types of the colocal names of a value are themselves colocal.

Lemma 27 If x 2 colocaln(�; v; V; T ) then there exists S such that � ` x :S and colocal(�; S; S).

Lemma 28 (Weakening — Colocality)

1. ` �; X :K ok ^ colocal(�; U; V ) () colocal((�; X :K); U; V ) ^ X 62 ftv(U) [ ftv(V )

2. ` �; x : @

l

T ok ^ colocal(�; U; V ) () colocal((�; x : @

l

T ); U; V )

3. If ` �; x : @

l

T ok , � ` u :U , � ` V : Type

��

and U 6 V then

colocaln((�; x : @

l

T ); u; U; V ) = colocaln(�; u; U; V )

Lemma 29 (Permutation — Colocality) If � �

=

� then

1. colocal(�; S; T ) () colocal(�; S; T ).

2. colocaln(�; v; S; T ) = colocaln(�; v; S; T ).

4.5 Processes

Lemma 30 If � ` P : process then ` � ok .

Lemma 31 (Permutation — Processes) If � � � then � ` P : process () � ` P : process.

Lemma 32 (Weakening — Processes)

` �; x : @

l

T ok ^ � ` P : process () �; x : @

l

T ` P : process ^ x 62 fn(P )
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4.6 Relocation

In order to show the type soundness of migrations (reduction rule 4) we must show that the typing
judgements are preserved by changes of the parents of locations. We define a relocation equivalence
on pre-contexts by � ' � iff:

(a) ` � ok () ` � ok .

(b) � ` X :K () � ` X :K

(c) � ` x :T () � ` x :T

(d) (� ` x :T ^ colocal(�; T; T ))) (� ` x@l () � ` x@l)

(This gives a stronger result than required, as it allows any non-local name to be relocated.)

Lemma 33 (Relocation) If � ' � then

1. � . �

2. ` �;� ok () ` �;� ok.

3. �;� ' �;�.

4. � ` T :K () � ` T :K.

5. � ` v :T () � ` v :T .

6. colocal(�; S; T ) () colocal(�; S; T ).

7. colocaln(�; v; S; T ) = colocaln(�; v; S; T ).

8. � ` P : process () � ` P : process.

Lemma 33.8 is used in the migration case of the proof of Theorem 1 (subject reduction), on Page 31.

4.7 Narrowing

The narrowing preorder is defined over pre-contexts by � 6 � iff:

(1) ` � ok () ` � ok .

(2) � ` X :K () � ` X :K

(3) � ` x@l () � ` x@l

(4) (� ` x :T ^ � ` x :S)) T 6 S

Lemma 34 (Narrowing) If � 6 � then

1. � . �

2. ` �;� ok () ` �;� ok.

3. �;� 6 �;�.

4. � ` T :K () � ` T :K.

5. If � ` v :S then 9T : � ` v :T ^ T 6 S.

6. colocal(�; S; T ) () colocal(�; S; T ).
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7.

� ` v :S

0

� ` v :T

0

T

0

6 S

0

6 S

colocaln(�; v; T

0

; S) � colocaln(�; v; S

0

; S)

8. If � ` P : process then � ` P : process.

Lemma 34.8 is used in the (REP-)IN case of the proof of Lemma 38 (the substitution lemma for
processes), on page 52.

4.8 Substitution

The set of inhabited locations of a process is unchanged by legitimate substitutions.

Lemma 35 If z 62 
(P ) then 
(fu=zgP ) = 
(P ).

The typing judgements must be preserved under substitution of values (of some type) for names
(assumed to be of some supertype). For the value typing judgement this is straightforward.

Lemma 36 (Substitution — Values)

�; z : @

j

V ` w :S

� ` u :U

U 6 V

9T : � ` fu=zgw :T ^ T 6 S

For colocality it is more involved. In the following we write fA=zgB for the set substitution (B �

fzg) [ f a j a 2 A ^ z 2 B g.

Lemma 37 (Substitution — Colocality)

� ` u :U

� ` V : Type

��

U 6 V

�; z : @

j

V ` v :S

0

�; z : @

j

V ` S : Type

��

S

0

6 S

� ` fu=zgv :T

0

colocaln(�; fu=zgv; T

0

; S) � fcolocaln(�; u; U; V )=zgcolocaln((�; z : @

j

V ); v; S

0

; S)

For processes the following holds. The first three premises are standard. The fourth ensures that
any names of the substituted value u are located at the same place as the substituted variable z was
assumed to be at, if their actual type and assumed types are colocal. The last premise ensures that
no locators in P can be affected by the substitution.

Lemma 38 (Substitution — Processes)

�; z : @

j

V ` P : process

� ` u :U

U 6 V

8a 2 colocaln(�; u; U; V ) : � ` a@j

z 62 
(P )

� ` fu=zgP : process

Lemma 38 is used in the communication and pair-splitting cases of the proof of Theorem 1 (subject
reduction).
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4.9 Subject reduction

The derived typing rule for multiple new-bindings is useful.

Lemma 39 If dom(�) \ TVar = fg then

(` �;� ok ^ � ` (new �)P : process) ()

�

8T 2 range(�) : � ` T : Type

�E

^ �;� ` P : process

�

Lemma 40 (Type soundness of structural congruence) If P � Q then

1. 
(P ) = 
(Q)

2. � ` P : process () � ` Q : process.

Theorem 1 (Subject reduction) If � ` P : process and P�!Q then � ` Q : process.

PROOF By induction on transition derivations

Rule 1 We have, using Lemma 7.1 on the type of x,

OUT

� ` k : loc

� ` x : l

io

T

� ` v :T

0

T

0

6 T

o 6 L

o = L) � ` x@k

8a 2 colocaln(�; v; T

0

; T ) : � ` a@k

� ` @

k

xv : process

(REP-)IN

� ` l : loc

� ` x : l

io

T

�; y : @

l

T ` P : process

i 6 L

i = L) � ` x@l


(P ) � flg

� ` @

l

x

(

y

)

:P : process

� ` @

l

!x

(

y

)

:P : process

and need � ` fv=ygP : process. We use the instance of the substitution lemma below.

�; y :@

l

T ` P : process

� ` v :T

0

T

0

6 T

8a 2 colocaln(�; v; T

0

; T ) : � ` a@l

y 62 
(P )

� ` fv=ygP : process

The first three premises are trivial. For the fourth, if a 2 colocaln(�; v; T

0

; T ) then by the
premises of OUT � ` a@k. Now, by Lemmas 25, 24 and 23 we have :(� ` T : Type

G�

). By
Lemma 16 � ` l

io

T : Type

��

so by the typing rules io 2 fLL;�L; L�g and hence io = LL. By
the premises of OUT and (REP-)IN k = l so � ` a@l.

For the fifth, by Lemma 30 ` �; y : @

l

T ok so y 6= l so, as 
(P ) � flg, y 62 
(P ).

Rule 2 Similar

Rule 3 We have

LET

� ` l : loc

� ` hv

1

; v

2

i :T

0

�; y

1

: @

l

T

1

; y

2

: @

l

T

2

` P : process

T

0

6 T

1

� T

2

8a 2 colocaln(�; hv

1

; v

2

i; T

0

; T

1

� T

2

) : � ` a@l


(P ) � flg

� ` @

l

let hy
1

:T

1

; y

2

:T

2

i = hv

1

; v

2

i in P : process
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and need � ` fv

1

=y

1

gfv

2

=y

2

gP : process. By � ` hv

1

; v

2

i :T

0 and the value typing rules there
exist T 0

1

and T

0

2

such that T 0

= T

0

1

� T

0

2

, � ` v

1

:T

0

1

and � ` v

2

:T

0

2

. We use the instances of the
substitution lemma below.

�; y

1

: @

l

T

1

; y

2

: @

l

T

2

` P : process

�; y

1

: @

l

T

1

` v

2

: T

0

2

T

0

2

6 T

2

8a 2 colocaln(�; y

1

: @

l

T

1

; v

2

; T

0

2

; T

2

) : �; y

1

: @

l

T

1

` a@l

y

2

62 
(P )

�; y

1

: @

l

T

1

` fv

2

=y

2

gP : process

�; y

1

: @

l

T

1

` fv

2

=y

2

gP : process

� ` v

1

:T

0

1

T

0

1

6 T

1

8a 2 colocaln(�; v

1

; T

0

1

; T

1

) : � ` a@l

y

1

62 
(fv

2

=y

2

gP )

� ` fv

1

=y

1

gfv

2

=y

2

gP : process

By Lemma 30 ` �; y

1

: @

l

T

1

; y

2

: @

l

T

2

ok (*). By the context formation rules ` �; y

1

:@

l

T

1

ok .
By Lemma 13.2 �; y

1

: @

l

T

1

` v

2

:T

0

2

.

By (*) and the context formation rules l 62 fy

1

; y

2

g so as 
(P ) � flg we have y

1

62 
(P ) and
y

2

62 
(P ).

By Lemma 18 and the subtyping rules T 0

2

6 T

2

and T

0

1

6 T

1

.

By a routine induction colocaln(�; v

1

; T

0

1

; T

1

)[colocaln(�; v

2

; T

0

2

; T

2

) = colocaln(�; hv

1

; v

2

i; T

0

1

�

T

0

2

; T

1

� T

2

) so we have 8a 2 colocaln(�; v

1

; T

0

1

; T

1

) : � ` a@l and 8a 2 colocaln(�; v

2

; T

0

2

; T

2

) :

� ` a@l. By Lemma 28.3 and Lemma 13.3 we have 8a 2 colocaln((�; y

1

: @

l

T

1

); v

2

; T

0

2

; T

2

) :

(�; y

1

: @

l

T

1

) ` a@l. Hence, by the two instances of Lemma 38 above, we have � `

fv

1

=y

1

gfv

2

=y

2

gP : process.

Rule 4 We have

� ` (new l : @

j

T )(new �)(Q j@

l

migrate to k then P ) : process

and fk; lg \ dom(�) = fg ^ k 6= l and need

� ` (new l : @

k

T )(new �)(Q jP ) : process

By the definition of the reduction rule dom(�) \ TVar = fg so dom(l : @

j

T;�) \ TVar = fg.

We can assume w.l.g. (alpha converting if necessary) that ` �; l : @

j

T;� ok .

By Lemma 39 �; l : @

j

T;� ` Q j@

l

migrate to k then P : process and for all S 2

range(l : @

j

T;�) we have � ` S : Type

�E

.

By the typing rules
�; l : @

j

T;� ` Q : process

�; l : @

j

T;� ` P : process

�; l : @

j

T;� ` l : loc

�; l : @

j

T;� ` k : loc

and 
(P ) � flg.

By Lemma 13.2 and k 62 dom(�) [ flg we have � ` k : loc so ` �; l : @

k

T ok .

By the name typing rules T + loc so :colocal(�; T; T ). Clearly �; l : @

j

T ' �; l : @

k

T so by
Lemmas 33.2 and 33.3 ` �; l : @

k

T;� ok and �; l : @

j

T;� ' �; l : @

k

T;�.

By Lemma 33.8
�; l : @

k

T;� ` Q : process

�; l : @

k

T;� ` P : process

Finally by Lemma 39 � ` (new l :@

k

T )(new �)(Q jP ) : process.

Rule 5 By induction.

Rule 6 By induction.
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Rule 7 By Lemma 40 and induction.

2

5 Conclusion

We conclude by briefly mentioning some related work and some possible future work.

Related calculi The distributed �-calculus presented here shares the notion of tree-structured lo-
cations with both the Distributed Join Calculus [FGL+96] and the Ambient Calculus of Cardelli and
Gordon [CG97]. The communication primitives differ, however. The Distributed Join Calculus prim-
itives are more restricted than those of dpi, in that the receivers on a channel must be replicated
and declared with the channel; they are more general in that multi-way synchronisation is incorpo-
rated. In both calculi communication can occur across the location structure. This expressiveness
is desirable for programming migratory applications within a single administrative domain. In con-
trast, the focus of the Ambient Calculus is the modeling of many administrative domains. Primitive
interactions are only permitted between ambients that are adjacent (parent-child, or sibling) in the
tree structure, so that all crossings of domain boundaries are explicit.

Several authors have considered distributed calculi with site failure. In [AP94] Amadio and Prasad
give an extension of the �-calculus with nodes and node failure; they show it can be translated
(up to notions of barbed equivalence) into a pure �-calculus. This has been developed further
in [Ama97], using a type system that ensures receptiveness. In [FGL+96] it is shown that the
Distributed Join Calculus, which includes primitives modelling the failure of subtrees of locations,
can be encoded into the calculus without distribution primitives. In [RH97] Riely and Hennessy give
direct characterisations of barbed bisimulation congruences for a CCS-like calculus extended with
locations and failure.

Finally, in [SY97] Sekiguchi and Yonezawa give a calculus in which a number of different mecha-
nisms for code and data migration can be described.

Related type systems and static analyses In [Ste96] Steckler has given a static analysis technique
for distributed Poly/ML with similar motivation to ours — to detect when channels are guaranteed
to be local to a single processor. It incorporates also some reachability analysis, but does not separate
input and output capabilities. Nielson and Nielson [NN94, NN95] have proposed effect-based static
analysis techniques for higher-order concurrent languages, taking effects to be process expressions.
In [KNY95] Kobayashi et al propose a static analysis technique for the concurrent calculus HACL. It
gives upper bounds for the sizes of queues required to implement communication, thereby allowing
implementation optimization. Kleist et al [KHJH95] have proposed a type system based on process
expression effects for �inda. A type system for the Spi Calculus of Abadi and Gordon [AG97] has
been proposed by Abadi in [Aba97]. It enforces freshness, guaranteeing that well-typed processes
do not leak secrets in a rather strong sense. Finally in [HR97] Heintze and Riecke give a lambda
calculus with a type system that enforces certain properties about direct and indirect information
flow.

Special cases Three special cases of the type system may be of interest. In the Join calculus the
names introduced by a definition def D in P can only be used for output in P (to a first approx-
imation D declares a single replicated reader on these names). For typing P , therefore, they are
analogous to channels with capability �G. One could allow the output capability to be local, taking
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the suborder of tags on the left below.

�L

�G

LL

GG

L� �L

G�

LL

�G

GG

In some circumstances it may not be necessary to allow the input and output capabilities of channels
to vary separately, cutting down to the suborder of tags in the centre above. This greatly reduces the
complexity (although also the expressiveness) of the type system as all channel type constructors
become nonvariant and colocality collapses — for such tags

colocal(io; i

0

o

0

) () io = i

0

o

0

= LL:

A milder simplification is to take the tags shown on the right above, i.e. the product of the tags
�;�;+ of [PS96] with the two-point lattice G 6 L. For such tags, if io 6 i

0

o

0 then

colocal(io; i

0

o

0

) () local(io) ^ local(i

0

o

0

)

Channels with tag GG would have to be used instead of channels with tag GL or LG. Whether the
additional simplicity is worth the cost of this is not clear.

Type inference One would like a type inference result, allowing a compiler to infer the most
local types possible for new-bound channels and let-bound names and hence to implement them
efficiently, without requiring the programmer to provide too many explicit type annotations.

Linearity In a distributed application one would expect many channels to be in some sense linear;
in particular many servers will have a single replicated receiver (this observation motivates the
introduction of join patterns in [FG96]). In the type system given such channels, e.g. print, pair
and getApplet in examples 1, 3 and 4 of Section 2.3, can only be of types l

LG

T . The integration
of global/local typing with some form of linearity or receptiveness [Ama97, KPT96, San97] would
allow more precise typing, and hence further optimizations, while retaining the expressiveness of
general channel communication.

Typing locations In the type system given location names are all of type loc. This has kind Type

GE

and so location names can be communicated freely between locations. It would be straightforward
to refine the system to allow location names to be local, with types loc

G

and loc

L

, enabling migration
to locations to be restricted. One could also restrict the migration of locations, allowing locations
to be immobile or mobile. This would be a (small) step towards the type-theoretic enforcement of
security policies for mobile agents. Linearity would again be useful — a common case is that of
one-hop locations (c.f. Java Applets).

Dependent located types The types of the system given are not dependent — they do not mention
location names. One could instead take capabilities not simply from the set fG; L;�g but from the
set of location names extended with fG;�g. This would allow types such as l

GG

l

kk

1, allowing local
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(to k) channels to be sent outside of their location, returned to k and then used. More interestingly,
one could take tags to be from the lattice of arbitrary sets of location names, lifted above a bottom
element G, allowing optimized implementation of channels for which the set of locations at which
they will be used can be bounded when the channel is created.

Typing for secrecy properties The focus of this paper has been on locality information that can
be used for implementation optimization. The enforcement of certain secrecy properties, such as
the invariant that a secret key is known only by authorised agents, is a closely related problem. The
dependent types described above would allow new names (keys, for example) to be created that
are restricted to a dynamically calculated set of individuals. For example, supposing a type Key

of keys taking a single tag, one could express a location, modelling individual a, that receives the
name b of another individual and then creates a key k, which the type system guarantees is used
(for decryption and encryption) only by a and b:

@

a

x

(

b

)

:(new k : Key

fa;bg

) : : :

One would want a rather strong soundness result — the analogue of Theorem 1 would only show
that secrecy is preserved by well-typed processes, whereas an attacker may perform some ill-typed
computation. A slightly different calculus would be required. Primitives for encryption and decryp-
tion, such as in the Spi calculus of Abadi and Gordon [AG97] would have to be added. For some
applications, taking locations to model individuals, the tree structure and migration of locations
become superfluous.

Behavioural equivalences In order to reason about dpi processes a labelled transition system and
behavioural congruence are required, perhaps building on the work of Riely and Hennessy [RH97],
together with an understanding of the appropriate extensional equivalence, building on [Sew97].

Acknowledgements The author would like to thank Cédric Fournet, Benjamin Pierce, Pawel Woj-
ciechowski and the Cambridge Thursday morning group, for interesting discussions about this work,
and the organisers of Dagstuhl-Seminar 97041 for the opportunity to present a preliminary version.
Support from EPSRC grant GR/K 38403 and Esprit Working group 21836 (CONFER-2) is acknowl-
edged. Xy-pic was used for the diagrams.



35

A Soundness proofs

A.1 Recursive types

PROOF (of Lemma 3)

3.1 Induction on T . Cases B; 1; T � T

0

; loc;> and l
io

T are easy. Case Y for Y 6= X is easy. Case X
contradicts the first premise. For case �Y T we have

X guarded in T

X guarded in �Y T

T + S S 6= Y

�Y T + f�Y T = Y gS

By induction S 6= X so f�Y T = Y gS 6= X .

3.2 Induction on T guarded. All cases except �X T are immediate. For �X T , by induction there
exists S such that T + S. By Lemma 3.1 S 6= X so �X T + f�X T = XgS.

3.3 Induction on T + S. Cases B; 1; loc;>; l
io

T; T � T

0 and X for Y 6= X are easy.

Case Y + Y contradicts the premises.

For case �X T we have

T + S S 6= X

�X T + f�X T = XgS

f�X T = XgS 6= Y

w.l.g. X 62 fY g [ ftv(U) so fU=Y g�X T = �X fU=Y gT . By the above S 6= Y so by induction
fU=Y gT + fU=Y gS. We have fU=Y gS 6= X so

fU=Y g�X T = �XfU=Y gT + f�X fU=Y gT = XgfU=Y gS = fU=Y gf�X T = XgS:

3.4 By induction on the size of T . All cases except �X T are immediate. For �X T , suppose
�X T + R and �X T + R

0. Then there exist Y; Y 0

62 ftv(T )� fXg and S; S

0 such that

fY=XgT + S S 6= Y

�Y fY=XgT + f�Y fY=XgT = Y gS

fY

0

=XgT + S

0

S

0

6= Y

0

�Y

0

fY

0

=XgT + f�Y

0

fY

0

=XgT = Y

0

gS

0

with R = f�Y fY=XgT = Y gS and R

0

= f�Y

0

fY

0

=XgT = Y

0

gS

0.

By Lemma 3.3 T + fX=Y gS and T + fX=Y

0

gS

0 so by induction fX=Y gS = fX=Y

0

gS

0 and
R = R

0.

3.5 Immediate from Lemmas 3.2 and 3.4.

2

PROOF (of Lemma 4)

4.1 Induction on T . Cases B; 1; loc;> and Y for Y 6= X are easy. Case T � T

0 is by induction. Case
l

io

T is easy. Case X contradicts the premise. Case �Y T is by induction.

4.2 Induction on T . Cases B; 1; loc;> and Z for Z 62 fX;Y g are easy. Case T � T

0 is by induction.
Case l

io

T is easy. Case Y contradicts the premise. Case X is easy. Case �Z T is by induction.



36 A SOUNDNESS PROOFS

4.3 Induction on S guarded. Cases B; 1; loc;> and Y for Y 6= X are easy. Cases T � T

0, and l
io

T

are by ind. Case X is easy. The remaining case is

S guarded Y guarded in S

�Y S guarded

w.l.g. Y 62 fXg [ ftv(U) so fU=Xg�Y S = �Y fU=XgS. By induction fU=XgS guarded. By
Lemma 4.1 Y guarded in U . By Lemma 4.2 Y guarded in fU=XgS so �Y fU=XgS guarded.

4.4 Induction on T . Cases B; 1; loc;>, l
io

T and Z for Z 62 fX;Y g are easy. Case T � T

0 is by
induction. Case Y contradicts the premise. Case X is by Lemma 4.1. Case �Z T : We have to
show

Y guarded in fU=Xg�Z T Y 62 fXg [ ftv(U)

Y guarded in �Z T

w.l.g. Z 62 fXg[ftv(U) so Y guarded in �Z fU=XgT so Y guarded in fU=XgT . By induction
Y guarded in T so Y guarded in �Z T .

4.5 Induction on S. Cases B; 1; loc;> and Y for Y 6= X are easy. Cases T � T

0 and l

io

T are by
induction. Case X is easy. Case �Y S: w.l.g. Y 62 fXg [ ftv(U) so we have

fU=XgS guarded Y guarded in fU=XgS

�Y fU=XgS guarded

If X 2 ftv(�Y S) then X 2 ftv(S) so by induction U guarded. By Lemma 4.4 Y guarded in S

so �Y S guarded.

4.6 Induction on T + S. All cases except �X T are immediate. For �X T :

Suppose X 62 ftv(S). We have ftv(f�X T = XgS) = ftv(S) = ftv(S)� fXg = ftv(T )� fXg =

ftv(�X T ).

Alternatively, suppose X 2 ftv(S). We have ftv(f�X T = XgS) = ftv(f�X T ) [ (ftv(S) �

fXg) = (ftv(T ) � fXg) [ (ftv(S) � fXg). By induction (ftv(T ) � fXg) [ (ftv(S) � fXg) =

(ftv(T )� fXg) [ (ftv(T )� fXg) = ftv(T )� fXg = ftv(�X T ).

4.7 Induction on T + S. All cases except �X T are immediate. Consider

T + S S 6= X

�X T + f�X T = XgS

Suppose �X T guarded. By definition T guarded ^ X guarded in T . By induction S guarded.
By Lemma 4.3 f�X T = XgS guarded.

Suppose f�X T = XgS guarded. By Lemma 4.5 S guarded ^ X 2 ftv(S) ) �X T guarded.
Case X 2 ftv(S): we have �X T guarded. Case X 62 ftv(S): By Lemma 4.6 we have X 62

ftv(T ). By Lemma 4.1 X guarded in T . By induction T guarded, so �X T guarded.

2

PROOF (of Lemma 5)

5.1 Induction on T + S.

5.2 By Lemma 5.1 and the definition of +.

2
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A.2 Kinds, Contexts, Types and Values

PROOF (of Lemma 6)

1. Induction on � ` T :K, using the fact that ` �; X :K ok implies ` � ok .

2. Induction on � ` T :K.

3. Immediate from Lemmas 6.2 and 3.5.

2

PROOF (of Lemma 7)

1. Induction on v. Names: By disjointness if � ` x :T it must be by the name rule. If � ` x :T

1

and � ` x :T

2

then

� = �

1

; x : @

l

1

S

1

;�

1

S

1

+ T

1

� = �

2

; x : @

l

2

S

2

;�

2

S

2

+ T

2

By context formation S

1

= S

2

and �

1

` S

1

:K for some kind K. By Lemma 6.3 T

1

= T

2

.

Base values and unit: By disjointness.

Pairs: By induction

2. Induction on � ` v :T .

3. Cases of v. Names are by Lemma 5.2; base values, unit and pairs are by definition of +.

2

PROOF (of Lemma 8)

8.1 Part (i): If ` �; X :K ok then ` � ok so dom(�) = dom(�) so dom(�; X :K) = dom(�; X :K).
Parts (ii), (iii) and (iv) are as follows.

` �; X :K ok

() ` � ok ^ X 62 dom(�)

) ` � ok ^ X 62 dom(�) by (ii) and (i) for � . �

() ` �; X :K ok

�; X :K ` X

0

:K

0

() ` �; X :K ok ^ (� ` X

0

:K

0

_ (X = X

0

^ K 6 K

0

))

) ` �; X :K ok ^ (� ` X

0

:K

0

_ (X = X

0

^ K 6 K

0

)) by part (ii) above
) ` �; X :K ok ^ (� ` X

0

:K

0

_ (X = X

0

^ K 6 K

0

)) by part (iii) for � . �

() �; X :K ` X

0

:K

0

�; X :K ` x : loc

() ` �; X :K ok ^ � ` x : loc

) ` �; X :K ok ^ � ` x : loc by part (ii) above and part (iv) for � . �

() �; X :K ` x : loc

8.2 Induction on � ` T :K. Cases B, 1, loc and > are by (ii). Cases T � T

0, l
io

T and kind
subsumption are by induction. Case X is by (iii). For �X T , suppose �; X :K ` T :K. By
Lemma 8.1 �; X :K . �; X :K so by induction �; X :K ` T :K.
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8.3 Part (i): If ` �; x : @

l

T ok then ` � ok so dom(�) = dom(�) so dom(�; x : @

l

T ) =

dom(�; x : @

l

T ). Parts (ii), (iii) and (iv) are as follows.

` �; x : @

l

T ok

() 9K : � ` T :K ^ (� ` l : loc _ l = top) ^ x 62 dom(�) [ ftopg

) 9K : � ` T :K ^ (� ` l : loc _ l = top) ^ x 62 dom(�) [ ftopg by 8.2 and (iv)
) 9K : � ` T :K ^ (� ` l : loc _ l = top) ^ x 62 dom(�) [ ftopg by 6.1 and (i)
() ` �; x : @

l

T ok

�; x : @

l

T ` X :K

() ` �; x : @

l

T ok ^ � ` X :K

) ` �; x : @

l

T ok ^ � ` X :K by part (ii) above
) ` �; x : @

l

T ok ^ � ` X :K by part (iii) for � . �

() �; x : @

l

T ` X :K

�; x : @

l

T ` x

0

: loc

() ` �; x : @

l

T ok ^ (� ` x

0

: loc _ (x = x

0

^ T + loc))

) ` �; x : @

l

T ok ^ (� ` x

0

: loc _ (x = x

0

^ T + loc)) by part (ii) above
) ` �; x : @

l

T ok ^ (� ` x

0

: loc _ (x = x

0

^ T + loc)) by part (iv) for � . �

() �; x : @

l

T ` x

0

: loc

8.4 Induction on �, using 8.1 and 8.3.

2

PROOF (of Lemma 9)

9.1 For part (i), if ` � ok then ` � ok so using (II) and (III) dom(�) = dom(�). The other parts are
trivial.

9.2 Suppose �

�

=

� and ` �;� ok. By 9.1 � . � so by 8.4. ` �;� ok.

9.3 We show

� If � �

=

� then �; X :K

�

=

�; X :K.

� If � �

=

� then �; x : @

l

T

�

=

�; x : @

l

T .

The result is then a trivial induction on �. For the first, part (I) is by 9.2. Parts (II) and (III)
are as follows, part (IV) is similar to (III).

�; X :K ` X

0

:K

0

() ` �; X :K ok ^ (� ` X

0

:K

0

_ (X = X

0

^ K 6 K

0

))

() ` �; X :K ok ^ (� ` X

0

:K

0

_ (X = X

0

^ K 6 K

0

)) by 9.2
() ` �; X :K ok ^ (� ` X

0

:K

0

_ (X = X

0

^ K 6 K

0

)) by part (II) for � �

=

�

() �; X :K ` X

0

:K

0

�; X :K ` x :T

() ` �; X :K ok ^ � ` x :T

() ` �; X :K ok ^ � ` x :T by 9.2 and part (III) for � �

=

�

() �; X :K ` x :T
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For the second, part (I) is by 9.2. Part (II) and (III) are as follows, part (IV) is similar to (III).

�; x : @

l

T ` X :K

() ` �; x : @

l

T ok ^ � ` X :K

() ` �; x : @

l

T ok ^ � ` X :K by 9.2
() ` �; x : @

l

T ok ^ � ` X :K by part (II) for � �

=

�

() �; x : @

l

T ` X :K

�; x : @

l

T ` x

0

:T

0

() ` �; x : @

l

T ok ^ (� ` x

0

:T

0

_ (x = x

0

^ T + T

0

))

() ` �; x : @

l

T ok ^ (� ` x

0

:T

0

_ (x = x

0

^ T + T

0

)) by 9.2
() ` �; x : @

l

T ok ^ (� ` x

0

:T

0

_ (x = x

0

^ T + T

0

)) by part (III) for � �

=

�

() �; x : @

l

T ` x

0

:T

0

9.4 By 9.1 and 8.2.

9.5 Induction on type derivations using (I) and (III).

2

PROOF (of Lemma 10) Straightforward. 2

PROOF (of Lemma 11)

11.1 ): Induction on � ` T :K

0. Cases B; 1;>; loc are by ` �; X :K ok . Cases T � T

0, l
io

T and
kind subsumption are by induction. Case Y is by the typing and context formation rules. Case
�Y T . w.l.g. Y 62 dom(�) so ` �; Y :K

0

ok . By the typing rules Y guarded in T . By induction
�; Y :K

0

; X :K ` T :K

0 and X 62 ftv(T ). By 10 and 9.4 �; X :K;Y :K

0

` T :K

0. By the typing
rules �; X :K ` �Y T :K

0.

(: The first conjunct is by 6.1, from which by the context formation rules ` � ok and X 62

dom(�). The second is by induction. Cases B; 1;>; loc are by ` � ok . Cases T � T

0, l
io

T and
kind subsumption are by induction. Case Y for Y 6= X is by ` � ok . Case X contradicts the
premise. For case �Y T we have Y guarded in T and �; X :K;Y :K

0

` T :K

0. By 10 and 9.4
�; Y :K

0

; X :K ` T :K

0. By induction �; Y :K

0

` T :K

0. By the typing rules � ` �Y T :K

0.

11.2 Routine inductions, using 7.2

11.3 Immediate from the location rule.

2

PROOF (of Lemma 12) For part (I):

` �; x : @

l

T;X :K ok

() ` �; x : @

l

T ok ^ X 62 dom(�; x : @

l

T )

() 9K

0

: � ` T :K

0

^ (� ` l : loc _ l = top) ^ x 62 dom(�) [ ftopg ^ X 62 dom(�)

() 9K

0

: �; X :K ` T :K

0

^ (�; X :K ` l : loc _ l = top) ^ x 62 dom(�; X :K) [ ftopg

by 6.1, 11.1 and 11.2
() ` �; X :K;x : @

l

T ok

Parts (II), (III) and (IV) are immediate from the typing rules and part (I). 2

PROOF (of Lemma 13)

13.1 ): Induction on � ` S :K. Cases B; 1;>; loc; X are by ` �; x : @

l

T ok . Cases S � S

0, l
io

S

and kind subsumption are by induction. Case �Y S. w.l.g. Y 62 dom(�) so ` �; Y :K ok .
By the typing rules Y guarded in S. By induction �; Y :K;x : @

l

T ` S :K. By 12 and 9.4
�; x : @

l

T; Y :K ` S :K. By the typing rules �; x : @
l

T ` �Y S :K.
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(: The first conjunct is by 6.1, from which by the context formation rules ` � ok . The second
is by induction. Cases B; 1;>; loc; Y are by ` � ok . Cases S � S

0, l
io

S and kind subsumption
are by induction. For case �Y S we have Y guarded in S and �; x : @

l

T; Y :K ` S :K. By
12 and 9.4 �; Y :K;x : @

l

T ` S :K. By induction �; Y :K ` S :K. By the typing rules � `

�Y S :K.

13.2 Routine inductions, using 7.2.

13.3 Immediate from the context formation and location rule.

2

PROOF (of Lemma 14) We first show

�; x : @

k

S; y : @

l

T

�

=

�; y : @

l

T; x : @

k

S if x 6= l ^ y 6= k

For part (I):

` �; x : @

k

S; y : @

l

T ok

()9K

0

: �; x : @

k

S ` T :K

0

^ (�; x : @

k

S ` l : loc _ l = top) ^ y 62 dom(�; x : @

k

S) [ ftopg

()9K

0

: � ` T :K

0

^ (�; x : @

k

S ` l : loc _ l = top) ^ y 62 dom(�) [ fx; topg ^` �; x : @

k

S ok 13.1
()9K

0

: � ` T :K

0

^ (� ` l : loc _ l = top) ^ y 62 dom(�) [ fx; topg ^` �; x : @

k

S ok 13.2
()9K;K

0

: � ` T :K

0

^ (� ` l : loc _ l = top) ^ y 62 dom(x;�) [ ftopg

^ � ` S :K ^ (� ` k : loc _ k = top) ^ x 62 dom(�) [ ftopg

()` �; y : @

l

T; x :@

k

S ok sym.

Parts (II), (III) and (IV) are immediate from the typing rules and part (I).

The result follows from this, 10, 12 and 9.3. 2

PROOF (of Lemma 15)

15.1 Induction on �; X :K ` T :K

0. Cases B; 1; loc;> and Y , for Y 6= X , are trivial. Cases T
1

�

T

2

, l
io

T

1

and subsumption are by induction. Case X . By the typing rules K = K

0. Case
�Y T

1

. By the typing rules �; X :K;Y :K

0

` T

1

:K

0 and Y guarded in T

1

. By Lemmas 10
and 9.4 �; Y :K

0

; X :K ` T

1

:K

0. By induction �; Y :K

0

` fU=XgT

1

:K

0. By Lemmas 11.1
and 4.1 Y guarded in U . By Lemma 4.2 Y guarded in fU=XgT

1

. By the typing rules � `

�Y (fU=XgT

1

) :K

0. Finally �Y (fU=XgT

1

) = fU=Xg(�Y T

1

).

15.2 Induction on S. Cases B; 1; loc;> and Y , for Y 6= X , contradict the premise. Case X is trivial.
Cases S

1

� S

2

, l
io

S

1

and subsumption are by induction. Case �Y S

1

. w.l.g. Y 62 dom(�) [

fXg, so fU=Xg(�Y S

1

) = �Y (fU=XgS

1

). By the typing rules �; Y :K ` fU=XgS

1

:K

and Y guarded in fU=XgS

1

. By induction there exists K

0 such that �; Y :K ` U :K

0 and
�; Y :K;X :K

0

` S

1

:K. By Lemma 11.1 � ` U :K

0. By Lemmas 10 and 9.4 �; X :K

0

; Y :K `

S

1

:K. By Lemma 4.4 Y guarded in S

1

. By the typing rules �; X :K

0

` �Y S

1

:K.

15.3 Induction on the pair of derivations of � ` T :K

1

and � ` T :K

2

.

15.4 Induction on T + S. The only non-trivial case is

T + S S 6= X

�X T + f�X T = XgS

Suppose � ` �X T :K. By the typing rules there exists K

0 such that X guarded in T ,
�; X :K

0

` T :K

0 and K

0

6 K. By induction �; X :K

0

` S :K

0 and by the typing rules
� ` �X T :K

0. By Lemma 15.1 � ` f�X T=XgS :K

0. By subsumption � ` f�X T=XgS :K.

Suppose � ` f�X T=XgS :K. w.l.g. X 62 dom(�).

Case X 62 ftv(S). We have � ` S :K, so by induction � ` T :K. By Lemma 11.1 �; X :K `

T :K and X 62 ftv(T ). By Lemma 4.1 X guarded in T . By the typing rules � ` �X T :K.
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Case X 2 ftv(S). By Lemma 15.2 there existsK 0 such that � ` �X T :K

0 and �; X :K

0

` S :K.
By the type formation rules there exists K 00 such that �; X :K

00

` T :K

00 and K

00

6 K

0. By
induction �; X :K

0

` T :K. By narrowing �; X :K ^ K

00

` T :K

00 and �; X :K ^ K

00

` T :K.
By Lemma 15.3 �; X :K ^ K

00

` T :K ^ K

00. By the typing rules � ` �X T :K ^ K

00. By
subsumption � ` �X T :K.

2

PROOF (of Lemma 16) Induction on � ` v :T .

Names: By context formation � ` S :K for some kind K. By Lemma 15.4 � ` T :K. By subsumption
� ` T : Type

��

.

Base values and unit: By typing rules and subsumption.

Pairs: By induction and typing rules. 2

A.3 Subtyping

PROOF (of Lemma 17)

1. By induction on derivations one can show S

_

6

1

T ) S

_

6

2

T .

2. We must check that for all guarded pre-types S we have S

_

id S. First, it is straightforward to
check this for all cases of S except �X S. Now for case �X S: by Lemma 3.2 there exists T
such that �X S + T . Lemma 5.1 shows that T is not of the form �Y T

0 and by Lemma 4.7
T guarded. By the first part T _

id T . Using the last two rules for _ shows that �X S

_

id �X S.

3. Write
�

6 for the least relation over guarded pre-types satisfying the rules of the definition of _

6

except the two unfolding rules. We first show

Lemma 41 R

�

6 S ^ S

�

6 T ) R(6;6)

.
T .

PROOF Consider T . Cases B; 1; loc; X: here R = S = T and R

_

R T for any R.

Case >: R _

R > for any R.

Case T
1

�T

2

: then S = S

1

�S

2

, S
1

6 T

1

and S

2

6 T

2

. Similarly R = R

1

�R

2

, R
1

6 S

1

and R

2

6 S

2

. Hence R
i

(6;6)T

i

so R

1

�R

2

(6;6)

.
T

1

� T

2

.

Case l
i

00

o

00

T

1

: similar. 2

Secondly, suppose R 6 S ^ S 6 T . By the premise 6� _

6 we have R _

6S ^ S

_

6T . One can show
R

_

6S ^ S

_

6T ) R(6;6)

.
T by considering cases of the derivations of the premises.

2

PROOF (of Lemma 18) First show 6�

_

6: If S 6 T then there exists R �6 such that S R T ^ R �

_

R. By Lemma 41.1 _

R �

_

6 so by transitivity R �

_

6 so S

_

6T . Now, by Lemma 41.1 again _

6 �

_

_

6 so
_

6 �6. Reflexivity of 6 is by Lemma 41.2, transitivity is by 6= _

6 and Lemma 41.3. 2

PROOF (of Lemma 19) Suppose T is not of the form �X T

1

, then T + T so by Lemma 3.4 T = S

and by Lemma 18 T 6 S 6 T . Otherwise, suppose T = �X T

1

. By Lemma 18 S

_

6S; by the 6 rules
T

_

6S

_

6T and by Lemma 18 T 6 S 6 T . 2

PROOF (of Lemma 20) Parts 1–3 are similar to the proof of Lemma 17. For part 4, one can show
S

�

�T ) T (�

�1

)

..
S by a routine induction. 2
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PROOF (of Lemma 21) Similar to the proof of Lemma 18, except for symmetry. By �= �

� and
Lemma 20.4 we have ��1

� (�

�1

)

.. so by definition of � we have ��1

��. 2

PROOF (of Proposition 22)

Lemma 42 If R = R

�1 then �

R �

_

R.

PROOF Induction on S

�

R T . 2

Lemma 43 ��6.

PROOF By Lemmas 18 and 42 �

� �

_

�. By Lemma 18 �� _

�. By definition of 6 we have
��6. 2

Lemma 44 (6 \ 6

�1

) � (6 \ 6

�1

)

..

PROOF Suppose S 6 T 6 S. By Lemma 18 S

_

6T

_

6S. One can show first that S
�

6 T

�

6 S )

S (6 \ 6

�1

)

..
T by cases of S

�

6 T , and then that S _

6T

_

6S ) S (6 \ 6

�1

)

..
T by cases of

S

_

6T and T

_

6S. 2

Immediate from the above. 2

A.4 Colocality

PROOF (of Lemma 23) Induction on colocal(�; T; T ).

Case T = l

io

T

1

and colocal(io; io): We have i = L _ o = L, so the only applicable kinding rules for
T are kind subsumption and the last two for channels, which give only kinds greater then or equal
to Type

�E

.

Case T = X and :(� ` X : Type

G�

): Immediate.

Case T + T

0 and colocal(�; T

0

; T

0

): By induction :(� ` T

0

: Type

G�

) By Lemma 15.4 :(� `

T : Type

G�

).

Case T = T

1

� T

2

and colocal(�; T

1

; T

1

) (the case for 2 is symmetrical): By induction :(� `

T

1

: Type

G�

). The only applicable kinding rules for T
1

� T

2

are kind subsumption and the prod-
uct rule, which give only kinds greater than or equal to Type

�E

. 2

PROOF (of Lemma 24) Induction on colocal(�; T

1

; T

3

).

Case T
1

= l

io

S

1

, T
3

= l

i

00

o

00

S

3

and colocal(io; i

00

o

00

): As T
2

6 l

i

00

o

00

S

3

by Lemma 18 T

2

_

6 l

i

00

o

00

S

3

so
by the 6 rules there exist i0o0 and S

2

such that T
2

+ l

i

0

o

0

S

2

. By Lemma 15.4 � ` l

i

0

o

0

S

2

: Type

��

.
By Lemmas 19 and 18 T

1

6 l

i

0

o

0

S

2

6 T

3

, so io 6 i

0

o

0

6 i

00

o

00, so colocal(io; i

0

o

0

) and
colocal(i

0

o

0

; i

00

o

00

). By the definition of colocal( ; ; ) colocal(�; T

1

; l

i

0

o

0

S

2

) and colocal(�; l

i

0

o

0

S

2

; T

3

),
then colocal(�; T

1

; T

2

) and colocal(�; T

2

; T

3

).

Case T
1

= T

3

= X and :(� ` X : Type

G�

): By Lemma 18 and the 6 rules T
2

+ X . By the definition
of colocal( ; ; ) colocal(�; T

1

; X) and colocal(�; X; T

3

), then colocal(�; T

1

; T

2

) and colocal(�; T

2

; T

3

).

Case T

1

+ T

0

1

, T
3

+ T

0

3

and colocal(�; T

0

1

; T

0

3

): By Lemma 6.3 there exists T 0

2

such that T
2

+ T

0

2

. By
Lemma 15.4 � ` T

0

2

: Type

��

. By Lemma 19 T

0

1

6 T

0

2

6 T

0

3

. By induction colocal(�; T

0

1

; T

0

2

) and
colocal(�; T

0

2

; T

0

3

). By the definition of colocal( ; ; ) colocal(�; T

1

; T

2

) and colocal(�; T

2

; T

3

).

Case T
1

= R

1

�S

1

, T
3

= R

3

�S

3

and colocal(�; R

1

; R

3

) (the case for S is symmetrical): By Lemma 18
and the6 rules there exist R

2

; S

2

such that T
2

+ R

2

�S

2

. By Lemmas 19 and 18 R

1

�S

1

6 R

2

�S

2

6

R

3

� S

3

so R

1

6 R

2

6 R

3

. By Lemma 15.4 � ` R

2

: Type

��

. By induction colocal(�; R

1

; R

2

) and
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colocal(�; R

2

; R

3

). By the definition of colocal( ; ; ) and the fact that R
1

� S

1

+ R

1

� S

1

and
R

3

� S

3

+ R

3

� S

3

we have colocal(�; T

1

; T

2

) and colocal(�; T

2

; T

3

). 2

PROOF (of Lemma 25) By induction on x 2 colocaln(�; v; S; T ). The name case is immediate, the
pair case is by induction and the colocal rule for pairs, the unfolding case is by induction and the
colocal rule for unfolding, using the fact that � ` v :S implies S + S (Lemma 7). 2

PROOF (of Lemma 26) Induction on x 2 colocaln(�; v; V; T ).

Case x = v and colocal(�; V; T ): By Lemma 24.

Case x 2 colocaln(�; v

1

; V

1

; T

1

) (the case for 2 is symmetrical): We have S + S

1

�S

2

for V
1

6 S

1

6 T

1

and V

2

6 S

2

6 T

2

. By induction x 2 colocaln(�; v

1

; V

1

; S

1

) so by definition of colocaln( ; ; ; )

x 2 colocaln(�; hv

1

; v

2

i; V

1

� V

2

; S

1

� S

2

) and hence x 2 colocaln(�; hv

1

; v

2

i; V

1

� V

2

; S).

Case x 2 colocaln(�; v; V; T

0

) and T + T

0: By Lemma 15.4 � ` T

0

: Type

��

and by Lemma 19
V 6 S 6 T

0. By induction x 2 colocaln(�; v; V; S). 2

PROOF (of Lemma 27) Straightforward induction, using Lemma 24 and S 6 S 6 T in the base
case. 2

PROOF (of Lemma 28)

28.1 By 11.1 and 4.6.

28.2 Induction, using 13.1.

28.3 Induction, using 28.2.

2

PROOF (of Lemma 29)

29.1 Induction on the definition of colocal, using 9.4 and using part (b) of the definition of � �

=

�

in the type variable case.

29.2 Induction on the definition of colocaln, using 9.5, 9.4 and 29.1.

2

A.5 Processes

PROOF (of Lemma 30) Induction on derivations, using Lemmas 7.2 and 6.1. 2

PROOF (of Lemma 31) We show �

�

=

� implies � ` P : process () � ` P : process, the result
then follows by Lemma 14.

OUT By Lemma 9.5, part (IV) of the definition of � �
=

� and Lemma 29.2.

(REP-)IN By Lemma 9.5, Lemma 9.3 and induction and part (IV) of the definition of � �
=

�.

MIG By Lemma 9.5 and induction.

LET By Lemma 9.5, Lemma 9.3 and induction, Lemma 29.2 and part (IV) of the definition of � �
=

�.

NEW By Lemma 9.4, Lemma 9.3 and induction.

NIL By part (I) of the definition of � �
=

�.

PAR By induction.

2
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PROOF (of Lemma 32)

OUT By 30, 13.2, 13.3 and 28.3.

(REP-)IN By 30, 13.2, 13.3, 31 and induction.

MIG By 30, 13.2 and induction.

LET By 30, 13.2, 13.3, 28.3, 31 and induction.

NEW By 13.1, 31 and induction.

NIL Trivial.

PAR By induction.

2

A.6 Relocation

PROOF (of Lemma 33)

33.1 For part (i), if ` � ok then ` � ok so using (b), (c) and 6.3 dom(�) = dom(�). The other
parts are trivial.

33.2 Suppose ` �;� ok. By 33.1 � . � so by 8.4 ` �;� ok.

33.3 We show

� If � ' � then �; X :K ' �; X :K.

� If � ' � then �; x : @

l

T ' �; x : @

l

T .

The result is then a trivial induction on �. For the first, part (a) is by 33.2. Part (b) is by 33.2
and part (b) for � ' �. Part (c) is by 33.2 and part (c) for � ' �. For Part (d), suppose
�; X :K ` x : T ^ colocal((�; X :K); T; T ). By 11.2, 16 and 11.1 � ` x :T and X 62 ftv(T ). By
28.1 colocal(�; T; T ). By (d) � ` x@l () � ` x@l. By 11.3 �; X :K ` x@l () �; X :K `

x@l.

For the second, part (a) is by 33.2. Part (b) is by 33.2 and part (b) for � ' �. Part (c) is by 33.2
and part (c) for � ' �. For Part (d), suppose �; x : @

l

T ` x

0

:T

0

^ colocal((�; x : @

l

T ); T

0

; T

0

).
By 28.2 colocal(�; T

0

; T

0

). Now, either x0 = x, in which case using Part (a) above �; x : @

l

T `

x

0

@k () k = l () �; x : @

l

T ` x

0

@k, or � ` x

0

:T

0. In this case by (d) � ` x

0

@k ()

� ` x

0

@k and by 13.3 �; x : @

l

T ` x

0

@k () �; x : @

l

T ` x

0

@k.

33.4 By 33.1 and 8.2.

33.5 Induction on type derivations using (c).

33.6 Induction on the definition of colocal, using 33.4 and using (b) in the type variable case.

33.7 Induction on the definition of colocaln, using 33.5, 33.4 and 33.6.

33.8 Induction on type derivations. We show the implication � ` P : process) � ` P : process.
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OUT

OUT

� ` l : loc

� ` x : l

io

T

� ` v :T

0

T

0

6 T

o 6 L

o = L) � ` x@l

8a 2 colocaln(�; v; T

0

; T ) : � ` a@l

� ` @

l

xv : process

OUT

� ` l : loc

� ` x : l

io

T

� ` v :T

0

T

0

6 T

o 6 L

o = L) � ` x@l

8a 2 colocaln(�; v; T

0

; T ) : � ` a@l

� ` @

l

xv : process

The first three premises of the right hand OUT are by 33.5. The next two are immediate.
Suppose o = L, then � ` x@l and colocal(�; l

io

T; l

io

T ) so � ` x@l.

Suppose a 2 colocaln(�; v; T

0

; T ). By Lemma 33.7 a 2 colocaln(�; v; T

0

; T ) so by the
premise � ` a@l. By Lemma 27 there exists S such that � ` a :S and colocal(�; S; S). By
(d) we have � ` a@l.

(REP-)IN

(REP-)IN

� ` l : loc

� ` x : l

io

T

�; y : @

l

T ` P : process

i 6 L

i = L) � ` x@l


(P ) � flg

� ` @

l

x

(

y

)

:P : process

� ` @

l

!x

(

y

)

:P : process

(REP-)IN

� ` l : loc

� ` x : l

io

T

�; y : @

l

T ` P : process

i 6 L

i = L) � ` x@l


(P ) � flg

� ` @

l

x

(

y

)

:P : process

� ` @

l

!x

(

y

)

:P : process

The first two premises are by (c). By 33.3 we have �; y : @

l

T ' �; y : @

l

T so by induction
�; y : @

l

T ` P : process. Suppose i = L, then � ` x@l and colocal(�; l

io

T; l

io

T ) so
� ` x@l.

MIG

MIG

� ` l : loc

� ` v : loc

� ` P : process


(P ) � flg

� ` @

l

migrate to v then P : process

MIG

� ` l : loc

� ` v : loc

� ` P : process


(P ) � flg

� ` @

l

migrate to v then P : process

Straightforward, by 33.5 and induction.

LET

LET

� ` l : loc

� ` v :T

0

�; y

1

: @

l

T

1

; y

2

: @

l

T

2

` P : process

T

0

6 T

1

� T

2

8a 2 colocaln(�; v; T

0

; T

1

� T

2

) : � ` a@l


(P ) � flg

� ` @

l

let hy
1

:T

1

; y

2

: T

2

i = v in P : process

LET

� ` l : loc

� ` v :T

0

�; y

1

: @

l

T

1

; y

2

: @

l

T

2

` P : process

T

0

6 T

1

� T

2

8a 2 colocaln(�; v; T

0

; T

1

� T

2

) : � ` a@l


(P ) � flg

� ` @

l

let hy
1

:T

1

; y

2

:T

2

i = v in P : process

The first two premises are by 33.5. By 33.3 we have �; y

1

: @

l

T

1

; y

1

: @

l

T

1

'

�; y

1

: @

l

T

1

; y

2

: @

l

T

2

so by induction �; y

1

: @

l

T

1

; y

2

: @

l

T

2

` P : process.

Suppose a 2 colocaln(�; v; T

0

; T

1

� T

2

). By Lemma 33.7 a 2 colocaln(�; v; T

0

; T

1

� T

2

)

so by the premise � ` a@l. By Lemma 27 there exists S such that � ` a :S and
colocal(�; S; S). By (d) we have � ` a@l.
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NEW

NEW

� ` T : Type

�E

�; x : @

l

T ` P : process

� ` (new x : @

l

T )P : process

NEW

� ` T : Type

�E

�; x : @

l

T ` P : process

� ` (new x : @

l

T )P : process

Straightforward by 33.4, 33.3 and induction.

NIL

NIL
` � ok

� ` 0 : process

NIL
` � ok

� ` 0 : process

Straightforward by (a).

PAR

PAR

� ` P : process

� ` Q : process

� ` P jQ : process

PAR

� ` P : process

� ` Q : process

� ` P jQ : process

Straightforward by induction.

2

A.7 Narrowing

PROOF (of Lemma 34)

34.1 For part (i), if ` � ok then ` � ok so using (2) and (3) dom(�) = dom(�). Parts (ii) and (iii)
are by (1) and (2). For part (iv) if � ` x : loc then by (1) there exists S such that � ` x :S so
by (4) S = loc.

34.2 Suppose ` �;� ok. By 34.1 � . � so by 8.4 ` �;� ok.

34.3 We show

� If � 6 � then �; X :K 6 �; X :K.

� If � 6 � then �; x : @

l

T 6 �; x : @

l

T .

The result is then a trivial induction on �. For the first, part (1) is by 34.2. Part (2) is by 34.2
and part (2) for � 6 �. Part (3) is by 34.2 and part (3) for � 6 �. For Part (4), suppose
�; X :K ` x :T ^ �; X :K ` x :S.

By 11.2 � ` x :T ^ � ` x :S so by part (3) for � 6 � we have T 6 S.

For the second, part (1) is by 34.2. Part (2) is by 34.2 and part (2) for � 6 �. Part (3) is by
34.2 and part (3) for � 6 �. For Part (4) suppose �; x : @

l

T ` x

0

:T

0

^ �; x : @

l

T ` x

0

:S

0.

Case x0 = x: by typing rules T 0

= S

0 so T

0

6 S

0. Case x

0

6= x: By 13.2 � ` x

0

:T

0

^ � ` x

0

:S

0

so by part (3) for � 6 � we have T 0

6 S

0.

34.4 By Lemma 34.1 and 8.2.

34.5 Induction on � ` v :S. Names are by the definition of � 6 �, base values and unit by (1) and
the reflexivity of subtyping, pairs by induction and the subtyping rules for �.

34.6 Induction on colocal, using 34.4 and (2) in the type variable case.
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34.7 Consider x in the left hand side of the conclusion.

Case x = v ^ colocal(�; T

0

; S). By Lemma 34.6 colocal(�; T

0

; S). By Lemma 24
colocal(�; S

0

; S). By definition of colocaln x is an element of the right hand side.

Case x 2 colocaln(�; v

1

; T

0

1

; S

1

). We have S0 = S

0

1

�S

0

2

. By induction x 2 colocaln(�; v

1

; S

0

1

; S

1

).
By definition of colocaln x 2 colocaln(�; hv

1

; v

2

i; S

0

1

� S

0

2

; S

1

� S

2

) so x is an element of the
right hand side.

Case x 2 colocaln(�; v

1

; T

0

; S

0

) and S + S

0

. By Lemma 19 we have T 0

6 S

0

6 S

0

. By induction
x 2 colocaln(�; v; S

0

; S

0

). By definition of colocaln x 2 colocaln(�; v; S

0

; S).

34.8 By induction on type derivations.

OUT

OUT

� ` l : loc

� ` x : l

io

S

� ` v :S

0

S

0

6 S

o 6 L

o = L) � ` x@l

8a 2 colocaln(�; v; S

0

; S) : � ` a@l

� ` @

l

xv : process

OUT

� ` l : loc

� ` x : l

i

0

o

0

T

� ` v :T

0

T

0

6 T

o

0

6 L

o

0

= L) � ` x@l

8a 2 colocaln(�; v; T

0

; T ) : � ` a@l

� ` @

l

xv : process

By Lemma 34.5 there exist L, ^

T and T

0 such that

� ` l :L L 6 loc

� ` x :

^

T

^

T 6 l

io

S

� ` v :T

0

T

0

6 S

0

By Lemma 18 L

_

6loc and ^

T

_

6 l

io

S. By Lemma 7.3 L + L and ^

T +

^

T so by Lemma 5.1
L and ^

T are not of the form �X . By the 6 rules L = loc and there exist i0o0 and T

such that ^

T = l

i

0

o

0

T . By the 6 rules as o 6 L we have S 6 T . By transitivity as have
T

0

6 S

0

6 S 6 T we have T 0

6 T . By the 6 rules i0o0 6 io so o

0

6 L.

Suppose o0 = L. Then o = L so � ` x@l. By � 6 � we have � ` x@l.

Suppose a 2 colocaln(�; v; T

0

; T ). By Lemma 26 a 2 colocaln(�; v; T

0

; S). By
Lemma 34.7 a 2 colocaln(�; v; S

0

; S), so � ` a@l, so by definition of � 6 � we have
� ` a@l.

(REP-)IN

(REP-)IN

� ` l : loc

� ` x : l

io

S

�; y :@

l

S ` P : process

i 6 L

i = L) � ` x@l


(P ) � flg

� ` @

l

x

(

y

)

:P : process

� ` @

l

!x

(

y

)

:P : process

(REP-)IN

� ` l : loc

� ` x : l

i

0

o

0

T

�; y : @

l

T ` P : process

i

0

6 L

i

0

= L) � ` x@l


(P ) � flg

� ` @

l

x

(

y

)

:P : process

� ` @

l

!x

(

y

)

:P : process

As in OUT there exist i0o0 and T such that

� ` l : loc

� ` x : l

i

0

o

0

T

and l
i

0

o

0

T 6 l

io

S. By the 6 rules as i 6 L we have T 6 S.
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By Lemma 34.3 �; y : @

l

T 6 �; y :@

l

T . Using Lemma 34.4 �; y : @

l

T 6 �; y : @

l

S so by
transitivity �; y : @

l

T 6 �; y : @

l

S.

By induction �; y : @

l

T ` P : process.

By the 6 rules i0o0 6 io so i

0

6 L.

Suppose i0 = L. Then i = L so � ` x@l. By � 6 � we have � ` x@l.

MIG

MIG

� ` l : loc

� ` v : loc

� ` P : process


(P ) � flg

� ` @

l

migrate to v then P : process

MIG

� ` l : loc

� ` v : loc

� ` P : process


(P ) � flg

� ` @

l

migrate to v then P : process

Similar reasoning for l and v as in the (REP)-IN case, and induction.

LET

LET

� ` l : loc

� ` v :S

0

�; y

1

: @

l

T

1

; y

2

: @

l

T

2

` P : process

S

0

6 T

1

� T

2

8a 2 colocaln(�; v; S

0

; T

1

� T

2

) : � ` a@l


(P ) � flg

� ` @

l

let hy
1

:T

1

; y

2

:T

2

i = v in P : process

LET

� ` l : loc

� ` v :T

0

�; y

1

: @

l

T

1

; y

2

: @

l

T

2

` P : process

T

0

6 T

1

� T

2

8a 2 colocaln(�; v; T

0

; T

1

� T

2

) : � ` a@l


(P ) � flg

� ` @

l

let hy
1

:T

1

; y

2

:T

2

i = v in P : process

As in OUT there exists T 0 such that T 0

6 S

0 and

� ` l : loc

� ` v :T

0

By Lemma 34.3 �; y

1

: @

l

T

1

; y

2

:@

l

T

2

6 �; y

1

: @

l

T

1

; y

2

: @

l

T

2

.

By induction �; y

1

: @

l

T

1

; y

2

: @

l

T

2

` P : process.

By transitivity T 0

6 T

1

� T

2

.

Suppose a 2 colocaln(�; v; T

0

; T

1

�T

2

). By Lemma 34.7 a 2 colocaln(�; v; S

0

; T

1

�T

2

), so
� ` a@l, so by definition of � 6 � we have � ` a@l.

NEW

NEW

� ` S : Type

�E

�; x : @

l

S ` P : process

� ` (new x : @

l

S)P : process

NEW

� ` S : Type

�E

�; x : @

l

S ` P : process

� ` (new x : @

l

S)P : process

By Lemma 34.4 � ` S : Type

�E

.

By Lemma 34.3 �; x : @

l

S 6 �; x : @

l

S.

By induction �; x : @

l

S ` P : process.

NIL

NIL
` � ok

� ` 0 : process

NIL
` � ok

� ` 0 : process

By part (1) of � 6 �.
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PAR

PAR

� ` P : process

� ` Q : process

� ` P jQ : process

PAR

� ` P : process

� ` Q : process

� ` P jQ : process

By induction.

2

A.8 Substitution

PROOF (of Lemma 35) Induction on P . 2

PROOF (of Lemma 36) Induction on �; z : @

j

V ` w :S.

Case w = z. We have S = V so take T
def
= U .

Case w = x 6= z. Use reflexivity of 6.

Cases b; hi. Use reflexivity of 6.

Case hw
1

; w

2

i. By the typing rules S = S

1

� S

2

and for i 2 f1; 2g we have �; z : @

j

V ` w

i

:S

i

. By
induction there exist T

1

; T

2

such that for i 2 f1; 2gwe have � ` fu=zgw

i

:T

i

^ T

i

6 S

i

. By the typing
and subtyping rules � ` fu=zghw

1

; w

2

i :T

1

� T

2

^ T

1

� T

2

6 S

1

� S

2

. 2

PROOF (of Lemma 37) By Lemmas 36 and 7.1 T

0

6 S

0.

Suppose a is an element of the left hand side.

� Base case a = fu=zgv ^ colocal(�; T

0

; S):

– subcase a = v 6= z: We have S

0

= T

0 so a 2 colocaln(�; v; S

0

; S) so by Lemma 28.3
a 2 colocaln((�; z : @

j

V ); v; S

0

; S).

– subcase a = u ^ v = z: By value typing rules V + S

0 and by Lemma 7.1 U = T

0. By
Lemma 19 T

0

6 S

0 so we have

U 6 V

k (

T

0

6 S

0

6 S

By Lemmas 16 and 13.1 for S

0, Lemma 13.1 for S, Lemma 16 for U and T

0 and the
premise for V each of these has kind Type

��

in �. We have U 6 S

0

6 S and
(by Lemma 19) U 6 V 6 S so by Lemma 24 colocal(�; U; V ) and colocal(�; S

0

; S).
By Lemma 28.2 colocal((�; z : @

j

V ); S

0

; S). By the definition of colocaln we have a 2

colocaln(�; u; U; V ) and z 2 colocaln((�; z :@

j

V ); v; S

0

; S).

� Inductive case

fu=zgv = hw

1

; w

2

i

T

0

= T

0

1

� T

0

2

S = S

1

� S

2

a 2 colocaln(�; w

1

; T

0

1

; S

1

)
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– subcase v = hv

1

; v

2

i ^ fu=zgv

1

= w

1

^ fu=zgv

2

= w

2

: By the typing rules for pairs there
exist S0

1

and S

0

2

such that S0 = S

0

1

� S

0

2

and �; z : @

j

V ` v

1

:S

0

1

. By the 6 rules S0
1

6 S

1

.
By induction

a 2 fcolocaln(�; u; U; V )=zgcolocaln((�; z : @

j

V ); v

1

; S

0

1

; S

1

):

By the definition of colocaln and monotonicity of f = g we have

a 2 fcolocaln(�; u; U; V )=zgcolocaln((�; z : @

j

V ); hv

1

; v

2

i; S

0

1

� S

0

2

; S

1

� S

2

):

– subcase v = z ^ u = hw

1

; w

2

i: As in the subcase a = u ^ v = z we have

U 6 V

k (

T

0

6 S

0

6 S

By definition of colocaln we have a 2 colocaln(�; hw

1

; w

2

i; T

0

1

� T

0

2

; S

1

� S

2

) so a 2

colocaln(�; u; U; S). By Lemma 26 a 2 colocaln(�; u; U; S

0

). By definition of colocaln a 2
colocaln(�; u; U; V ). Now, by Lemma 25 colocal(�; T

0

; S). By Lemma 24 colocal(�; S

0

; S).
By the definition of colocaln we have z 2 colocaln((�; z : @

j

V ); v; S

0

; S).

� Inductive case a 2 colocaln(�; fu=zgv; T

0

; S

0

) and S + S

0

: By Lemma 15.4
�; z : @

j

V ` S

0

: Type

��

. By Lemma 19 S

0

6 S

0

. By induction a 2

fcolocaln(�; u; U; V )=zgcolocaln((�; z : @

j

V ); v; S

0

; S

0

). By the definition of colocaln and
monotonicity of f = g we have

a 2 fcolocaln(�; u; U; V )=zgcolocaln((�; z : @

j

V ); v; S

0

; S):

2

PROOF (of Lemma 38) By induction on type derivations.

OUT To show this instance of the substitution lemma we suppose we have its premises, and so the
upper instance of OUT, and show the lower instance of OUT.

�; z : @

j

V ` @

l

xv : process

� ` u :U

U 6 V

8a 2 colocaln(�; u; U; V ) : � ` a@j

z 62 
(@

l

xv)

� ` fu=zg@

l

x
v : process

OUT

�; z : @

j

V ` l : loc

�; z : @

j

V ` x : l

io

S

�; z : @

j

V ` v :S

0

S

0

6 S

o 6 L

o = L) �; z : @

j

V ` x@l

8a 2 colocaln(�; z : @

j

V; v; S

0

; S) : �; z : @

j

V ` a@l

�; z : @

j

V ` @

l

xv : process

OUT

� ` fu=zgl : loc

� ` fu=zgx : l

i

0

o

0

T

� ` fu=zgv :T

0

T

0

6 T

o

0

6 L

o

0

= L) � ` fu=zgx@fu=zgl

8a 2 colocaln(�; fu=zgv; T

0

; T ) : � ` a@fu=zgl

� ` @

fu=zgl

fu=zgxfu=zgv : process

By z 62 
(@

l

xv) have z 6= l so fu=zgl = l. By Lemma 13.2 � ` fu=zgl : loc.

By Lemma 36 there is a type ^

T such that � ` fu=zgx : ^T ^

^

T 6 l

io

S.

By Lemma 7.3 ^

T +

^

T so by Lemma 5.1 ^

T is not of the form �X and by the subtyping rules
there are i0o0 and T such that ^

T = l

i

0

o

0

T . By the subtyping rules i0o0 6 io. Also, as o 6 L we
have contravariant(io) _ nonvariant(io) so S 6 T .
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By Lemma 36 there is a type T 0 such that � ` fu=zgv :T 0

^ T

0

6 S

0.

By transitivity T 0

6 T .

By transitivity o0 6 L.

Now suppose o0 = L. It follows that o = L so �; z : @

j

V ` x@l.

Case z 6= x: By Lemma 13.3 � ` x@l so � ` (fu=zgx)@(fu=zgl) .

Case z = x: By value typing and location rules V + l

io

S and j = l.

By Lemma 7.1 U =

^

T so U = l

i

0

o

0

T .

By Lemmas 16 and 13.1 we have � ` l

i

0

o

0

T : Type

��

, � ` l
io

S : Type

��

and l
i

0

o

0

T 6

l

io

S. As colocal(io; i0o0) we have colocal(�; l

i

0

o

0

T; l

io

S).

By the value typing rules u is a name, so u 2 colocaln(�; u; l

i

0

o

0

T; l

io

S).

By the definition of colocaln u 2 colocaln(�; u; l

i

0

o

0

T; V ) = colocaln(�; u; U; V ).

By the premise of the substitution lemma � ` u@j so � ` u@l.

Suppose a 2 colocaln(�; fu=zgv; T

0

; T ).

By Lemma 26 a 2 colocaln(�; fu=zgv; T

0

; S).

By Lemma 37 one of the following hold.

1. a 6= z and a 2 colocaln((�; z : @

j

V ); v; S

0

; S)

2. a 2 colocaln(�; u; U; V ) and z 2 colocaln((�; z : @

j

V ); v; S

0

; S)

In the first case by the premise of the upper instance of OUT we have �; z :@

j

V ` a@l so by
Lemma 13.3 � ` a@l.

In the second case by the premise of the substitution lemma we have � ` a@j. Moreover, by
the premise of the upper instance of OUT we have �; z : @

j

V ` z@l so j = l so � ` a@l.

(REP-)IN To show the instance of the substitution lemma on the left we suppose we have its
premises, and hence the left instance of (REP-)IN. We show, using the right instance of the
substitution lemma, that we have the right instance of (REP-)IN.

�; z :@

j

V ` @

l

x

(

y

)

:P : process

� ` u :U

U 6 V

8a 2 colocaln(�; u; U; V ) : � ` a@j

z 62 
(@

l

x

(

y

)

:P )

� ` fu=zg@

l

x

(

y

)

:P : process

�; y :@

l

S; z : @

j

V ` P : process

�; y :@

l

S ` u :U

U 6 V

8a 2 colocaln(�; y : @

l

S; u; U; V ) : �; y : @

l

S ` a@j

z 62 
(P )

�; y : @

l

S ` fu=zgP : process

(REP-)IN

�; z : @

j

V ` l : loc

�; z : @

j

V ` x : l

io

S

�; z : @

j

V; y : @

l

S ` P : process

i 6 L

i = L) �; z : @

j

V ` x@l


(P ) � flg

�; z : @

j

V ` @

l

x

(

y

)

:P : process

�; z : @

j

V ` @

l

!x

(

y

)

:P : process

(REP-)IN

� ` fu=zgl : loc

� ` fu=zgx :l

i

0

o

0

T

�; y : @

fu=zgl

T ` fu=zgP : process

i

0

6 L

i

0

= L) � ` fu=zgx@fu=zgl


(fu=zgP ) � ffu=zglg

� ` @

fu=zgl

fu=zgx

(

y

)

:fu=zgP : process

� ` @

fu=zgl

! fu=zgx

(

y

)

:fu=zgP : process

Premises of right hand substitution lemma:

By Lemma 30 ` �; z : @

j

V; y : @

l

S ok .
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By context formation z 6= y, j 6= y and by z 62 
(@

l

:::) we have z 6= l.

By Lemma 31 �; y : @

l

S; z : @

j

V ` P : process.

By Lemma 13.2 �; y : @

l

S ` u :U .

By Lemma 28.3 colocaln((�; y : @

l

S); u; U; V ) = colocaln(�; u; U; V ).

By Lemma 13.3 � ` a@j ) �; y : @

l

S ` a@j.

By z 62 
(@

l

:::) and z 6= y we have z 62 
(P ).

Now the premises of the right hand instance of (REP-)IN:

By Lemma 13.2 � ` fu=zgl : loc.

By Lemma 36 there is a type ^

T such that � ` fu=zgx : ^T ^

^

T 6 l

io

S.

By Lemma 7.3 ^

T +

^

T so by Lemma 5.1 ^

T is not of the form �X so by the subtyping rules
there are i0o0 and T such that ^

T = l

i

0

o

0

T . By the subtyping rules i0o0 6 io.

Also, as i 6 L we have covariant(io) _ nonvariant(io) so T 6 S.

By the right hand substitution lemma �; y : @

l

S ` fu=zgP : process.

It is clear that �; y : @
l

T 6 �; y : @

l

S so by Lemma 34.8 �; y : @

l

T ` fu=zgP : process.

By transitivity i0 6 L.

Now suppose i

0

= L. It follows that i = L so �; z : @

j

V ` x@l. The next part is exactly as in
OUT.

Case z 6= x: By Lemma 13.3 � ` x@l so � ` (fu=zg)x@(fu=zgl) .

Case z = x: By value typing and location rules V + l

io

S and j = l.

By Lemma 7.1 U =

^

T so U = l

i

0

o

0

T .

By Lemmas 16 and 13.1 we have � ` l

i

0

o

0

T : Type

��

, � ` l
io

S : Type

��

and l
i

0

o

0

T 6

l

io

S. As colocal(io; i0o0) we have colocal(�; l

i

0

o

0

T; l

io

S).

By the value typing rules u is a name, so u 2 colocaln(�; u; l

i

0

o

0

T; l

io

S).

By the definition of colocaln u 2 colocaln(�; u; l

i

0

o

0

T; V ) = colocaln(�; u; U; V ).

By the premise of the substitution lemma � ` u@j so � ` u@l.

By Lemma 35 
(fu=zgP ) = 
(P ) � flg = ffu=zglg.

MIG To show the instance of the substitution lemma on the left we suppose we have its premises,
and hence the left instance of MIG. We show, using the right instance of the substitution
lemma, that we have the right instance of MIG.

�; z : @

j

V ` @

l

migrate to v then P : process

� ` u :U

U 6 V

8a 2 colocaln(�; u; U; V ) : � ` a@j

z 62 
(@

l

migrate to v then P )

� ` fu=zg@

l

migrate to v then P : process

�; z : @

j

V ` P : process

� ` u :U

U 6 V

8a 2 colocaln(�; u; U; V ) : � ` a@j

z 62 
(P )

� ` fu=zgP : process

MIG

�; z : @

j

V ` l : loc

�; z : @

j

V ` v : loc

�; z : @

j

V ` P : process


(P ) � flg

�; z : @

j

V ` @

l

migrate to v then P : process

MIG

� ` fu=zgl : loc

� ` fu=zgv : loc

� ` fu=zgP : process


(fu=zgP ) � ffu=zglg

� ` @

fu=zgl

migrate to fu=zgv then fu=zgP : process
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The premises of the right instance of the substitution lemma are all immediate except for
z 62 
(P ), which follows from the last premise of the left instance of MIG.

For the premises of the right instance of MIG:

By z 62 
(@

l

:::) have z 6= l so fu=zgl = l. By Lemma 13.2 � ` fu=zgl : loc.

By Lemma 36 there is a type T 0 such that � ` fu=zgv :T 0

^ T

0

6 loc.

By Lemma 7.3 T

0

+ T

0 so T

0 is not of the form �X so by the subtyping rules T 0

= loc so
� ` fu=zgv : loc.

By the right instance of the substitution lemma � ` fu=zgP : process.

By Lemma 35 
(fu=zgP) = 
(P ). By the premise of the left hand instance of MIG 
(P ) �

flg = ffu=zglg.

LET To show the instance of the substitution lemma at the top we suppose we have its premises,
and hence the upper instance of LET. We show, using the lower instance of the substitution
lemma, that we have the lower instance of LET.

�; z : @

j

V ` @

l

let hy
1

:T

1

; y

2

:T

2

i = v in P : process

� ` u :U

U 6 V

8a 2 colocaln(�; u; U; V ) : � ` a@j

z 62 
(@

l

let hy
1

:T

1

; y

2

:T

2

i = v in P )

� ` fu=zg@

l

let hy
1

:T

1

; y

2

:T

2

i = v in P : process

�; y

1

: @

l

T

1

; y

2

: @

l

T

2

; z : @

j

V ` P : process

�; y

1

: @

l

T

1

; y

2

: @

l

T

2

` u :U

U 6 V

8a 2 colocaln(�; y

1

: @

l

T

1

; y

2

: @

l

T

2

; u; U; V ) : �; y

1

: @

l

T

1

; y

2

: @

l

T

2

` a@j

z 62 
(P )

�; y

1

: @

l

T

1

; y

2

: @

l

T

2

` fu=zgP : process

LET

�; z : @

j

V ` l : loc

�; z : @

j

V ` v :S

0

�; z : @

j

V; y

1

: @

l

T

1

; y

2

: @

l

T

2

` P : process

S

0

6 T

1

� T

2

8a 2 colocaln(�; z : @

j

V; v; S

0

; T

1

� T

2

) : �; z : @

j

V ` a@l


(P ) � flg

�; z : @

j

V ` @

l

let hy
1

:T

1

; y

2

:T

2

i = v in P : process

LET

� ` fu=zgl : loc

� ` fu=zgv :T

0

�; y

1

: @

fu=zgl

T

1

; y

2

: @

fu=zgl

T

2

` fu=zgP : process

T

0

6 T

1

� T

2

8a 2 colocaln(�; fu=zgv; T

0

; T

1

� T

2

) : � ` a@l


(fu=zgP ) � ffu=zglg

� ` @

fu=zgl

let hy
1

:T

1

; y

2

:T

2

i = fu=zgv in fu=zgP : process

Premises of second instance of substitution lemma:

By Lemma 30 ` �; z : @

j

V; y

1

: @

l

T

1

; y

2

: @

l

T

2

ok.

By context formation j 62 fy

1

; y

2

g and by z 62 
(:::) l 6= z.

By Lemma 31 �; y

1

: @

l

T

1

; y

2

: @

l

T

2

; z : @

j

V ` P : process.

By Lemma 13.2 �; y

1

: @

l

T

1

; y

2

:@

l

T

2

` u :U .

By Lemma 28.3 colocaln((�; y

1

: @

l

T

1

; y

2

: @

l

T

2

); u; U; V ) = colocaln(�; u; U; V ).
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By Lemma 13.3 � ` a@j ) �; y

1

: @

l

T

1

; y

2

: @

l

T

2

` a@j.

By z 62 fy
2

; y

2

g we have z 62 
(P ).

Premises of lower instance of LET:

By Lemma 13.2 � ` fu=zgl : loc.

By Lemma 36 there is a type T 0 such that � ` fu=zgv :T 0

^ T

0

6 S

0.

By transitivity T 0

6 T

1

� T

2

.

Suppose a 2 colocaln(�; fu=zgv; T

0

; T

1

� T

2

).

By Lemma 37 one of the following hold.

1. a 6= z and a 2 colocaln((�; z : @

j

V ); v; S

0

; T

1

� T

2

)

2. a 2 colocaln(�; u; U; V ) and z 2 colocaln((�; z : @

j

V ); v; S

0

; T

1

� T

2

)

In the first case by the premise of the upper instance of LET we have �; z : @

j

V ` a@l so by
Lemma 13.3 � ` a@l.

In the second case by the premise of the substitution lemma we have � ` a@j. Moreover, by
the premise of the upper instance of LET we have �; z :@

j

V ` z@l so j = l so � ` a@l.

Finally 
(:::) as in MIG.

NEW

�; z : @

j

V ` (new y : @

l

S)P : process

� ` u :U

U 6 V

8a 2 colocaln(�; u; U; V ) : � ` a@j

z 62 
((new y : @

l

S)P )

� ` fu=zg(new y :@

l

S)P : process

�; y : @

l

S; z : @

j

V ` P : process

�; y : @

l

S ` u :U

U 6 V

8a 2 colocaln(�; y : @

l

S; u; U; V ) : �; y : @

l

S ` a@j

z 62 
(P )

�; y : @

l

S ` fu=zgP : process

NEW

�; z : @

j

V ` S : Type

�E

�; z : @

j

V; y : @

l

S ` P : process

�; z : @

j

V ` (new y : @

l

S)P : process

NEW

� ` S : Type

�E

�; y : @

fu=zgl

S ` fu=zgP : process

� ` (new y : @

fu=zgl

S)fu=zgP : process

Premises of right hand substitution lemma (exactly as in (REP-)IN):

By Lemma 30 ` �; z : @

j

V; y : @

l

S ok .

By context formation j 6= y and by z 62 
(@

l

:::) we have z 6= l.

By Lemma 31 �; y : @

l

S; z : @

j

V ` P : process.

By Lemma 13.2 �; y : @

l

S ` u :U .

By Lemma 28.3 colocaln((�; y : @

l

S); u; U; V ) = colocaln(�; u; U; V ).

By Lemma 13.3 � ` a@j ) �; y : @

l

S ` a@j.

By z 62 
(@

l

:::) and z 6= y we have z 62 
(P ).

Now the premises of the right hand instance of NEW:

By Lemma 13.1 � ` S : Type

�E

.

NIL Trivial.

PAR By induction.

2
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A.9 Subject reduction

PROOF (of Lemma 39) Induction on �. 2

PROOF (of Lemma 40) Inductions on P � Q. The 
( ) part is straightforward. For the other part,
we check each equation:

1: By Lemma 30.

2,3: Trivial.

4: Assume w.l.g. that x, y and dom(�) are all distinct. By typing u and v must be names, say k and
l. The result then follows from Lemmas 13.1 and 31.

5: By Lemma 32. 2
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Security, Zürich, pages 36–47. ACM Press, April 1997. Long version as Technical Report
414, University of Cambridge.

[Ama97] R. M. Amadio. An asynchronous model of locality, failure, and process mobility. In
COORDINATION 97, Berlin. LNCS 1282, 1997. Rapport Interne LIM February 1997, and
INRIA Research Report 3109. To appear.

[AP94] R. M. Amadio and S. Prasad. Localities and failures. In P. S. Thiagarajan, editor, Proceed-
ings of 14th FST and TCS Conference, FST-TCS’94. LNCS 880, pages 205–216. Springer-
Verlag, 1994.

[Bou92] Gérard Boudol. Asynchrony and the �-calculus (note). Rapport de Recherche 1702,
INRIA Sofia-Antipolis, May 1992.

[CG97] Luca Cardelli and Andrew D. Gordon. Mobile ambients. Draft, July 1997.

[FG96] Cédric Fournet and Georges Gonthier. The reflexive CHAM and the join-calculus. In
Proceedings of the 23rd POPL, pages 372–385. ACM press, January 1996.

[FGL+96] Cédric Fournet, Georges Gonthier, Jean-Jacques Lévy, Luc Maranget, and Didier Rémy.
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