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Abstract
Shared memory concurrency relies on synchronisation primitives:
compare-and-swap, load-reserve/store-conditional (aka LL/SC),
language-level mutexes, and so on. In a sequentially consistent
setting, or even in the TSO setting of x86 and Sparc, these have
well-understood semantics. But in the very relaxed settings of
IBM R© POWERR©, ARM, or C/C++, it remains surprisingly unclear
exactly what the programmer can depend on.

This paper studies relaxed-memory synchronisation. On the
hardware side, we give a clear semantic characterisation of the
load-reserve/store-conditional primitives as provided by POWER
multiprocessors, for the first time since they were introduced 20
years ago; we cover their interaction with relaxed loads, stores,
barriers, and dependencies. Our model, while not officially sanc-
tioned by the vendor, is validated by extensive testing, comparing
actual implementation behaviour against an oracle generated from
the model, and by detailed discussion with IBM staff. We believe
the ARM semantics to be similar.

On the software side, we prove sound a proposed compilation
scheme of the C/C++ synchronisation constructs to POWER, in-
cluding C/C++ spinlock mutexes, fences, and read-modify-write
operations, together with the simpler atomic operations for which
soundness is already known from our previous work; this is a first
step in verifying concurrent algorithms that use load-reserve/store-
conditional with respect to a realistic semantics. We also build con-
fidence in the C/C++ model in its own terms, fixing some omis-
sions and contributing to the C standards committee adoption of
the C++11 concurrency model.

Categories and Subject Descriptors C.1.2 [Multiple Data Stream
Architectures (Multiprocessors)]: Parallel processors; D.1.3 [Con-
current Programming]: Parallel programming; F.3.1 [Specifying
and Verifying and Reasoning about Programs]

General Terms Languages, Reliability, Standardisation, Theory,
Verification

Keywords Relaxed Memory Models, Semantics

1. Introduction
Synchronisation is fundamental to shared-memory concurrency,
but the properties of basic real-world synchronisation primitives re-
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main surprisingly unclear: there is a big gap between the usual de-
scriptions of their behaviour, which presuppose a sequentially con-
sistent (SC) [Lam79] setting, and their behaviour in actual multi-
processors and programming languages, which are not SC. Instead
of interleaving operations from different threads, all with a consis-
tent view of memory, real systems exposerelaxed memory models
to the programmer, to allow for hardware and compiler optimisa-
tions. In such a setting, even basic properties, such as locks ensur-
ing that locations are “not concurrently accessed”, become hard to
understand, as one cannot reason in simple global-time terms; the
semantics of synchronisation primitives are necessarily intertwined
with the relaxed semantics of other code, including whatever loads,
stores, and barriers are present.

This paper addresses relaxed-memory synchronisation in hard-
ware and in software, and the relationship between the two. Our
first main contribution, on the hardware side, is a usable model
for the synchronisation primitives, load-reserve/store-conditional
pairs, of the highly relaxed IBMR© Power ArchitectureR© (§2). While
these have been present in the architecture for 20 years, their
relaxed-memory behaviour have never before been clearly ex-
plained (for example, confusion on this point has led to a Linux
kernel bug in the implementations of atomic operations [McK11],
as we remark in§2). We do so with a novel abstraction, of a write
reaching coherence point, with just the properties that are needed in
the semantics. This removes any need for modelling the implemen-
tation detail of reservation registers, which becomes very complex
in a setting with speculative and out-of-order execution.

We establish confidence in our model in multiple ways (§3),
including extensive experimental testing (comparing processor be-
haviour against the model), detailed discussion with IBM staff, and
proofs of basic properties, about the strength of load-reserve/store-
conditional pairs (§3.2), and that a simple locking discipline guar-
antees SC for POWER programs (§5).

For our second main contribution, on the software side, we
prove correctness of a mapping of the principal C/C++ synchro-
nisation constructs to POWER (§5). We consider C/C++ locks,
atomic read-modify-write (RMW) operations, fences, and atomic
loads and stores, with the various possible memory-order param-
eters, from relaxed to SC (for locks we consider basic mutexes,
not reentrant or timed, and just their lock and unlock interface,
and we do not consider condition variables or futures). We take
the implementation of spinlocks from the POWER documenta-
tion [Pow09, p.717,718], combining that with the POWER imple-
mentation of C/C++ RMWs, fences and atomic operations pro-
posed by McKenney and Silvera [MS11]. Locks and RMWs both
rely on the POWER load-reserve/store-conditional.

In the process of doing this proof, we identified and fixed several
technical issues with the C/C++11 concurrency model and with our
previous formalisation; we describe those in§4, together with a



brief summary of the design of that model and an explanation of
the C/C++ fences, to make this paper as self-contained as possible.

POWER and C/C++11 are both subtle models, though of quite
different kinds, and there is an interplay between them: imple-
mentability on POWER (and the similar ARM) had a major influ-
ence on the design of C/C++11, and, conversely, the desire to sup-
port efficient language implementation imposes constraints on the
architecture. Our work illuminates such choices by showing what is
necessary for soundness; as we show in§2, the models are in some
respects “tight” against each other.

More generally, our correctness proof for this lock implementa-
tion is a first step towards reasoning about more sophisticated con-
current algorithms (using load-reserve/store-conditional synchroni-
sation directly, or in C/C++) with respect to a realistic semantics;
and our models provide a basis for future work on compiler cor-
rectness, program analysis and verification, and tool building.

Our models and the statements of our results and key lemmas
are expressed in the lightweight mechanised specification language
Lem [OBZNS11]; our proofs are rigorous but non-mechanised.
The details of both are available online in the supplementary mate-
rial [cpp], together with the data from our experimental testing and
ourppcmem web interface for interactively exploring the model.

Related Work There is surprisingly little directly related work.
We build first on our own recent line of work, where we have devel-
oped a high-fidelity abstract-machine model of the loads, stores and
barriers of the POWER architecture, without load-reserve/store-
conditional (Sarkar et al. [SSA+11]). On the C/C++ front, Boehm
and Adve describe the core of the C/C++11 design [BA08]. We
have provided a mathematisation of the concurrency model of
C/C++11 (Batty et al. [BOS+11]), which we correct and use here.
There, we also proved correctness of a compilation scheme from
C/C++11 nonatomic and atomic loads and stores, and fences, to
x86-TSO. The strength of the target memory model (and the omis-
sion of locks and RMWs) makes that a much simpler problem than
the one we address here. We previously used these two models to
show correctness of compilation from C/C++11 to POWER, for the
fragment of C/C++ consisting just of nonatomic and atomic stores
and loads of various kinds [BMO+12]. Here our extended models
and proof finally cover all of the main features of concurrency in
POWER and in C/C++.

There have been, to the best of our knowledge, three previ-
ous serious attempts at realistic relaxed-memory semantics of load-
reserve/store-conditional in the POWER setting, none of which are
satisfactory for the current architecture. Corella, Stone, and Bar-
ton [CSB93] give an axiomatic model and show the correctness
of an implementation of locks in terms of it. Their model does
not cover the weakerlwsync barrier (which was not present in
the Power Architecture of the time), and their lock implemen-
tation is therefore more conservative than the one we consider,
with two syncs. Moreover, as Adir et al. note [AAS03], the ba-
sic model is flawed in that it permits the non-SC final state of
a message-passing-with-syncs example. Adir et al. give a more
elaborate model, with a view order per thread, sketching exten-
sions for the synchronisation instructions, but this is still for the
non-cumulative barriers of the time. Our previous global-time ax-
iomatic model (Alglave et al. [AM11]) appears reasonable for load-
reserve/store-conditional in isolation but too weak for the POWER
lwsync barrier, permitting some behaviour that the C/C++11 map-
ping requires to be forbidden.

2. Optimistic Synchronisation on POWER:
Load-reserve/Store-conditional

Load-reserve/store-conditional primitives were introduced by
Jensenet al. [JHB87] as a RISC-architecture alternative to the

compare-and-swap (CAS) instruction; they have been used in the
IBM R© PowerPCR© architecture since 1992 and are also present in
ARM, MIPS, and Alpha. They are also known as load-linked/store-
conditional (LL/SC), or, on ARM, load-exclusive/store-exclusive.
They provide a simple form of optimistic concurrency (very
roughly, optimistic transactions on single locations).

Herlihy [Her93] uses load-reserve/store-conditional to imple-
ment various wait-free and lock-free algorithms, noting that (as for
CAS, but unlike test-and-set and fetch-and-add) it isuniversalin
terms of consensus number, and moreover that load-reserve/store-
conditional is practically superior to CAS in that it defends against
the ABA problem. These results, as for almost all other work in
concurrent algorithms, use an underlying sequentially consistent
(SC) semantics.

In a sequentially consistent setting, one can describe the be-
haviour of load-reserve/store-conditional fairly simply. A load-
reserve does a load from some memory address; and a subsequent
store-conditional to the same address will either succeed or fail. It
will definitely fail if some other thread has written to that address
in the meantime (or for some other reasons), otherwise (where the
write read from by the load-reserve is still the most recent write
to that address) it might succeed, performing a store. Moreover,
the store-conditional sets a flag so that later instructions can de-
termine whether or not it succeeded; load-reserve/store-conditional
pairs are often repeated until success. This makes it easy to express
a variety of atomic update operations, as in the following POWER
assembly code for an atomic add (ARM code would be similar,
with LDREX and STREX):

1:lwarx r0,0,r2 \\ load-reserve from [r2] to r0
add r0,r1,r0 \\ add register r1 to register r0
stwcx. r0,0,r2 \\ store-conditional r0 to [r2]
bne- 1b \\ ...looping until success

In an SC world, the store-conditional would be guaranteed to fail
if some other thread writes to[r2] since the load-reserve; which
could be achieved in hardware by monitoring whether any other
thread gains write ownership of the cache line holding[r2] in the
meantime. Note that other operations are permitted between the
load-reserve and store-conditional, including memory reads and
writes, though, unlike transactions, nothing is rolled back if the
store-conditional fails.

However, actual POWER and ARM multiprocessors arenot se-
quentially consistent, but rather have highly relaxed memory mod-
els, in which program executions are not simple interleavings of the
instructions of each thread. A priori, it is unclear what it means to
say that another thread has written to the relevant addressbetween
the load-reserve and store-conditional, as one has to understand
how they interact with the thread-local out-of-order and specula-
tive execution, and with the storage subsystem reordering, of these
machines. Moreover, the vendor architecture [Pow09] does not re-
solve these questions as clearly as one might hope. It describes the
behaviour of load-reserve/store-conditional informally in terms of
reservations, allowing a store-conditional to succeed only if“the
storage location specified by the lwarx that established the reser-
vation has not been stored into by another processor or mecha-
nism since the reservation was created”. This is simultaneously too
much and too little hardware implementation detail: the“since”
cannot refer to an SC order, but the machine execution order is not
precisely specified.

We solve these problems with an abstract-machine semantics,
extending the model of Sarkar et al. [SSA+11] to cover load-
reserve/store-conditional. That model comprises a thread seman-
tics, with explicit out-of-order and speculative execution of each
hardware thread, composed with a storage subsystem semantics.
The latter abstracts from the cache and store-buffer hierarchy and



from the cache protocol: for each address it maintains just a strict
partial order, thecoherence order, of the ordering commitments
that have been made among the writes to that address, and for
each thread it maintains a list of the writes (and barriers) that have
been propagated to that thread. For example, at a certain point in
abstract-machine execution, one might have established these con-
straints among 5 writes (by different threads) tox:

b:W x=3a:W x=2

i:W x=0 j:W x=1

c:W x=4

with writes [i:W x=0, a:W x=2] propagated to some arbitrary
thread. In that state, a read ofx by that thread would see the most
recent of those two, reading2; or write b could be propagated to
that thread, appending it to that list (as it is coherence-after the
writes already propagated there); or a partial coherence commit-
ment transition could makec ordered beforea, or aftera but still
unrelated tob, or beforeb but still unrelated toa, or afterb. A
new write by a thread is made coherence-after all writes previously
propagated to that thread but initially coherence-unrelated to other
writes. This machinery guarantees coherence in the normal sense,
and also supports a semantics for the POWER cumulative memory
barriers in its non-multi-copy-atomic setting, where writes to dif-
ferent addresses can propagate to other threads in different orders.
The sync andlwsync barriers constrain that propagation, as we
return to in§5, and async also waits until writes that have previ-
ously been propagated to its thread (thesync’s Group A), or some
coherence successors thereof, have been propagated to all threads.

Looking at a successful load-reserve/store-conditional pair in
these terms, we can see that for it to provide an atomic update, the
write of the store-conditional must become animmediate coher-
ence successorof the write read from by the load-reserve, with no
other coherence-intervening write to the same address. Moreover,
that property must be maintained: no other write can be allowed
to become coherence-intervening later in the abstract-machine ex-
ecution. To express this, the key thing we need to introduce to the
model is the concept of a writereaching coherence point, after
which its coherence-predecessors are linearly ordered and fixed (no
additional write can become coherence-before it). Our main new
rule describing how the storage subsystem (in states) can process
a successful store-conditional is as follows.

Accept a successful write-conditional request A write-
conditional requestw by a threadtid , with an accompanying
wprev that was read by the program-order-previous read-reserve,
can be accepted and succeed if:

1. the writewprev is to the same address asw ;
2. wprev has reached coherence point;
3. no coherence-successor ofwprev by another thread has reached

coherence point or has been propagated to threadtid ; and
4. all writes bytid to the same address aswprev (in particular,

all those sincewprev was propagated totid ) have reached
coherence point.

Action:

1. add the new writew to s.writes seen, to record the new write
as seen by the storage subsystem;

2. append the new writew to s.events propagated to (tid), to
record the new write as propagated to its own thread;

3. record thatw has reached coherence point; and
4. updates.coherence by adding edges to make writew :

(a) coherence-after all writes to the same address that have
reached coherence point (includingwprev ); and

(b) coherence-before all writes seen (except itself) to the same
address that have not yet reached coherence point.

Note that a store-conditional can succeed even if there are out-
standing other writes to the same address by different threads (that
might have been read from by yet different threads), but that any
such other writes become coherence-later than the store-conditional
itself. For example, given the coherence order above, if onlyi has
reached coherence point, and if justi has been propagated to some
thread, that thread could do an atomic add of5 by executing a load-
reserve ofx=0 from i, adding5 to that value, and doing a successful
store-conditional ofx=5, the latter becoming an immediate coher-
ence successor ofi, and a coherence-predecessor of all the other
writes:

writes that have reached coherence point

b:W x=3a:W x=2

d:W∗ x=5

c:W x=4

i:W x=0 j:W x=1

Alternatively, in another execution,a could become coherence-
beforec, thenj anda could reach coherence point, and that load-
reserve could read2 from a and add5, with the resulting store-
conditional of 7 becoming an immediate coherence successor,
coherence-before justb andc:

writes that have reached coherence point

i:W x=0 j:W x=1 a:W x=2 d:W∗ x=7

c:W x=4

b:W x=3

A store-conditional can nondeterministically fail at any time, mod-
elling clearing of the reservation by various events, including
writes to other addresses within the same cache line, hypervi-
sor/OS context switches, and‘implementation-specific character-
istics of the coherence mechanism [which] cause the reservation to
be lost’[Pow09] (moreover, the architecture explicitly does not in-
clude a fairness guarantee). It is believed that current implementa-
tions do provide forward progress, but the architecture text does not
guarantee it; without characterising those implementation-specific
details, and making assumptions on the other events, we have to
assume that arbitrary store-conditional failures are possible. This
effectively restricts one to reasoning about safety properties.

In this paper we do not model the architecture’sreservation
granules: the rules above consider only whether write-conditionals
and load-reserves are to exactly the same address (which is the nor-
mal use-case), but in the architecture the significant fact is whether
the two addresses lie in the same reservation granule (in current
implementations, reservation granules are the same size as cache
lines). Modelling realistic (non-single-word) reservation granules
would require a store-conditional to fail if there is an intervening
write to the same granule, and permit a store-conditional to succeed
if the preceding load-reserve was to any address in the same gran-
ule. This could be done by modifying preconditions in the above
rule, to say that no write to an address in the same granule as the
store-conditional has been propagated totid sincewprev was read
from by the load-reserve, and to say that the writewprev read from
by the load-reserve was to an address in the same granule as the
store-conditional.

We also have to specify exactly when a write can reach coher-
ence point, with the rule below. Note thatsync andlwsync barri-
ers constrain the order in which writes can reach coherence point,
but, apart from that, barriers and load-reserve/store-conditionals are
largely independent.

Write reaches its coherence point This is an internal transition
of the storage subsystem, for a write it has already seen, if:



1. the write has not yet reached its coherence point;
2. all its coherence-predecessor writes have reached their coher-

ence points; and
3. all writes (to any address, and by any thread) propagated to

the writing thread before a barrier (also by the writing thread)
before this write, have reached their coherence points.

Action:
1. add this write tos.writes past coherence point ; and
2. updates.coherence to record that this write is coherence-

before all writes seen (except itself) that are to the same address
and are not past their coherence points.

Turning now to the thread semantics, load-reserve and store-
conditional instructions all commit in program order relative to
each other. Apart from that, load-reserves are committed just like
normal loads, while store-conditionals are committed by a thread
rule that synchronises with the storage-subsytem “Accept store-
conditional request” rule above, the thread commit rule additionally
imposing:

Commit in-flight instruction
. . . if this is a write-conditional instruction: send a write-
conditional request mentioning the write read from by the most
recent program-order-preceding load-reserve instruction with-
out an intervening write-conditional (if there is such a load-
reserve); receive the corresponding success/fail response; and
set flags accordingly. If there is no such load-reserve, simply
set flags as for a fail.

Despite the commit-order constraint, a load-reserve can besat-
isfied(by reading a value from the storage subsystem) exactly like
a normal load, and (like a normal load) this can be done out-
of-order and speculatively, long before it is committed. In con-
trast to normal loads, however, there is an additional restriction on
load-reserve speculation, that a load-reserve cannot be satisfied un-
til all program-order previous load-reserves and store-conditionals
are committed. This models the architectural requirement of a
single reservation register per thread. In the model this leads to
forbidding the example execution on the left below. Consistent
with this, the example is not observable on IBMR© POWERR© 6 and
IBM R© POWERR© 7 implementations.

Test MP+lwsync+porr: Forbidden

Thread: 0

a: W[x]=1

b: W[y]=1

c: R[y]*=1

Thread: 1

d: R[x]*=0

lwsync
rf

po

rf

Test MP+poaa+addr: Allowed

Thread: 0

a: R[x]*=0

b: W[x]*=1

c: R[y]*=0

d: W[y]*=1

e: R[y]=1

Thread: 1

f: R[x]=0

po

po

po
rf

addr

rf

rf

rf

Note also that despite the constraint on their commit order, store-
conditionals to different addresses can still propagate to other
threads out-of-order, as shown on the right above. This is allowed
in the model and observable on POWER 6 and POWER 7.

Each diagram shows the memory read and write events of a can-
didate execution of an assembly program running on one or more
hardware threads; the assembly source code is in the supplemen-
tary material. Events include unique ids (a, b, etc.), the addresses
of reads and writes (x, y, etc.), and the values read and written.
Load-reserve and store-conditional events are indicated with a star.
Various edges pick out key relationships between instructions in the
source, or more specifically in the particular control-flow unfolding
of the source for the execution in question:

• po edges relates events from instructions in program order (in
this control-flow unfolding);

• an lwsync edge indicates that there is a POWER lightweight
sync barrier in program order between the instructions that gave
rise to the two events;

• a sync edge indicates a POWER heavyweight sync barrier;
• aneieio edge indicates a POWER eieio barrier;
• an addr edge indicates that the address of the second event is

dependent (through a dataflow path via registers and computa-
tion) on the value read by the first;

• a data edge indicates that the data written by the second event
is dependent on the value read by the first;

• a ctrl edge indicates there is a dataflow path from the first read
read to the test of a conditional branch that program-order-
precedes the second event (branches are not shown explicitly);
and

• actrlisync edge indicates there is such a dataflow path from the
first read to the test of a conditional branch that program-order-
precedes an isync instruction before the second read.

Three further relations characterise the remainder of the dynamics
of the execution:

• an rf edge from a write to a read indicates that the read read-
from that write (rf edges from the initial state are marked with
a red dot for the source);

• a co edge between writes to the same address gives the final
coherence order between them; and

• an rcp edge between writes indicates the order in which those
writes reached coherence point (usually we elide these edges).

Moreover, load-reserve and store-conditional do not impose any
special constraint on normal loads and stores to different addresses:
they do not act like a barrier of any kind, and so loads after a
load-reserve/store-conditional pair might be speculated before it.
If one wants to prevent that, one needs to add surrounding barriers.
Confusion on this point seems to have been responsible for a Linux
kernel bug [McK11] that was recently identified by McKenney
and confirmed using our model: the Linuxatomic add return
implementation (from which the code above is taken), is assumed
there to prevent speculation, but its implementation used overly
weak barriers; the same was true for other similar read-modify-
write operations. The example is in the supplementary material.

One also has to consider whether writes can be ob-
servably forwarded to a load-reserve or from a store-
conditional within a thread, on speculative paths before
they have reached the storage subsystem. This can hap-
pen on POWER and ARM for normal loads and stores, as

a:Wna x=1

d:Rcon y=2

e:Rna x=1

b:Wrel y=1 c:RMWrlx y=1/2

sb

sb,dd

sb

hb

rf,mo,rs

dob

shown by the PPOCA example
of [SSA+11]. Interestingly, we can
show that allowing such forward-
ing in the model from a store-
conditional would make the map-
ping of C/C++11 atomics to POWER
unsound: the C/C++ candidate ex-
ecution on the right (in the nota-
tion recalled in§4) is forbidden in
C/C++11, but the corresponding exe-
cution in POWER would be allowed in our model if speculative for-
warding from the store-conditional of the RMW were to be permit-
ted. The architectural intent (though this is arguably not completely
clear from the text) is to rule out this behaviour in a different way,
allowing implementation forwarding from store-conditionals but
requiring that any store-conditionals must respect an implicit data
dependence to the prior load-reserve through the architected reser-
vation register, even when no actual data dependence is present;



hence preventing such forwarding until the previous load-reserve
has been satisfied. An implementation of such forwarding would
be extremely aggressive and complex, and has not been attempted
in practice.

This is a case where our POWER and C/C++11 models are tight
against each other: one either has to rule out such forwarding be-
coming observable in the Power Architecture or permit the example
in C/C++ (or change the mapping, but there is no obvious alterna-
tive that preserves the performance advantage of a consume over an
acquire). It illustrates how constructing formal models at this level
of detail can identify deep architectural and micro-architectural
choices beyond current implementation practice, arising from the
detailed interplay between the high-level language memory models
and aggressively weakly ordered hardware models.

For completeness, we also include in this paper the POWER
eieio barrier, in addition to the previously-coveredsync, lwsync,
andisync, though it is not used in the C/C++ mapping. Architec-
turally, eieio orders pairs of same-thread writes as far as all other
threads are concerned (eieio has additional effects for Caching
Inhibited memory, which we do not cover here), and the message-
passing test on the left is forbidden. However, the extension on the
right, with the write tox pulled out to a third thread, is allowed,
notwithstanding the architectural mention of cumulativity, because
eieio does not order reads (e.g.b) w.r.t. writes.

Test MP+eieio+addr: Forbidden

Thread: 0

a: W[x]=1

b: W[y]=1

c: R[y]=1

Thread: 1

d: R[x]=0

eieio
rf

addr

rf

Test WRC+eieio+addr: Allowed

Thread: 0

a: W[x]=1 b: R[x]=1

Thread: 1

c: W[y]=1

d: R[y]=1

Thread: 2

e: R[x]=0

rf
eieio

rf
addr

rf

Adding eieio betweenb and c of the MP+poaa+addr example
above suffices to rule out the non-SC behaviour there. We model
eieio in the storage subsystem exactly likelwsync, together with
a more relaxed thread commit rule. Preliminary testing suggests
that current implementations have considerably stronger behaviour
than the architecture, more likelwsync.

We also remark for completeness that we have made a technical
change to ourlwsync semantics: our [SSA+11] model let reads
afterlwsyncs be satisfied but restarted them, whereas now they are
blocked until thelwsync commits. This has no observable effect
but is simpler to work with.

Discussion Our semantics abstracts substantially from hardware
implementation detail, focussing on the essential properties of the
store-conditional. The notion of a write reaching coherence point
abstracts from the hardware machinery needed to maintain coher-
ence; it captures just the minimal properties required to express
the semantics. From the literature and vendor documentation, one
would be tempted to build an operational model with explicit per-
thread reservation flags, set and cleared as the abstract machine
executes, and indeed we did so at first, but that quickly becomes
very complex when one considers reservations being set or cleared
on speculative execution paths that may be rolled back. The ‘im-
plicit reservation’ style that we introduce here, testing just the nec-
essary coherence properties at write-conditional commit time, is
much simpler to express and to work with.

3. Validation
Our model has been validated in six distinct ways. First, it
was developed in discussion with a senior IBM POWER de-
signer/architect, who has extensive experience of the POWER load-
reserve/store-conditional implementations. Second, we built a tool,
with a kernel generated from the Lem code of the model, which al-
lows us to explore the behaviour of litmus-test example programs,

interactively via a web interface (available in the supplementary
material) and in batch mode (calculating all model-allowed be-
haviour); this tool was used in the analysis of the Linux bug
mentioned above. Third, using that tool for regression testing, we
checked that the addition of coherence points did not affect the ob-
servable behaviour allowed by the model for as many tests that do
not involve load-reserve/store-conditional as we could test. Adding
coherence points enlarges the search space needed to exhaustively
explore tests, but the new version of the tool terminated in manage-
able memory occupancy (up to 10 GB) for 299 out of the 314VAR3
tests [SSA+11], and also for approximately 450 new tests; for all
these, the two models allow the same outcomes. Fourth, experimen-
tally: we developed a large set of new litmus tests, as described be-
low, ran them on generations of POWER machines (PowerPC G5,
POWER 6 and POWER 7), and compared the results against those
for the model (as produced by our tool). Fifth, we proved theo-
retical results about our POWER model on its own terms, in§3.2
below. Finally, our main theoretical result of this paper, proving
that the C/C++11 synchronisation primitives can be correctly com-
piled to POWER, demonstrates that the model is strong enough for
non-trivial usage.

3.1 Experimental Validation

First, we hand-wrote tests to exercise the basic functionalities of
load-reserve and store-conditional instructions. For example, a test
RSV+Fail shows that a store-conditional associated to a load-
reserve will fail if there is a load-reserve to a distinct location (on
actual machines, to a distinct reservation granule) in between in
program order.

To systematically exercise corners of the model, we de-
signed several series of tests, automatically generated with thediy
tool [AMSS10]. The first and more important series (12499 tests)
derives from the systematic tests of [SSA+11]. Assuming that
mapping plain accesses to load-reserves or read-modify-write se-
quences might forbid some behaviours previously allowed by the
model, but not the other way round, we selected the tests allowed
by the [SSA+11] model (limited to 5 accesses to reduce the num-
ber of tests to run). We call these testsplain tests, since all ac-
cesses are plain reads and writes. Then we generated all the possible
atomic variationsof these plain tests, with a load-reserve or a load-
reserve/store-conditional sequence in place of some plain accesses.
For a read we usefetch and no-op(FNO), and for a writefetch and
store (STA) constructs [Pow09, p.719]. Both FNO and STA read
a value with a load-reserve, then the FNO writes back the same
value with a store-conditional, while the STA writes a predefined
different value with its store-conditional. Note that we cannot map
a write to a store-conditional alone, because the store-conditional
needs a program-order previous load-reserve to succeed. They are
wrapped in loops, though in practice in our model tool we unroll
the loops once.

The second series, “Rfi” (intra-thread, or internal, read-from),
exercises the impact of atomic variations on store forwarding. To
do so, we generated a restricted subset of our plain tests, namely
some that exhibit a violation of SC in the form of acritical cy-
cle [SS88], with at least one internal (intra-thread) read-from edge,
and up to 3 threads; this gave a series of 1338 tests. We replaced
the accesses along the internal read-from edges with FNO/STAs
and load-reserves, as in the first series. Interestingly, many of the
Rfi variations that involve only load-reserves were observed on
POWER 6 but not on PowerPC G5 or POWER 7, e.g. a test
2+2W+lwsync+rfi-data. This suggests that the implementation of
load-reserve is less liberal on the latter two.

The last series exercises in practice what we establish as a
theorem about the model in§3.2: whenall accesses of a test are
replaced by FNO or STA, then the test only has SC behaviours. We



tested this on a restricted subset of our plain tests, namely the68
that exhibit a violation of SCvia a critical cycle, and that have up
to 4 threads. Running those tests on hardware showed no non-SC
behaviour, consistent with the model’s prediction as captured by
the theorem.

Taking all these load-reserve/store-conditional tests together is
13963 tests. We have run all those on PowerPC G5, POWER 6
and POWER 7 machines many times — at least5 · 107 each on
PowerPC G5,8.5 · 108 on POWER 6, and2.3 · 109 on POWER
7 — and our model exploration tool terminated in less than 16GB
memory for 10455 tests. We also have relatively thorough testing
of eieio, with 235 tests run on POWER 6 and 7 and in the model.
For all the above, all outcomes observable on the hardware are
allowed by our model; in this sense the model is experimentally
sound, modulo only the reservation granule issue described above.

Representative data is below (with the full dataset online).

Model Power6 Power7

MP+lwsync+porr Forbid Ok, 0/2.6G Ok, 0/6.1G
MP+poaa+addr Allow Ok, 27k/1.1G Ok, 56/1.4G
2+2W+rfipr-datarps Allow Ok, 58/545k No, 0/4.4G

Allow unseen

3.2 Restoring SC with FNOs and STAs

Despite the relaxed nature of POWER load-reserve/store-
conditional (as illustrated by the first two MP examples of§2), if
one replacesall loads and stores by FNO and STA respectively, one
regains SC behaviour:

THEOREM 1. Mapping all accesses to FNOs for loads and STAs
for stores restores SC.

Proof Outline: Note first that the successful store-conditionals
(SSC) of an FNO or STA reach their coherence points as soon as
they are committed. Thus there is a total order over all SSCs of
a program (not just a per-location order), following the abstract-
machine order in which the writes of this program reach their co-
herence points (we call this orderrcp). Of course, this order is only
over successful write-conditionals, not plain writes. Two SSCs in
program order are committed in that order, thus reach their co-
herence point in that order, sorcp respects program order. More-
over, if all accesses are mapped to FNO and STA, we know that
the threads communicate only through SSCs that are read by load-
reserves and that a load-reserve before an SSC must read the (here
unique) coherence-maximal value.

4. C/C++ Locks, RMWs, and Fences
Historically, the C and C++ standards did not cover concurrency,
considering it to be a library issue. That is not a satisfactory
position, as observed by Boehm [Boe05], and the recent ISO
C11 and C++11 revisions incorporates concurrency for the first
time [Bec11, ISO11].

The design, as outlined by Boehm and Adve [BA08], is based
on a data-race-free (DRF) [AH90] model for normal code: for a
program written using threads, mutexes and sequentially consis-
tent atomic1 operations, if it has no races in any execution then it
is supposed to have SC semantics2; while if some execution does
exhibit a race, the program’s behaviour is undefined (and an im-
plementation is entirely unconstrained). This permits a broad range

1 In C/C++11 terminology,atomic plays a very loosely similar role to
Javavolatile: in C/C++11, for defining whether a program has undefined
behaviour, atomic operations (which might be single loads, single stores, or
read-modify-writes) are not deemed to have data races with other atomic
operations, even if they are not separated in happens-before.
2 In fact this is not quite true, as Batty et al. [BMO+12] observe, due to a
subtlety involving atomic initialisation.

of compiler optimisations [̌Sev11] and allows implementation on
relaxed-memory multiprocessors without requiring expensive bar-
riers or special load and store instructions for every memory ac-
cess. However, implementing SC atomic operations can still be ex-
pensive, and therefore the language also includes a variety oflow-
level atomicsfor high-performance concurrent algorithms: atomic
reads, writes, and read-modify-write operations with weaker prop-
erties that are cheaper to implement. They are annotated with a
memory order: either relaxed, providing no synchronisation;re-
lease(for writes and RMWs),acquire(for reads and RMWs), orre-
leaseacquire(for RMWs), providing synchronisation for message-
passing idioms; orconsume, a weaker variant of read-acquire that
lets programmers take advantage of the fact that POWER and ARM
respect data and address dependencies at little or no cost. SC atom-
ics also have release/acquire semantics. The language also includes
release/acquire and SCfences.

The standard is written in prose, subject to the usual problems
of ambiguity, but we have produced a formal semantics for the con-
currency model [BOS+11]. In discussion with members of the ISO
WG21 concurrency subgroup, we identified various issues with ear-
lier drafts of the standard, proposing solutions that are now incor-
porated into the standard; there is a close correspondence between
the formal semantics and the C++11 text. The C standard has fol-
lowed suit: at the time of writing, the C++11 concurrency model
has been partially incorporated into C11, but some of the C++11
fixes are not yet incorporated. We highlighted these (together with
a simplification to the model) at a recent WG14 meeting, which has
registered them as defect reports for a future Technical Corrigen-
dum.

In this section we explain enough of the C/C++11 memory
model to support our discussion and proof of how it can be imple-
mented above POWER in§5. We recall the mathematical structure
of the Batty et al. semantics and explain the lock, read-modify-
write, and fence synchronisation primitives informally. The basic
semantics for these is not a contribution of this paper (a version
was given in [BOS+11]) but the explanation here is new, and we
have had to make three significant improvements to the semantics:

• We place the responsibility for correctly using mutexes on the
programmer, in accordance with intuition and with the standard.
Previous work, including [BA08, BOS+11], placed it instead
on the compiler, imposing unrealistic requirements, e.g. that
the implementation of unlock has to check that the mutex is
currently held by the unlocking thread.

• We carefully specify how lock and read-modify-write opera-
tions can block owing to store-conditional operations that can
fail continually on the Power Architecture.

• We add two missing cases to the fence semantics.

We discuss these in more detail below, and the mathematically rig-
orous version of the improved model is available in the supplemen-
tary material.

The C/C++11 memory model is axiomatic (quite different in
style to our POWER abstract machine): presuming a threadwise
operational semantics that defines candidate executions consisting
of the sets of memory read and write actions for threads in isolation,
it defines when such a candidate isconsistentand whether it has
a race of some kind. Consistency is defined in terms of several
relations, including ahappens-before (hb)relation that embodies
the language’s notion of causality.

The three basic relations,sequenced-before (sb), reads-from
(rf), andmodification order (mo), are closely related to our POWER
abstract machine’s notion of program order, reads-from, and coher-
ence order, respectively. Sequenced-before is a threadwise partial
order that does not need to be total (for example, the operandsx
andy of x == y are not related by sequenced-before). Modifica-



tion order is a per-location total order over the write operations to
that location. A modification order is only needed for atomic lo-
cations; it can contain atomic writes with various memory orders,
together with non-atomic initialisation writes.

The synchronises-with (sw)and happens-before relations are
calculated from sequenced-before and reads-from. A write-release
synchronises with a read-acquire that reads-from the write. Read-
acquires can also synchronise with some (but not necessarily all)
write-releases that appear in modification order before the read-
from write; this is formalised byrelease sequences, which we do
not detail here. Happens-before is then built as the transitive closure
of synchronises-with and sequenced-before, with some exceptions
relating to read-consumes which we do not detail here. Four coher-
ence axioms require that happens-before is consistent with mod-
ification order. Synchronises-with and happens-before have no di-
rect counterparts in POWER: the compilation of C/C++ to POWER
must insert enough barriers to ensure that synchronizing write/read
pairs enjoy the right ordering properties (see§5).

The sequential consistency (sc)relation is a total order on all
of the SC reads and writes. It is required to be consistent with
sequenced-before, modification-order, and happens-before.

A program has a data race if there is some consistent execution
with two happens-before unrelated reads/writes on the same loca-
tion, where at least one is a write, and at least one is not atomic.

4.1 Locks

To model mutexes, we use three kinds of additional actions: locks,
unlocks, and blocks. In a consistent execution, a total orderlock
order (lo) (analogous to modification order) over these ensures
that no mutex is acquired when already held: between any pair of
locks of the same mutex, there must be an unlock of that mutex.
Furthermore, lock order must be consistent with happens-before.

b:Wna x=1

c:U m

e:Rna x=1

d:L m

f:U m

a:L m

sb

sb rf

sb

sb

lo

lo,sw

lo

Lastly, the lock order introduces synchro-
nisation from each unlock to later locks
of the same mutex, ensuring that the
actions in each critical section happen-
before the actions in subsequent ones. In
the example execution here, actionsa and
d lock mutexm, c andf unlock it, and the
non-atomic writesb and reade are inside
critical sections. The synchronisation be-
tweenc andd ensures thate reads from
b, and thate andb do not race.

These C/C++ candidate execution diagrams are analogous to the
POWER execution diagrams of§2. They pick out one candidate
execution of a program (the programs are in the supplementary
material), and show the memory write and read actions and the
lock and unlock actions of that candidate execution. Each action
is annotated by the location and value, and, for memory reads and
writes, the memory order parameter. The actions are arranged in
vertical columns by thread. Among these actions, we depict the
key C/C++ relations:

• sb edges show sequenced-before, in this control-flow unfolding
(recall that sequenced-before is not necessarily total over the
events of a thread);

• rf edges from write actions to read actions show that the read
reads-from that write (as before, reads from an initial state are
marked with a red dot for the source);

• mo edges show modification order, relating all write actions at
an atomic location;

• sc edges show the SC order, a total order over all SC actions;
and

• lo edges show the lock order, a total order over all lock and
unlock actions.

From these, two derived relations can be calculated:

• sw edges depict the C/C++ synchronizes-with relation; and
• hb edges depict the C/C++ happens-before relation.

In previous work [BA08, BOS+11], a consistent execution also
required that lock/unlock actions strictly alternate in lock order, and
that the unlock of a mutex must follow the lock that acquired it
in sequenced-before. Putting this requirement on consistent execu-
tions requires that the compiler or lock implementation enforce it,
for example, by having each unlock call dynamically check that
the mutex is held by the unlocking thread. To support efficient un-
lock implementations that have no such check, the C/C++11 stan-
dard places this requirement on the programmer, and so we allow
consistent executions with improper calls to unlock, but give such
programs undefined behavior.

Not all attempts to acquire a mutex eventually succeed: the pro-
gram could be deadlocked, or a particular acquisition could be
starved forever. To model this, on an attempted acquisition the
threadwise operational semantics non-deterministically generates
either a lock action, representing success, or a block action, repre-
senting deadlock or starvation. In the latter case, we require that the
operational semantics not produce any further actions sequenced
after the block. The concept of blocked mutex acquisition does not
explicitly appear in the standard, or in prior work; we add it to prop-
erly separate the axiomatic memory model from the threadwise op-
erational semantics. Because block actions appear in lock order, the
memory model can place constraints on them to specify the exact
fairness or liveness guarantees enjoyed by mutex acquisition. The
operational semantics only needs to know whether a certain call is
blocked or not. This contrasts with the typical operational treatment
of mutexes in which locking and unlocking operations manipulate
a piece of shared state; state which, in a relaxed memory setting,
must be governed by the memory model.

As we discuss in§2, the Power Architecture allows store-
conditionals to fail arbitrarily, and there is no simple guaran-
tee ruling out repeated failure (though implementations do go to
great lengths to provide forward progress). In§5, we consider
an implementation of C/C++11 mutexes based on POWER load-
reserve/store-conditional instructions, and in this context a mutex
acquisition can block indefinitely, even in the absence of deadlock
or contention, due to continual, spurious store-conditional failures.
To model this possibility in C/C++11, we allow block actions to ap-
pear anywhere in the lock order, without constraint. However, if one
were modelling a particular POWER implementation that guaran-
teed store-conditional liveness, one could use a stronger C/C++11
model: in lock order, each block is either preceded by a lock which
is never unlocked (the deadlock case), or followed by an infinite
number of locks (the starvation case).

To simplify our reasoning about the connection between
POWER and C/C++11 mutexes in§5, we also use an alternative
model that, first, uses a separate lock order for each mutex, and,
second, requires that each unlock synchronise only with the next
lock in that order. We have proved the equivalence of the two mod-
els (see the supplementary material); the equivalence relies on hav-
ing undefined behaviour for programs that misuse locks.

4.2 RMWs

C/C++11 has three kinds of atomic RMWs:fetch add and simi-
lar, compare exchange strong, andcompare exchange weak.
The first updates the value at a given address, the second is a tradi-
tional CAS, and the third is a traditional CAS except that it can
fail spuriously. The first two are implemented on POWER with
load-reserve/store-conditional pairs with loops to account for the
store-conditional failing. Thus, like mutex acquisition, the opera-
tional semantics must allow them to block. The last is implemented



with a simple load-reserve/store-conditional pair (which exposes
the possibility of non-deterministic spurious failures).

b:Wrlx x=2 d:RMWrlx x=2/3

a:Wrlx x=1

c:Wrlx x=4

sb,mo

sb mo

rf,mo

Successful RMWs are modelled by
an RMW action that both reads and
writes; atomicity is guaranteed by re-
quiring that the read reads-from the im-
mediate predecessor of the write in mod-
ification order. Thus, in the example to
the right, RMW-relaxedd must read from write-relaxedb, and not
write-relaxeda.

4.3 Fences

In C/C++11, fences are used to replace multiple acquire/release
or SC operations with more efficient relaxed ones. There are four
kinds: acquire, release, acquire/release, and SC fences.

Acquire and release fences establish synchronises-with relation-
ships, even when the reading and writing actions are relaxed. In the
message-passing example on the left below, the acquire fenceg
synchronises with write-released even though the readf is relaxed;
this synchronisation ensures that non-atomic writec happens be-
fore non-atomic readh. This might help performance: for example,
if f were in a loop waiting to observed’s write; we only have to pay
for the acquire once, rather than on each iteration. In the variation
on the right, a single release fencej ensures synchronisation based
on multiple relaxed writesk andl.
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f:Rrlx y=1

g:Facq

h:Rna x=1

d:Wrel y=1
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sbsw
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i:Wna a=1

j:Frel

k:Wrlx x=1

l:Wrlx y=1g:Rna a=1

f:Racq x=1
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q:Rna a=1
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rf rf

sb

sw
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SC fences appear in the sc relation, and enforce a set
of coherence-like axioms between it and modification order.
In the store-buffering (or Dekker’s) example on the right,

g:Rsc y=1

d:Rsc x=0

c:Wsc y=1

f:Wsc x=1

rf

sc

sb,sc

sb,sc

SC atomic reads and writes are used to
ensure that at least one of the readsd
or g reads-from one of the writesc or f.
We can get the same guarantee by mak-
ing one thread’s operations relaxed and
putting an SC fence in between, or even
making all four operations relaxed and
using two SC fences, as below.

d:Fsc g:Wsc x=1

c:Wrlx y=1

e:Rrlx x=0 h:Rsc y=1
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sb,sc
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Despite their name, C/C++11 SC fences are not designed to restore
sequential consistency to programs that use low-level atomics (in
part because in the Itanium architecture there is no implementation
fence that would do so [Int02]). For example, the IRIW litmus
test from [BA08] with two SC fences is allowed in C/C++ (in the
model, the 6 SC fence conditions do not impose any constraint on
the sc order between two SC fences because of a non-SC-atomic
read before one fence and a read after another).

The proof of our main result in§5, together with the preliminary
results of [BMO+12], are arguably the first extensive validation of

the C/C++11 model. To the best of our knowledge, large-scale soft-
ware development of concurrent C/C++11 code has not yet begun,
as that practical validation requires production compilers which are
only just becoming available. Even when they are, and are correct,
they may provide over-strong models, so at present proof is the only
way to determine whether code is correct with respect to the speci-
fication rather than with respect to some particular implementation.

5. Compiling Synchronisation Primitives: from
C/C++ to POWER

We now discuss our second main contribution, the correctness
proof of one mapping of the principal C/C++ synchronisation con-
structs —locks, read-modify-writes, and fences— to POWER, us-
ing load-reserve/store-conditional and the POWER barriers. The
proof can be easily adapted to show related mappings, with dif-
ferent barrier placement on C/C++ SC operations, or SC atomics
implemented with load-reserve/store-conditional, correct as well.
This subsumes the result of Batty et al. [BMO+12], which just cov-
ered C/C++ loads and stores (with their various possible memory
orders).

The mapping we consider combines the scheme proposed by
McKenney and Silvera [MS11] for C/C++11 atomics, fences and
RMWs with the spinlock implementation given in the Power Archi-
tecture [Pow09, p.717,718]. We first give the mapping with some
informal intuition about its soundness (focussing on locks) before
describing the main ideas of our proof.

5.1 Compiling from C/C++ to POWER

Locks Assuming that registerr3 contains a lock location,r4
contains the value signifying that a lock is free andr5 the value
signifying that a lock is taken, the POWER implementation of a
spinlock is:

loop:
lwarx r6,0,r3,1 # load-reserve lock [r3] into r6
cmpw r4,r6 # go to wait if lock not free,
bne- wait # eventually returning to loop
stwcx. r5,0,r3 # store-cond to try to set lock
bne- loop # loop if lost reservation
isync # import barrier

The implementation of unlock is:

lwsync # export barrier
stw r4,0(r3) # normal store to release lock

In the lock implementation, a load-reserve/store-conditional
pair works on the lock location. The load is followed by a check
on the value stored at the lock location; if the lock is not free, the
code branches to a waiting routine (which might be a loop doing a
normal read on the lock location, or a backoff, and which will return
to loop to try to establish a new reservation). Otherwise the code
tries to set the lock with a store-conditional. As discussed in§2, this
will fail if the new value cannot be made an immediate coherence
successor of the write read by the load-reserve (e.g. if some other
thread has taken the lock in the meantime), and in that case it again
returns toloop, otherwise the lock has been taken successfully and
atomically. The implementation of unlock has a simple store at the
lock location writing the value that signifies that the lock is free.

As a result, a C/C++ unlock/lock synchronisation is, at the
POWER ISA level, a store-to-load communication. For this to truly
be a synchronisation, the implementation also must include addi-
tional protection. The unlock store is preceded by anlwsync in-
struction. The effect of this barrier is first to restrict the reordering
of instructions in its own thread: anlwsync must be committed
after any program-order-preceding memory-access instruction, and



before any memory-access instruction following in program order
is satisfied (for reads) or committed. The second effect is an or-
dering of the propagation of stores. For anylwsync barrier, our
POWER model keeps track of the set of stores and barriers that
have been done by or propagated to its thread before it was com-
mitted. Before thelwsync can be propagated to another threadtid ,
all the members of this set, called its Group A, must first be prop-
agated totid . In the context of the unlock/lock synchronisation,
this guarantees that any store visible to the unlocking thread before
its unlocking store (to the lock location) must also be visible to
the locking thread, before the load-reserve (of the successful store-
conditional/load-reserve pair) on the lock location.

The propagation ordering enforced by anlwsync is transi-
tive, in the following sense. Consider a chain of unlock/lock syn-
chronisations, with each unlock directly following a lock on the
same thread, and each lock directly following an unlock on a
different thread. This corresponds to a chain of thread-crossing
store/load communications. In this communication, the stores come
from the unlocking stores to the lock location, and the success-
ful store-conditionals of lock acquires, while the loads correspond
to the load-reserves at the lock location from the successful store-
conditional/load-reserve pair of locks. For the communication to
occur, each store must propagate to the thread of its associated load.
If the first store of the chain is preceded by anlwsync, then this
barrier along with its Group A must propagate to the second thread
of the chain before the store it precedes. Since a load-reserve/store-
conditional pair must be committed in order, thelwsync and its
Group A stores are therefore propagated to the second thread before
the store-conditional of that second thread is committed. Hence
for this second thread’s store-conditional to propagate to the third
thread of the chain, the first thread’s barrier along with its Group A
must first propagate to that third thread. The argument continues to
the rest of the chain.

Additionally, the last branch instruction of the lock implemen-
tation is followed by anisync instruction. As a result of this com-
bination of a dependency from the result of the store-conditional
to a conditional branch, followed by anisync (together, a kind of
ctrlisync dependency) any program-order-following loads cannot
be speculated before the store-conditional succeeds. Hence, any
program-order-following loads must see the stores that were per-
formed by the unlocking thread, before the unlock was executed.

A fully locked POWER program is SC The intuition above for
locks is applicable in a wider context than C/C++. For a simple

Test SB+locks: Forbidden
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result along those lines, consider
a POWER assembly program (not
necessarily compiled from C/C++),
which has all competing accesses
(those accessing the same location,
from distinct threads, at least one
of them being a write) protected
by locks, using a distinct lock vari-
able per shared-memory variable
(denoted below bylx, ly, etc., for
locks protecting variablesx, y, etc.).
We assume all locations are disjoint
and of the same size, and ignore the
case of overlapping accesses.

Using theisync at the end of
the lock sequence and thelwsync
at the beginning of the unlock se-
quence, we get that two accesses
in program order guarded by locks
follow the order in which the SSC
of their lock primitives reach coher-
ence point. For example in the test

SB+locks on the right, the writec to x on Thread 0 is committed
after the SSCb to lx reaches coherence point, as depicted by the
magentassc+ctrlisync arrow.

The lock write toly on Thread 0 reaches coherence point before
the lock write toly on Thread 1, as depicted by the blue arrowrcp
from Thread 0 to Thread 1, thus restoring SC for this test. Fleshing
out this line of reasoning proves our next theorem:

THEOREM 2. Protecting access to each address with an associ-
ated lock restores SC, assuming the program does not use distinct
overlapping locations.

RMWs The implementation of C/C++ RMWs also relies on load-
reserve/store-conditional pairs. Here, without loss of generality,
we only discuss the implementation of one kind of RMW, the
“fetch add” operation with an implementation as in the first§2
example: a load-reserve/store-conditional pair surrounding an ad-
dition instruction, the whole wrapped in a loop waiting for the
store-conditional to succeed. The implementations of other kinds
of RMWs use different instructions between the load-reserve/store-
conditional pair but have essentially the same correctness argu-
ment.

RMWs are parameterised by a memory order, and the mapping
places POWER barriers at the beginning and dependencies at the
end of the load-reserve/store-conditional block, in the same style
as the implementations of non-RMW C/C++ atomic accesses. The
implementation of a relaxed RMW has no additional barriers; the
implementation of a release RMW is preceded by anlwsync bar-
rier; that of an acquire RMW is followed by a ctrlisync dependency;
acquire/release combines both; and that of an SC RMW is preceded
by async and followed by a ctrlisync dependency.

Fences C/C++ fences are compiled to single barrier instructions:
SC fences are mapped to async and all the others tolwsync.

non-RMW atomics For non-RMW atomic memory accesses the
compilation maps each C/C++ read or write to corresponding
POWER instruction together with protecting barrier instructions,
as for the RMWs above but with the addition ofconsumeloads,
which have no barrier but require the compiler to preserve depen-
dencies [MS11, BMO+12].

5.2 Correctness proof

Our second main result is the correctness of this compilation
scheme. To focus on the concurrency issues, we abstract from the
details of thread-local compilation: we consider an arbitrary non-
optimising compiler (preserving memory accesses, program order
and thread-local dependencies) that uses this compilation scheme
for the concurrency primitives. Informally, our result is as follows;
the formal statement and proof are in the supplementary material.

THEOREM 3. Consider a non-optimising compiler that uses the
mapping above. For any race-free C/C++ program, compile it to
POWER and take any execution trace of our POWER abstract ma-
chine. Then there exists a C/C++ execution that is both equivalent
to the POWER trace and accepted by the C/C++ memory model as
a consistent execution of the original C/C++ program.

This is in the same style as the result of Batty et al. [BMO+12]
for the compilation mapping in the absence of locks, fences and
RMWs. We now outline the overall proof structure, common to
both works, and then show how to extend it to handle the synchro-
nisation primitives.

The proof describes a procedure for constructing a C/C++ ex-
ecution from any POWER trace that guarantees their equivalence,
and then shows the consistency of that C/C++ execution. But this
construction does not work for racy programs. As a straightfor-
ward example, consider a C/C++ program with two threads, the



first doing a non-atomic write at a locationx, the second doing a
non-atomic read onx. The C/C++ memory model rules out any
consistent execution with the read reading from the write, because
they are unrelated in C/C++ happens-before, and thus the execu-
tion would be racy. But in the compiled POWER code, which has
no direct analogue of the C/C++ happens-before, nothing prevents
the corresponding store propagating to the second thread to be read
by the load. For the verification of the consistency of the recon-
structed C/C++ execution to succeed, the following consequence
of race-freedom is required: “in the C/C++ execution, a read can-
not read-from a write that it is not related to by happens-before”.
The proof splits on whether this condition holds. If it does hold,
consistency of the reconstructed execution can be directly shown,
while if it does not hold, it can be shown that the original C/C++
program must have been racy, thus leading to a contradiction.

The latter proof is technically involved because one needs to
build a racy, consistent C/C++ execution that does not exactly
correspond to the POWER trace. There are two areas where this
part of Batty et al.’s proof could fail when adding synchronisation
constructs: in the top-level case split, and in the way that POWER-
level speculation complicates the construction of the racy C/C++
execution. In fact, our alternate C/C++ formalisation of locks (§4.1)
removes the need for modifying the case split: the new proof has
a similar case split (on whether unlocks are used properly), but it
is simpler because the proof is about the C/C++ model only, not
in combination with POWER. Furthermore, careful modelling of
the absence of store-conditional forwarding (§2) means that the
construction in the existing proof works unchanged.

Returning to showing consistency of a reconstructed execution,
several properties regarding the interaction of the happens-before
relation with other relations defined by the C/C++ memory model
have to be verified of the constructed C/C++ execution. To directly
exploit our POWER model, the statements of all these properties
are translated into equivalent statements regarding the POWER
trace from which the C/C++ execution was built: we define rela-
tions on the elements of POWER traces and show a correspondence
between these and the C/C++ relations. For most relations, clear
counterparts exist. For example, the C/C++sequenced-beforecor-
responds roughly to the POWER program order (though some care
needs to be taken, as sequenced-before is a partial order while the
program order is total). However, there is nothing that corresponds
directly to the happens-before relation. Instead, a more complex
POWER relation is built from the other POWER relations.

Using this characterisation, apropagation lemmastates that for
any pair of C/C++ actionsa andb related by happens-before, the
instruction corresponding tob sees any stores that the instruction
corresponding toa is able to see: any store propagated to the thread
of a beforea is executed, is also propagated to the thread ofb before
b is executed (a read is executed at the latest abstract-machine
transition in which it is satisfied — all previous reads having been
restarted — while a write is executed when it is committed). Using
this lemma in conjunction with the preconditions and actions of the
POWER model transitions, the conditions required by the C/C++
memory model can be verified. For example, when the POWER
storage subsystem accepts a write request, one of its actions is
to update the coherence order so that the store being accepted is
coherence-after any store already propagated to its thread, which is
needed when verifying one of the coherence properties required by
C/C++.

Finally, a total order for SC actions must be built from the
POWER trace, but as for happens-before there is no direct analogue
of this relation in POWER. Instead, we show that the POWER
sync barrier associated with SC actions by the mapping ensures
that we never get cyclic dependencies if we take into account all

the required properties of this order (e.g., a read may not read from
a write after in SC order).

Including the synchronisation primitives The addition of the
synchronisation primitives affects the definition of the happens-
before relation. In particular, RMWs make the definition of release-
sequences more complicated, and locks and fences introduce new
ways for a synchronises-with edge to appear. This in turn affects the
definition of the POWER analogue to happens-before. Here is the
new characterisation of the transitive part of happens-before with
synchronisation primitives, using relations derived from a POWER
trace:

(

(synct ∪ lwsynct)
refl;

coit
refl;

rfet ;
(rmwt ; rft)

∗;

(ctrlisynct ∪ ddt
refl ∪ lwsynct)

refl
)+

where semicolon denotes relational composition, and·refl and ·+

are respectively the reflexive and transitive closures. The full poten-
tially non-transitive happens-before relation is obtained by taking
the union with program order, but that does not present any diffi-
culty for the proof. Thesynct and lwsynct relations relate com-
mit transitions of memory accesses corresponding to memory in-
structions from a single thread which are separated in program-
order by, respectively, async or lwsync. This part of the char-
acterisation corresponds to the barriers introduced by the compila-
tion mapping before unlocks, and release atomic-stores, fences, and
RMWs. Thecoit relation relates commit transitions of stores from
the same thread which are related in the coherence order. In the ab-
sence of RMWs, this relation is the POWER analogue of the C/C++
release-sequence relation, and therfet relation (relating the com-
mit transition of a store to the commit transition of a load reading
from that store from a different thread) was the next component.
With RMWs, we need something more elaborate: thermwt rela-
tion identifies the presence of a load-reserve/store-conditional pair.
Therft relation extendsrfet by also allowing the store and load to
be on the same thread. The composition(rmwt ; rft)

+ corresponds
to a chain of RMWs ending a C/C++ release sequence. Note that
they may be RMWs anywhere in a release-sequence, not only at the
end, but in that case the RMW chain must come back to the thread
of the release head, and then the last RMW is related to the release
head by thecoit relation. The last component of the characterisa-
tion is the union ofctrlisynct (the ctrlisync analogue of thesynct
andlwsynct relations,ddt (data dependency, for C/C++ consume
atomics, included in our proof but not discussed here) andlwsynct .
This corresponds to the barriers or dependencies placed after ac-
quire and consume reads or to acquire fences. Thelwsynct here is
added, corresponding to acquire fences.

Despite the expanded definition of the analogue of happens-
before, the key abstraction of the propagation lemma still holds.
Thus the proof of consistency of the reconstructed C/C++ execution
extends smoothly to the addition of C/C++ locks, RMWs, and
fences. There is one new condition to check for the consistency
of a C/C++ execution: an RMW action must read from its last
predecessor in the modification-order. In terms of the POWER
implementation, this means that the load-reserve must read from
the last coherence predecessor of the store-conditional — but that
is just what we are guaranteed from the rules given in§2, for a
successful store-conditional.

Finally, SC fences must be a part of the sc relation, and this
interacts with modification order to impose 6 additional coherence-
like conditions. As before, there is no obvious order in the POWER
machine trace with the right properties. Instead, we build the sc
relation from a POWER machine trace by directly checking that



these 6 conditions are not violated. To take one example, having the
sc relation between the SC fences go one way in the store-buffering
example of§4 imposes a condition that at least one read-from
edge cannot be from a write that is too old in modification order.
Recalling that SC fences are mapped to the POWERsync barrier,
we use a property of this barrier (that it must wait for all group
A writes, or coherence successors thereof, to be propagated to
all threads) to guarantee this condition. Indeed, the corresponding
example in POWER is SB+syncs, which only has SC behaviour.

Discussion: C/C++ and POWER Our proof establishes a close
correspondence between C/C++ executions and POWER abstract
machine executions of the compiled program. Nevertheless, there
are programs with different behaviours on the two models. As
noted previously, IRIW with two SC fences is allowed in C/C++,
whereas its compilation withsyncs is forbidden, and sometimes
the mapping imposes stronger barriers than strictly necessary. For
example, consider the 2+2W test of [SSA+11]. Here the only way
to regain SC behaviour in C/C++ is to either use SC fences or all
SC accesses everywhere. The test maps to 2+2W+syncs, which is
indeed forbidden in POWER, but in fact herelwsyncs would have
been enough.

6. Conclusion
With this work, together with [SSA+11, BOS+11, BMO+12], we
finally have a semantics for real-world concurrent programming in
C/C++ and on POWER multiprocessors that is complete enough
to support reasoning about real OS and VM kernel code, at least
in the absence of mixed-size accesses, and that is sufficiently well
validated that one can have confidence in the results.

This opens the door to future work on verification techniques
and analysis tools for such code. For example, looking informally
at Michael’s lock-free datastructure algorithms using hazard point-
ers [Mic04] (one of which was verified in an SC setting using sep-
aration logic [PBO07]), one can consider verification of efficient
implementationsof those abstract concurrent algorithms, either at
the POWER ISA level, where one needs the various POWER barri-
ers and load-reserve/store-conditional, or, making use of our main
result here, at the C/C++ level, where one needs to add a particular
placement of C/C++ fences and RMWs (interestingly, the two ap-
pear to coincide here: the C/C++ concurrency model is sufficiently
expressive that one can express exactly the low-level synchronisa-
tion needed, as one would hope. Understanding how to do such
verifications, especially compositionally, is a major open problem,
as is the question of how to determine the best such placement.
As we have seen, our work is also identifying subtle architectural
choices.

We believe that the ARM architecture is broadly similar to
POWER in these respects (though it is not identical to the model
we present here), and hence that it will be possible to adapt the
proof to ARM. We are currently engaged in further testing and in
discussion with ARM staff to establish confidence there.
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