Draft of July 30, 2010 (Revision: 5351)

Mathematizing C++ Concurrency

Mark Batty ~ Scott Owens

Susmit Sarkar

Peter Sewell Tjark Webe

University of Cambridge
http://www.cl.cam.ac.uk/users/pes20/cpp

Abstract

Shared-memory concurrency in C and C++ is pervasive in syste
programming, but has long been poorly defined. This motivate
an ongoing shared effort by the standards committees tdfgpec
concurrent behaviour in the next versions of both languablesy
aim to provide strong guarantees for race-free progranggther
with new (but subtle) relaxed-memory atomic primitives fogh-
performance concurrent code. However, the current difidstrds,
while the result of careful deliberation, are still ratharfrom clear
and rigorous definitions.

In this paper we establish a mathematical (yet readableisem
tics for C++ concurrency. We aim to capture the intent of the c
rent draft as closely as possible, but discuss a number otgoi
where this is not straightforward. We prove that a proposésl x
implementation of the concurrency primitives is correcthwie-
spect to the x86-TSO model, and describe oer@em tool for
exploring the semantics of examples, using code generabed f
our Isabelle/HOL definitions.

This will aid discussion of any further changes to the draft
standard, provide a correctness condition for compilerd, give
a much-needed basis for analysis and verification of coent@
and C++ programs.

Categories and Subject DescriptorsC.1.2 Multiple Data Stream
Architectures (Multiprocessork)Parallel processors; D.1.8pn-
current Programming Parallel programming; F.3.1Specifying
and Verifying and Reasoning about Progrdms

General Terms Documentation, Languages, Reliability, Stan-
dardization, Theory, Verification

Keywords Relaxed Memory Models, Semantics

1. Introduction

Context Systems programming, of OS kernels, language run-
times, etc., commonly rests on shared-memory concurren€y i
or C++. These languages are defined by informal-prose stdsida
but those standards have historically not covered the hetmaof
concurrent programs, motivating an ongoing effort to dyemn-
current behaviour in a forthcoming revision of C++ (unofiity,
C++0x) [AB10, BA08, Bec10]. The next C standard (unoffigiall
C1X) is expected to follow suit [C1X].

The key issue here is the multiprocessor relaxed-memory be-
haviour induced by hardware and compiler optimisation® dé&-
sign of such a language involves a tension between usabhiity
performance: choosing a very strong memory model, such-as se
quential consistency (SC) [Lam79], simplifies reasoningLaipro-
grams but at the cost of invalidating many compiler optimisa
tions, and of requiring expensive hardware synchronieatistruc-
tions (e.g. fences). The C++0x design resolves this by diogi
a relatively strong guarantee for typical application ctatgether
with variousatomic primitives, with weaker semantics, for high-
performance concurrent algorithms. Application code tluagts not
use atomics and which is race-free (with shared state gyope-
tected by locks) can rely on sequentially consistent behayin

an intermediate regime where one needs concurrent acdasises
performance is not critical one can uS€ atomicsand where
performance is critical there atew-level atomicslt is expected
that only a small fraction of code (and of programmers) widéu
the latter, but that code —concurrent data structures, @Beke
code, language runtimes, GC algorithms, etc.— may havega lar
effect on system performance. Low-level atomics providem-c
mon abstraction above widely varying underlying hardwag&8
and Sparc provide relatively strong TSO memory [S30, Spal];
Power and ARM provide a weak model with cumulative barri-
ers [Pow09, ARM08, AMSS10]; and Itanium provides a weak
model with release/acquire primitives [Int02]. Low-lewabmics
should be efficiently implementable above all of these, amdop
type implementations have been proposed, e.g. [Ter08].

The current draft standard covers all of C++ and is ratheelar
(1357 pages), but the concurrency specification is mostiyadoed
within three chapters [Bec10, Chs.1, 29, 30]. As is usualrfdus-
trial specifications, it is a prose document. Mathematipeici-
cations of relaxed memory models are usually either operati
(in terms of an abstract machine or operational semanyipially
involving explicit buffers etc.) or axiomatic, defining csinaints
on the relationships between the memory accesses in a demple
candidate execution, e.g. with a happens-before relatientbem.
The draft concurrency standard is in the style of a proserie®mn
of an axiomatic model: it introduces various relationshigentify-
ing when one threasglynchronizes witAnother, what &isible side
effectis, and so on (we introduce thesesi2), and uses them to de-
fine a happens-before relation. It is obviously the resuténsive
and careful deliberation. However, when one looks moreetyps
it is still rather far from a clear and rigorous definitioneth are
points where the text is unclear, places where it does naticap
the intent of its authors, points where a literal readinghef text
gives a broken semantics, and some open questions. Moy¢ower
draft is very subtle. For example, driven by the complegitiéthe
intended hardware targets, the happens-before relatitefiites is
intentionally non-transitive. The bottom line is that, gjivjust the
draft standard text, the basic question for a language tefiniof
what behaviour is allowed for a specific program, can be aanatt
for debate.

Given previous experience with language and hardware mem-
ory models, e.g. for the Java Memory Model [Pug00, MPAOQ5,
CKS07, vA08, TVD10] and for x86 multiprocessors [SSZ09,
0SS09, SSO10], this should be no surprise. Prose language defi-
nitions leave much to be desired even for sequential laregidgr
relaxed-memory concurrency, they almost inevitably leadmbi-
guity, error and confusion. Instead, we need rigorous @adable)
mathematical semantics, with tool support to explore thesee
quences of the definitions on examples, proofs of theotetica
sults, and support for testing implementations. Intengbfj the
style of semantics needed is quite different from that farven-
tional sequential languages, as are the tools and theorems.

Contributions In this paper we establish a mathematically rig-
orous semantics for C++ concurrency, described in Sectiand?
with further examples in Section 3. It igrecise formalised in

2010/7/30

Isabelle/HOL [Isa], and ixomplete covering essentially all the
concurrency-related semantics from the draft standarthowt
significant idealisation or abstraction. It includes theadace-
freedom (DRF) guarantee of SC behaviour for race-free code,
locks, SC atomics, the various flavours of low-level atomarsd
fences. It covers initialisation but not allocation, anctslmot ad-
dress the non-concurrent aspects of C++. Our model buildeen
informal-mathematics treatment of the DRF guarantee byhBoe
and Adve [BA08]. We have tried to make it asadableas possi-
ble, using only minimal mathematical machinery (mostlyt gets,
relations and first-order logic with transitive closurejlantroduc-

ing it with a series of examples. Finally, wherever possibie a
faithful representation of the draft standard and of the intentiébns o
its authors, as far as we understand them.

In developing our semantics, we identified a number of issues
in several drafts of the C++0x standard, discussed thebemétn-
bers of the concurrency subgroup, and made several suguefir
changes. These are of various kinds, ranging from editolaal-
fications, substantive changes to the text that are in lirik thie
authors’ intent as we understand it, and some open questidns
discuss a selection of these in Section 4. The standardegsdor
C++0x is ongoing: the current version is the final committesft’,
leaving a small window for further improvements. That fonQO$
at an earlier stage, though the two should be compatible.

As a theoretical test of our semantics, we prove a correstnes
result §5) for the proposed x86 implementation of the C++ con-
currency primitives [Ter08] with respect to our x86-TSO nueyn
model [SSO 10, 0SS09]. We show that any x86-TSO execution of
a translated C++ candidate execution gives behaviour ltleaC#+
semantics would admit, which involves delicate issues tilndtial-
isation. This result establishes some confidence in the haodies
a key step towards a verified compilation result about teditsi of
programs.

Experience shows that tool support is needed to work with an
axiomatic relaxed memory model, to develop an intuitionvibiat
behaviour it admits and forbids, and to explore the consecpseof
proposed changes to the definitions. At the least, such atooild
take an example program, perhaps annotated with constraimt

the final state or on the values read from memory, and find and

display all the executions allowed by the model. This candra-c
binatorially challenging, but for C++ it turns out to be féds, for
typical test examples, to enumerate the possible witnedéekave
therefore built a @PMEMtool (§6) that exhaustively considers all
the possible witnesses, checking each one with code altaihat
generated from the Isabelle/HOL axiomatic mod@)(The front-

2. C++0x Concurrency, as Formalised

Here we describe C++ concurrency incrementally, startiritty w
single-threaded programs and then adding threads and, I6€ks
atomics, and low-level atomics (release/acquire, relaged re-
lease/consume). Our model also covers fences, but we oeniketh
tails here. In this section we do not distinguish betweenGhe
draft standard, which is the work of the Concurrency subc@mm
tee of WG21, and our formal model, but in fact there are sulbista
differences between them. We highlight some of these (andasu
tionale for various choices) in Section 4. Our memory moslex-
pressed as a standalone Isabelle/HOL file and the compledelmo
is available online [BOS]; here we give the main definiticasto-
matically typeset (and lightly hand-edited in a few cases)nfthe
Isabelle/HOL source.

The semantics of a prograpwill be a set of allowedexecu-
tions X. Some C++ programs are deemed to haudefined be-
haviour, meaning that an implementation is unconstrained, e.g. if
any execution contains a data race. Accordingly, we defiaes¢h
mantics in two phases: first we calculate a set of pre-exausiti
which are admitted by the operational semantics andcansis-
tent (defined in the course of this section). Then, if there is a pre
execution in that set with a race of some kind, the semamiidis i
cates undefined behaviour by givingoNE, otherwise it gives all
the pre-executions. In more detail, a candidate execWXidma pair
(Xopsem; Xwitness), Where the first component is given by the op-
erational semantics and the second is an existential vgitsfesome
further data; we introduce the components of both as we gwgalo
The top-level definition of the memory model, then, is:

cpp-memory_model opsem (p : program)
let pre_executions = {(Xopsem; Xwitness)-
opsem p Xopsem N
consistent_execution (Xopsem, Xwitness)} iN
if 3X € pre_executions .
(indeterminate_reads X # {}) Vv
(unsequenced_races X # {})V
(data_races X # {})
then NONE
else SOME pre_executions

2.1 Single-threaded programs

We begin with the fragment of the model that deals with single
threaded programs, which serves to introduce the basiceptgic
and notation we use later.

As usual for a relaxed memory model, different threads can
have quite different views of memory, so the semantics canno

end of the tool takes a program in a fragment of C++ and runs a pe expressed in terms of changes to a monolithic memory 4e.g.

symbolic operational semantics to calculate possible ngrac-
cesses and constraints. We have also explored the use ofa mod
generator (the SAT-solver-based Kodkod [TJO7], via thédHe
Nitpick interface [BN10]) to find executions more efficignthl-

beit with less assurance. Most of the examples in this papes h
been checked (and their executions drawn) usingNEM.

Our work provides a basis for improving both standards, bgth
the specific points we raise and by giving a precisely defihedic-
point, together with our €PMEMtool for exploring the behaviour
of examples in our model and in variants thereof. The C and C++
language standards are a central interface in today’s ctatiqoal
infrastructure, between what a compiler (and hardwarelshm-

plement, on the one hand, and what programmers can rely on, on

the other. Clarity is essential for both sides, and a mattieatly
precise semantics is a necessary foundation for any reasahout
concurrent C and C++ programs, whether it be by dynamic analy
sis, model-checking, static analysis and abstract inééaiion, pro-
gram logics, or interactive proof. Itis also a necessarggmédition

for work on compositional semantics of such programs.

function from locations to values). Instead, an executionsgsts
of a set ofmemory actionand various relations over them, and
the memory model axiomatises constraints on those. For gram
consider the program on the left below.

a:Wp, x=2
lsb
rf b:Wh, y=0 rf
int main() {

int x = 2; sb \sb
int y = 0; CRux=2 d:R,x=2
y = (x == x);
return 0; } sb / sb

eW,y=1

../Jexamples/tl.c

This has only one execution, shown on the right. There are five
actions, labelled (a)—(e), all by the same thread (thewatirids

are elided). These are all non-atomic memory readg @ writes
(Whna), with their address (x or y) and value (0,1, or 2). Actionk (a

2010/7/30

and (b) are the initialisation writes, (c) and (d) are thedeeaf the
operands of the= operator, and (e) is a write of the result=ef.

The evaluations of the arguments #6 are unsequencedn
C++ (as are arguments to functions), meaning that they doaild
in either order, or even overlapping. Evaluation order jsregsed
by the sequenced-beforésb) relation, a strict preorder over the
actions, that here does not order (c) and (d). The two reatls bo
read fromthe same write (a), indicated by tHerelation. The set of
actions and sequenced-before relation are given by thetipeal
semantics (so are part of thé,,em); therf relation is existentially
quantified (part of theXyitness), as in general there may be many
writes that each read might read from.

In a non-SC semantics, the constraint on reads cannot be sim- b

ply that they read from the ‘most recent’ write, as there is no
global linear time. Instead, they are constrained heregusin
happens-beforeelation, which in the single-threaded case coin-
cides with sequenced-before. Non-atomic reads have tofread
avisible side effecta write to the same location that happens-before
the read but is not happens-before-hidden, i.e., one fatwihiere

is no intervening write to the location in happens-before -
fine the visible-side-effect relation below, writing it Wwitin arrow.
The auxiliary functionds_write andis_read pick out all actions
(including atomic actions and read-modify-writes but rmtK or
unlock actions) that write or read memory.

visible-side-effect
a —— b=
happens-before
a —SPPENSERE b A
is_write a Ais_read b A same_location a b A
=(3e. (c# a)A(c#Db)A
is_write ¢ A same_location ¢ b A
happens-before happens-before
a c b)

The constraint on the values read by nonatomic reads is in two parallel composition, writted{{ ...

parts: the reads-from map must satisfy a well-formednesdition
(not shown here), saying that reads cannot read from mailtipl

writes, that they must be at the same location and have the sam

value as the write they read from, and so on. More interdstiitg
must respect the visible side effects, in the following sens

consistent_reads_from _mapping =

(Vb. (is_read b A is_at_non_atomic_location b) =
. isible-side-effect
(|f (aa/vse_ Guse visible-side-effeci b)

visible-side-effect rf

—————> bAdayse — b)

then (avse. Guse
dse ~(Ja. a 5 b)) A
]
If a read has no visible side effects (e.g. reading an ualig&d
variable), there can be b edge. This is aindeterminate read
and the program is deemed to have undefined behaviour.

indeterminate_reads = {b. is_read b A =(3a. a uR b)}

Programs also have undefined behaviour if they have a pre-

execution in which there is a write and another access todines
location that are unsequenced, as in the example below, amith
unsequenced-rac@r) edge shown.

‘W, x=2
int main() { //a” *
int x = 2; / sb
int y = 0; r b:W,, y=0
y = (x == (x=3)); /Sb
[sb
return 0; } v
d:R,, x=2 Wy, x=3
\s‘b %
eW,,y=0

unsequenced_races = {(a,).
is_load_or_store a A is_load_or_store b A
(a # b) A same_location a b A (is_write a V is_write b) A
same_thread a b A
—\(a sequenced-beforeb v

2.2 Threads, Data Races, and L ocks

We now integrate C++-0x threads into the model. The follavin
program spawns a thread that writes 2 to x and concurrenttgsvr
3intoy in the original thread.

sequenced-before

a)}

a:W,, x=2

asw

b:W,, t1=thrdl e:W,, p=x
l sb,rf
f f:Rpa p=x

void foo(int* p) {*p=3;}
int main() {
int x = 2; /sb
int y; cW,.y=3
thread ti(foo, &x);
y = 3; \sb lsb
t1.join(Q); d:Rp tl=thrdl g:W,,x=3

return 0; } ..Jlexamples/t3.c

The thread creation gives rise tdditional-synchronized-with
(asw) edges (here 2% ¢) from sequenced-before-maximal ac-
tions of the parent thread before the thread creation toesexpa-
before-minimal edges of the child. As we shall see, thesesdge
also incorporated, indirectly, into happens-before. Taeygener-
ated by the operational semantics, so are another compohant
opsem -

Thread creation gives rise to many memory actions (for pgssi
function arguments and writing and reading the thread idclvh
clutter examples, so for this paper we usually use a moreig®nc

[11 .3 R
a:W,, x=2
int main() { \
::|_nt X = 2; asw . na";(f:3 c:Rpax=2
int y;
L x=3; Sbl
[l y=(x==3); d:W,ay=0
B

return 0; } .lexamples/t4.c

This example exhibits aata race(dr): two actions at the same
location, on different threads, not related by happensteefat
least one of which is a write.

data_races = {(a, b).
(a # b) A same_location a b A (is_write a V is_write b) A
—same_thread a b A
—(is_atomic_action a A is_atomic_action b) A

happens-before happens-before
—(q —ZPPENSDEORE,) JAPPENSEEOR)y

If there is a pre-execution of a program that has a data-race,

then, as with unsequenced-races, that program has undégned
haviour.

Data races can be prevented by using mutexes, as usual. These

give rise taolock andunlockmemory actions on the mutex location,
and a pre-execution has a relatieg,as part ofXyitness that totally
orders such actions. donsistent_locks predicate checks that lock
and unlock actions are appropriately alternating. Moreayeese
actions on each mutex creagnchronizes-witkedges from every
unlock to every lock that is ordered after it3n The synchronizes-
with relation is a derived relation, calculated from a caadi ex-
ecution, which contains mutex edges, the additional-synihes-
with edges (e.g. from thread creation), and other edgesviatill
come to.

2010/7/30

synchronizes-with
_—

b=
(* — additional synchronization, from thread create etc) — *
additional-synchronized-with by

(same_location a b A a € actions A b € actions A (
(* — mutex synchronization — *)
(is_unlock a Ais_lock b A a = b) vV

[---])

For multi-threaded programs with locks but without atom-
ics, happens-before is the transitive closure of the unibthe
sequenced-before and synchronizes-with relations. Tfieititen
of a visible side effect and the conditions on the reads-frela-
tion are unchanged from the single-threaded case.

2.3 SC Atomics

For simple concurrent accesses to shared memory that apeaiot
tected by locks, C++0x providesequentially consistent atomics
Altering the racy example from above to use an atomic objectd

SC atomic operations, we have the following, in which theatmn
rent access ta is not considered a data race, and so the program
does not have undefined behaviour.

int main() { a:Wsc x=2
atomic_int x;
x.store(2);

int y=0;

{{{ x.store(3);

[l y = ((x.load()) == 3) W Reex=2

31} asw l

return 0; } sb
cWsex=3 eW,,y=0

../lexamples/t6.c

Semantically, this is because SC atomic operations ariytata
dered bysc a total order over the sequentially-consistent opera-
tions, and so can be thought of as interleaving with eachr athe

a global time-line. Their semantics are covered in detdiBif08]

and we will describe their precise integration into hapgeefre

in the following section.

Initialisation of an atomic object is by non-atomic storés (
avoid the need for a hardware fence for every such initialisa
tion), and those non-atomic storean race with other actions at
the location unless the program has some synchronisation: N
initialization SC-atomic accesses are made with atomid, resite
and read-modify-write actions that do not race with eacleioth

2.4 Low-level Atomics

SC atomics are expensive to implement on most multiprocesso
e.g. with the suggested implementations for an SC atométihea
ing LOCK XADD(0) on x86 [Ter08] anchwsync; 1d; cmp; bc;
isync on Power [MS10]; the LOCK'd instruction and thesync
may take 100s of cycles. They also provide more synchraaisat
than needed for many concurrent idioms. Accordingly, C+iBx
cludes several weaker variants: atomic actions are pariseekt
by a memory ordermo that specifies how much synchronisa-
tion and ordering is required. The strongest ordering isired
for Mo_SeQ.csT actions (which is the default, as used above),
and the weakest for BLRELAXED actions. In between there are
MO_RELEASHMO_ACQUIRE and MO_RELEASHMO_CONSUME
pairs, and M>_ACQ_REL with both acquire and release semantics.

2.5 Typesand Relations

Before giving the semantics of low-level atomics, we sumrisgar
the types and relations of the model. There are base typesioha
ids aid, thread idstid, locations/, and values. As we have seen
already, actions can be non-atomic reads or writes, or matks

or unlocks. Additionally, there are atomic reads, writag] aead-
modify-writes (with a memory order parametero) and fences
(also with amo parameter). We often elide the thread ids.

action =
aid, tlanal =
aid, tid:Wnal = v

non-atomic read
non-atomic write

|

| aid, tid:Rmol = v atomic read

| aid, tid:Wpol = v atomic write

| aid, tid:RMW 0l = v1/v2 atomic read-modify-write
| aid, tid:L lock

| aid, tid:U 1 unlock

| aid, tid:Fpo fence

Theis_read predicate picks out non-atomic and atomic reads and
atomic read-modify-writes; this_write predicate picks out non-
atomic and atomic writes and atomic read-modify-writes.

Locations are subject to a very weak type system: each tocati
stores a particular kind of object, as determined tycation-kind
map. The atomic actions can only be performed aro#ic lo-
cations. The non-atomic reads and writes can be performed on
either Aromic or NON_ATOMIC locations. Locks and unlocks
are mutexactions and can only be performed onuWEX loca-
tions. These are enforced (among other sanity propertigsd b
well_formed_threads predicate; we elide the details here.

The Xopsem part of a candidate executioX consists of
a set of thread ids, a set of actions, a location typing, and
four binary relations over its actionsequenced-beforgsb),
additional-synchronized-withasw), data-dependencydd), and
control-dependencycd). We have already seen the first two:
sequenced-beforeontains the intra-thread edges imposed by the
C++ evaluation order, anddditional-synchronized-witleontains
additional edges from thread creation and thread join (anodh-
ers). Data dependence will be used for require/consumeieom
(in §2.8) and control dependence will be used only in discussion,
not in the current model. These are all relations that ar@ldddy
the syntactic structure of the source code and the path dfaton
flow, and so the set of possible choices forag,sem can be calcu-
lated by the operational semantics without reference tat@ory
model (with reads taking unconstrained values).

The Xyitness part of a candidate executio¥l consists of a fur-
ther three binary relations over its actionf:s¢ andmodification
order (mo). Therf reads-from map is a relation containing edges
to read actions from the write actions whose values they; tahe
edges to each lock action from the last unlock of its mutexe Th
sequentially consistent ordsc is a total order over all actions
that are Mo_seqQ.csTand all mutex actions. The modification or-
der (mo) is a total order over all writes at each atomic lagati
(leaving writes at different locations unrelated), whicil be used
to express a coherence condition. These relations areetiaty
quantified in the definition ofpp_memory_model, and for each
Xopsem admitted by the operational semantics there may be many
choices of anXwisness that give a consistent execution (each of
which may or may not have a data race, unsequenced racegor ind
terminate read).

The happens-before relation, along with several otheesdar
rived from those inXopsem and Xwitness-

2.6 Release/Acquire Synchronization

An atomic write or fence is aleaseif it has the memory order
MO_RELEASE MO_ACQ_REL or MO_SEQ.CST. Atomic reads or
fences with order M_ACQUIRE, MO_ACQ_REL or MO_SEQ_CST,
and fences with order LCONSUME, areacquireactions.

Pairs of a write-release and a read-acquire support thenfivify
programming idiom. Here one thread writes some e&@erhaps

2010/7/30

spanning multiple words) and then sets a flaghile the other spins
until the flag is set and then reads the data.

// receiver
while (0 == y);
r = x;

// sender
X

y

1;
The desired guarantee here is that the receiver must seathe d
writes of the sender (in more detail, that the receiver casee
any values of data that precede those writes in modificatren o
der). This can be achieved with an atomic storeyofinnotated

MO_RELEASE and an atomic load of annotated M_ACQUIRE.
The reads and writes afcan be nonatomic.

is_atomic_store a V is_atomic_rmw a)} in
strict_total_order_over writes_at_l
modification-order
('——_)|acti0ns_at_l) A
(* happens-before at the writes bis a subset of mo fot *)

happens-before modification-order

—_’|writes_at_l g — /\
(D)
I-—

let actions_at_l = {a. (location a = SOME [)} in
modification-order

(‘——_)l H.ctians_at_l) = {}))

In the example, the release action (b) has a release sequence

[(b),(c)], a contiguous sub-sequence of modification owfethe

In the model, any instance of a read-acquire that reads from alocation of the write-release. The release sequence isetielyl

write-release gives rise togynchronizes-witkedge, e.g. as below
(where thef edges are suppressed).

aW,,x=1
sbl
b:WggLy=1

W c:Racqy=1
sb
d:Rpax=1

../examples/t15.c

For such programs (in fact for any program without re-
lease/consume atomics), happens-before is still theitiranslo-
sure of the union of the sequenced-before and synchroniitbs-

relations, so here Dappensbelo 1 and (d) is obliged to read from
(a).

In this case, the read-acquire synchronizes with the write-
release that it reads from. More generally, the read-ae@ain syn-
chronize with a write-release (to the same location) thaei®ore
the write that it reads from. To define this precisely, we nieagse
the modification order of a candidate execution and to intcedhe
derived notion of aelease sequencef writes that follow (in some
sense) a write-acquire.

For example, in the fragment of an execution below, the read-
acquire (d) synchronizes with the write-release (b) byuef the
fact that (d) reads from another write to the same locationand
(b) precedes (c) in the modification order (mo) for that |arat

a:W,,x=1

e:R,.x=1

../lexamples/t8a.c

The modification order of a candidate execution (here
modification-order

b ——— ¢) totally orders all of the write actions on
each atomic location, in this cagelt must also be consistent with
happens-before, in the sense below.

consistent_modification_order =

dification-ord
(Va. Vb. a e b = same_location a b) A
(V1 € locations_of actions. case location-kind{ of
ATOMIC — (
let actions_at_l = {a. (location a = SOME [)} in
let writes_at_l = {a € actions_at_l. (is_store a V

the release and can be followed by writes from the same thoead
read-modify-writes from any thread; other writes by otheeads
break the sequence. We represent a release sequence netiby th
of actions but by a relation from the head to all the elemexgtshe
order is given by modification order. In figures we usuallymeags
the reflexive edge from the head to itself.

rs_element rs_head a =
same_thread a rs_head V is_atomic_rmw a

release-sequence
Qrel b=

is_at_atomic_location b A
is_release ae; A (
(b = a'rel) v

modification-order
(rs_element ape; b A Gprgg ————— b A

modification-order modification-order

(Ve. arer ¢ b
rs_element a,; c)))

=

A write-releasesynchronizes-witla read-acquire if both act on

the same location and the release sequence of the releaaison
release-sequence

the write that the acquire reads from. In the exantple———

¢ . 4, sowe havey 22NN The definition below covers
mutexes and thread creation (in additional-synchronizi) but
elides the effects of fences.

synchronizes-with b

_

(* — additional synchronization, from thread create etc) — *
additional-synchronized-with by

(same_location a b A a € actions A b € actions A (
(* — mutex synchronization — *)

(is_unlock a Ais lock bA a 5 b) Vv

(* — release/acquire synchronization —*)
is_release a A is_acquire b A - same_thread a b A

(
(Hc. o release-sequencec rf
[..

— b))V
)

The modification order and the sc order we saw earlier must als
be consistent, in the following sense:

consistent_sc_order =
happens-before, .
let sc_happens_before = J1appens-heTor all_sc_actions 1N
modification-order
e

let sc_mod_order = [all_sc_actions IN

strict_total_order_over all_sc_actions (ES) A

sc_happens_before sC
_sc-happens-betore | c =S A
sc_mod_order sc
iy, ¢ %

2.7 Constraining Atomic Read Values

The values that can be read by an atomic action depend onirsppe
before, derived from sequenced-before and synchroniitbs-We

2010/7/30

return to the execution fragment from the previous sectbawing
a transitive reduction of happens-before that coincideth s
constituent orderings.

aW,,x=1
hbl
b:WggLy=1
hb
cWeix yzé1b d:Racqy=2
hbl
e:Rpx=1

../lexamples/t8b.c

An atomic action must read a write that is in one of vtsible
sequences of side effecis this case (d) either reads (b) or (c).
A visible sequence of side effects of a read is a contiguobs su
sequence of modification order, headed by a visible sidetedfie
the read, where the read does not happen before any member of t
sequence. We represent a visible sequence of side effecs o
list but as a set of actions in the tail of the sequence (we ate n
concerned with their order).

visible_sequence_of _side_effects_tail vsse_head b =
modification-order
{c. vsse_head ————— ¢ A
happens-before
- (b PP

(Va. vsse_head
=(b

c) A
modification-order
a

a))}

We definevisible-sequences-of-side-effetrishe the binary re-
lation relating atomic reads to their visible-side-effeets (now in-
cluding the visible side effects themselves). The atonmac naust
read from a write in one of these sets.

Atomic read actions also obey the following coherence condi
tion: If one read happens-before another on the same locatien
the writes that they read are either the same, or the writbeo t
earlier read is modification-ordered before the later one.s\bw
this below in the relaxed case, but it applies to all actianstdomic
locations.

modification-order
c

happens-before
pp!

a:Wgx x=vl

mo .

b:Wrix x:vé c:Rrix x=vl
) hbl

' d:Rpix x=v2

../examples/t39-CoRR.exc

We can now extend the previous definition of the consisteadge
from predicate to be the conjunction of the read-restmgion
nonatomic and atomic actions, the coherence conditionaaruh-
straint ensuring read-modify-write atomicity. In the défon be-

low, we write a i>p b to mean that - b, predicateP holds for
a and there is ndr-interveningz satisfyingP.

consistent_reads_from _mapping =
(Vb. (is_read b A is_at_non_atomic_location b) —

. visible-side-effect
(|f (Savse- Ayuse ——— b)

visible-side-effect
then (3avse. avse ———— b A

dse ~(3a. a L b)) A
(Vb. (is_read b A is_at_atomic_location b) =
(if (3(v’, vsse) € visible-sequences-of-side-effects’ = b))
then (3(b’, vsse) € visible-sequences-of-side-effects
(' =b)A(Fc € wsse. c LA b))
dse =(3a. a 1 b)) A

rf
Ayse — b)

rf

(V(z, a) € —.
rf
Y(y,b) € —.
happens-before
o appens-betore .-
same_location a b A is_at_atomic_location b
modification-order

= (z=y)Vz —— y) A
rf
(V(a, b) € —. is_atomic_rmw b
modification-order
_— ¢ — b) AN

rf
(V(a,b) € —. is_seq_cst b
—> -is_seq-cst a V

sc
a Ac. is_write cAsame_location b ¢ b) A

]
2.8 Release/Consume Atomics

On multiprocessors with weak memory orders, notably Power,
release/acquire pairs are cheaper to implement than siajlyen
consistent atomics but still significantly more expensihant
plain stores and loads. For example, the proposed Power im-
plementation of load-acquir@d; cmp; bc; isync, involves an
isync [MS10]. However, Power (and also ARM) does guarantee
that certain dependencies in an assembly program are tedpec
and in many cases those suffice, making thgnc sequence un-
necessary. As we understand it, this is the motivation fwoduc-

ing aread-consumeariant of read-acquire atomics. On a stronger
processor (e.g. a TSO x86 or Sparc), or one where those depend
cies are not respected, read-consume would be implemeargiealy
read-acquire.

Read-consume enables efficient implementations of algost
that use pointer reassignment for commits of their data,reagp-
copy-update [MW]. For example, suppose one thread writegeso
data (perhaps spanning multiple words) then writes theesddof
that data to a shared atomic pointer, while the other threadisthe
shared pointer, dereferences it and reads the data.

// sender // receiver
data = ... rl =
p = &data; r2 = *ri; // data

Here there is a dependency at the receiver from the readoathe
read ofdata. This can be expressed using a write-release and an
atomic load ofp annotated M_CONSUME

int main() {
int data; atomic_address p;
{{{ { data=1;
p.store(&data, mo_release); }
|l printf("%d\n", *(p.load(mo_consume)));
i3

return 0; }

As we saw in§2.6, the semantics of release/acquire pairs intro-
duced synchronized-with edges, and happens-before eeltite
transitive closure of synchronized-with and sequencddrbe—
for a release/acquire version of this example, we would hhge

h -bef
edges on the left below, and henge 22208 .

a:Wsc data=1 a:Wsc data=1
sbl

b:WggL p=data

:Rcon p=data
dob

d:Rsc data=1

d:Rsc data=1

../lexamples/t28-datadep-rel-acq.c ../lexamples/t20-simple-rel-con.c

2010/7/30

For release/consume, the key fact is that theredista dependency
(dd) from (c) to (d), as shown on the right. This is data givgn b
the operational semantics. The (dd) edge gives rise daraes-

a-dependency-t¢cad) edge, which extends data dependency with

thread-local reads-from relationships:

carries-a-dependency-to
qQ —>

b=

sequenced-befor
q P) U

data—dependenc;s + b

a((Ln
In turn, this gives rise to aependency-ordered-befofelob)
edge, which is the release/consume analogue of the redegsak
synchronizes-with edge. This involves release sequerscbsfare
(in the example just the singleton [(b)]):

dependency-ordered-before
a —

a € actions AN d € actions A
(3b. is_release a Ais_consume b A

release-sequence rf
(Fe.a ————

e — b)A
(b carries-a-dependency-to
ket ittt AN

dv (b= d))

2.9 Happens-before

Finally, we can define the complete happens-before relafion
accommodate M_coONSUME, and specifically the fact that re-
lease/consume pairs only introduce happens-before aetatio
dependency-successors of the consuma¢to all actions that are
sequenced-after it, the definition is in two steps. First, dee
fine inter-thread-happens-befaravhich combines synchronizes-
with and dependency-ordered-before, allowing transjtiviith
sequenced-before on the left for both and on the right onty fo
synchronizes-with:

inter-thread-happens-before

synchronizes-with
_—

let r=

dependency-ordered-beforsb
Rt Shshadtdinbidiy

synchronizes-with sequenced-before .
o 3 in
(L» U (sequenced-beforeo L»))+
In any execution, this must be acyclic:

consistent_inter_thread_happens_before =
inter—thread-happens-beforsj

irreflexive (

Happens-before (which is thereby also acyclic) is then thust
union with sequenced-before:
happens-before
—_— =

inter-thread-happens-before

sequenced-before
U

2.10 Puttingit together

Given a candidate executioN = (Xopsem; Xwitness), We can
now calculate the derived relations:

release-sequencés2.6), hypothetical-release-sequenda variant of
release-sequencased in the fence semanticgynchronizes-with(§2.2,
§2.6), carries-a-dependency-t(£2.8), dependency-ordered-befo(§2.8),
inter-thread-happens-befo(§2.8), happens-beforé2.1,§2.2,§2.3,§2.8),
visible-side-effec{§2.1), andvisible-sequences-of-side-effe(32.7).

The definition ofconsistent_execution used at the start of Sec-
tion 2 is then simply the conjunction of the predicates weehde-
fined:

consistent_execution =
well_formed_threads A
consistent_locks A

(§2.5, defn. elided)
(§2.2, defn. elided)

consistent_inter_thread_happens_before n (§2.8)
consistent_sc_order A (§2.6)
consistent_modification_order A (§2.6)
well_formed_reads_from_mapping A (§2.1, defn. elided)
consistent_reads_from_mapping (§2.1,82.7)

The acyclicity check on inter-thread-happens-before, tued
subtlety of the non-transitive happens-before relatioa, reeeded
only for release/consume pairs:

Theorem 1. For an execution with no consume opera-
tions, theconsistent_inter_thread_happens_before condition of
consistent_execution is redundant.

Theorem 2. If a consistent execution has no consume operations,
happens-before is transitive.

The proofs are by case analysis and induction on the sizessflge
cycles.

3. Examples

We now illustrate the varying strength of the different meyno
orders by showing the semantics of some ‘classic’ examfes.

all cases, variants of the examples with SC atomics do nat te
weak-memory behaviour. As in our other diagrams, to avaittet

we only show selected edges, and we omit the C++ sources for
these examples, which are available on-line [BOS].

Store Buffering (SB) Here two threads write to separate loca-
tions and then each reads from the other location. In TotaleSt
Order (TSO) models both can read from before (w.r.t. coleen
the other write in the same execution. In C++0x this behavisu
allowed if those four actions are relaxed, for releasefeorespairs
and for release/acquire pairs. Assuming that the inigilin writes

to the locations are relaxed or non-atomic, it is still aldoveven

if those four are sequentially consistent. If every actimel(iding
the two initial writes) is sequentially consistent, thisfasbidden
by theconsistent_sc_order condition.

Message Passing (MP) Here one thread (hon-atomically) writes
data and then an atomic flag while a second thread waits for the
flag and then (non-atomically) reads data; the question thran

it is guaranteed to see the data written by the first. As we saw i
§2.6, with a release/acquire pair it is. A release/consuniregpaes

the same guarantee iff there is a dependency between thg, read
otherwise there is a consistent execution (on the left) iichvthere

is a data race (here the second thread sees the initial viek¢he
candidate execution in which the second thread sees the xwrit

is ruled out as that does not happen-before the read and sbas n
visible side effect).

a:W,,x=0 b:W,a x=1 aWx=0 cWgxx=1
sbl sbl sbl .
r
CWREL y:l b:Wna y:0 dZWRLx y:1 e:RRLx x=1

B
I

fRrixy=0 gRrixy=1
sb

h:Rrix x=0

d:Rcony=1
sbl
e:R,, x=0

../lexamples/t29-mp-consume.c ..Jexamples/irdw-relaxed.c

The same holds with relaxed flag operations.

2010/7/30

In a variant in which all writes and reads are release/coesum and with our tool; trying to prove properties of the formatisns;

or relaxed atomics, eliminating the race, and there are opé@es of and discussing issues with members of the Concurrency subco
the reading thread, the two reading threads can see the titeswr mittee of the C++ Standards Committee (TC1/SC22/WG21). To
of the writing thread in opposite orders (as on the right apew give a flavour of this process, and to explain how our fornadilis
consistent with what one might see on Power, for example. differs from the current draft (the final committee draft,088) of

the standard, we describe a selection of debatable isshissal§o
serves to bring out the delicacy of the standard, and thallgithf
prose specification, even when carried out with great caech&Ve
made suggestions for technical or editorial changes to riife for
many of these points and it seems likely that several of thélin w
be incorporated.

Load Buffering (LB) In this variant of the SB example the
question is whether the two reads can both see the (sequenced
before) later write of the other thread in the same execuildith
relaxed atomics this is allowed, as on the left:

ithb
aW,.x=0 c:Rconx=1=weRcony=1

aWnx=0 cRrixx=1 eRrxy=1 _ > dobv [§ Acyclicity of happens-before N3090 defines happens-before,
Sbl © : Sbl Sbi itho SP/}f\fblT”hb making plain that it is not necessarily transitive, but doesstate
b:W,,y=0 d:W, =1"""f:W, =1 it i i i
bWoy=0 d:Warkyel " FWeeex=1 y RELY RELX whether it is required to be acyclic (or whether, perhapsrca p
gram with a cyclic execution is deemed to have undefined be-
..lexamples/t30-Ib-relaxed.c ../Jexamples/t31-lb-consume.c

haviour). The release/consume LB examplé®has a cyclic inter-
thread-happens-before, as shown there, but is otherwisena c
sistent execution. After discussion, it seems clear thatetions
with cyclic inter-thread-happens-before (or, equivdientyclic
happens-before) should not be considered, so we imposexhat
plicitly.

but with release/consumes (with dependencies) it is nobifabe
right above), because inter-thread-happens-before vamityclic.
It is not allowed for release/acquire and sequentially isbest
atomics (which are stronger than release/consumes witbndep
dencies), because of the cyclic inter-thread-happersrdeid for
other reasons. Additional happens-before edges There are 6 places where
Writeto-Read Causality (WRC) Here the first (non- N3090 adds happens-before relatlon_shlps explicitly (iditaah
initialisation) thread writes to x; the second reads fromat tand to those from sequenceq-before and |nter-thread-hamm‘n§e),
then (w.r.t. sequenced-before) writes to y; the third réieats that e.g. between the invocation of a thread constructor andmrc_etlbn
and then (w.r.t. sequenced-before) reads x. The questishether that the thread runs. As happens-before is carefdiyransitively

e he first th ; ite. closed, such edges would not be transitive with (e.g.) sexpde
itis guaranteed to see the first thread's write before. Accordingly, we instead add them to the synchrahize

aWex=0 c:Wrixx=1 with relation; for those within our C++ fragment, our opévatl
sbl semantics introduces them into additional-synchroniméh-
b: Wi, y=0

‘Subsequent’ in visible sequences of side effects N3090 de-

fines: The visible sequence of side effects on an atomic oBjgct

with respect to a value computatidhof M, is a maximal contigu-

ous sub-sequence of side effects in the modification ordéd ,of

F fRaxy=1 where the first side effect is visible with respectzpand for ev-

ery subsequent side effect, it is not the case thaappens before

it. However, if every element in a vsse happens-before a read, th
& Rrucx=0 read should not take the value of the visible side effectiolaohg

..lexamples/t32-wrc-relaxed.c discussion, we formalise this without teabsequent

With relaxed atomics, this is not guaranteed, as shown above Release/consume example The draft standard requires
while with release/acquires it is, as thgnchronizes-witiedges in ~ modification-order to agree with happens-before, but apéwp
the inter-thread-happens-before relation interfere withrequired ~ before is not always transitive the standard (and our mquéetits

read-from map. counter-intuitive executions such as that below.
Independent Reads of Independent Writes (IRIW) Here the Weex=0__ b Wee A= cReonx=1

first two (non-initialisation) threads write to differemdations; the - sb

question is whether the second two threads can see thosss writ d:WreL x=2

different orders. With relaxed, release/acquire, or seémnsume ..lexamples/t26-anti-mo-consume.c

atomics, they can.

Here there is a dependency-ordered-before edge for a write-
release/read-consume pair (a),(b), with (b) reading fraynbut the
write (@) follows (in modification order) another write (c) thfdl-

a:W,, x=0 cWeeLx=1 d:Wgg y=1

sbl
rf

b:Wo, y=0 eRacex=1 gRacqy=1 lowsthe read in sequenced-before. We believe that a naturalrPowe
Sbl implementation of C++ would not permit this behaviour, whéan
it fRacqy=0 h:Racqx=0 be seen as arising from the lack of a coherence condition #0&+
~Jexamples/t9.c Non-uniquevsses The draft standard refers tthe’ visible se-

guence of side-effects, suggesting uniqueness. Nevesthethe
o following valid execution has more than one, relying on taekl
4. From standard to formalisation and back of transitivity of happens-before as in the previous examphis

We developed the model presented in Section 2 by a lengthy ite is not necessarily a problem, but may be confusing.

ative process: building formalisations of various draftthe stan-
dard, and of Boehm and Adve’s model without low-level atom-
ics [BAO8]; considering the behaviour of examples, both apd

8 2010/7/30

a:W,, x=0

mo,sw,_\» sW
b:VViLX x=1

rfnse,vs:
sb,vse,vlses

f:WreL x=3

e:WRLx x=4

../examples/t24-4m2vsses.c

Reading a hidden write In the example below, the read-acquire
(c) synchronizes-with the write-release (d) by virtue ohdimg

from the RMW (a), which is in the release sequence headed by

(d). Counter-intuitively, this can happen despite the @nee of
an intervening write (b) in sequenced-before. This reliestie
inclusion of read-modify-writes from any thread in the difom

of release-sequence, but seems to arise from the lack ofiemot
coherence condition.

..lexamples/t36-hidden-rmw.exc

Overlapping executions and thin-air reads In a C++0x pro-
gram that gives rise to the relaxed LB exampl&®) the written
value 1 might have been concrete in the program source.n@alter
tively, one might imagine hin-air read the program below has
the same execution, and here thered®ccurrence of 1 in the pro-
gram source.
int main() {

int rl1, r2;

atomic_int x = 0;

atomic_int y = 0; aW,x=0 cRrxx=1 eRrxy=1

{{{ { r1 = x.load(mo_relaxed)); sbl b &b
y.store(rl,mo_relaxed); } ¥ . oV 7 v

[l £ r2 = y.load(mo_relaxed)); mY YR TR
x.store(r2,mo_relaxed); } ..lexamples/t30-Ib-relaxed.c

I3

return 0; }
This would be surprising, and in fact would not happen withicgl
hardware and compilers. In the Java Memory Model [MPAO5],
much of the complexity of the model arises from the desire to
outlaw thin-air reads, which there is essential to prevenging
of pointers. C++0x also attempts to forbid thin air readsthwi
An atomic store shall only store a value that has been cordpute

two reads of x. In our formalisation we currently do not im@os
any thin-air condition.

a:W,, x=0
1rf
CZRscXZO
int main() { b:Wsc x=1
atomic_int x = 0;
int y; f, sb
{{{ x.store(1); d:Rscx=1
1 {y= (x.loadO==x.10ad()); \Sb
33} eW,,y=0

return 0; }
../lexamples/t27-inter-evaluation.c

5. Correctnessof a Proposed x86 | mplementation

The C++0x memory model has been designed with compilation to
the various target architectures in mind, and prototypelémpn-
tations of the atomic primitives have been proposed. Fomgia,
the following table presents an x86 prototype by Terekhar(8]:

Operation x86 Implementation

Load non-SC mov

Load Seqcst lock xadd(0) OR:mfence, mov
Store non-SC mov

Store Seqcst lock xchg OR: mov , mfence
Fence non-SC no-op

Fence Seqcst mfence

This is a simple mapping from individual source-level atorop-
erations to small fragments of assembly code, abstraatimg the
vast and unrelated complexities of compilation of a full Qam-
guage (argument evaluation order, object layout, coniwal, fétc.).
Proposals for the Power [MS10] and other architecturesvothe
same structure, although, as they have more complex menady m
els than the x86, the assembly code for some of the operasons
more intricate.

Verifying that these prototypes are indeed correct implaare
tions of the model is a crucial part of validating the desigurther-
more, as they represent the atomic-operation parts ofefticom-
pilers (albeit without fence optimisations), they can dilg form
an important part of a verified C++ compiler, or inform theidas
and verification of a compiler with memory-model-aware oyt
sations.

Here, we prove a version of the above prototype x86 imple-
mentation [Ter08] correct with respect to our x86-TSO seman
tics [SSZN™09, OSS09, SSO10]. Following the prototype, we
ignore lock and unlock operations, as well as forks and jcafis
of which require significant runtime or operating systempsurpin
addition to the the x86 hardware. We also ignore sequentiath-
sistent fences for the time being, but cover all other fendésdo
consider read-modify-write actions, implementing thenthwi86
LOCK'd read-modify-writes; and we include non-atomic Igaxhd
stores, which can map to multiple x86 loads and stores, cespe
tively. The prototype mapping is simple, and x86-TSO is oeas
ably well-understood, so this should be seen as a test of the C

from constants and program input values by a finite sequence memory model.

of program evaluations, such that each evaluation obsetkies
values of variables as computed by the last prior assigniimethie
sequenceThis seems to be overly constraining. For example, two
subexpression evaluations (in separate threads) carapverig. if
they are the arguments of a function call) and can contairtiphel
actions. With relaxed atomics there can be consistent ¢éxesln
which it is impossible to disentangle the two into any segeefor

In x86-TSO, an operational semantics gives meaning to assem
bly programs by creating ax86 event structurefixss (analogous
to Xopsem) COMprising a set of events, an intra-thrgadgram-
order relation (analogous to sequenced-before) that orderdseven
according to the program text. Events can be reads, writes, o
fences, and certain instructions (e.g. CMPXCHG) crdatked
sets of events that execute atomically. Corresponding{Qness,

example as below, where the SC-write of x must be between the there arex86 execution witnesses.ss Which comprise a reads-

from mapping and a memory order, which is a partial order over

2010/7/30

reads and writes that is total on the writes. The remainde¢hef instruction instance can be used by multiple C++ actiond,tha
axiomatisations are very different: x86-TSO has no conoépe- x86 program-orderrelation must respect C++&quenced-befare
lease, acquire, visible side effect, etc. The detailed definitions, and the proof of the following tresn,

. . . are available online [BOS].
Abstracting out the rest of the compiler To discuss the correct- []

ness of the proposed mapping in isolation, without embagrkin Theorem 3. Let p be a C++ program that has no undefined
a verification of some particular full compiler, we work dglén behaviour. Suppose also thatontains no SC fences, forks, joins,
terms of candidate executions and memory models. locks, or unlocks. Then the x86 mapping is correct in the esens

First, we lift the mapping between instructions to a nondete above. That is, ifictions, sequenced-before, and location-kind are
ministic translationaction_comp from C++ actions to small x86 ~ members of theX, s part of a candidate execution resulting
event structures, e.g. relating an atomic read-modifyevattion to from the operational semantics pfthen the following holds:
the events of the corresponding x86 LOCK'd instruction.

To define what it means for the mapping to be correct, suppose
we have a C++ program with no undefined behaviour and an
Xopsem Which is allowed by its operational semantics. We regard
an abstract compileevi_comp as taking such anXopsem and
giving an x86 event structurByss, respecting thexction_comp
mapping but with some freedom in the resulting x86 prograseor . .

We say the mapping is correct if given such an abstract com- Proof outline. Xsss includes a reads-from map and a memory
piler, the existence of a valid x86-TSO execution witness fo ordering relation that is total on all memory writes. To buil
E.s6 implies the existence of a consistent C++ execution witness Xwitness, We lift a C++ reads-from map and modification order

Xwitness fOr the original actionsXopsem. We prove this by lifting from th hr " biff 3
such an x86 execution witness to a C++ consistent execu®n, om these throughomp (€.9.,a = biff 3(ex € comp a)(ez €

Ycomp locn_comp tid_comp Xxse-
evt_comp comp locn_comp tid_comp actions
sequenced-before location-kind
valid_execution (Uqe actions (comp a)) Xxss =
I X witness- consistent_execution (Xopsem; Xwitness)

illustrated below. comp b). e e, e2). We create arsc ordering by restricting
)) the Xxs6 memory ordering to the events that originate in sequen-
Xopsem MM Y s tially consistent atomics, and linearising it using thegirtech-
nigue from our previous triangular-race freedom work fol6x8
"“““’"Pl evt_comp ™ T TSO [Owel10]. We then lift that througévmp. The proof now pro-

ceeds in three steps:
B i evecution X80 nappens.bef
1) We first show that ifts ———""* }, and there are x86 events
Below we show an¥opsem and Exse that could be related by .| ande, such thate; € comp a andes € comp b, thene;

evt_comp. The dotted lines indicate some of the x86 program or- precedes:» in either X,ss’'s memory order or program order. We

dering decisions that the compiler must make, but whigh comp have machine-checked this step in HOL-4 [HOL].
does not constrain. This property establishes that, in some sense, x86-TSO has a
C++0x actions x86 events stronger memory model than C++, and so any behaviour allowed
d:Racq y=1 aw x=1 d:Ry=1 by the former should be allowed by the latter. However, thiage
not quite so straightforward.
po po 2) Check thatXyitness iS a consistent_execution. Most cases
are machine checked in HOL; some are only pencil-and-paper.
eWscz=1 b:W w;=1 ewz=1 / Many rely upon the property from 1. For example, in showiref th
P0<) B P{e_ . . oo ff visible-side-effect
b:W w,=0 :mfence (at a non-atomic location) it — b thena ———— b, we
po notﬁea tggbg‘fOEDerthverne 2 Yvrite to the same location such that
pRens: ¢ —2PREISREET b, then using the property from 1,
CRy=0 there is an x86 write event inomp ¢ that would come between
C:RMWre, y=0/1 cwy=1 [ocked the events ofcomp a and comp b in Xys6, thus meaning that
they would not be inXxss's reads-from map, contradicting the
In more detail, we use two existentially quantified helparcfu construction ofXyitness's reads from map.

tionslocn_comp andtid_comp to encapsulate the details of a C++ 3)
compiler’s data layout, its mapping of C++ locations to x&6 a . . oo
dresses, and the mapping of C++ threads to x86 threads. false. For example, in showrllng th@gf-’ b implies a
Given a C++ location and valuégen_comp produces a finite b, we need to show that ———="F j Even though there is
mapping from x86 addresses to x86 values. The domain of the such a relationship at the x86 level, it does not necessaxibt in
finite map is the set of x86 addresses that corresponds to#the C C++. In general, x86 executions can establish reads-fréatioas
location, and the mapping itself indicates how a C++ value is that are prohibited in C++. Similarly, for non-atomic acses that

In some cases, some of the properties required for 2 might be
visible-side-effect
Visible-side-efiect

laid out across the x86 addresses. A well-forniech_comp has span multiple x86 addresses, the lifted reads from-map tmigh

the following properties: it is injective; the address cdédtion be well-formed.

cannot depend on the value; each C++ location has an x86sa;idre We show that if one of these violations of 2 arises, then the

different C++ locations have non-overlapping x86 address, aind original C++ program has a data race. We find a minimum viofati

an atomic C++ location has a single x86 address, althougma no in Xxss, again using techniques from our previous work [Owe10].

atomic location can have several addresses (e.g. for a-maoit Next we can remove the violation, resulting in a consisfeitiness

object). for a prefix of the execution, then we add the bad action, mateit
Finally, the evt_comp relation specifies valid translations, ap-

plying action_comp with a well-formedlocn_comp and also con- 1The C++ model is in Isabelle/HOL, but x86-TSO is in HOL-4. Wipport

straining how events from different actions relate: no Endg6 the proof with a semi-automated translation from Isabiei® to HOL-4.

10 2010/7/30

creates a data race, and allow the program to complete in apy w
The detalils of this part are by pencil-and-paper proof.
O

Sequentially consistent atomicsThe proposal above includes
two implementations of sequentially consistent atomiaseand
writes; one with the x86 locked instructions, and the othéhw
fence instructions on both the reads and writes. Howeveame
prove that it suffices either to place arfence before every sc read,
or after every sc write, but that it is not necessary to do .both
This optimisation is a direct result of using triangulacedree-
dom (TRF) [Owe10] to construct thee ordering in proving The-

catch. It also has to be adapted often as the model is dewtlope
We therefore use Isabelle/HOL code generation [Haf09] itbu
the checker directly from our Isabelle/HOL axiomatisatitmkeep
the checker and our model in exact correspondence and réukice
possibility for error.

The operational semantics Our overall semantics is stratified: the
memory model is expressed as a predicate on the actionsland re
tions of a candidate execution. This means we need an opeahti
semantics of an unusual form to generate all such candidatas
setting with a global SC memory, the values read by loads ean b
determined immediately, but here, for example for a prognatn

orem 3. Roughly, our TRF theorem characterises when x86-TSO @ single load, in principle we have to generate a large sexef e

executions are not sequentially consistent; it uses arpattalled
a triangular race, involving an x86-level data race comtbiwéh a
write followed, on the same thread, by a read without a fence (
locked instruction) in between. If no such pattern exidtgntan

cutions, each with a load event with one of the possible wlWe
make this executable by building a symbolic semantics irctvttie
values in actions can be either concrete values or unificati-
ables (shown a%v). Control flow can depend on the values read,

executionXyss can be linearised such that each read reads from SO the semantics builds a set of these actions (and the atezbei

the most recent preceding write.

Although the entirety of an execution witne¥sss might con-
tain triangular races and therefore not be linearisablegbtyicting
attention to only sc reads and writes we get a subset of trmiexe

tion that is TRF, as long as there is a fence between each dc rea

and write on the same thread. Linearising this subset gtesan
the relevant property aKyitness's SCordering: that ifa and b are

sequentially consistent atomics and™ b, then a immediately
precedes in screstricted to that address.

Compiler correctness Although we translate executions instead
of source code, Theorem 3 could be applied to full source-to-
assembly compilers that follow the prototype implementatiThe
following diagram presents the overall correctness pitgper

w.f. threads consistentexecution

p > Xopsem Xwitness
compiler f T g T
! E. X
p w.f. events x86 valid_execution x86

If, once we usef, we can then applyvi_comp to get the same
event set back, i.e., informallypt_comp(f(E)) = E, then The-
orem 3 ensures that the compiler respects the memory maukl, a
so we only need to verify that it respects the operationabsgics.
Thus, our result applies to compilers that do not optimisayeany
instructions thatvt_comp will produce. These restrictions apply
to the code generation phase; the compiler can perform dit/ va
source-to-source optimisations before generating x86.cod

6. Tool support for exploring the model

Given a a relatively complex axiomatic memory model, as vee pr
sented in Section 2, it is often hard to immediately see the co
sequences of the axioms, or what behaviour they allow faigear

ular programs. Our €PMEM tool takes a program in a fragment
of C++0x and calculates the set of its executions allowedhiay t
memory model, displaying them graphically.

The tool has three main components: an executable symbolic

operational semantics to build thé,psern parts of the candidate

relations), together with constraints on the values, fochamntrol-
flow path of the program. For each path, the associated eomistr
is solved at the end; those with unsatisfiable constraintiqating
unreachable execution paths) are discarded.

The tool is designed to support litmus test examples of the ki
we have seen, not arbitrary C++ code. These do not usuathijviev
many C++ features, and the constraints required are prtiguoei
formulae over equality and inequality constraints over lsglic
and concrete values. It is not usually important in litmustgeo
do more arithmetic reasoning; one could imagine using an SMT
solver if that were needed, but for the current constraimjleage, a
standard union-find unifier suffices. The input program i€pssed
by the CIL parser [NMRWO02], extended with support for atosnic
We use Graphviz [GNOO] to generate output. We also allow see u
to add explicit constraints on the value read by a memory ioad
C++ source program, to pick out candidate executions ofeste
to selectively disable some of the checks of the model; ardbto
clutter the output by suppressing actions and edges.

As an example, consider the first program we sa§Rid. There
are two possibilities: the reads of x either read the samgevat
different values, and hence the operational semantics ¢finetwo
candidate executions and constraints below:

Constraint: : =2 | Constraint:
AWNXEZ | vt 1= v i el
sb sb
b:Wna y=0 b:Wna y=0
sb sb sb sb
c:Rna x=?v1 d:Rna x=?v2 c:Rna x=?vl d:Rna x=?v1
Xb,dd)/:l‘),dd sb,dd sb,dd
e:Wna y=0 e:Wnay=1

Later, the memory model will rule out the left execution cginhere
is no way to read anything but 2 at x.

The semantics maintains an environment mapping identtfiers
locations. For loads, the relevant location is found in tlaaid a
fresh variabl€’v is generated to represent the value read.

Other constructs typically combine the actions of theirtsts
and also build the relations (sequenced-before, datardepey,

executionsX of a program; a search procedure to enumerate the etc.) of Xopsem @S appropriate. For example, for the statement,

possible Xyitness for each of those; and a checking procedure
to calculate the derived relations and predicates of theefnfuad
each (Xopsem, Xwitness) Pair, to check whether it is consistent
and whether it has data races, unsequenced races or ingetErm
reads.

the execution path splits and two execution candidates lvll
generated. The one for the true branch has an additionatraoms
that the value returned by the condition expression is tiug¢he
C/C++ sense, i.e. different fron), and the candidate for the false
branch constrains the value to be false. There are alsoi@ulit

Of these, the checker is the most subtle, since the only way to sequenced-beforend control-dependencgdges from the actions

intuitively understand it is to understand the model it¢ethich is
what the tool is intended to aid with), and thus bugs are hard t

11

in the condition expression to actions in the branch.

2010/7/30

Choosing instantiations of existential quantifiersGiven the
Xopsem part of a finite candidate execution, tB8yitness part is
existentially quantified over a finite but potentially larget. In
the worst case, withn reads anch writes, all sequentially consis-
tent (atomic), to the same location, and with the same vaheze
might be O(m "tV . m! . (m 4 n)!) possible choices of arf,
modification-orderandscrelation. In practice, though, litmus tests
are much simpler: there are typically no more than 2 or 3 wiite
any one location, so we avoid coding up a sophisticated mgmor
model-aware search procedure in favour of keeping thisqfante
code simple. For the examples shown here, the tool has t&chec
at most a few thousand alternatives, and takes less(@2asec-
onds. The most complex example we tested (IRIW with all SC)
had 162,000 cases to try, and the overall time taken was d&bout
minutes.

Checking code extracted from IsabelleWe use Isabelle/HOL
code generation to produce a checker as an OCaml moduleh whic
can be linked in with the rest of ther@semtool. Our model is
stated in higher-order logic with sets and relations. Restt to
finite sets, the predicates and definitions are almost attir ex-
ecutable, within the domain of the code generation tool ¢wliin-
plements finite sets by OCaml lists). For a few cases (e.g impo
tantly transitive closure), we had to write a more efficiamdtion
and an Isabelle/HOL proof of equivalence. The overall chrerk
time per example is on the order b seconds, for examples
with around 10 actions.

6.1 Finitemodel generation with Nitpick/Kodkod

Given theX,psem part of a candidate execution, the space of pos-
sible Xwitness parts which will lead to valid executions can be ex-
plored by tools for model generation. We reused the opevatio
semantics above to produceXasem from a program, and then
posed problems to Nitpick, a finite model generator builb i
abelle [BN10]. Nitpick is a frontend to Kodkod, a model geater
for first order logic extended with relations and transitdlesure
based on a state-of-the-art SAT solver. Nitpick translaigher-
order logic formulae to first-order formulae within Kodkoghsax.
For small programs, Nitpick can easily find some consisteate-
tion, or report that none such exists, in a few seconds. Iticoar
lar, for the IRIW-SC example mentioned above, Nitpick tak88
seconds to report no execution exists, while other exantpkes
around 5 seconds. Of course, Nitpick can also validate aouexe
tion X with both partsXopsem and Xwitness cONcretely specified,
but this is significantly slower than running the Isabebérzcted
validator. The bottleneck here is the translation proces$sch is
quite involved.

7. Related work

The starting points for this paper were the draft standaelfiand
the work of Boehm and Adve [BA08], who introduced the ratio-
nale for the C++0x overall design and gave a model for nomato
lock, and SC atomic operations, without going into low-letem-
ics or fences in any detail. It was expressed in informal ieradt-
ics, an intermediate point between the prose of the staratzdd
the mechanised definitions of our model. The most closebted|
other work is the extensive line of research on the Java Mgmor
Model (JMM) [Pug00, MPAOQ5, CKS07, vA08, TVD10]. Java im-
poses very different constraints to C++ as there it is et
prohibit thin-air reads, to prevent forging of pointers drahce se-
curity violations.

There is also a body of research on tool support for memory
models, notably including (among others) th&eMSAT of Tor-
lak et al. [TVD10], which uses Kodkod for formalisations diet
JMM, and NEMOSFINDER of Yang et al. [YGLSO04], which is

12

based on Prolog encodings of memory models and includedan It
nium specification. Building on our previous experiencehvifte
MEMEVENTS tool for hardware (x86 and Power) memory mod-
els [SSZN 09, OSS09, SSO10, AMSS10], we designed re-
MEM to eliminate the need for hand-coding of the tool to reflect
changes in the model, by automatically generating the erexide
from the Isabelle/HOL definition. We made it practically bka
for exploring our non-idealised (and hence rather complei0x
model by a variety of user-interface features, letting ys@e the
executions of a program in various ways.

Turning to the sequential semantics of C++, Norrish has re-
cently produced an extensive HOL4 model [Nor08], and Za-
lewski [Zal08] formalised the proposed extension of C++aapts.

8. Conclusion

We have put the semantics of C++ and C concurrency on a mathe-
matically sound footing, following the current final comteg draft
standard as far as possible, except as we descrii#e his should
support future improvements to the standard and the develop

of semantics, analysis, and reasoning tools for concusysiems
code.

Having done so, the obvious question is the extent to whieh th
formal model could be incorporated asxarmativepart of a fu-
ture standard. The memory model is subtle but it uses onlpleim
mathematical machinery, of various binary relations ovéixed
set of concrete actions, that can be visualised graphicBhgre
is a notational problem: one would probably have to traeglati-
tomatically or by hand) the syntax of first-order logic intatural
language, to make it sufficiently widely accessible. Buegithat,
we suspect that the formal model would be clearer than threrwur
‘standardsese’ for all purposes, not only for semanticssaadysis.

Acknowledgements This work would not have been possible with-
out discussions with members of the C++ Concurrency subcom-
mittee and thepp-threads mailing list, including Hans Boehm,
Lawrence Crowl, Peter Dimov, Doug Lea, Nick Maclaren, Paul
McKenney, Clark Nelson, and Anthony Williams. We acknowl-
edge funding from EPSRC grants EP/F036345, EP/H005633,
EP/H027351, and EP/F067909.

References

[AB10] S. V. Adve and H.-J. Boehm. Memory models: A case for
rethinking parallel languages and hardware. ACM 2010.
To appear.

[AMSS10] J. Alglave, L. Maranget, S. Sarkar, and P. Sewekndes in
weak memory models. IRroc. CAV, 2010.
[ARMO08] ARM. ARM Architecture Reference Manual (ARMv7-A and
ARMvV7-R edition) April 2008.

[BAO8] H.-J. Boehm and S.V. Adve. Foundations of the C++ eonc
rency memory model. IRroc. PLDI, 2008.

[Bec10] P. Becker, editorWorking Draft, Standard for Programming
Language C++ March 2010. N3090=10-0080.

[BN10] Jasmin Christian Blanchette and Tobias Nipkow. KkpA
counterexample generator for higher-order logic based on a
relational model finder. I®roc. ITP, 2010.

[BOS] www.cl.cam.ac.uk/users/pes20/cpp.
[C1X] JTC1/SC22/WG14 — C. http://www.open-std.org/
jtcl/sc22/wgl4/.
[CKSO07] P. Cenciarelli, A. Knapp, and E. Sibilio. The Javanme
ory model: Operationally, denotationally, axiomaticallyn
Proc. ESOR2007.
[GNOO] E. R. Gansner and S. C. North. An open graph visuaizat

system and its applications to software engineerirf@pftw.
Pract. Exper, 30(11):1203-1233, 2000.

2010/7/30

[Haf09] Florian Haftmann. Code Generation from Specifications in
Higher-Order Logic PhD thesis, TU Munchen, 2009.

[HOL] The HOL 4 systemhttp://hol.sourceforge.net/.

[Int02] Intel. A formal specification of Intel Itanium prossor fam-
ily memory ordering. http://www.intel.com/design/
itanium/downloads/251429.htm, October 2002.

[Isa] Isabelle 2009-2http://isabelle.in.tum.de/.

[Lam79] L. Lamport. How to make a multiprocessor computet ttor-
rectly executes multiprocess progrartSEE Trans. Comput.
C-28(9):690-691, 1979.

[MPAO5] J. Manson, W. Pugh, and S.V. Adve. The Java memoryahod
In Proc. POPL, 2005.

[MS10] P. E. McKenney and R. Silvera. Example POWER
implementation for C/C++ memory model. http:
//www.rdrop.com/users/paulmck/scalability/
paper/N2745r.2010.02.19a.html, 2010.

[MW] P. E. McKenney and J. Walpole. What is RCU, fundamen-
tally? Linux Weekly Newshttp://lwn.net/Articles/
262464/.

[NMRWO02] George C. Necula, Scott McPeak, Shree Prakash IRahd
Westley Weimer. Cil: Intermediate language and tools for
analysis and transformation of ¢ programsPhac. CG 2002.

[Nor08] M. Norrish. A formal semantics for C++. Technicaprst,
NICTA, 2008.

[OSS09] S. Owens, S. Sarkar, and P. Sewell. A better x86 memor
model: x86-TSO. IrProc. TPHOLSs2009.

[Owel0] S. Owens. Reasoning about the implementation ofwen
rency abstractions on x86-TSO. froc. ECOOR 2010.

[Pow09] Power ISA Version 2.06BM, 2009.

[Pug00] W. Pugh. The Java memory model is fatally flaw€dncur-
rency - Practice and Experienc&2(6), 2000.
[Spa] The SPARC architecture manual, va®tp://developers.
sun.com/solaris/articles/sparcv9.pdf.
[SSOF10] P. Sewell, S. Sarkar, S. Owens, F. Zappa Nardelli, and M. O
Myreen. x86-TSO: A rigorous and usable programmer’s
model for x86 multiprocessor€. ACM 53(7):89-97, 2010.
[SSZNT09] S. Sarkar, P. Sewell, F. Zappa Nardelli, S. Owens, T. Ridg
T. Braibant, M. Myreen, and J. Alglave. The semantics of
x86-CC multiprocessor machine code.Rroc. POPL, 2009.
[Ter08] A. Terekhov. Brief tentative example x86 imple-
mentation for C/C++ memory model. cpp-threads
mailing list, http://www.decadent.org.uk/pipermail/
cpp-threads/2008-December/001933.html, Dec. 2008.
[TJO7] E. Torlak and D. Jackson. Kodkod: a relational modweldi.
In Proc. TACAS2007.
[TVD10] E. Torlak, M. Vaziri, and J. Dolby. MemSAT: checkirax-
iomatic specifications of memory models. P.DI, 2010.

[vA08] J.Sevéik and D. Aspinall. On validity of program transforma
tions in the Java memory model. ECOOR, 2008.
[YGLSO04] Y. Yang, G. Gopalakrishnan, G. Lindstrom, and Kin8l
Nemos: A framework for axiomatic and executable specifica-
tions of memory consistency models. IRDPS 2004.

[Zal08] M. Zalewski. Generic Programming with ConceptsPhD
thesis, Chalmers University, November 2008.

13

2010/7/30

