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Abstract
In this paper we describe a rigorous semantics for C++ concur-
rency. To the best of our knowledge, this captures the intent of
the Final Committee Draft (N3092) text, modified as discussed at
the Rapperswil meeting of the C++ Standards Committee in July
2010. We discuss some issues with the N3092 text that led to those
changes.

To make our semantics mathematically precise and unam-
bigous, we express it in machine-formalised mathematics, in the
Isabelle/HOL proof assistant. To make it accessible, we introduce
it with a series of examples, and give both an English-prose trans-
lation of the definitions and a typeset version of the mathematics,
side-by-side; it should be possible to read either one in isolation. To
make it possible to explore the consequences of the semantics, we
have developed a tool (CPPMEM) that calculates the allowed exe-
cutions of litmus-test example programs (using checking code au-
tomatically generated from our Isabelle/HOL definitions, for high
assurance).

We further validate the semantics by proving that a proposed
x86 implementation of the concurrency primitives is correct with
respect to the x86-TSO memory model.

We hope that this will aid discussion of any further changes to
the draft standard, provide an unambiguous correctness condition
for compilers, and give a much-needed basis for analysis and veri-
fication of concurrent C and C++ programs.
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1. Introduction
1.1 Context

C and C++ are defined by standards, but those standards have
historically not covered the behaviour of concurrent programs,
motivating an ongoing effort to specify concurrent behaviour in a
forthcoming revision of C++ (unofficially, C++0x) [AB10, BA08,
Bec10]. The next C standard (unofficially, C1X) [C1X] is expected
to follow suit.

The key issue here is the multiprocessor relaxed-memory be-
haviour induced by hardware and compiler optimisations. The de-
sign of such a language involves a tension between usability and
performance: choosing a very strong memory model, such as se-
quential consistency (SC) [Lam79], simplifies reasoning about pro-
grams but at the cost of invalidating many compiler optimisa-
tions, and of requiring expensive hardware synchronisation instruc-
tions (e.g. fences). The C++0x design resolves this by providing
a relatively strong guarantee for typical application code together
with variousatomicprimitives, with weaker semantics, for high-
performance concurrent algorithms. Application code that does not
use atomics and which is race-free (with shared state properly pro-
tected by locks) can rely on sequentially consistent behaviour; in
an intermediate regime where one needs concurrent accesses but
performance is not critical one can useSC atomics; and where
performance is critical there arelow-level atomics. It is expected
that only a small fraction of code (and of programmers) will use
the latter, but that code —concurrent data structures, OS kernel
code, language runtimes, GC algorithms, etc.— may have a large
effect on system performance. Low-level atomics provide a com-
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mon abstraction above widely varying underlying hardware: x86
and Sparc provide relatively strong TSO memory [SSO+10, Spa];
Power and ARM provide a weak model with cumulative barri-
ers [Pow09, ARM08, AMSS10]; and Itanium provides a weak
model with release/acquire primitives [Int02]. Low-level atomics
should be efficiently implementable above all of these, and proto-
type implementations have been proposed, e.g. for x86 [Ter08].

The current draft standard covers all of C++ and is rather large
(1357 pages), but the concurrency specification is mostly contained
within three chapters [Bec10, Chs.1, 29, 30]. As is usual for indus-
trial specifications, it is a prose document. Mathematical specifi-
cations of relaxed memory models are usually either operational
(in terms of an abstract machine or operational semantics, typically
involving explicit buffers etc.) or axiomatic, defining constraints
on the relationships between the memory accesses in a complete
candidate execution, e.g. with a happens-before relation over them.
The draft concurrency standard is in the style of a prose description
of an axiomatic model: it introduces various relationships, identify-
ing when one threadsynchronizes withanother, what avisible side
effect is, and so on (we introduce these in§2), and uses them to
define a happens-before relation. It is the result of extensive and
careful deliberation. but (almost inevitably, for a prose text) is still
rather far from a completely clear and rigorous definition: there
are points where the text is unclear, places where it does not cap-
ture the intent of its authors, points where a literal reading of the
text gives a broken semantics, and some open questions. Moreover,
the draft is very subtle. For example, driven by the complexities
of the intended hardware targets, the happens-before relation it de-
fines is intentionally non-transitive. The bottom line is that, given
just the final committee draft standard text, the basic question for
a language definition, of what behaviour is allowed for a specific
program, can be a matter for debate.

Given previous experience with language and hardware mem-
ory models, e.g. for the Java Memory Model [Pug00, MPA05,
CKS07, vA08, TVD10] and for x86 multiprocessors [SSZN+09,
OSS09, SSO+10], this should be no surprise. Prose language defi-
nitions leave much to be desired even for sequential languages; for
relaxed-memory concurrency, they almost inevitably lead to ambi-
guity, error and confusion. Instead, we need rigorous (but readable)
mathematical semantics, with tool support to explore the conse-
quences of the definitions on examples, proofs of theoretical re-
sults, and support for testing implementations. Interestingly, the
style of semantics needed is quite different from that for conven-
tional sequential languages, as are the tools and theorems.

1.2 Contributions

The model In this paper we establish a mathematically rigor-
ous semantics for C++ concurrency. It isprecise, formalised in Is-
abelle/HOL [Isa], and is rathercomplete, covering essentially all
the concurrency-related semantics from the draft standard, with-
out significant idealisation or abstraction. It includes the data-race-
freedom (DRF) guarantee of SC behaviour for race-free code,
locks, SC atomics, the various flavours of low-level atomics, and
fences. It covers initialisation but not allocation, and does not ad-
dress the non-concurrent aspects of C++. Our model builds on the
informal-mathematics treatment of the DRF guarantee by Boehm
and Adve [BA08]. We have tried to make it asreadableas possi-
ble, using only minimal mathematical machinery (mostly just sets,
relations and first-order logic with transitive closure) and introduc-
ing it with a series of examples. Finally, wherever possible it is a
faithful representation of the draft standard and of the intentions of
its authors, as far as we understand them.

Issues with previous drafts of the standard In developing our
semantics, we identified a number of issues in several drafts of the

C++0x standard, discussed these with members of the concurrency
subgroup, and made several suggestions for changes. These are
of various kinds, ranging from editorial clarifications, substantive
changes to the text that are in line with the authors’ intent as we
understand it, and some open questions. We discuss a selection of
these in Section 5.

Tool support for exploring the model Experience shows that
tool support is needed to work with an axiomatic relaxed memory
model, to develop an intuition for what behaviour it admits and for-
bids, and to explore the consequences of proposed changes to the
definitions. At the least, such a tool should take an example pro-
gram, perhaps annotated with constraints on the final state or on
the values read from memory, and find and display all the execu-
tions allowed by the model. This can be combinatorially challeng-
ing, but for C++ it turns out to be feasible, for typical test exam-
ples, to enumerate the possible witnesses. We have therefore built
a CPPMEM tool (§7) that exhaustively considers all the possible
witnesses, checking each one with code automatically generated
from the Isabelle/HOL axiomatic model (§6). The front-end of the
tool takes a program in a fragment of C++ and runs a symbolic
operational semantics to calculate possible memory accesses and
constraints. We have also explored the use of a model generator
(the SAT-solver-based Kodkod [TJ07], via the Isabelle Nitpick in-
terface [BN10]) to find executions more efficiently, albeit with less
assurance. Most of the examples in this paper have been checked
(and their executions drawn) using CPPMEM.

Correctness of compilation to x86 As a theoretical test of our
semantics, we prove a correctness result (§8) for the proposed x86
implementation of the C++ concurrency primitives [Ter08] with re-
spect to our x86-TSO memory model [SSO+10, OSS09]. We show
that any x86-TSO execution of a translated C++ candidate execu-
tion gives behaviour that the C++ semantics would admit, which
involves delicate issues about initialisation. This result establishes
some confidence in the model and is a key step towards a verified
compilation result about translation of programs.

Applications Our work provides a basis for improving both stan-
dards, both by the specific points we raise and by giving a precisely
defined checkpoint, together with our CPPMEM tool for exploring
the behaviour of examples in our model and in variants thereof.
The C and C++ language standards are a central interface in to-
day’s computational infrastructure, between what a compiler (and
hardware) should implement, on the one hand, and what program-
mers can rely on, on the other. Clarity is essential for both sides,
and a mathematically precise semantics is a necessary foundation
for any reasoning about concurrent C and C++ programs, whether
it be by dynamic analysis, model-checking, static analysis and ab-
stract interpretation, program logics, or interactive proof. It is also
a necessary precondition for work on compositional semantics of
such programs.

2. Informal introduction to the model
Here we describe C++ concurrency informally. In this section
we do not distinguish between the C++ Final Committee Draft
standard, which is the work of the Concurrency subcommittee of
WG21, and our formal model, but in fact there are substantial dif-
ferences between them. We highlight some of these (and our ratio-
nale for various choices) in Section 5.

2.1 Overall structure of the model

The memory model determines the set ofexecutionsthat are al-
lowed for a given C++ program. This is defined in several steps:

1. We first enumerate the possible control-flow paths through the
program, without taking the memory model into account. For
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each, we consider the possible sets ofactionsperformed on
that path: the reads, writes, locks, unlocks and fences, together
with three relations over those actions:sequenced-before,
data-dependency, andadditional-synchronized-with.

2. For each of those possibilities, we enumerate all the possible
choices of three further (“witness”) relations:rf (a reads-from
map),modification-order(a coherence order), andsc (an order
over sequentially consistent actions). Together, this enumerates
the candidate executions, each of which comprises a set of
actions together with the six relations mentioned.

3. For each candidate execution, we calculate severalderived re-
lations(synchronizes-with, happens-before, etc.).

4. This is used to determine whether each candidate execution
(seperately) isconsistent.

5. Finally, we check whether any consistent candidate execution
of the program exhibits a data race, an unsequenced race, or an
indeterminate read. If any does, then the program has undefined
behaviour, otherwise its semantics is the set of all its consistent
executions.

There is a list of all the relations in§6.1 on page 14. In this
section we provide example programs and executions that illustrate
the key relations of the model, without giving all the details of the
definition. We start with a simple example that introduces some
new source code syntax and our representation of executions.

2.2 Program and execution example

For brevity, the code examples in this document are written in a
mild extension of C++: thread creation gives rise to many memory
actions (for passing function arguments and writing and reading the
thread id) which clutter examples, so here we use a more concise
parallel composition, written{{{ ... ||| ... }}}. The main
thread of the following example uses this parallel composition
syntax to spawn two new threads: one that writesx twice and
another that readsx once.

int main() {
atomic_int x = 0;
{{{ { x.store(1,mo_relaxed);

x.store(2,mo_relaxed); }
||| { printf("%d\n",x.load(mo_relaxed)); } }}}
return 0; }

One consistent execution of this code is shown below. The actions
are drawn as the vertices of a graph, and the edges on the graph
correspond to relations over the actions. In this execution there
are four actions spanning three threads (in the three columns).
The diagram shows three kinds of edge:modification-order(mo),
sequenced-before(sb) andrf (rf). We explain the meaning of these
in the rest of this section (and also that of the other edges of the
execution, which are suppressed here).

../examples/t40-mo-asw-sb-rf.c

a:Wna x=0

b:WRLX x=1

c:WRLX x=2

d:RRLX x=2

mo

sb,mo

rf

Actions are reads, writes, locks, unlocks, and fences. Each read
and write action has an annotation that decides which ordering re-
lationships it takes part in and consequently which values they may
read and write. Regular reads and writes from memory arenon-
atomic. Atomic reads, atomic writes, and fences, have amemory or-
der annotation that enable the programmer to choose how strongly
they are ordered. Reads, writes, locks and unlocks take place atlo-
cations, each of which has akind that can be either non-atomic,
atomic or mutex. The actions that are performed at each location
must agree with the kind (although non-atomic initialization writes
are allowed on atomic locations).

The memory actions are written in a concise and regular form
made up of the following parts (from left to right): a unique identi-
fier (a, b,. . .) and a colon; then anR (for a read),W (for a write),
RMW (for read-modify-write),L or U (for a lock or unlock), orF
(for a fence); a subscript abbreviation of a memory order (mo); a
location name (x, y,. . .); an equals sign and either a single value (v)
or two values separated by a forward slash (for the values read and
written by a read-modify-write).

action ::=
a:Rna x=v non-atomic read

| a:Wna x=v non-atomic write
| a:Rmo x=v atomic read
| a:Wmo x=v atomic write
| a:RMWmo x=v1/v2 atomic read-modify-write
| a:L x lock
| a:U x unlock
| a:Fmo fence

Memory orders are shown as follows:

mo ::=
SC memory order seq cst

| RLX memory order relaxed
| REL memory order release
| ACQ memory order acquire
| CON memory order consume
| A/R memory order acq rel

Actions also contain a thread identifier, but we usually elide it:
in diagrams we usually collect the actions of each thread into a
column.

In the rest of this section we will introduce the relations and
definitions of the memory model by example. The intention is to
provide an intuition about the model rather than to formally define
it (the formal definition of the model is in§6).

2.3 Relations determined by syntax and control-flow

The sequenced-before, additional-synchronized-with and
data-dependencyrelations of a candidate execution are de-
termined by the syntactic structure of the source code and a choice
of the particular path of control flow through each thread of the
program.

Sequenced before Sequenced-before relates memory actions ac-
cording to the order they are written in the code, though it is not
necessarily total for each thread because function and operator ar-
guments in C and C++ are not necessarily ordered. We show the
sequenced-before edges of one consistent execution of the follow-
ing example code below.

This example also illustrates another extension: when working
with memory-model litmus tests, one is usually concerned only
with the possible executions of a test in which reads read some
particular values. Instead of expressing this with constraints on the
values of variables in the final state (which would often require ad-
ditional locations and memory writes to record them) we annotate
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reads with the constraint in-line, e.g. with the.readsvalue(3)
here. As for the parallel construct above, this is simply a conve-
nience for discussing the memory model, not a proposal to extend
C++ itself.

int main() {
atomic_int x = 0;
{{{ { x.store(1,mo_release);

x.store(2,mo_relaxed);
x.store(3,mo_relaxed);
x.store(4,mo_relaxed); }

||| { printf("%d\n",x.load(mo_acquire).readsvalue(3) );
x.store(5,mo_relaxed); } }}}

return 0; }

../examples/t53-sb.c

a:Wna x=0 b:WREL x=1

c:WRLX x=2

d:WRLX x=3

e:WRLX x=4

f:RACQ x=3

g:WRLX x=5

sb

sb

sb

sb

Additional-synchronizes-with The standard describes several
situations that give rise to synchronization edges between ac-
tions. The main case (of release/acquire synchronization) is de-
scribed in the definition of thesynchronizes-withrelation below,
andadditional-synchronized-withcollects all of the other cases. We
do not list all of these cases here. Instead we give one important
example: there are synchronization edges from actions in a parent
thread to actions in a thread that it spawns. In a general sense, syn-
chronization edges order one part of a program before another. The
following diagram of the previous example execution includes the
additional-synchronizes-with edges.

../examples/t54-asw.c

a:Wna x=0

b:WREL x=1 f:RACQ x=3

c:WRLX x=2

d:WRLX x=3

e:WRLX x=4

g:WRLX x=5

asw asw

sb

sb

sb

sb

Data dependency If the location or value of a memory action
depends on the value of another action we say there is a data-
dependency between the two actions. The relationdata-dependency
consists of all of these data-dependent edges and is a subset of
sequenced before. The following program and execution includes a
data-dependency from the (relaxed) read of the address ofdata to
the (SC) read of its value:

int main() {

atomic_int data = 1; atomic_address p;
p.store(&data, mo_relaxed);
printf("%d\n", atomic_load (p.load(mo_relaxed)) );
return 0; }

../examples/t68-simple-dd.c

a:Wna data=1

b:WRLX p=data

c:RRLX p=data

d:RSC data=1

sb

sb

sb,dd

2.4 Witness relations

In addition to its actions and thesequenced-before,
additional-synchronized-with and data-dependencyrelations,
a candidate execution also comprises three more relations:rf, sc,
and modification-order, which we introduce here. The definition
of whether a candidate execution isconsistentwill depend on all
these together.

Reads-from When describing how a read reads from a write,
the Final Committee Draft uses various terminology, including
phrases like “takes the value of” and “observes the value written
by”. We model this with areads-fromrelation, relating each write
to every read that takes its value from that write. We return to the
earlier example program, and display the reads-from edges of the
candidate execution:

int main() {
atomic_int x = 0;
{{{ { x.store(1,mo_release);

x.store(2,mo_relaxed);
x.store(3,mo_relaxed);
x.store(4,mo_relaxed); }

||| { printf("%d\n",x.load(mo_acquire).readsvalue(3) );
x.store(5,mo_relaxed); } }}}

return 0; }

../examples/t55-rf.c

a:Wna x=0

b:WREL x=1

f:RACQ x=3

c:WRLX x=2

d:WRLX x=3

e:WRLX x=4

g:WRLX x=5

asw

asw sb

sb

sb
rf

sb

Note that therf edges relate writes and reads with the same
value, as they must in any consistent execution.
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Modification order A candidate execution has, for each atomic
location, a total order of the writes to that location. The union of all
these relations ismodification-order. In our example execution, the
writes in the two threads are inter-related by modification order.

../examples/t43-mo.c

a:Wna x=0

b:WREL x=1

c:WRLX x=2

d:WRLX x=3

e:WRLX x=4 f:RACQ x=3

g:WRLX x=5

mo

sb,mo

sb,mo

sb,mo
rf

mo
sb

Sequentially consistent order A candidate execution has a total
order,sc, over all of the atomic actions of sequentially consistent
memory order and all of the lock and unlock actions of the program.
In a variant of the previous example program, with twomo seq
cst actions, there is a consistent execution with ansc relation as
shown below.

int main() {
atomic_int x = 0;
{{{ { x.store(1,mo_seq_cst);

x.store(2,mo_relaxed);
x.store(3,mo_relaxed);
x.store(4,mo_seq_cst); }

||| { printf("%d\n",x.load(mo_relaxed).readsvalue(3) );
x.store(5,mo_seq_cst); } }}}

return 0; }

../examples/t56-sc.c

a:Wna x=0

b:WSC x=1 f:RRLX x=3

c:WRLX x=2

e:WSC x=4

d:WRLX x=3

g:WSC x=5

asw asw

sb
sc

sb

sb

sc

sb

Actions ofmo seq cst memory order related by modification
order must be related byscorder in the same direction.

2.5 Derived relations

Summarising, a candidate execution comprises its ac-
tions, the location kinds, the relations determined by the

syntax and a choice of control-flow (sequenced-before,
additional-synchronized-with, and data-dependency), and the
witness relations (rf, modification-order, andsc),

Given that, we define various derived relations. These are com-
pletely determined by the data of a candidate execution; they will
be used in the definition of whether a candidate execution is con-
sistent.

Release Sequence A release actionis an atomic write or fence
that has eithermo release, mo acq rel or mo seq cst memory
order. Each release write has arelease sequence, a contiguous
part of the modification order that starts with the release, where
each write in the sequence must be on the same thread as the
release or a read-modify write action. Returning to our previous
(non-mo seq cst) code and our previous execution, below we
display the release sequence of the write-release on the first thread,
expressing it with anrs edge from the write-release to each element
of its release sequence.

int main() {
atomic_int x = 0;
{{{ { x.store(1,mo_release);

x.store(2,mo_relaxed);
x.store(3,mo_relaxed);
x.store(4,mo_relaxed); }

||| { printf("%d\n",x.load(mo_acquire).readsvalue(3) );
x.store(5,mo_relaxed); } }}}

return 0; }

../examples/t42-rs.c

a:Wna x=0

b:WREL x=1

c:WRLX x=2

d:WRLX x=3

e:WRLX x=4 f:RACQ x=3

g:WRLX x=5

mo
rs

sb,mo,rs
rsrs

sb,mo

sb,mo
rf

mo
sb

Synchronizes-with An acquire actionis an atomic read or fence
that has eithermo acquire, mo acq rel or mo seq cst memory
order or a fence ofmo consume order. A release actionsynchro-
nizes withan acquire action on another thread if the acquire action
reads from a write in the release sequence of the release. There is
a synchronizes-with (sw) edge between the acquire and release ac-
tions in the execution below because the write that the acquire reads
from is in the release sequence. (There are also synchronizes-with
edges froma to b andf arising from the additional-synchronizes-
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with edges from thread creation, but they are not shown in this dia-
gram.)

../examples/t44-sw.c

a:Wna x=0

b:WREL x=1

c:WRLX x=2

d:WRLX x=3

e:WRLX x=4 f:RACQ x=3

g:WRLX x=5

mo
rs

sb,mo,rs
rsrs

sw

sb,mo

sb,mo
rf

mo
sb

Carries-a-dependency-to and Dependency-ordered-before
Dependency-ordered-before is a similar relationship to
synchronizes-with but for release/consume pairs. As we shall see
later, the inter-thread ordering that synchronizes-with provides
extends to all actions in the threads it relates, along sequenced-
before, whereas dependency-ordered-before only extends its
ordering through data dependence.

A consume actionis an atomic read that hasmo consume
memory order. A release action is dependency-ordered-before a
consume action if the consume action reads from a write in the re-
lease sequence of the release. Dependency-ordered-before extends
transitively through carries-a-dependency-to, a relation made up of
data dependency and the reads-from relation restricted to be thread
local. The following example, wheref is a consume rather than
an acquire, shows an execution with a dependency-ordered-before
edge.

int main() {
atomic_int x = 0;
{{{ { x.store(1,mo_release);

x.store(2,mo_relaxed);
x.store(3,mo_relaxed);
x.store(4,mo_relaxed); }

||| { printf("%d\n",x.load(mo_consume).readsvalue(3) );
x.store(5,mo_relaxed); } }}}

return 0; }

../examples/t45-cad-dob.c

a:Wna x=0

b:WREL x=1

c:WRLX x=2

d:WRLX x=3

e:WRLX x=4 f:RCON x=3

g:WRLX x=5

mo
rs

sb,mo,rs
rsrs

dob

sb,mo

sb,mo
rf

mo
sb

Inter-thread-happens-before and happens-before The main
derived relation of the memory model ishappens-before, an inter-
thread relation that collects together several of the ordering rela-
tions we have discussed so far. Happens-before is the closest thing
to a global time ordering that exists in the memory model, but it is
not total or transitive.

Happens-before is defined as the union of a transitive relation
calledinter-thread-happens-beforewith sequenced before.

Roughly speaking, inter-thread-happens-before is the transitive
closure of the union of synchronizes-with, dependency-ordered-
before and sequenced-before, but without the edges resulting from
the composition of dependency-ordered-before and sequenced-
before edges. The following execution, with a release/consume pair
and a release/acquire pair, includes the transitive reduction of inter-
thread-happens-before (showing the whole relation makes the dia-
gram too busy) (the initialisation ofx has also been suppressed for
clarity).

int main() {
atomic_int x = 0;
{{{ { printf("%d\n",x.load(mo_consume).readsvalue(3) );

x.store(6,mo_relaxed); }
||| { x.store(1,mo_release);

x.store(2,mo_relaxed);
x.store(3,mo_relaxed);
x.store(4,mo_relaxed); }

||| { printf("%d\n",x.load(mo_acquire).readsvalue(3) );
x.store(5,mo_relaxed); } }}}

return 0; }
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../examples/t46-ithb.c

b:RCON x=3

c:WRLX x=6

d:WREL x=1

e:WRLX x=2

h:RACQ x=3

i:WRLX x=5

f:WRLX x=3

g:WRLX x=4

sb

dob,ithb sb sw,ithb
ithb

sb

rf
sb

rf

sb

We show the full happens-before relation of this candidate ex-
ecution below (note that there is nohb edge fromd to c, despite
the presence of edges fromd to b and b to c, as this is a re-
lease/consume pair andc does not depend onb, whereas there is
from d to i, as this is a release/acquire pair andi need only be
sequenced-afterh).

../examples/t47-hb.c

b:RCON x=3

c:WRLX x=6

d:WREL x=1

e:WRLX x=2

f:WRLX x=3

g:WRLX x=4

h:RACQ x=3

i:WRLX x=5

sb,hb

dob,hb

sb,hb
hbhb hb

hb

sb,hb
hb

sb,hb

sb,hb

There are two additional restrictions on happens-before in con-
sistent executions. Firstly, actions ofmo seq cst memory order
related by happens-before must be related byscorder in the same
direction. Secondly, executions with cycles in their happens-before
relation are not consistent.

Visible-side-effect Happens-before decides which writes can be
read by a given read action in a consistent execution. Every write
action that happens before the read with no intervening write is a
visible side effectof the read. Non-atomic actions must read from
one of their visible-side effects, and for an atomic read, its visible
side effects decide the earliest writes in modification order that may
be read. The following execution displays the visible side effects of
the read action, with avse edge.

int main() {
atomic_int x = 0;
{{{ { x.store(1,mo_release);

x.store(2,mo_relaxed);
x.store(3,mo_relaxed);
x.store(4,mo_relaxed); }

||| { printf("%d\n",x.load(mo_relaxed).readsvalue(3) ); } }}}
return 0; }

../examples/t48-vse.c

a:Wna x=0

b:WREL x=1 f:RRLX x=3

c:WRLX x=2

d:WRLX x=3

e:WRLX x=4

hb hb,vse

sb,hb

sb,hb

sb,hb

Visible-sequence-of-side-effects Atomic reads take their values
from a write in avisible sequence of side effectsof the read. This is
a contiguous part of the modification order that starts with a visible
side effect and ends before the first write that the read happens-
before. In our diagrams of executions, we draw these sequences as
vsses edges from their elements to the read that they correspond
to (the order among the sequence is simply modification order).
The following execution shows a read from a write in a visible-
sequence-of-side-effects.

int main() {
atomic_int x = 0;
{{{ { x.store(1,mo_release);

x.store(2,mo_relaxed);
x.store(3,mo_relaxed);
x.store(4,mo_relaxed); }

||| { printf("%d\n",x.load(mo_relaxed).readsvalue(3) );
x.store(5,mo_relaxed); } }}}

return 0; }

../examples/t49-vsses.c

a:Wna x=0

b:WREL x=1

f:RRLX x=3

c:WRLX x=2

d:WRLX x=3

e:WRLX x=4

g:WRLX x=5

mo

vse,vsses

mo vsses

mo vsses

mo rf,vsses

vsses

mo

It can be shown that in a consistent execution there can only be
one visible sequence of side effects for each read.

2.6 Races and indeterminate reads

If any consistent execution of a program exhibits anindeterminate
read (ir), anunsequenced race(ur) or adata race(dr) then the the
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program has undefined behavior will result from attempting to run
it. It is the responsibility of programmers to ensure their programs
do not contain races or indeterminate reads.

Indeterminate read A read with no incoming reads-from edge
is of indeterminate value. A program that has a consistent execu-
tion with an indeterminate read, like the one below, has undefined
behaviour. The atomic library functionatomic_load_explicit
loads the value of the object specified in its first parameter with the
memory order specified in its second.

int main() {
atomic_address p;
{{{ { atomic_int x = 0;

p.store(&x,mo_relaxed); }
||| { printf("%d\n",

atomic_load_explicit (
p.load(mo_relaxed),mo_relaxed)

); } }}}
return 0; }

../examples/t65-ir-hand.exc

a:Wna x=0

b:WRLX p=x

c:RRLX p=y

d:RRLX y=0

sb

ur

sb

ur

Unsequenced race We introduce the notion of anunsequenced
race to capture the circumstances in§1.9p15 of N3092 that result
in undefined behaviour. Two non-atomic actions on the same thread
and location, one of which is a write, participate in an unsequenced
race if neither is sequenced before the other. A program that has a
consistent execution with an unsequenced race, like the one below,
has undefined behaviour.

int main() {
int x = 2;
int y = 0;
y = (x == (x=3));
return 0; }

a:Wna x=2

c:Wna x=3d:Rna x=2

b:Wna y=0

e:Wna y=0

sb

dummy

sb

dummy

sbsb

rf

sb
ur

Data race Two actions on different threads but the same loca-
tion, with at least one a write and one non-atomic, participate in a
data raceif neither happens-before the other. A program that has a
consistent execution with a data race, like the one below, has unde-
fined behaviour.

int main() {
int x = 2;
int y;
{{{ x=3;
||| y=(x==3);
}}};
return 0; }

../examples/t4.c

a:Wna x=2

b:Wna x=3 c:Rna x=2

d:Wna y=0

asw

asw,rf

dr

sb

2.7 Memory coherence

The key restriction that the memory model makes is on the values
that are read by memory actions. As we stated in the previous
section, non-atomic reads take the value of one of their visible
side effects and atomic actions take the value of a write in one
of their visible sequences of side effects. In addition there are
four coherence restrictionsthat apply to the values that are read
from a single location. Each restriction is explained below using a
fragment of an execution that represents forbidden behaviour.

CoRR This restriction forbids two reads in a single thread from
observing two writes in an order inconsistent with modification
order. In the forbidden example execution fragment below, the
reads in one thread observe writes in the opposite order to their
modification order.

../examples/t61-corr-forbid.exc

b:WRLX x=1

c:WRLX x=2

d:RRLX x=1

e:RRLX x=2

rf
mo

rf

sb

CoRW This coherence restriction requires that a read that is
sequenced before a write should not be able to read from a later
write in modification order. The following forbidden execution
fragment exhibits precisely this behaviour:

../examples/t62-corw-forbid.exc

b:WRLX x=2 c:RRLX x=1

d:WRLX x=1

rf
sb

mo

CoWR This coherence axiom requires that a read that follows a
write in sequenced-before should not be able to read from an earlier
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write in modification order. The following forbidden execution
fragment exhibits precisely this behaviour:

../examples/t63-cowr-forbid.exc

b:WRLX x=1

c:WRLX x=2

d:RRLX x=1

mo

rf
sb

CoWW This axiom requires modification order to agree with
happens-before; if two write actions to the same location are related
by happens-before then they are related by modification order in the
same direction. The following forbidden execution illustrates this.

../examples/t64-coww-forbid.exc

b:WRLX x=2

c:WRLX x=1

sb mo

These coherence requirements are not all in the final committee
draft (N3092), but there seemed to be consensus at the Rapperswil
meeting that they should be added. We discuss this (and our other
contributions to the model) in§5.

3. Exploring the model by example
In this section we will present some executions of several more
examples in order to illustrate how the relations described above
work together.

Single and multi-threaded executions We begin with the fol-
lowing single-threaded program:

int main() {
int x = 2;
int y = 0;
y = (x == x);
return 0; }

../examples/t1.c

a:Wna x=2

b:Wna y=0

c:Rna x=2 d:Rna x=2

e:Wna y=1

sb

rf rf

sb sb

sb sb

This has only one execution, as shown. There are five actions,
labelled a–e, all by the same thread. These are all non-atomic
memory reads (Rna) or writes (Wna), with their address (x or y)
and value (0,1, or 2). Actionsa andb are the initialisation writes,

c andd are the reads of the operands of the== operator, ande is a
write of the result of==.

The evaluations of the arguments to== areunsequencedin C++
(as are arguments to functions), meaning that they could be in either
order, or even overlapping.

We now present an example with multiple threads. The program
spawns a thread that writes 2 to x and concurrently writes 3 into y
in the original thread.

void foo(int* p) {*p=3;}
int main() {

int x = 2;
int y;
thread t1(foo, &x);
y = 3;
t1.join();
return 0; }

../examples/t3.c

a:Wna x=2

b:Wna t1=thrd1 e:Wna p=x

c:Wna y=3

d:Rna t1=thrd1

f:Rna p=x

g:Wna x=3

sb asw

sb

rf

sb

sb,rf

sb

The thread creation gives rise to additional-synchronized-with
edges from sequenced-before-maximal actions of the parent thread
before the thread creation to sequenced-before-minimal edges of
the child.

Sequentially consistent atomics avoid a data-race We can alter
the example with a data-race from the previous section to use
an atomic objectx and sequentially consistent atomic operations,
providing the following, in which the concurrent access tox is not
considered a data race, and so the program does not have undefined
behaviour.

int main() {
atomic_int x;
x.store(2);
int y=0;
{{{ x.store(3);
||| y = ((x.load()) == 3);
}}};
return 0; }

9



../examples/t6.c

a:WSC x=2

b:Wna y=0

d:RSC x=2

c:WSC x=3 e:Wna y=0

sb

rf,sc

asw

asw

sc
sb

There is no race because sequentially consistent atomics are to-
tally ordered, and so can be thought of as interleaving with each
other in a global time-line. Their semantics are covered in de-
tail in [BA08] and we will describe their precise integration into
happens-before in§5.

Release/consume atomicsOn multiprocessors with weak mem-
ory orders, notably Power, release/acquire pairs are cheaper to
implement than sequentially consistent atomics but still signifi-
cantly more expensive than plain stores and loads. For example,
the proposed Power implementation of load-acquire,ld; cmp;
bc; isync, involves anisync [MS10]. However, Power (and also
ARM) does guarantee that certain dependencies in an assembly
program are respected, and in many cases those suffice, making
the isync sequence unnecessary. As we understand it, this is the
motivation for introducing aread-consumevariant of read-acquire
atomics. On a stronger processor (e.g. a TSO x86 or Sparc), or one
where those dependencies are not respected, read-consume would
be implemented just as read-acquire.

Read-consume enables efficient implementations of algorithms
that use pointer reassignment for commits of their data, e.g. read-
copy-update [MW]. For example, suppose one thread writes some
data (perhaps spanning multiple words) then writes the address of
that data to a shared atomic pointer, while the other thread reads the
shared pointer, dereferences it and reads the data.

// sender
data = ...
p = &data;

// receiver
r1 = p
r2 = *r1; // data

Here there is a dependency at the receiver from the read ofp to the
read ofdata. This can be expressed using a write-release and an
atomic load ofp annotated MO CONSUME:

int main() {
int data; atomic_address p;
{{{ { data=1;

p.store(&data, mo_release); }
||| printf("%d\n", *(p.load(mo_consume)) );
}}};
return 0; }

As we saw in the previous section, release/acquire pairs intro-
duce synchronized-with edges, and happens-before includes the
transitive closure of synchronized-with and sequenced-before —
for a release/acquire version of this example, we would have the
edges on the left below, and hencea happens befored.

First is an execution of the code above, and second is the
execution of the same code using a read-consume in place of the
read-acquire. Happens-before is the same for both fragments, butit
is derived differently for consumes.

../examples/t28-datadep-rel-acq.c

a:WSC data=1

b:WREL p=data

c:RACQ p=data

d:RSC data=1

sb

sw

sb

../examples/t20-simple-rel-con.c

a:WSC data=1

b:WREL p=data

c:RCON p=data

d:RSC data=1

sb

dob

dob
sb,dd,cad

For release/consume, the key fact is that there is adata depen-
dency(dd) from c to d, as shown above. The (dd) edge gives rise
to a carries-a-dependency-to(cad) edge, which extends data de-
pendency with thread-local reads-from relationships. In turn, this
gives rise to adependency-ordered-before(dob) edge, which is the
release/consume analogue of the release/acquire synchronizes-with
edge. This involves release sequences as before (in the example just
the singleton [b]).

Thin-air reads The model defined here allowsthin-air reads:
the program below reads the value 1, yet there isno occurrence of
1 in the program source.

int main() {
int r1, r2;
atomic_int x = 0;
atomic_int y = 0;
{{{ { r1 = x.load(mo_relaxed));

y.store(r1,mo_relaxed); }
||| { r2 = y.load(mo_relaxed));

x.store(r2,mo_relaxed); }
}}}
return 0; }

../examples/t30-lb-relaxed.c

a:Wna x=0

b:Wna y=0

c:RRLX x=1

d:WRLX y=1

e:RRLX y=1

f:WRLX x=1

sb sb
rf

sb
rf

An execution like this would be surprising, and in fact would not
happen with typical hardware and compilers. In the Java Memory
Model [MPA05], much of the complexity of the model arises from
the desire to outlaw thin-air reads, which there is essential to pre-
vent forging of pointers. The C++0x final committee draft attempts
to forbid such executions as well, but the restrictions it imposes
to that end seem to have unfortunate consequences, as we discuss
in Section 5; they are not incorporated into the formal model pre-
sented here.
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4. Classic litmus tests
We now illustrate the varying strength of the different memory or-
ders that actions can take by showing the semantics of some ‘clas-
sic’ examples. In all cases, variants of the examples with sequen-
tially consistent atomics do not have the weak-memory behaviour.
As in our other diagrams, to avoid clutter we only show selected
edges.

Store Buffering (SB) Here two threads write to separate loca-
tions and then each reads from the other location. In Total Store
Order (TSO) models both can read from before (w.r.t. coherence)
the other write in the same execution. In C++0x this behaviour is
allowed if those four actions are relaxed, for release/consume pairs
and for release/acquire pairs. Assuming that the initialization writes
to the locations are relaxed or non-atomic, it is still allowed even
if those four are sequentially consistent. If every action (including
the two initial writes) is sequentially consistent, this is forbidden by
theconsistent sc order condition. We show the relaxed example
below:

int main() {
atomic_int x = 0;
atomic_int y = 0;

{{{ { y.store(1,mo_relaxed);
printf("1:%d\n",x.load(mo_relaxed).readsvalue(0)); }

||| { x.store(1,mo_relaxed);
printf("2:%d\n", y.load(mo_relaxed).readsvalue(0)); }

}}}
return 0;

}

../examples/t37a-sb-relaxed.c

a:Wna x=0

b:Wna y=0 d:RRLX x=0

f:RRLX y=0

c:WRLX y=1 e:WRLX x=1

sb

rf,vse

rf,vse

sb

sb

Message Passing (MP) Here one thread (non-atomically) writes
data and then an atomic flag while a second thread waits for the
flag and then (non-atomically) reads data; the question is whether
it is guaranteed to see the data written by the first. With a re-
lease/acquire pair it is. A release/consume pair gives the same guar-
antee precisely when there is a dependency between the reads, oth-
erwise there is a consistent execution in which there is a data race
(here the second thread sees the initial value of x; the candidate ex-
ecution in which the second thread sees the write x=1 is ruled out
as that does not happen-before the read and so is not a visible side
effect).

int main() {
int x = 0; atomic_int y;
{{{ { x=1;

y.store(1,mo_release); }
||| { printf("%d\n", y.load(mo_consume).readsvalue(1));

printf("%d\n", x.readsvalue(0)); } }}}
return 0;

}

../examples/t29-mp-consume.c

b:Wna x=1

c:WREL y=1 e:Rna x=0

d:RCON y=1

sb
dr

sb

The same holds with relaxed flag operations.
In a variant in which all writes and reads are release/consumes

or relaxed atomics, eliminating the race, and there are two copies of
the reading thread, the two reading threads can see the two writes
of the writing thread in opposite orders (as below) — consistent
with what one might see on Power, for example.

int main() {
atomic_int x = 0; atomic_int y = 0;
{{{ { x.store(1, mo_relaxed);

y.store(1, mo_relaxed); }
||| { printf("%d\n", x.load(mo_relaxed).readsvalue(1));

printf("%d\n", y.load(mo_relaxed).readsvalue(0)); }
||| { printf("%d\n", y.load(mo_relaxed).readsvalue(1));

printf("%d\n", x.load(mo_relaxed).readsvalue(0)); }
}}};
return 0; }

../examples/irdw-relaxed.c

c:WRLX x=1

d:WRLX y=1 e:RRLX x=1

g:RRLX y=1f:RRLX y=0

h:RRLX x=0

sb
rf

rf
sb

sb

Load Buffering (LB) In this variant of the SB example the
question is whether the two reads can both see the (sequenced-
before) later write of the other thread in the same execution. With
relaxed atomics this is allowed, as below:

int main() {
atomic_int x = 0;
atomic_int y = 0;

{{{ { printf("1:%d\n",x.load(mo_relaxed).readsvalue(1));
y.store(1,mo_relaxed); }

||| { printf("2:%d\n", y.load(mo_relaxed).readsvalue(1));
x.store(1,mo_relaxed); }

}}}
return 0;

}

../examples/t30-lb-relaxed.c

a:Wna x=0

b:Wna y=0

c:RRLX x=1

d:WRLX y=1

e:RRLX y=1

f:WRLX x=1

sb sb
rf

sb
rf

but with release/consumes (with dependencies) it is not (as shown
in the forbidden execution below), because inter-thread-happens-
before would be cyclic. It is not allowed for release/acquire
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and sequentially consistent atomics (which are stronger than re-
lease/consumes with dependencies), both because of the cyclic
inter-thread-happens-before and for other reasons.

int main() {
atomic_int x = 0;
atomic_int y = 0;
{{{ { printf("%d\n",x.load(mo_consume).readsvalue(1));

y.store(1,mo_release); }
||| { printf("%d\n", y.load(mo_consume).readsvalue(1));

x.store(1,mo_release); } }}} ;
return 0; }

../examples/t31-lb-consume.c

a:Wna x=0

b:Wna y=0

c:RCON x=1

d:WREL y=1

e:RCON y=1

f:WREL x=1

sb sb
dob

dob

ithb

sb ithbithb

Write-to-Read Causality (WRC) Here the first (non-
initialisation) thread writes to x; the second reads from that and
then (w.r.t. sequenced-before) writes to y; the third reads from that
and then (w.r.t. sequenced-before) reads x. The question is whether
it is guaranteed to see the first thread’s write.

int main() {
atomic_int x = 0;
atomic_int y = 0;

{{{ x.store(1,mo_relaxed);
||| { printf("1:%d\n",x.load(mo_relaxed).readsvalue(1));

y.store(1,mo_relaxed); }
||| { printf("2:%d\n",y.load(mo_relaxed).readsvalue(1));

printf("3:%d\n",x.load(mo_relaxed).readsvalue(0)); }
}}}
return 0;

}

../examples/t32-wrc-relaxed.c

c:WRLX x=1

d:RRLX x=1

e:WRLX y=1

f:RRLX y=1

g:RRLX x=0

rf

sb

rf

sb

With relaxed atomics, this is not guaranteed, as shown above,
while with release/acquires it is, as thesynchronizes-withedges in
the inter-thread-happens-before relation interfere with the required
read-from map.

Independent Reads of Independent Writes (IRIW) Here the
first two (non-initialisation) threads write to different locations; the
question is whether the last two threads can see those writes in

different orders. With relaxed, release/acquire, or release/consume
atomics, they can.

int main() {
atomic_int x = 0; atomic_int y = 0;
{{{ x.store(1, mo_release);
||| y.store(1, mo_release);
||| { printf("1%d", x.load(mo_acquire).readsvalue(1));

printf("%d\n", y.load(mo_acquire).readsvalue(0)); }
||| { printf("2%d", y.load(mo_acquire).readsvalue(1));

printf("%d\n", x.load(mo_acquire).readsvalue(0)); }
}}};
return 0; }

../examples/t9.c

c:WREL x=1

e:RACQ x=1

d:WREL y=1

g:RACQ y=1

f:RACQ y=0 h:RACQ x=0

rf rf

sb sb

5. From standard to formalisation and back
We developed the formal model presented in Section 6 by a lengthy
iterative process: building formalisations of various drafts of the
standard, and of Boehm and Adve’s model without low-level atom-
ics [BA08]; considering the behaviour of examples, both by hand
and with our tool; trying to prove properties of the formalisations;
and discussing issues with members of the Concurrency subcom-
mittee of the C++ Standards Committee (TC1/SC22/WG21). To
give a flavour of this process, and to explain how our formalisation
differs from the final committee draft (N3092) of the standard, we
describe several issues with that draft. These were discussed at the
Rapperswil meeting (we provide the issue numbers from the meet-
ing), and before; in most cases there seems to be consensus on a
proposed fix, and our formal model incorporates it. These issues
also serve to bring out the delicacy of the standard, and the pitfalls
of prose specification, even when carried out with great care.

Acyclicity of happens-before [issues CA 8 and GB 10] N3092
defines happens-before, making plain that it is not necessarily tran-
sitive, but does not state whether it is required to be acyclic (or
whether, perhaps, a program with a cyclic execution is deemed to
have undefined behaviour). The release/consume LB example of
the previous section has a cyclic inter-thread-happens-before, as
shown there, but is otherwise a consistent execution.

../examples/t31-lb-consume.c

a:Wna x=0

b:Wna y=0

c:RCON x=1

d:WREL y=1

e:RCON y=1

f:WREL x=1

sb sb
dob

dob

ithb

sb ithbithb

After discussion, it seems clear that executions with cyclic inter-
thread-happens-before (or, equivalently, cyclic happens-before)
should not be considered, so we impose that explicitly.

Additional happens-before edges [issue CA 9] There are 6
places where N3092 adds happens-before relationships explic-
itly (in addition to those from sequenced-before and inter-thread-
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happens-before), e.g. between the invocation of a thread construc-
tor and the function that the thread runs. As happens-before is
carefully not transitively closed, such edges would not be transi-
tive with (e.g.) sequenced-before. Accordingly, we suggested that
they be added to the synchronized-with relation; for those within
the C++ fragment supported by our tool, our operational semantics
introduces them into additional-synchronized-with.

‘Subsequent’ in visible sequences of side effects [issue CA
11, not a defect] In the final committee draft, with cyclic inter-
thread-happens-before permitted, the definition of visible sequence
of side effects in 1.10p12 had a pathological case which could
be removed by deleting the word “subsequent” there. With the
acyclicity condition, this makes no semantic difference, though it
still improves the clarity of the definition.

‘Maximal’ in release sequences [issues CA 12 and GB 9]
N3092 defines a release sequence as follows:A release sequence
on an atomic object M is a maximal contiguous sub-sequence of
side effects in the modification order of M, where the first opera-
tion is a release, and every subsequent operation: (1) is performed
by the same thread that performed the release, or (2) is an atomic
read-modify-write operation.

We initially read that as maximal w.r.t. sequence inclusion,
which would preclude synchronizing with releases which have
other releases sequenced-before them. The intended concept, how-
ever, seems to be that of the maximal release sequencefrom a par-
ticular release operation; we formalise that (and explicit use of
‘maximal’ turns out to be unnecessary).

Non-unique visible sequences of side effects and happens-
before ordering [issue CA 18] We suggested altering the word-
ing of the definition of visible sequence of side effects (§1.10p13 of
N3092) so that it refers to “a” sequence rather than “the” sequence.
Without our additional coherence axioms multiple sequences were
allowed for a single read action, but we have proved that with the
axioms the sequence is unique. In CA 18 we suggested adding the
following note to 1.10p13 to allude to this:

“[Note - It can be shown that the visible sequence of side
effects of a value computation is unique given the coherence
requirements below. - end note]”

Coherence requirements [issues GB 11, GB 12, CA 18, GB
11, CA 19, GB 12, and CA 20] N3092 enforces some coherence of
reads and writes to a single location, but during our iterative process
of building our formalized model, we noticed that not all aspects
of coherence were required (in particular, CoRW and CoWR were
not enforced), which permitted pathological executions for several
examples. We believe that current typical hardware (including x86,
Power and ARM) satisfies all four axioms without any barriers, and
suggested adding the remaining coherence axioms.

If the additional coherence axioms are not added then some
unintuitive behaviours are allowed. For example, the following
execution is allowed without the CoRW coherence requirement:

int main() {
atomic_int x = 0;
{{{ x.store(1, mo_release);
||| { printf("%d\n", x.load(mo_consume).readsvalue(1));

x.store(2, mo_release); } }}};
return 0; }

../examples/t26-anti-mo-consume-full.c

a:Wna x=0

b:WREL x=1 c:RCON x=1

d:WREL x=2

asw asw

mo
rf,dob

sb
mo

Here there is a dependency-ordered-before edge for a write-
release/read-consume pair (b),(c), with (c) reading from (b), but
the write (b)follows (in modification order) another write (d) that
follows the read in sequenced-before. The read (c) reads from a
write that is ordered after it by sequenced before and dependency-
ordered-before.

If the CoWR restriction is omitted the following example is
permitted:

int main() {
atomic_int x = 0;
atomic_int y = 0;
{{{ { x.store(1,mo_relaxed);

printf("%d\n", y.load(mo_acquire).readsvalue(1));
printf("%d\n", x.load(mo_relaxed).readsvalue(2)); }

||| { x.store(2,mo_relaxed);
y.store(1,mo_release); } }}};

return 0; }

../examples/cowr-mod.c

a:Wna x=0

b:Wna y=0

c:WRLX x=1 f:WRLX x=2

d:RACQ y=1

e:RRLX x=2

g:WREL y=1

sb

sw sw

sb

sb

rf
sb

rf,sw

Here (g) synchronizes with (d), making (f) happen before (e).
Now (f) is a visible side effect of (e), and can be read from, even
though (f) is earlier in modification order than (c). The read (e)
reads from a write that is not the most recent in the union sequenced
before and modification-order.

Another even more unintuitive execution is permitted if
the CoWR restriction is omitted. Here the read-acquire (c)
synchronizes-with the write-release (d) by reading from the RMW
(a), which is in the release sequence headed by (d) (as read-modify-
writes from any thread are allowed by the definition of release-
sequence). Counter-intuitively, this can happen despite the presence
of an intervening write (b) in sequenced-before. This execution
is particularly confusing because one might expect the relatively
strongly ordered sequentially consistent atomics to forbid it.
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../examples/t36-hidden-rmw.exc

a:RMWREL x=0/1

b:WSC x=2

c:RSC x=1

d:WREL x=0

e:Wna x=42

sb,mo
rf

sb,vse

rf,mo,rs

sw,vse

rs

vse

mo

Overlapping executions and thin-air reads The N3092 draft
standard attempts to forbid thin air reads, with:An atomic store
shall only store a value that has been computed from constants and
program input values by a finite sequence of program evaluations,
such that each evaluation observes the values of variables as com-
puted by the last prior assignment in the sequence.This seems to
be overly constraining. For example, two subexpression evaluations
(in separate threads) can overlap (e.g. if they are the arguments of a
function call) and can contain multiple actions. With relaxed atom-
ics there can be consistent executions in which it is impossible to
disentangle the two into any sequence, for example as below, where
the SC-write of x must be between the two reads of x. In our for-
malisation we currently do not impose any thin-air condition.

int main() {
atomic_int x = 0;
int y;
{{{ x.store(1);
||| { y = (x.load()==x.load()); }
}}};
return 0; }

../examples/t27-inter-evaluation.c

a:Wna x=0

c:RSC x=0

b:WSC x=1

d:RSC x=1

e:Wna y=0

rf

rf,sc

sc

sb

sb

The Final Committee Draft defines the model in terms of actions
and evaluations of expressions. Our model does not keep track of
which evaluations give rise to which actions, and instead considers
only actions.

6. The model as formalised
In this section we present our formalized version of the C++0x
memory model simultaneously in prose and typeset mathematics.
It should be possible to understand the model from the prose alone,
skipping over all the boxed mathematics. However, the mathemati-
cal version is the actual definition (and is the one used in our CPP-
MEM tool).

6.1 Overall structure of the model

A candidate executionX of a C++ program consists of two parts,
Xopsem, which is data given by the path of control flow and syn-
tactic structure of the program, andXwitness, which is constrained
only by the memory model. TheXopsem part of a candidate execu-
tion X consists of

• threads, a set of thread ids

• actions, a set of actions (§7)

• location-kind, a location typing (§5)

and four binary relations over its actions:

• sequenced-before(sb),

• additional-synchronized-with(asw),

• data-dependency(dd), and

• control-dependency(cd) (unused at present).

TheXwitness part of a candidate executionX consists of a further
three binary relations over its actions:

• rf,

• sc, and

• modification-order(mo).

Given a candidate executionX = (Xopsem, Xwitness), we define
various derived relations (§6.11–6.15):

• release-sequence(rs)

• hypothetical-release-sequence(hrs)

• synchronizes-with(sw)

• carries-a-dependency-to(cad)

• dependency-ordered-before(dob)

• inter-thread-happens-before(ithb)

• happens-before(hb)

• visible-side-effect(vse)

• visible-sequences-of-side-effects(vsses)

together with the predicates required to define

• consistent execution (§6.21)

and our three sources of undefined behaviour (§6.22):

• unsequenced-race(ur),

• data racesdr , and

• indeterminate readsir .

The top-level definition iscpp memory model (§6.23), which,
given an operational semantics and a program, is either null if
the program has undefined behaviour or the set of all consistent
executions if it does not.

In the Isabelle/HOL source each definition is explicitly param-
eterised on the components of a candidate execution and the re-
quired derived relations, but here we suppress that parameterisation
to reduce clutter. The Isabelle/HOL also contains set-typed versions

14



of some of the predicates, for use in code extraction; we suppress
those here also.

6.2 Notation

We leta, b, c, x , y , z , rs head , andvsse head range over actions,
l range over locations,v range over values,aid range over action
ids, tid range over thread ids, andmem ord range over memory
orders.

The relations of a candidate execution, e.g.sequenced-before,

are mostly binary relations over actions. We writea
sequenced-before
−−−−−−−−→

b to mean that actiona is related tob by sequenced-before.
The notation used in the mathematical definitions is largely

standard; it is summarised in Fig. 1 for reference.

6.3 Auxiliary definitions

A relation is over a set if both the domain and range of the relation
are subsets of the set.

relation over s rel = domain rel ⊆ s ∧ range rel ⊆ s

A relation restricted to a set is the intersection of the relation
with the cartesian product of the set with itself.

rel
−−→|s = rel ∩ (s × s)

A strict preorder is an irreflexive and transitive order.

strict preorder ord = irreflexive ord ∧ trans ord

A relation that is total over a set is

1. a relation over the set, and

2. any two elements of the set either have a directed edge between
them in one direction or the elements must be equal.

total over s ord =
relation over s ord ∧

(∀x ∈ s. ∀y ∈ s. x
ord
−−→ y ∨ y

ord
−−→ x ∨ (x = y))

A strict total order over a set is a strict preorder that is a total
order over the set.

strict total order over s ord =
strict preorder ord ∧ total over s ord

An elementx is adjacent-less-thany according to an order, such
that some predicate holds if

1. the predicate holds onx ,

2. x
ord
−−→ y and

3. there is no elementz such thatx
ord
−−→ z , z

ord
−−→ y , and for

which the predicate holds.

x |
ord
−−→pred y =

pred x ∧ x
ord
−−→ y ∧ ¬(∃z . pred z ∧ x

ord
−−→ z

ord
−−→ y)

An elementx is adjacent-less-thany according to an order if

1. x
ord
−−→ y and

2. there is no elementz such thatx
ord
−−→ z andz

ord
−−→ y .

x |
ord
−−→ y =

x
ord
−−→ y ∧ ¬(∃z . x

ord
−−→ z

ord
−−→ y)

6.4 Memory actions: types

The following four type abbreviations are all synonyms forstring,
for use in our extracted checker.

type abbrev action id : string

type abbrev thread id : string

type abbrev location : string

type abbrev val : string

A memory order is one of the six options below (29.3p1).

memory order enum =
MO SEQ CST

| MO RELAXED

| MO RELEASE

| MO ACQUIRE

| MO CONSUME

| MO ACQ REL

An action is either

1. a lock (with an identifier) by a thread at a location (30.4),

2. an unlock (with an identifier) by a thread at a location (30.4),

3. an atomic-load (with an identifier) by a thread, with a particular
order, at a location, of a value (29.6),

4. an atomic-store (with an identifier) by a thread, with a particular
order, at a location, of a value (29.6),

5. an atomic-read-modify-write (with an identifier) by a thread,
with a particular order, at a location, that reads a value and
writes a value (29.6),

6. a load (with an identifier) by a thread, at a location, of a value,

7. a store (with an identifier) by a thread, at a location, of a value
or

8. a fence (with an identifier) by a thread, with a particular order
(29.8).

action =
LOCK of action id thread id location

| UNLOCK of action id thread id location
| ATOMIC LOAD of action id thread id memory order enum location val
| ATOMIC STORE of action id thread id memory order enum location val
| ATOMIC RMW of action id thread id memory order enum location val val
| LOAD of action id thread id location val
| STORE of action id thread id location val
| FENCE of action id thread id memory order enum

6.5 Memory actions: routine accessor functions

The action id of, thread id of, memory order, location,
value read andvalue written functions simply take an action and
return the relevant component of it.

(action id of (LOCK aid ) = aid) ∧
(action id of (UNLOCK aid ) = aid) ∧
(action id of (ATOMIC LOAD aid ) = aid) ∧
(action id of (ATOMIC STOREaid ) = aid) ∧
(action id of (ATOMIC RMW aid ) = aid) ∧
(action id of (LOAD aid ) = aid) ∧
(action id of (STORE aid ) = aid) ∧
(action id of (FENCE aid ) = aid)
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Types We use base typesbool and string. We define type abbreviationsaction id, thread id, location, and val, and define
enumeration typesmemory order enum, action, andlocation kind.

Constructors The definitions of enumeration types introduce constructors, e.g. MO ACQUIRE of typememory order enum. Con-
structors can take arguments, which are written without parentheses. For example,

LOAD "a" "thread0" "loc10" "v0"

is an action consisting of the LOAD constructor applied to action id"a", thread id"thread0", location"loc10", and value"v0".

Options We use option types in several places. For example, thevalue read function (§7) takes an actiona and returns either NONE,
if a does not read any value, or SOME v , if a reads valuev .

Formulas (or predicates)

T true
F false
¬P notP
P ∨ Q P or Q
P ∧ Q P andQ
P =⇒ Q P impliesQ
P = Q P equalsQ
∀x . P for all x , P holds
∃x . P there existsx such thatP
∀x ∈ A. P for all x in A, P holds
∃x ∈ A. P there existsx in A such thatP
x ∈ A x is an element of setA

Sets

{x . P} the set of allx that satisfyP
A ∪ B the union of setsA andB
A ∩ B the intersection of setsA andB

Relations The relations of a candidate execution, e.g.sequenced-before, are mostly binary relations over actions (or, equivalently, sets

of pairs of actions). We writea
sequenced-before
−−−−−−−−→ b (or equivalently(a, b) ∈ sequenced-before) to mean that actiona is related tob by

sequenced-before. We writer ◦ s for the composition of relationsr ands, soa
r ◦ s
−−−→ c if and only if there exists someb such that

a
r
−→ b andb

s
−→ c. We writer+ for the transitive closure of relationr .

Local definitions and case analysisLocal definition ofx to bet1 in t2 :

let x = t1 in t2

Conditional:

if P then t1 else t2

Case analysis oft , matching against patternspat1 ...patn:

case t of pat1 → t1 ‖ ... ‖ patn → tn

Patterns can include variables and wildcards () and compound patterns built by applying constructors, e.g. LOCK aid is a pattern
that matches LOCK actions and picks out the action id thereof.

Top-level definitions Auxiliary functions, relations and predicates are usually defined just by writing

f arg1 ...argn = RHS

wherearg1 ...argn are the formal parameters off . Functions can also be defined by pattern matching, by giving a conjuctionof clauses,
e.g. as for the definition ofaction id of (§7).

Figure 1. Mathematical Notation
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(thread id of (LOCK tid ) = tid) ∧
(thread id of (UNLOCK tid ) = tid) ∧
(thread id of (ATOMIC LOAD tid ) = tid) ∧
(thread id of (ATOMIC STORE tid ) = tid) ∧
(thread id of (ATOMIC RMW tid ) = tid) ∧
(thread id of (LOAD tid ) = tid) ∧
(thread id of (STORE tid ) = tid) ∧
(thread id of (FENCE tid ) = tid)

(memory order (ATOMIC LOAD mem ord ) =
SOME mem ord) ∧

(memory order (ATOMIC STORE mem ord ) =
SOME mem ord) ∧

(memory order (ATOMIC RMW mem ord ) =
SOME mem ord) ∧

(memory order (FENCE mem ord) =
SOME mem ord) ∧

(memory order =
NONE)

(location (LOCK l) = SOME l) ∧
(location (UNLOCK l) = SOME l) ∧
(location (ATOMIC LOAD l ) = SOME l) ∧
(location (ATOMIC STORE l ) = SOME l) ∧
(location (ATOMIC RMW l ) = SOME l) ∧
(location (LOAD l ) = SOME l) ∧
(location (STORE l ) = SOME l) ∧
(location (FENCE ) = NONE)

(value read (ATOMIC LOAD v) = SOME v) ∧
(value read (ATOMIC RMW v ) = SOME v) ∧
(value read (LOAD v) = SOME v) ∧
(value read = NONE)

(value written (ATOMIC STORE v) = SOME v) ∧
(value written (ATOMIC RMW v) = SOME v) ∧
(value written (STORE v) = SOME v) ∧
(value written = NONE)

The is lock, is unlock, is atomic load, is atomic store,
is atomic rmw, is load, is store andis fence predicates simply
take an action and return true or false depending on whether it is an
action of the indicated kind.

is lock a =
case a of LOCK → T ‖ → F

is unlock a =
case a of UNLOCK → T ‖ → F

is atomic load a =
case a of ATOMIC LOAD → T ‖ → F

is atomic store a =
case a of ATOMIC STORE → T ‖ → F

is atomic rmw a =
case a of ATOMIC RMW → T ‖ → F

is load a = case a of LOAD → T ‖ → F

is store a = case a of STORE → T ‖ → F

is fence a = case a of FENCE → T ‖ → F

6.6 Memory actions: useful collections of actions

A lock-or-unlock actionis a lock action or an unlock action.

is lock or unlock a = is lock a ∨ is unlock a

An atomic actionis an atomic load, atomic store or atomic read-
modify-write action.

is atomic action a =
is atomic load a ∨ is atomic store a ∨ is atomic rmw a

A load-or-store actionis a load action or a store action.

is load or store a = is load a ∨ is store a

A read actionis an atomic load, an atomic read-modify-write, or a
non-atomic load.

is read a =
is atomic load a ∨ is atomic rmw a ∨ is load a

A write actionis an atomic store, an atomic read-modify-write, or
a non-atomic store.

is write a =
is atomic store a ∨ is atomic rmw a ∨ is store a

An acquire action is a read or a fence with memory order
MO ACQUIRE, MO ACQ REL, or MO SEQ CST, a fence with
memory order MO CONSUME, or a lock (1.10p4).

is acquire a =
(case memory order a of

SOME mem ord →
(mem ord ∈

{MO ACQUIRE, MO ACQ REL, MO SEQ CST} ∧
(is read a ∨ is fence a)) ∨
(* 29.8:5 states that consume fences are acquire fences. *)
((mem ord = MO CONSUME) ∧ is fence a)

‖ NONE → is lock a)

A consume actionis a read with memory order MO CONSUME
(1.10p4).

is consume a =
is read a ∧ (memory order a = SOME MO CONSUME)

A release actionis a write or a fence with memory order
MO RELEASE, MO ACQ REL, or MO SEQ CST, or an unlock
(1.10p4).

is release a =
(case memory order a of

SOME mem ord →
mem ord ∈ {MO RELEASE, MO ACQ REL, MO SEQ CST} ∧

(is write a ∨ is fence a)
‖ NONE → is unlock a)

A seq-cst actionis an action with memory order MO SEQ CST.

is seq cst a = (memory order a = SOME MO SEQ CST)
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6.7 Location kinds

Locations are subject to a very weak type system: each location
stores a particular kind of object. The atomic actions can only be
performed on ATOMIC locations. The non-atomic reads and writes
can be performed on either ATOMIC or NON ATOMIC locations.
Locks and unlocks aremutexactions and can only be performed on
MUTEX locations.

location kind =
MUTEX

| NON ATOMIC

| ATOMIC

The location kindmap associates a location kind, tagged with
SOME , to each location mentioned in the candidate execution, and
associates NONE to all other locations. The actions of an execution
respect the location kinds if there are only lock and unlock actions
on mutex locations, loads and stores on non-atomic locations and
loads, stores, atomic-loads and atomic-stores on atomic locations.

actions respect location kinds =
∀a.

case location a of SOME l →
(case location-kindl of

MUTEX → is lock or unlock a

‖ NON ATOMIC → is load or store a

‖ ATOMIC → is load or store a ∨ is atomic action a)
‖ NONE → T

There is a check that an action is at a location of a given kind.

is at location kind =
case location a of

SOME l → (location-kindl = lk0 )
‖ NONE → F

The is at mutex location, is at non atomic location and
is at atomic location predicates check that a particular action is
at a location of their respective kinds.

is at mutex location a =
is at location kind a MUTEX

is at non atomic location a =
is at location kind a NON ATOMIC

is at atomic location a =
is at location kind a ATOMIC

6.8 Well-formed threads

Actions on the same thread are actions that have the same thread
id.

same thread a b = (thread id of a = thread id of b)

A threadwise a relation over a set is a relation over that set that
only relates actions that are in the same thread as one another.

threadwise relation over s rel =
relation over s rel ∧ (∀(a, b) ∈ rel . same thread a b)

Actions on the same location are actions that have the same
location.

same location a b = (location a = location b)

The locations of a set of actions is the set containing the location
of every member of the action set

locations of actions = {l . ∃a. (location a = SOME l)}

A well formed action is an atomic load, an atomic store, or an
atomic read-modify-write with an apporpriate memory order (as
specified below), or any other action.

well formed action a =
case a of

ATOMIC LOAD mem ord → mem ord ∈
{MO RELAXED, MO ACQUIRE, MO SEQ CST, MO CONSUME}

‖ ATOMIC STORE mem ord → mem ord ∈
{MO RELAXED, MO RELEASE, MO SEQ CST}

‖ ATOMIC RMW mem ord → mem ord ∈
{MO RELAXED, MO RELEASE, MO ACQUIRE,

MO ACQ REL, MO SEQ CST, MO CONSUME}
‖ → T

A set of well formed threads has

1. an injective action id map,

2. well formed actions,

3. sc, data-dependencyandcontrol-dependencyrelations that are
strict preorders and threadwise over the actions,

4. an additional-synchronized-withrelation that is over the ac-
tions,

5. actions that have a thread id of any thread of the execution and
that respect the location kinds and

6. adata-dependencyrelation that is a subset ofsequenced-before.

well formed threads =
inj on action id of (actions) ∧
(∀a. well formed action a) ∧
threadwise relation over actions sequenced-before∧
threadwise relation over actions data-dependency∧
threadwise relation over actions control-dependency∧
strict preorder sequenced-before∧
strict preorder data-dependency∧
strict preorder control-dependency∧
relation over actions additional-synchronized-with∧
(∀a. thread id of a ∈ threads) ∧
actions respect location kinds∧
data-dependency⊆ sequenced-before

6.9 Well-formed reads-from mapping

A well formed reads from mapping is a relation over the actions
such that

1. if a
rf
−→ b anda ′ rf

−→ b thena anda ′ are the same action and

2. if a
rf
−→ b then

(a) a andb must be at the same location,

(b) b must read the value thata writes,

(c) a cannot equalb,

(d) if on a mutex location thena must be an unlock andb a
lock,

(e) if on a non-atomic location thena must be a store andb a
load and

(f) if on an atomic location thena must be an atomic store or
read-modify-write andb must be an atomic load or read-
modify-write.
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well formed reads from mapping =

relation over actions (
rf
−→) ∧

(∀a. ∀a ′. ∀b. a
rf
−→ b ∧ a ′ rf

−→ b =⇒ (a = a ′)) ∧

(∀(a, b) ∈
rf
−→.

same location a b ∧
(value read b = value written a) ∧
(a 6= b) ∧
(is at mutex location a =⇒

is unlock a ∧ is lock b) ∧
(is at non atomic location a =⇒

is store a ∧ is load b) ∧
(is at atomic location a =⇒

(is atomic store a ∨ is atomic rmw a ∨ is store a)
∧ (is atomic load b ∨ is atomic rmw b ∨ is load b)))

6.10 Consistent locks

The set of all lock or unlock actions in a setas at a location is the
set of actions inas that are either locks or unlocks at that location.

all lock or unlock actions at lopt as =
{a ∈ as. is lock or unlock a ∧ (location a = lopt)}

For all locations that the actions act on, if the location is of
mutex kind then, with respect to a

lock order
−−−−−−→ relation that is

sc
−→

restricted to the lock and unlock actions at the location,

1.
lock order
−−−−−−→ is a strict total order over the lock and unlock actions
at the location (29.3p2),

2. for all lock and unlock actions at the location, if the action is an
unlock, then there exists another action adjacent-less-than it in
lock rder
−−−−−→ and on the same thread (30.4.1),

3. for all lock and unlock actions at the location, if the action is a
lock, then all actions adjacent-less-than it in

lock order
−−−−−−→ must be

unlocks (30.4.1).

consistent locks =
∀l ∈ locations of actions. (location-kindl = MUTEX) =⇒ (

let lock unlock actions =
all lock or unlock actions at (SOME l)actions in

let lock order =
sc
−→|lock unlock actions in

(* 30.4.1:5 - The implementation shall serialize those (lock and
unlock) operations. *)
strict total order over lock unlock actions lock order ∧

(* 30.4.1:1 A thread owns a mutex from the time it successfully
calls one of the lock functions until it calls unlock.*)
(* 30.4.1:20 Requires: The calling thread shall own the mutex. *)
(* 30.4.1:21 Effects: Releases the calling threads ownership of the
mutex.*)
(∀au ∈ lock unlock actions. is unlock au =⇒

(∃al ∈ lock unlock actions.

al |
lock order
−−−−−−−→ au ∧ same thread al au ∧ is lock al)) ∧

(* 30.4.1:7 Effects: Blocks the calling thread until ownership of
the mutex can be obtained for the calling thread.*)
(* 30.4.1:8 Postcondition: The calling thread owns the mutex. *)
(∀al ∈ lock unlock actions. is lock al =⇒

(∀au ∈ lock unlock actions.

au |
lock order
−−−−−−−→ al =⇒ is unlock au)))

6.11 Release sequences

In specifying inter-thread synchronization we use the notion of a
release sequence, headed by a release and followed by a sequence
of writes that follow in modification order. Each release sequence

element must be on the same thread as the head or an atomic-read-
modify-write (1.10p6).

rs element rs head a =
same thread a rs head ∨ is atomic rmw a

release-sequence
−−−−−−−−→ is a relation from the release to each of the writes

in the sequence. The relation has edges from a releasea to an action
b that is at an atomic location such that eithera andb are the same
action or

1. b is a valid release sequence element with respect to the heada

2. a
modification-order
−−−−−−−−−→ b and

3. all intervening elements betweena andb in modification-order
are valid release sequence elements.

arel
release-sequence
−−−−−−−−−→ b =

is at atomic location b ∧
is release arel ∧ (

(b = arel ) ∨

(rs element arel b ∧ arel
modification-order
−−−−−−−−−−→ b ∧

(∀c. arel
modification-order
−−−−−−−−−−→ c

modification-order
−−−−−−−−−−→ b =⇒

rs element arel c)))

hypothetical-release-sequence
−−−−−−−−−−−−−−→ is relation equal to

release-sequence
−−−−−−−−→ for the

head if it were a release and its definition simply omits that re-
quirement below (29.8).

a
hypothetical-release-sequence
−−−−−−−−−−−−−−−→ b =
is at atomic location b ∧ (
(b = a) ∨

(rs element a b ∧ a
modification-order
−−−−−−−−−−→ b ∧

(∀c. a
modification-order
−−−−−−−−−−→ c

modification-order
−−−−−−−−−−→ b =⇒

rs element a c)))

6.12 Synchronizes-with

a
synchronizes-with
−−−−−−−−→ b if

1. a
additional-synchronized-with
−−−−−−−−−−−−−−→ b or

2. actionsa andb are at the same location and

(a) a is an unlock,b is a lock anda
sc
−→ b (1.10p7),

(b) a is a release,b is an acquire,a and b are on different
threads, andb reads from an action in the release sequence
of a (1.10p7),

(c) a is a release fence,b is an acquire fence, and there exist
atomic writex and atomic ready on the same location such

thata
sequenced-before
−−−−−−−−→ x , y

sequenced-before
−−−−−−−−→ b andy reads from

an action in the release sequence ofx (29.8p2),

(d) a is a release fence,b is an atomic acquire, and there ex-
ist atomic write x on the same location asb such that
a

sequenced-before
−−−−−−−−→ x , b reads from an action in the hypotheti-

cal release sequence ofx (29.8p3),

(e) a is an atomic release,b is an acquire fence, and there
exist atomic actionx on the same location asa such that
x

sequenced-before
−−−−−−−−→ b, andx reads from an action in the release

sequence ofa (29.8p4).
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a
synchronizes-with
−−−−−−−−−→ b =
(* – additional synchronization, from thread create etc. – *)

a
additional-synchronized-with
−−−−−−−−−−−−−−−→ b ∨

(same location a b ∧ a ∈ actions ∧ b ∈ actions ∧ (
(* – mutex synchronization – *)
(is unlock a ∧ is lock b ∧ a

sc
−→ b) ∨

(* – release/acquire synchronization – *)
(is release a ∧ is acquire b ∧ ¬ same thread a b ∧

(∃c. a
release-sequence
−−−−−−−−−→ c

rf
−→ b)) ∨

(* – fence synchronization – *)
(is fence a ∧ is release a ∧ is fence b ∧ is acquire b ∧
(∃x . ∃y. same location x y ∧

is atomic action x ∧ is atomic action y ∧ is write x ∧

a
sequenced-before
−−−−−−−−−→ x ∧ y

sequenced-before
−−−−−−−−−→ b ∧

(∃z . x
hypothetical-release-sequence
−−−−−−−−−−−−−−−→ z

rf
−→ y))) ∨

(is fence a ∧ is release a ∧
is atomic action b ∧ is acquire b ∧
(∃x . same location x b ∧

is atomic action x ∧ is write x ∧

a
sequenced-before
−−−−−−−−−→ x ∧

(∃z . x
hypothetical-release-sequence
−−−−−−−−−−−−−−−→ z

rf
−→ b))) ∨

(is atomic action a ∧ is release a ∧
is fence b ∧ is acquire b ∧
(∃x . same location a x ∧ is atomic action x ∧

x
sequenced-before
−−−−−−−−−→ b ∧

(∃z . a
release-sequence
−−−−−−−−−→ z

rf
−→ x)))))

6.13 Carries-a-dependency-to

a
carries-a-dependency-to
−−−−−−−−−−−→ b is the transitive closure of the union

of
data-dependency
−−−−−−−−→ with the intersection of

rf
−→ and

sequenced-before
−−−−−−−−→

(1.10p8). It is essentially threadwise data dependence.

a
carries-a-dependency-to
−−−−−−−−−−−−→ b =

a ((
rf
−→∩

sequenced-before
−−−−−−−−−→) ∪

data-dependency
−−−−−−−−−→)+ b

6.14 Dependency-ordered-before

a
dependency-ordered-before
−−−−−−−−−−−−−→ d if a andd are actions and there exists

a consume actionb that reads from the release sequence ofa (a

release action) and eitherb
carries-a-dependency-to
−−−−−−−−−−−→ d or b andd are the

same action (1.10p9).

a
dependency-ordered-before
−−−−−−−−−−−−−−→ d =
a ∈ actions ∧ d ∈ actions ∧
(∃b. is release a ∧ is consume b ∧

(∃e. a
release-sequence
−−−−−−−−−→ e

rf
−→ b) ∧

(b
carries-a-dependency-to
−−−−−−−−−−−−→ d ∨ (b = d)))

6.15 Inter-thread-happens-before and happens-before

To define
inter-thread-happens-before
−−−−−−−−−−−−−→ we first construct

r
−→, the

union of
synchronizes-with
−−−−−−−−→,

dependency-ordered-before
−−−−−−−−−−−−−→ and the composi-

tion of
synchronizes-with
−−−−−−−−→ and

sequenced-before
−−−−−−−−→.

inter-thread-happens-before
−−−−−−−−−−−−−→ is the

transitive closure of the union of
r
−→ and the composition of

sequenced-before
−−−−−−−−→ and

r
−→ (1.10p10).

inter-thread-happens-before
−−−−−−−−−−−−−−→ =

let r =
synchronizes-with
−−−−−−−−−→∪

dependency-ordered-before
−−−−−−−−−−−−−−→∪

(
synchronizes-with
−−−−−−−−−→ ◦

sequenced-before
−−−−−−−−−→) in

(
r
−→∪ (

sequenced-before
−−−−−−−−−→ ◦

r
−→))+

(This definition is in a different form to that of N3092, defined
just using transitive closure rather than an inductive definition. That
makes it simpler to work with, and the two are provably equivalent.)

A consistent
inter-thread-happens-before
−−−−−−−−−−−−−→ is irreflexive. It is a transitive

collection of orderings that has been carefully constructed not to
include sequenced before.

consistent inter thread happens before =

irreflexive (
inter-thread-happens-before
−−−−−−−−−−−−−−→)

happens-before
−−−−−−−→ is the union of

sequenced-before
−−−−−−−−→ and

inter-thread-happens-before
−−−−−−−−−−−−−→ (1.10p11).

happens-before
−−−−−−−−→ =

sequenced-before
−−−−−−−−−→∪

inter-thread-happens-before
−−−−−−−−−−−−−−→

6.16 Consistent SC order

The the set of all sequentially consistent actions includes only
those that have sequentially consistent order or are locks or unlocks
(29.3p2).

all sc actions =
{a. (is seq cst a ∨ is lock a ∨ is unlock a)}

A consistent
sc
−→ relation is a strict total order over all sequen-

tially consistent actions such that
happens-before
−−−−−−−→ and

modification-order
−−−−−−−−−→

restricted to all sequentially consistent actions are each subsets of
sc
−→ (29.3p2).

consistent sc order =

let sc happens before =
happens-before
−−−−−−−−→|all sc actions in

let sc mod order =
modification-order
−−−−−−−−−−→|all sc actions in

strict total order over all sc actions (
sc
−→) ∧

sc happens before
−−−−−−−−−−−−→ ⊆

sc
−→∧

sc mod order
−−−−−−−−−→ ⊆

sc
−→

6.17 Consistent modification order
modification-order
−−−−−−−−−→ is consistent if (1.10p5) for alla and b,

a
modification-order
−−−−−−−−−→ b implies thata andb are at the same location

and for all locations of the actions

1. if the location is atomic,
modification-order
−−−−−−−−−→ restricted to the actions

at the location is a strict total order over the writes to the
location,

happens-before
−−−−−−−→ restricted to the writes at the location is

a subset of
modification-order
−−−−−−−−−→ and the restriction to the writes at

the location of the composition of
sequenced-before
−−−−−−−−→,

sc
−→ restricted

to fences and
sequenced-before
−−−−−−−−→ is a subset of modification order

(29.3p6).

2. Otherwise
modification-order
−−−−−−−−−→ restricted to the actions at the location

is empty.

Modification order is a per-location total order of memory writes.
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consistent modification order =

(∀a. ∀b. a
modification-order
−−−−−−−−−−→ b =⇒ same location a b) ∧

(∀l ∈ locations of actions. case location-kindl of
ATOMIC → (

let actions at l = {a. (location a = SOME l)} in
let writes at l = {a at l . (is store a ∨

is atomic store a ∨ is atomic rmw a)} in
strict total order over writes at l

(
modification-order
−−−−−−−−−−→|actions at l ) ∧

(* happens-before at the writes ofl is a subset of mo
for l *)
happens-before
−−−−−−−−→|writes at l ⊆

modification-order
−−−−−−−−−−→∧

(* M O SEQ CSTfences impose modification order *)

(
sequenced-before
−−−−−−−−−→ ◦ (

sc
−→|is fence) ◦

sequenced-before
−−−−−−−−−→|writes at l )

⊆
modification-order
−−−−−−−−−−→)

‖ → (
let actions at l = {a. (location a = SOME l)} in

(
modification-order
−−−−−−−−−−→|actions at l ) = {}))

6.18 Visible side effects and visible sequences of side effects

a
visible-side-effect
−−−−−−−−→ b if (1.10p12)

1. a
happens-before
−−−−−−−→ b,

2. a is a write,

3. b is a read,

4. a andb are at the same location and

5. there is no writec at the same location, not equal to eithera or

b, such thata
happens-before
−−−−−−−→ c andc happens-beforeb.

a
visible-side-effect
−−−−−−−−−→ b =

a
happens-before
−−−−−−−−→ b ∧

is write a ∧ is read b ∧ same location a b ∧
¬(∃c. (c 6= a) ∧ (c 6= b) ∧

is write c ∧ same location c b ∧

a
happens-before
−−−−−−−−→ c

happens-before
−−−−−−−−→ b)

The tail of avisible sequence of side effectswith respect to a
particular read and one of itsvisible-side-effects is a set of actions

that follow thevisible-side-effectin
modification-order
−−−−−−−−−→ and do not come

after the read in
happens-before
−−−−−−−→ such that there is no intervening action

in
modification-order
−−−−−−−−−→ that follows the read in

happens-before
−−−−−−−→ (1.10p13).

visible sequence of side effects tail vsse head b =

{c. vsse head
modification-order
−−−−−−−−−−→ c ∧

¬(b
happens-before
−−−−−−−−→ c) ∧

(∀a. vsse head
modification-order
−−−−−−−−−−→ a

modification-order
−−−−−−−−−−→ c

=⇒ ¬(b
happens-before
−−−−−−−−→ a))}

visible-sequences-of-side-effectsis a map from a
visible-side-effectand read pair to the pair consisting of the
read and, if the read is at an atomic location,visible-side-effect
union the tail of the visible sequence of side effects, or if not, the
empty set.

visible sequences of side effects =
λ(vsse head , b).

(b, if is at atomic location b then
{vsse head} ∪
visible sequence of side effects tail vsse head b

else
{})

6.19 Consistent reads-from mapping
rf
−→ is consistent if

1. for all readsb at non-atomic locations,a
rf
−→ b for some visible

side effecta if one exists. There is no edge in
rf
−→ if b has no

visible-side-effects (1.10p12).

2. for all readsb at atomic locations,c
rf
−→ b for somec in a visible

sequence of side effects ofb if one exists. There is no edge in
rf
−→ if b has novisible-sequences-of-side-effects(1.10p13).

3. For allx
rf
−→ a andy

rf
−→ b, if a

happens-before
−−−−−−−→ b and botha andb

are at the same atomic location then eitherx andy are the same

location orx
modification-order
−−−−−−−−−→ y (1.10p13).

4. For alla
happens-before
−−−−−−−→ b andc

rf
−→ b, if a is a write at the same

location asb, and it is an atomic location, then eitherc anda

are the same location ora
modification-order
−−−−−−−−−→ c (6.10).

5. For alla
happens-before
−−−−−−−→ b andc

rf
−→ a, if b is a write at the same

location asa, and it is an atomic location, thenc
modification-order
−−−−−−−−−→

b (6.10).

6. If a
rf
−→ b andb is an atomic-read-modify-write thena is the

last preceding action in modification order.

7. If a
rf
−→ b andb is sequentially consistent thena is either the

last preceding element in
sc
−→ restricted to the writes at the same

location as the read ora is not sequentially consistent (29.3p2).

8. For alla, y , and edgesx
sequenced-before
−−−−−−−−→ b, if x is sequentially

consistent fence,b is an atomic action at the same location as a
write a, a is adjacent-less-thanx in

sc
−→ anda

rf
−→ y then either

y anda are the same action ora
modification-order
−−−−−−−−−→ y (29.3p3).

9. For all edgesa
sequenced-before
−−−−−−−−→ x , andy

rf
−→ b, if a is an atomic

write on the same location asb, x is a sequentially consistent
fence and

x
−→sc b then eithery anda are the same action or

a
modification-order
−−−−−−−−−→ y (29.3p4).

10. For all edgesa
sequenced-before
−−−−−−−−→ x , y

sequenced-before
−−−−−−−−→ b, andz , if a

is an atomic write on the same location as atomic actionb, y is

a sequentially consistent fencex
sc
−→ y andz

rf
−→ b then either

z anda are the same action ora
modification-order
−−−−−−−−−→ z (29.3p5).
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consistent reads from mapping =
(∀b. (is read b ∧ is at non atomic location b) =⇒

(if (∃avse . avse
visible-side-effect
−−−−−−−−−→ b)

then (∃avse . avse
visible-side-effect
−−−−−−−−−→ b ∧ avse

rf
−→ b)

else¬(∃a. a
rf
−→ b))) ∧

(∀b. (is read b ∧ is at atomic location b) =⇒
(if (∃(b′, vsse) ∈ visible-sequences-of-side-effects. (b′ = b))
then (∃(b′, vsse) ∈ visible-sequences-of-side-effects.

(b′ = b) ∧ (∃c ∈ vsse. c
rf
−→ b))

else¬(∃a. a
rf
−→ b))) ∧

(∀(x , a) ∈
rf
−→.

∀(y, b) ∈
rf
−→.

a
happens-before
−−−−−−−−→ b ∧
same location a b ∧ is at atomic location b

=⇒ (x = y) ∨ x
modification-order
−−−−−−−−−−→ y) ∧

(* new CoWR *)

(∀(a, b) ∈
happens-before
−−−−−−−−→.

∀c.

c
rf
−→ b ∧
is write a ∧ same location a b ∧ is at atomic location b

=⇒ (c = a) ∨ a
modification-order
−−−−−−−−−−→ c) ∧

(* new CoRW *)

(∀(a, b) ∈
happens-before
−−−−−−−−→.

∀c.

c
rf
−→ a ∧
is write b ∧ same location a b ∧ is at atomic location a

=⇒ c
modification-order
−−−−−−−−−−→ b) ∧

(∀(a, b) ∈
rf
−→. is atomic rmw b

=⇒ a |
modification-order
−−−−−−−−−−→ b) ∧

(∀(a, b) ∈
rf
−→. is seq cst b

=⇒ ¬ is seq cst a ∨

a |
sc
−→λc. is write c∧same location b c b) ∧

(* -Fence restrictions- *)

(* 29.3:3 *)

(∀a. ∀(x , b) ∈
sequenced-before
−−−−−−−−−→. ∀y.

(is fence x ∧ is seq cst x ∧ is atomic action b ∧
is write a ∧ same location a b ∧

a |
sc
−→ x ∧ y

rf
−→ b)

=⇒ (y = a) ∨ a
modification-order
−−−−−−−−−−→ y) ∧

(* 29.3:4 *)

(∀(a, x) ∈
sequenced-before
−−−−−−−−−→. ∀(y, b) ∈

rf
−→.

(is atomic action a ∧ is fence x ∧ is seq cst x ∧
is write a ∧ same location a b ∧

x
sc
−→ b ∧ is atomic action b)

=⇒ (y = a) ∨ a
modification-order
−−−−−−−−−−→ y) ∧

(* 29.3:5 *)

(∀(a, x) ∈
sequenced-before
−−−−−−−−−→. ∀(y, b) ∈

sequenced-before
−−−−−−−−−→. ∀z .

(is atomic action a ∧ is fence x ∧ is seq cst x ∧
is write a ∧ is fence y ∧ is seq cst y ∧
is atomic action b ∧

x
sc
−→ y ∧ z

rf
−→ b)

=⇒ (z = a) ∨ a
modification-order
−−−−−−−−−−→ z )

6.20 Consistent control dependency (unused at present)

All data dependency is the transitive closure of the union of
rf
−→ and

carries-a-dependency-to
−−−−−−−−−−−→ (1.10p8).

all data dependency
−−−−−−−−−−−−−→ =

(
rf
−→∪

carries-a-dependency-to
−−−−−−−−−−−−→)+

control-dependency
−−−−−−−−−→ is consistent if the transitive closure of the union

of
data-dependency
−−−−−−−−→ and

control-dependency
−−−−−−−−−→ is irreflexive.

consistent control dependency =

irreflexive ((
control-dependency
−−−−−−−−−−→∪

all data dependency
−−−−−−−−−−−−−→)+)

6.21 Consistent executions

A consistent execution satisfies the predicate below which draws
together the different sorts of consistency and well-formedness that
we have defined.

consistent execution =
well formed threads∧

well formed reads from mapping ∧

consistent locks∧

consistent inter thread happens before∧

consistent sc order∧

consistent modification order∧

consistent reads from mapping

6.22 Sources of undefined behaviour

The indeterminate readsof an execution are the set of read actions
with no write related to it them

rf
−→ (1.9p15).

indeterminate reads =

{b. is read b ∧ ¬(∃a. a
rf
−→ b)}

The unsequenced racesof an execution are all the pairs of
distinct load or store actions at the same location on the same
thread of which at least one is a write, such that the two actions
are unrelated by

sequenced-before
−−−−−−−−→ (1.9p15).

unsequenced races = {(a, b).
is load or store a ∧ is load or store b ∧
(a 6= b) ∧ same location a b ∧ (is write a ∨ is write b) ∧
same thread a b ∧

¬(a
sequenced-before
−−−−−−−−−→ b ∨ b

sequenced-before
−−−−−−−−−→ a)}

The data racesof an execution are all the pairs of distinct
actions at the same location on different threads of which at least
one is a write, it is not the case that both are atomic anf neither
happens before the other (1.10p14).

data races = {(a, b).
(a 6= b) ∧ same location a b ∧ (is write a ∨ is write b) ∧
¬ same thread a b ∧
¬(is atomic action a ∧ is atomic action b) ∧

¬(a
happens-before
−−−−−−−−→ b ∨ b

happens-before
−−−−−−−−→ a)}

6.23 C++ memory model

The top-level definition of the memory model takes a program
and an operational semantics as parameters. It tests the set of pre-
executions that pass the operational semantics and memory model
checks for data-races, indeterminate-reads and unsequenced-races,
returning an empty set of executions if any are found and the set of
pre-executions otherwise.
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cpp memory model opsem (p : program) =
let pre executions = {(Xopsem, Xwitness).

opsem p Xopsem ∧
consistent execution (Xopsem, Xwitness)} in

if ∃X ∈ pre executions .

(indeterminate reads X 6= {}) ∨
(unsequenced races X 6= {}) ∨
(data races X 6= {})

then NONE

elseSOME pre executions

7. Tool support for exploring the model
Given a a relatively complex axiomatic memory model, as we pre-
sented in Section 6.1, it is often hard to immediately see the con-
sequences of the axioms, or what behaviour they allow for partic-
ular programs. Our CPPMEM tool takes a program in a fragment
of C++0x and calculates the set of its executions allowed by the
memory model, displaying them graphically.

The tool has three main components: an executable symbolic
operational semantics to build theXopsem parts of the candidate
executionsX of a program; a search procedure to enumerate the
possibleXwitness for each of those; and a checking procedure
to calculate the derived relations and predicates of the model for
each(Xopsem, Xwitness) pair, to check whether it is consistent
and whether it has data races, unsequenced races or indeterminate
reads.

Of these, the checker is the most subtle, since the only way to
intuitively understand it is to understand the model itself (which is
what the tool is intended to aid with), and thus bugs are hard to
catch. It also has to be adapted often as the model is developed.
We therefore use Isabelle/HOL code generation [Haf09] to build
the checker directly from our Isabelle/HOL axiomatisation, to keep
the checker and our model in exact correspondence and reduce the
possibility for error.

The operational semantics Our overall semantics is stratified: the
memory model is expressed as a predicate on the actions and rela-
tions of a candidate execution. This means we need an operational
semantics of an unusual form to generate all such candidates. In a
setting with a global SC memory, the values read by loads can be
determined immediately, but here, for example for a program with
a single load, in principle we have to generate a large set of exe-
cutions, each with a load event with one of the possible values. We
make this executable by building a symbolic semantics in which the
values in actions can be either concrete values or unification vari-
ables (shown as?v ). Control flow can depend on the values read,
so the semantics builds a set of these actions (and the associated
relations), together with constraints on the values, for each control-
flow path of the program. For each path, the associated constraint
is solved at the end; those with unsatisfiable constraints (indicating
unreachable execution paths) are discarded.

The tool is designed to support litmus test examples of the kind
we have seen, not arbitrary C++ code. These do not usually involve
many C++ features, and the constraints required are propositional
formulae over equality and inequality constraints over symbolic
and concrete values. It is not usually important in litmus tests to
do more arithmetic reasoning; one could imagine using an SMT
solver if that were needed, but for the current constraint language,a
standard union-find unifier suffices. The input program is processed
by the CIL parser [NMRW02], extended with support for atomics.
We use Graphviz [GN00] to generate output. We also allow the user
to add explicit constraints on the value read by a memory load in a
C++ source program, to pick out candidate executions of interest;
to selectively disable some of the checks of the model; and to de-
clutter the output by suppressing actions and edges.

As an example, consider the first program we saw, in§6.10.
There are two possibilities: the reads of x either read the same value
or different values, and hence the operational semantics gives the
two candidate executions and constraints below:

a:Wna x=2

b:Wna y=0

c:Rna x=?v1 d:Rna x=?v2

e:Wna y=0

Constraint:

?v1 != ?v2

sb

sb sb

sb,dd sb,dd

Constraint:

true
a:Wna x=2

b:Wna y=0

c:Rna x=?v1 d:Rna x=?v1

e:Wna y=1

sb

sb sb

sb,dd sb,dd

Later, the memory model will rule out the left execution, since there
is no way to read anything but 2 at x.

The semantics maintains an environment mapping identifiers to
locations. For loads, the relevant location is found in that, and a
fresh variable?v is generated to represent the value read.

Other constructs typically combine the actions of their subterms
and also build the relations (sequenced-before, data-dependency,
etc.) ofXopsem as appropriate. For example, for theif statement,
the execution path splits and two execution candidates will be
generated. The one for the true branch has an additional constraint,
that the value returned by the condition expression is true (in the
C/C++ sense , i.e. different from0), and the candidate for the false
branch constrains the value to be false. There are also additional
sequenced-beforeandcontrol-dependencyedges from the actions
in the condition expression to actions in the branch.

Choosing instantiations of existential quantifiersGiven the
Xopsem part of a finite candidate execution, theXwitness part is
existentially quantified over a finite but potentially large set. In
the worst case, withm reads andn writes, all sequentially consis-
tent (atomic), to the same location, and with the same value, there
might beO(m(n+1) · m! · (m + n)!) possible choices of anrf,
modification-orderandscrelation. In practice, though, litmus tests
are much simpler: there are typically no more than 2 or 3 writes to
any one location, so we avoid coding up a sophisticated memory-
model-aware search procedure in favour of keeping this part of the
code simple. For the examples shown here, the tool has to check
at most a few thousand alternatives, and takes less than0.2 sec-
onds. The most complex example we tested (IRIW with all SC)
had 162,000 cases to try, and the overall time taken was about 5
minutes.

Checking code extracted from IsabelleWe use Isabelle/HOL
code generation to produce a checker as an OCaml module, which
can be linked in with the rest of the CPPSEM tool. Our model is
stated in higher-order logic with sets and relations. Restricted to
finite sets, the predicates and definitions are almost all directly ex-
ecutable, within the domain of the code generation tool (which im-
plements finite sets by OCaml lists). For a few cases (e.g impor-
tantly transitive closure), we had to write a more efficient function
and an Isabelle/HOL proof of equivalence. The overall checking
time per example is on the order of10−3 seconds, for examples
with around 10 actions.

Finite model generation with Nitpick/Kodkod Given theXopsem

part of a candidate execution, the space of possibleXwitness parts
which will lead to valid executions can be explored by tools for
model generation. We reused the operational semantics above to
produce aXopsem from a program, and then posed problems to
Nitpick, a finite model generator built into Isabelle [BN10]. Nitpick
is a frontend to Kodkod, a model generator for first order logic
extended with relations and transitive closure based on a state-of-
the-art SAT solver. Nitpick translates higher-order logic formulae
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to first-order formulae within Kodkod syntax. For small programs,
Nitpick can easily find some consistent execution, or report that
none such exists, in a few seconds. In particular, for the IRIW-SC
example mentioned above, Nitpick takes 130 seconds to report no
execution exists, while other examples take around 5 seconds. Of
course, Nitpick can also validate an executionX with both parts
Xopsem andXwitness concretely specified, but this is significantly
slower than running the Isabelle-extracted validator. The bottleneck
here is the translation process, which is quite involved.

8. Correctness of a Proposed x86 Implementation
The C++0x memory model has been designed with compilation to
the various target architectures in mind, and prototype implemen-
tations of the atomic primitives have been proposed. For example,
the following table presents an x86 prototype by Terekhov [Ter08]:

Operation x86 Implementation
Load non-SC mov
Load Seqcst lock xadd(0) OR:mfence, mov
Store non-SC mov
Store Seqcst lock xchg OR:mov , mfence
Fence non-SC no-op
Fence Seqcst mfence

This is a simple mapping from individual source-level atomic op-
erations to small fragments of assembly code, abstracting from the
vast and unrelated complexities of compilation of a full C++ lan-
guage (argument evaluation order, object layout, control flow, etc.).
Proposals for the Power [MS10] and other architectures follow the
same structure, although, as they have more complex memory mod-
els than the x86, the assembly code for some of the operations is
more intricate.

Verifying that these prototypes are indeed correct implementa-
tions of the model is a crucial part of validating the design. Further-
more, as they represent the atomic-operation parts of efficient com-
pilers (albeit without fence optimisations), they can directly form
an important part of a verified C++ compiler, or inform the design
and verification of a compiler with memory-model-aware optimi-
sations.

Here, we prove a version of the above prototype x86 imple-
mentation [Ter08] correct with respect to our x86-TSO seman-
tics [SSZN+09, OSS09, SSO+10]. Following the prototype, we
ignore lock and unlock operations, as well as forks and joins, all
of which require significant runtime or operating system support in
addition to the the x86 hardware. We also ignore sequentially con-
sistent fences for the time being, but cover all other fences. We do
consider read-modify-write actions, implementing them with x86
LOCK’d read-modify-writes; and we include non-atomic loads and
stores, which can map to multiple x86 loads and stores, respec-
tively. The prototype mapping is simple, and x86-TSO is reason-
ably well-understood, so this should be seen as a test of the C++
memory model.

In x86-TSO, an operational semantics gives meaning to assem-
bly programs by creating anx86 event structuresEx86 (analogous
to Xopsem) comprising a set of events, an intra-threadprogram-
order relation (analogous to sequenced-before) that orders events
according to the program text. cEvents can be reads, writes, or
fences, and certain instructions (e.g. CMPXCHG) createlocked
sets of events that execute atomically. Corresponding toXwitness,
there arex86 execution witnessesXx86 which comprise a reads-
from mapping and a memory order, which is a partial order over
reads and writes that is total on the writes. The remainder of the
axiomatisations are very different: x86-TSO has no concept of re-
lease, acquire, visible side effect, etc.

Abstracting out the rest of the compiler To discuss the correct-
ness of the proposed mapping in isolation, without embarking on

a verification of some particular full compiler, we work solely in
terms of candidate executions and memory models.

First, we lift the mapping between instructions to a nondeter-
ministic translationaction comp from C++ actions to small x86
event structures, e.g. relating an atomic read-modify-write action to
the events of the corresponding x86 LOCK’d instruction.

To define what it means for the mapping to be correct, suppose
we have a C++ programp with no undefined behaviour and an
Xopsem which is allowed by its operational semantics. We regard
an abstract compilerevt comp as taking such anXopsem and
giving an x86 event structureEx86, respecting theaction comp
mapping but with some freedom in the resulting x86 program order.

We say the mapping is correct if given such an abstract com-
piler, the existence of a valid x86-TSO execution witness for
Ex86 implies the existence of a consistent C++ execution witness
Xwitness for the original actionsXopsem. We prove this by lifting
such an x86 execution witness to a C++ consistent execution, as
illustrated below.

Xopsem
consistent execution

evt comp

Xwitness

Ex86
valid execution

Xx86

evt comp−1

Below we show anXopsem andEx86 that could be related by
evt comp. The dotted lines indicate some of the x86 program or-
dering decisions that the compiler must make, but whichevt comp
does not constrain.

a:W x=1

b:Wna w=1 e:WSC z=1

d:R y=1

b:W w2=0

b:W w1=1

a:Wna x=1 d:RACQ y=1

c:R y=0

c:W y=1

e:mfence

e:W z=1

c:RMWREL y=0/1

sb

po po

sb
po po

po

locked

x86 eventsC++0x actions

In more detail, we use two existentially quantified helper func-
tionslocn comp andtid comp to encapsulate the details of a C++
compiler’s data layout, its mapping of C++ locations to x86 ad-
dresses, and the mapping of C++ threads to x86 threads.

Given a C++ location and value,locn comp produces a finite
mapping from x86 addresses to x86 values. The domain of the
finite map is the set of x86 addresses that corresponds to the C++
location, and the mapping itself indicates how a C++ value is
laid out across the x86 addresses. A well-formedlocn comp has
the following properties: it is injective; the address calculation
cannot depend on the value; each C++ location has an x86 address;
different C++ locations have non-overlapping x86 address sets; and
an atomic C++ location has a single x86 address, although a non-
atomic location can have several addresses (e.g. for a multi-word
object).

Finally, theevt comp relation specifies valid translations, ap-
plying action comp with a well-formedlocn comp and also con-
straining how events from different actions relate: no single x86
instruction instance can be used by multiple C++ actions, and the
x86 program-orderrelation must respect C++’ssequenced-before.
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The detailed definitions, and the proof of the following theorem,
are available online [BOS].

Theorem 1. Let p be a C++ program that has no undefined
behaviour. Suppose also thatp contains no SC fences, forks, joins,
locks, or unlocks. Then the x86 mapping is correct in the sense
above. That is, ifactions, sequenced-before, and location-kind are
members of theXopsem part of a candidate execution resulting
from the operational semantics ofp, then the following holds:

∀comp locn comp tid comp Xx86.
evt comp comp locn comp tid comp actions

sequenced-before location-kind∧
valid execution (∪a∈actions(comp a)) Xx86 ⇒
∃Xwitness. consistent execution (Xopsem, Xwitness)

Proof outline.Xx86 includes a reads-from map and a memory
ordering relation that is total on all memory writes. To build
Xwitness, we lift a C++ reads-from map and modification order

from these throughcomp (e.g.,a
rf
−→ b iff ∃(e1 ∈ comp a)(e2 ∈

comp b). e1
x86-rf
−−−→ e2). We create ansc ordering by restricting

theXx86 memory ordering to the events that originate in sequen-
tially consistent atomics, and linearising it using the proof tech-
nique from our previous triangular-race freedom work for x86-
TSO [Owe10]. We then lift that throughcomp. The proof now pro-
ceeds in three steps:

1) We first show that ifa
happens-before
−−−−−−−→ b and there are x86 events

e1 and e2 such thate1 ∈ comp a and e2 ∈ comp b, then e1

precedese2 in eitherXx86’s memory order or program order. We
have machine-checked this step in HOL-4 [HOL].1

This property establishes that, in some sense, x86-TSO has a
stronger memory model than C++, and so any behaviour allowed
by the former should be allowed by the latter. However, things are
not quite so straightforward.

2) Check thatXwitness is a consistent execution. Most cases
are machine checked in HOL; some are only pencil-and-paper.
Many rely upon the property from 1. For example, in showing that

(at a non-atomic location) ifa
rf
−→ b thena

visible-side-effect
−−−−−−−−→ b, we

note that if there were a writec to the same location such that
a

happens-before
−−−−−−−→ c

happens-before
−−−−−−−→ b, then using the property from 1,

there is an x86 write event incomp c that would come between
the events ofcomp a and comp b in Xx86, thus meaning that
they would not be inXx86’s reads-from map, contradicting the
construction ofXwitness’s reads from map.

3) In some cases, some of the properties required for 2 might be

false. For example, in showing thata
rf
−→ b impliesa

visible-side-effect
−−−−−−−−→

b, we need to show thata
happens-before
−−−−−−−→ b. Even though there is

such a relationship at the x86 level, it does not necessarily exist in
C++. In general, x86 executions can establish reads-from relations
that are prohibited in C++. Similarly, for non-atomic accesses that
span multiple x86 addresses, the lifted reads from-map might not
be well-formed.

We show that if one of these violations of 2 arises, then the
original C++ program has a data race. We find a minimum violation
in Xx86, again using techniques from our previous work [Owe10].
Next we can remove the violation, resulting in a consistentXwitness

for a prefix of the execution, then we add the bad action, note that it
creates a data race, and allow the program to complete in any way.
The details of this part are by pencil-and-paper proof.

1 The C++ model is in Isabelle/HOL, but x86-TSO is in HOL-4. We support
the proof with a semi-automated translation from Isabelle/HOL to HOL-4.

Sequentially consistent atomicsThe proposal above includes
two implementations of sequentially consistent atomic reads and
writes; one with the x86 locked instructions, and the other with
fence instructions on both the reads and writes. However, we can
prove that it suffices either to place anmfence before every sc read,
or after every sc write, but that it is not necessary to do both.

This optimisation is a direct result of using triangular-race free-
dom (TRF) [Owe10] to construct thesc ordering in proving The-
orem 1. Roughly, our TRF theorem characterises when x86-TSO
executions are not sequentially consistent; it uses a pattern, called
a triangular race, involving an x86-level data race combined with a
write followed, on the same thread, by a read without a fence (or
locked instruction) in between. If no such pattern exists, then an
executionXx86 can be linearised such that each read reads from
the most recent preceding write.

Although the entirety of an execution witnessXx86 might con-
tain triangular races and therefore not be linearisable, by restricting
attention to only sc reads and writes we get a subset of the execu-
tion that is TRF, as long as there is a fence between each sc read
and write on the same thread. Linearising this subset guarantees
the relevant property ofXwitness’s scordering: that ifa andb are

sequentially consistent atomics anda
rf
−→ b, thena immediately

precedesb in screstricted to that address.

Compiler correctness Although we translate executions instead
of source code, Theorem 1 could be applied to full source-to-
assembly compilers that follow the prototype implementation. The
following diagram presents the overall correctness property.

p
w.f. threads

compiler

Xopsem
consistentexecution

Xwitness

p′
w.f. events

Ex86

f

valid execution
Xx86

g

If, once we usef , we can then applyevt comp to get the same
event set back, i.e., informally,evt comp(f(E)) = E, then The-
orem 1 ensures that the compiler respects the memory model, and
so we only need to verify that it respects the operational semantics.
Thus, our result applies to compilers that do not optimise away any
instructions thatevt comp will produce. These restrictions apply
to the code generation phase; the compiler can perform any valid
source-to-source optimisations before generating x86 code.

9. Related work
The starting points for this work were the draft standard itself and
the work of Boehm and Adve [BA08], which introduced the ratio-
nale for the C++0x overall design and gave a model for non-atomic,
lock, and SC atomic operations, without going into low-level atom-
ics or fences in any detail. It was expressed in informal mathemat-
ics, an intermediate point between the prose of the standard and
the mechanised definitions of our model. The most closely related
other work is the extensive line of research on the Java Memory
Model (JMM) [Pug00, MPA05, CKS07, vA08, TVD10]. Java im-
poses very different constraints to C++ as there it is essential to
prohibit thin-air reads, to prevent forging of pointers and hence se-
curity violations.

There is also a body of research on tool support for memory
models, notably including (among others) the MEMSAT of Tor-
lak et al. [TVD10], which uses Kodkod for formalisations of the
JMM, and NEMOSFINDER of Yang et al. [YGLS04], which is
based on Prolog encodings of memory models and included an Ita-
nium specification. Building on our previous experience with the
MEMEVENTS tool for hardware (x86 and Power) memory mod-
els [SSZN+09, OSS09, SSO+10, AMSS10], we designed CPP-
MEM to eliminate the need for hand-coding of the tool to reflect
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changes in the model, by automatically generating the checker code
from the Isabelle/HOL definition. We made it practically usable
for exploring our non-idealised (and hence rather complex) C++0x
model by a variety of user-interface features, letting us explore the
executions of a program in various ways.

Turning to the sequential semantics of C++, Norrish has re-
cently produced an extensive HOL4 model [Nor08], and Za-
lewski [Zal08] formalised the proposed extension of C++ concepts.
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10. Differences from N3132=10-0122
The introduction ofdata-dependencyby example was omitted orig-
inally, and has now been added in Section 2.3.
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