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Abstract
Existing languages provide good support for typeful programming
of standalone programs. In a distributed system, however, there
may be interaction between multiple instances of many distinct pro-
grams, sharing some (but not necessarily all) of their module struc-
ture, and with some instances rebuilt with new versions of certain
modules as time goes on. In this paper we discuss programming-
language support for such systems, focussing on their typing and
naming issues.

We describe an experimental language,Acute, which extends
an ML core to support distributed development, deployment, and
execution, allowing type-safe interaction between separately-built
programs. The main features are: (1) type-safe marshalling of ar-
bitrary values; (2) type names that are generated (freshly and by
hashing) to ensure that type equality tests suffice to protect the in-
variants of abstract types, across the entire distributed system; (3)
expression-level names generated to ensure that name equality tests
suffice for type-safety of associated values, e.g. values carried on
named channels; (4) controlled dynamic rebinding of marshalled
values to local resources; and (5) thunkification of threads and mu-
texes to support computation mobility.

These features are a large part of what is needed for typeful
distributed programming. They are a relatively lightweight exten-
sion ofML, should be efficiently implementable, and are expressive
enough to enable a wide variety of distributed infrastructure layers
to be written as simple library code above the byte-string network
and persistent store APIs. This disentangles the language runtime
from communication intricacies. This paper highlights the main de-
sign choices inAcute. It is supported by a full language definition
(of typing, compilation, and operational semantics), by a prototype
implementation, and by example distribution libraries.

Categories and Subject Descriptors D.3.3 [Programming Lan-
guages]: Language Constructs and Features

General Terms Languages, Design

Keywords programming languages, distributed programming,
marshalling, serialisation, abstract types, modules, rebinding, ver-
sion control, type theory,ML
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1. Introduction
Distributed computation is now pervasive, with execution, software
development, and deployment spread over large networks, long
timescales, and multiple administrative domains. Because of this,
distributed systems cannot in general be deployed or updated atom-
ically. They are not necessarily composed of multiple instances of a
single program version, but instead of many versions of many pro-
grams that need to interoperate, perhaps sharing some libraries but
not others. Moreover, the intrinsic concurrency and nondetermin-
ism of distributed systems, and the complexity of the underlying
network layers, makes them particularly hard to understand and
debug, especially without type safety. Existing programming lan-
guages, such asML, Haskell, Java andC], provide good support
for local computation, with rich type structures and (mostly) static
type-safety guarantees. When it comes to distributed computation,
however, they fall short, with little support for its many system-
development challenges.

In this work we seek to remedy this lack, concentrating on what
must be added toML-like (typed, call-by-value, higher-order) lan-
guages to support typed distributed programming. We have defined
and implemented a programming language,Acute, which extends
anOCaml core with features for type-safe marshalling and naming
in the distributed setting. Our extensions are lightweight changes
to ML, but suffice to enable sophisticated distributed infrastructure,
e.g. substantial parts ofJoCaml [JoC], Nomadic Pict [SWP99],
and Ambient primitives [CG98], to be programmed as simple li-
braries.Acute’s support for interactionbetweenprograms goes
well beyond previous work, allowing type-safe interaction between
different runtime instances, different builds, and different versions
of programs, whilst respecting modular structure and type abstrac-
tion boundaries in each interacting partner. In a distributed system
it will often be impossible to detect all type errors statically, but
it is not necessary to be completely dynamic — errors should be
detected as early as possible in the development, deployment, and
execution process. We show how this can be done.

Acute has a full definition [SLW+04], covering syntax, typing,
compilation, and operational semantics. A prototype implementa-
tion is also available [SLW+05], which is efficient enough to run
moderate examples but which closely mirrors the structure of the
operational semantics. This paper is devoted to an informal presen-
tation of the main design points, with small but executable exam-
ples. For details of the many semantic subtleties, and for discussion
of further design points, we refer the reader to [SLW+04].

1.1 Acute overview: the main design points

Type-safe marshalling (§2, §3) Our basic addition toML is
type-safe marshalling: constructs to marshal arbitrary values to
byte-strings, with a type equality check at unmarshal-time guaran-



teeing safety. We argue that this is the right level of abstraction for
a general-purpose distributed language, allowing complex commu-
nication infrastructure algorithms to be coded (type-safely) as li-
braries, above the standard byte-string network and persistent store
APIs, rather than built in to the language runtime. We recall the
different design choices for trusted and untrusted interaction.

Dynamic linking and rebinding (§4) When marshalling and
unmarshalling code values, e.g. to communicateML functions be-
tween machines, it may be necessary todynamically rebindthem
to local resources at their destination. Similarly, one may need to
dynamically linkmodules. There are many questions here: how to
specify which resources should be shipped with a marshalled value
and which dynamically rebound; what evaluation strategy to use;
when rebinding takes effect; and what to rebind to. In this section
our aim is to articulate the design space; forAcute we make in-
terim choices which suffice to bring out the typing and versioning
issues involved in rebinding while keeping the language simple. A
runningAcute program consists roughly of a sequence ofmodule
definitions (ofML structures),imports of modules with specified
signatures, which may or may not be linked, andmarks which in-
dicate where rebinding can take effect; together with running pro-
cesses and a shared store.

Type names(§5) Type-safe marshalling demands a runtime no-
tion of type identitythat makes sense across multiple versions of
differing programs. For concrete types this is conceptually straight-
forward — for example, one can check the equality between type
int from one program instance and typeint from another. For
abstract types more care is necessary. Static type systems forML
modules involve non-trivial theories of type equality based on
the source-code names of abstract types (e.g.M.t), but these are
only meaningful within a single program. We generate globally-
meaningfulruntime type namesfor abstract types in three ways: by
hashingmodule definitions, taking their dependencies into account;
or freshly at compile-time; or freshly at run-time. The first two en-
able different builds or different programs to share abstract type
names, by sharing their module source code or object code respec-
tively; the last is needed for modules with effect-full initialisation.
In all three cases the way in which names are generated ensures that
type name equality tests suffice to protect the invariants of abstract
types.

Expression-level names(§6) Globally-meaningfulexpression-
level namesare needed for type-safe interaction, e.g. for communi-
cation channel names or RPC handles. They can also be constructed
as hashes or created fresh at compile time or run time; we show
how these support several important idioms. The ways in which
expression-level names are generated ensure that name equality
tests suffice to guarantee that any associated values (e.g. any val-
ues passed on named channels) have the right types. The polytypic
support and swap operations of Shinwell, Pitts, and Gabbay’s
FreshOCaml [Shi05, SPG03] are included to support swizzling of
local names during communication.

Versions and version constraints(§7, §8) In a single-program
development process one ensures the executable is built from a co-
herent set of versions of its modules by controlling static linking —
often, simply by building from a single source tree. With dynamic
linking and rebinding more support is required: we addversions
andversion constraintsto modules andimports respectively. Al-
lowing these to refer to module names gives flexibility over whether
code consumers or producers have control.

There is a subtle interplay between versions, modules, imports,
and type identity, requiring additional structure inmodules and
imports. A mechanism for looking through abstraction boundaries
is also needed for some version-change scenarios.

Local concurrency and thunkification (§9) Local concurrency
is important for distributed programming.Acute provides a mini-
mal level of support, with threads, mutexes and condition variables.
Local messaging libraries can be coded up using these, though in a
production implementation they might be built-in for performance.
We also providethunkification(loosely analogous tocall/cc), al-
lowing a collection of threads (and mutexes and condition vari-
ables) to be atomically captured as a thunk that can then be mar-
shalled and communicated or stored; this enables various constructs
for mobility and checkpointing to be coded up.

Acute is not intended as a proposal for a full-scale language, but
rather a vehicle for experimentation and a starting point for debate
— several necessary but relatively straightforward features have
been omitted, and substantial problems remain for future work
(especially some of the questions of§4). Nonetheless, we believe
that our examples demonstrate that the combination of the above
features is a large part of what is needed to bring the benefits of
ML-like languages to the programming of large-scale distributed
systems.

1.2 Semantics, Implementation, and Examples

Most of theAcute grammar is standard, a fragment ofOCaml. For
concreteness we summarise the new constructs in Figure 1. The
remainder of the paper explains the main aspects of their meaning
and usage (not all details of the grammar will be covered).

Semantics TheAcute static type system for source programs is
based on anOCaml core and a second-class module system, with
singleton kinds for expressing abstract and manifest type fields in
modules. Module initialisation can involve arbitrary computation.
The core does not have standardML-style polymorphism, as our
distributed infrastructure examples need first-class existentials (e.g.
to code up polymorphic channels) and first-class universals (for
marshalling polymorphic functions). We therefore have explicit
System F style polymorphism (the implementation does some ad-
hoc partial inference).

The definition of compilation describes how global type- and
expression-level names are constructed, including the details of
hash bodies.

Our semantics for rebinding rests on theredex-timeevaluation
strategy, introduced in [BHS+03] for simply-typedλ-calculus and
here adapted to a second-class module system — to express rebind-
ing the semantics must preserve the module structure throughout
computation instead of substituting it away.

The semantics also preserves abstraction boundaries throughout
computation, with a generalisation of thecoloured bracketsof
Grossman et al [GMZ00] to the entireAcute language (except,
to date, the System F constructs). This is technically delicate (and
not needed for implementations, which can erase all brackets) but
provides useful clarity in a setting where abstraction boundaries
may be complex, with abstract types shared between programs.

The semantics preserves also the internal structure of hashes.
This too can be erased in implementations, which can implement
hashes and fresh names with literal bit-strings (e.g. 160-bit SHA1
hashes and pseudo-random numbers), but is needed to state type
preservation and progress properties. The abstraction-preserving
semantics makes these rather stronger than usual.

Implementation The Acute implementation is written in
FreshOCaml, as a meta-experiment in using the Fresh features for
a medium-scale program (some 25 000 lines). It is a prototype: de-
signed to be efficient enough to run moderate examples while re-
maining rather close in structure to the semantics. The runtime in-
terprets an intermediate language which is essentially the abstract
syntax extended with closures. Performance is roughly 300 times
slower thanOCaml bytecode.



T ::= int | bool | string | unit | char | void |T1 ∗ .. ∗ Tn |T1 + .. + Tn |T → T ′ |T list |T option |T ref | exn |MM .t |

t | ∀ t .T | ∃ t .T |T name |T tie | thread |mutex | cvar | thunkifymode | thunkkey | thunklet | h.t | n

e ::= ... |marshal e1 e2 : T |unmarshal e as T | marshalling
freshT | cfreshT |hash(MM .x)T |hash(T , e2)T ′ |hash(T , e2, e1)T ′ | nT | h.x name creation and names
namecase e1 with {t , (x1, x2)} when x1 = e → e2 otherwise → e3 | namecase
create thread | ... | thunkify | [e]Teqs | ... threads, thunkify, coloured brackets

sourcedefinition ::=
module mode MM : Sig version vne = Str withspec | module
import mode MM : Sig version vce likespec by resolvespec = Mo | import
mark MK mark

Figure 1. Acute syntax: the full type grammar and the main non-standard expression and module forms. Hereh is a module name, hash- or
fresh-generated,n is a freshly-generated name,t is a module type field external identifier,MM is a module external/internal identifier pair,
andMK is a string constant. The type subscripts are typically inferred. The highlighted forms are only in the semantics, not source programs.

The definition is too large (on the scale of theML definition
rather than an idealisedλ-calculus) to make proofs of soundness
properties feasible with the available resources and tools. To in-
crease confidence in both semantics and implementation, therefore,
our implementation is designed to optionally type-check the entire
configuration after each reduction step. This has been extremely
useful, identifying delicate issues in both the semantics and the
code.

Examples(§10) We demonstrate thatAcute does indeed support
typeful distributed programs with several medium-scale examples,
all written as libraries inAcute above the byte-string TCP Sockets
API: a typed distributed channel library, an implementation of
the Nomadic Pict [SWP99] primitives for communication and
mobility, and an implementation of the Ambient primitives [CG98].
These require and use most of the new features.

Relationship to previous work (§11, §12) Acute builds on
previous work, in which we introduced new-bound type names for
abstract types [Sew01], hash-generated type names [LPSW03], and
controlled dynamic rebinding in a lambda-calculus [BHS+03], all
in simple variants for for small calculi.

Our contribution here is threefold: discussion of the design
space and identification of features needed for high-level typed
distributed programming, the synthesis of those features into a us-
able experimental language, and their detailed semantic design. The
main new technical innovations are: a uniform treatment of names
created by hash, fresh, or compile-time fresh, both for type names
and (covering the main usage scenarios) for expression names,
dealing with module initialisation and dependent-record modules;
explicit versions and version constraints, with their delicate inter-
play with imports and type equality; module-level dynamic link-
ing and rebinding; support for thunkification; and an abstraction-
preserving semantics for all the above.

Other related work is discussed in§11, and we conclude in§12.

2. Distributed abstractions: language vs libraries
A fundamental question for a distributed language is what commu-
nication support should be built in to the language runtime and what
should be left to libraries. The runtime must be widely deployed,
and so is not easily changed, whereas additional libraries can eas-
ily be added locally. In contrast to some previous languages (e.g.
Facile [TLK96], Obliq [Car95], andJoCaml [JoC]), we believe
that a general-purpose distributed programming language should
not have a built-in commitment to any particular means of interac-
tion.

The reason for this is essentially the complexity of the dis-
tributed environment: system designers must deal with partial fail-

ure, attack, and mobility — of code, of devices, and of running
computations. This complexity demands a great variety of com-
munication and persistent store abstractions, with varying perfor-
mance, security, and robustness properties. At one extreme there
are systems with tightly-coupled computation over a reliable net-
work in a single trust domain. Here it might be appropriate to
use a distributed shared memory abstraction, implemented above
TCP. At another extreme, interaction may be intrinsically asyn-
chronous between mutually-untrusting runtimes, e.g. with crypto-
graphic certificates communicated via portable persistent storage
devices (smartcards or memory sticks), between machines that have
no network connection. In between, there are systems that require
asynchronous messaging or RMI but, depending on the network
firewall structure, tunnel this over a variety of network protocols.

To attempt to build in direct support for all the required ab-
stractions, in a single general-purpose language, would be a never-
ending task. Rather, the language should be at a level of abstraction
that makes distribution and communication explicit, allowing dis-
tributed abstractions to be expressed as libraries.

Acute has constructsmarshal andunmarshal to convert arbi-
trary values to and from byte strings; they can be used above any
byte-oriented persistent storage or communication APIs.

This leaves the questions of (a) how these should behave, espe-
cially for values of functional or abstract types, and (b) what other
local expressiveness is required, especially in the type system, to
make it possible to code the many required libraries. The rest of the
paper is devoted to these.

3. Basic type-safe distributed interaction
In this section we establish our basic conventions and assumptions,
beginning with the simplest possible examples of type-safe mar-
shalling. We first consider one program that sends the result of mar-
shalling5 on a fixed channel:

IO.send( marshal "StdLib" 5 : int )

(ignore the"StdLib" for now) and another that receives it, adds3
and prints the result:

IO.print_int(3+(unmarshal(IO.receive()) as int))

Compiling the two programs and then executing them in paral-
lel results in the second printing8. This and subsequent exam-
ples are executableAcute code. For brevity they use a simple
address-lessIO library, providing primitivessend:string->unit
andreceive:unit->string1. Below we write the parallel exe-

1 To emphasise that interaction might be via communication or via persis-
tent store, there are two implementations ofIO, one using TCP and one
using file IO; either can be used for these examples.



cution of two separately-built programs vertically, separated by a
dash —.

For safety, a type check is obviously needed at run-time in the
second program, to ensure that the type of the marshalled value is
compatible with the type at which it will be used. For example, the
second program here

IO.send( marshal "StdLib" "five" : string )
—
IO.print_int(3+(unmarshal(IO.receive()) as int))

should raise an exception. Allowing interaction via an untyped
medium inevitably means that some dynamic errors are possible,
but they should be restricted to clearly-identifiable program points,
and detected as early as possible. Here we should do that type
check at unmarshal-time, but in some scenarios one may be able
to exclude such errors at compile-time, e.g. when communicating
on a typed channel; we return to this in§6.

Theunmarshal dynamic check might be of two strengths. We
can:

(a) include with the marshalled value an explicit representa-
tion of the type at which it was marshalled, and check at
unmarshal-time that that type is equal to the type expected
by the unmarshal — in the examples above,int=int and
string=int respectively; or

(b) additionally check that the marshalled value is a well-formed
representation of something of that type.

In a trusted setting, where one can assume that the string was
created by marshalling in a well-behaved runtime (which might
be assured by network locality or by cryptographically-protected
interaction with trusted partners), option (a) suffices for safety.

If, however, the string might have been created or modified by
an attacker, then we should choose (b), to protect the integrity of the
local runtime. Note, though, that this option is not always available:
when we consider marshalled values of an abstract type, it may not
be possible to check at unmarshal-time that the intended invariants
of the type are satisfied. They may have never been expressed
explicitly, or be truly global properties. In this case one should
marshal only values of concrete types.2

In Acute we focus on the trusted case, with option (a), and the
problems of distributed typing, naming, and rebinding it raises.
A full language should also support the untrusted case, e.g. with
marshalling to ASN.1 or XML, and type- or proof-carrying code
for marshalled functions.

We do not discuss the design of the concrete wire format for
marshalled values — theAcute semantics presupposes just a par-
tial raw unmarshal function from strings to abstract syntax of
configurations, including module definitions and store fragments;
the prototype implementation simply uses canonical pretty-prints
of abstract syntax.

4. Dynamic linking and rebinding to local
resources

4.1 References to local resources

Marshalling closed values, such as the5 and"five" above, is con-
ceptually straightforward. The design space becomes more inter-
esting when we consider marshalling a value that refers to some
local resources. For example, the source code of a function (it may
be useful to think of a large plug-in software component) might
mention identifiers for:

2 One could imagine an intermediate point, checking the representation type
but ignoring the invariants, but the possibility of breaking key invariants is
in general as serious as the possibility of breaking the local runtime.

(1) ubiquitous standard library calls, e.g.,print int;
(2) application-specific library calls with location-dependent se-

mantics, e.g., routing functions;
(3) application code that is not location-dependent but is known to

be present at all relevant sites; and
(4) other let-bound application values.

In (1–3) the function should bereboundto the local resource
where and when it is unmarshalled, whereas in (4) the definitions
of resources must be copied and sent along before their usages can
be evaluated.

There is another possibility: a local resource could be con-
verted into adistributed referencewhen the function is marshalled,
and usages of it indirected via further network communication. In
some scenarios this may be desirable, but in others it is not, where
one cannot pay the performance cost for those future invocations,
or cannot depend on future reliable communication (and do not
want to make each invocation of the resource separately subject
to communication failures). Most sharply, where the function is
marshalled to persistent store, and unmarshalled after the original
process has terminated, distributed references are nonsensical. Fol-
lowing the design rationale of§2, we do not support distributed
references directly, aiming rather to ensure our language is expres-
sive enough to allow libraries of ‘remotable’ resources to be written
above our lower-level marshalling primitives.

4.2 What to ship and what to rebind

Which definitions fall into (2–3) (to be rebound) and (4) (to be
shipped) must be specified by the programmer; there is usually no
way for an implementation to infer the correct behaviour. We adapt
the mechanism proposed in [BHS+03] (from a lambda-calculus
setting to anML-style module language) to indicate which re-
sources should be rebound and which shipped for any marshal op-
eration. AnAcute program consists roughly of a sequence of mod-
ule definitions, interspersed withmarks, followed by running pro-
cesses; those module definitions, together with implicit module def-
initions for standard libraries, are the resources. Marks essentially
name the sequence of module definitions preceding them. Marshal
operations are each with respect to a mark; the modules below that
mark are shipped and references to modules above that mark are re-
bound, to whatever local definitions may be present at the receiver.
The mark"StdLib" used in§3 is declared at the end of the stan-
dard library; this mark and library are in scope in all examples.

In the following example the sender declares a moduleM with a
y field of typeint and value6. It then marshals and sends the value
fun ()->M.y. This marshal is with respect to mark"StdLib",
which lies above the definition of moduleM, so a copy of theM
definition is marshalled up with the valuefun ()->M.y. Hence,
when this function is applied to() in the receiver, the evaluation of
M.y can use that copy, resulting in6.

module M : sig val y:int end = struct let y=6 end
IO.send( marshal "StdLib" (fun ()->M.y))

—
(unmarshal (IO.receive ()) as unit -> int) ()

On the other hand, references to modules above the specified mark
can be rebound. In the simplest case, one can rebind to an iden-
tical copy of a module that is already present on the receiver (for
(3) or (1)). In the example below, theM1.y reference toM1 is re-
bound, whereas the first definition ofM2 is copied and sent with the
marshalled value. This results in() and((6,3),4) for the two
programs.

module M1:sig val y:int end = struct let y=6 end
mark "MK"
module M2:sig val z:int end = struct let z=3 end



IO.send( marshal "MK" (fun ()-> (M1.y,M2.z))
: unit->int*int)

—
module M1:sig val y:int end = struct let y=6 end
module M2:sig val z:int end = struct let z=4 end
((unmarshal(IO.receive()) as unit->int*int)(),M2.z)

Note that we must permit running programs to contain multiple
modules with the same source-code name and interface but with
different definitions (avoiding “DLL hell”) — here, after the un-
marshal, the receiver has two versions ofM2 present, one used by
the unmarshalled code and the other by the original receiver code.

In more interesting examples one may want to rebind to a local
definition of M1 even if it is not identical, to pick up some truly
location-dependent library. The code below shows this, terminating
with () and(7,3).

module M1:sig val y:int end = struct let y=6 end
import M1:sig val y:int end version * = M1
mark "MK"
module M2:sig val z:int end = struct let z=3 end
IO.send( marshal "MK" (fun ()-> (M1.y,M2.z))

: unit->int*int )
—
module M1:sig val y:int end = struct let y=7 end
module M2:sig val z:int end = struct let z=4 end
(unmarshal (IO.receive ()) as unit->int*int) ()

The sender has two modules,M1 andM2, with M1 above the mark
MK. It marshals a valuefun ()-> (M1.y,M2.z), that refers to
both of them, with respect to that mark. This treatsM2.z statically
andM1.y dynamically at the marshal/unmarshal point: a copy of
M2 is sent along, and on unmarshalling at the receiver the value is
rebound to the local definition ofM1, in whichy=7. To permit this
rebinding we use an explicitimport

import M1 : sig val y:int end version * = M1

An import introduces a module identifier (the leftM1) with a sig-
nature; it may or may not be linked to an earlier module or import
(this one is, to theM1 module definition earlier in the example). The
version * overrides the default behaviour, which would constrain
rebinding only to identical copies ofM1. Marks are simply string
constants, not binders subject to alpha equivalence, as they need
to be dynamically rebound. For example, if one marshals a func-
tion that has an embeddedmarshal with respect to"StdLib", and
then unmarshals and executes it elsewere, one typically wants the
embeddedmarshal to act with respect to the now-local"StdLib".

4.3 Evaluation strategy: the relative timing of variable
instantiation and marshalling

A language with rebinding cannot use a standard call-by-value op-
erational semantics, which substitutes out identifier definitions as
it comes to them, as some definitions may need to be rebound
later. Two alternative CBV reduction strategies were developed
in [BHS+03] in a simple lambda-calculus setting:redex-time, in
which one instantiates an identifier with its value only when the
identifier occurs in redex-position, anddestruct-timewhere instan-
tiation occurs even later, when the identifier appears in a context
which needs to destruct the outermost structure of the value. The
destruct-time semantics permits more rebinding, but is also rather
complex. We therefore use the redex-time strategy for module ref-
erences (local expression reduction remains standard CBV).

For example, the first occurrence ofM.y in the first program be-
low will be instantiated by6 before the marshal happens, whereas
the second occurrence would not appear in redex-position until a
subsequent unmarshal and application of the function to(); the
second occurrence is thus subject to rebinding. The results are()
and(6,2).

module M:sig val y:int end = struct let y=6 end
import M:sig val y:int end version * = M
mark "MK"
IO.send( marshal "MK" (M.y, fun ()-> M.y)

: int * (unit->int) )
—
module M:sig val y:int end = struct let y=2 end
let ((x:int),(f:unit->int)) =

(unmarshal(IO.receive()) as int*(unit->int)) in
(x, f ())

4.4 Controlling when rebinding happens

We have to choose whether or not to allow execution of partial
programs, which are those in which some imports are not linked to
any earlier module definition (or import). Partial programs can arise
in two ways. First, they can be written as such, as in conventional
programs that use dynamic linking, where a library is omitted from
the statically-linked code, to be discovered and loaded at runtime.
For example:

import M : sig val y:int end version * = unlinked
fun () -> M.y

Secondly, they can be generated by marshalling, when one mar-
shals a value that depends on a module above the mark (intending
to rebind it on unmarshalling). For example, the final state of the
receiver in

module M:sig val y:int end = struct let y=6 end
import M:sig val y:int end version * = M
mark "MK"
IO.send( marshal "MK" (fun ()->M.y) : unit->int )

—
unmarshal (IO.receive ()) as unit->int

is roughly the program below.

import M : sig val y:int end version * = unlinked
fun ()-> M.y

If we disallow execution of partial programs then, when we un-
marshal, all the unlinked imports that were sent with the marshalled
value must be linked in to locally-available definitions; the unmar-
shal should fail if this is not possible.

Alternatively, if we allow execution of partial programs, we
must be prepared to deal with anM.x in redex position whereM is
declared by an unlinked import. For any particular unmarshal, one
might wish to force linking to occur at unmarshal time (to make any
errors show up as early as possible) or defer it until the imported
modules are actually used. The latter allows successful execution
of a program where one happens not to use any functionality that
requires libraries which are not present locally. Moreover, the ‘us-
age point’ could be expressed either explicitly (as with a call to the
Unix dlopen dynamic loader) or implicitly, when a module field
appears in redex-position.

A full language should support this per-marshal choice, but for
simplicity Acute supports only one of the alternatives: it allows
execution of partial programs, and no linking is forced at unmarshal
time. Instead, when an unlinkedM.x appears in redex position we
look for anM to link the import to.

4.5 Controlling what to rebind to

How to look for such anM is specified by aresolvespecthat can
(optionally) be included in the import. By default it will be looked
for just in the running program, in the sequence of modules defined
above the import. Sometimes, though, one may wish to search in
the local filesystem (e.g. for conventional shared-object names such
aslibc.so.6), or even at a web URI. InAcute we make an ad-hoc
choice of a simpleresolvespeclanguage: a resolvespec is a finite
list of atomic resolvespecs, each of which is eitherStatic Link,



Here Already or a URI. Lookup attempts proceed down the list,
with Static Link indicating the import should already be linked,
Here Already prompting a search for a suitable module (with the
right name, signature and version) in the running program, and a
URI prompting a file to be fetched and examined for the presence
of a suitable module.

There is a tension between a restricted and a generalresolvespec
language. Sometimes one may need the generality of arbitrary com-
putation (as inJava classloaders), e.g. in browsers that dynamically
discover where to obtain a newly-required plugin. On the other
hand, a restricted language makes it possible to analyse a program
to discover an upper bound on the set of modules it may require —
necessary if one is marshalling it to a disconnected device, say. A
full language should support both, though the majority of programs
might only need the analysable sublanguage.

This resolvespecdata is added to imports, for example:

import M : sig val y:int end version * by
"http://www.cl.cam.ac.uk/users/pes20/acute/M.ac"
= unlinked

M.y + 3

Here the M.y is in redex-position, so the runtime ex-
amines the resolvespec list associated with the im-
port of M. That list has just a single element, the URI
http://www.cl.cam.ac.uk/users/pes20/acute/M.ac.
The file there will be fetched and (if it contains a definition ofM
with the right signature) the modules it contains will be added to
the running program just before the import, which will be linked to
the definition ofM. TheM.y can then be instantiated with its value.

Note that this mechanism is not an exception — afterM is
loaded, theM.y is instantiated in its original evaluation context
( + 3). It could perhaps be encoded (with exceptions and affine
continuations, or by encoding imports as option references) but
here we focus on the user language.

4.6 The structure of marks and modules

A runningAcute program has a linear sequence of evaluated def-
initions (marks, module definitions and imports) scoping over the
running processes. Imports may be linked only to module defini-
tions (or imports) that precede them in this sequence. When a value
is unmarshalled, any additional module definitions carried with it
are added to the end of the sequence.

This linear structure suffices as a setting to explore the typing
and naming issues in the remainder of the paper, but it is probably
not ideal. For example, one might want cyclic linking (involving
the complexities of recursive modules or mixins); or support for
two endpoints to negotiate about what modules are already shared
and what need to be shipped; or explicit control over what mustnot
be shipped, e.g. due to license restrictions or security concerns. We
leave these for future work.

5. Naming: global module and type names
We now turn to marshalling and unmarshalling of values of abstract
types. InML, and inAcute, abstract types can be introduced by
modules. For example, the module

module EvenCounter
: sig = struct

type t type t=int
val start:t let start = 0
val get:t->int let get = fun (x:int)->x
val up:t->t let up = fun (x:int)->2+x

end end

provides an abstract typeEvenCounter.t with representation type
int; this representation type is not revealed in the signature above.
The programmer might intend that all values of this type satisfy the

‘even’ invariant; they can ensure this, no matter how the module
is used, simply by checking that thestart and up operations
preserve evenness.

Now, for values of typeEvenCounter.t, what should the
unmarshal-time dynamic type equality check of§3 be? It should
ensure not just type safety with respect to the representation type,
but alsoabstraction safety— respecting the invariants of the mod-
ule. Within a single program, and for communication between pro-
grams with identical sources, one can compare such abstract types
by their source-code paths, withEvenCounter.t having the same
meaning in all copies (this is roughly what the manifest type and
singleton kind static type systems of Leroy [Ler94] and Harper et
al [HL94] do).

For distributed programming we need a notion of type equality
that makes sense at runtime across the entire distributed system.
This should respect abstraction: two abstract types with the same
representation type but completely different operations will have
different invariants, and should not be compatible. Moreover, we
want common cases of interoperation to ‘just work’: if two pro-
grams share an (effect-free) module that defines an abstract type
(and share its dependencies) but differ elsewhere, they should be
able to exchange values of that type.

We see three cases, with corresponding ways of constructing
globally-meaningful type names.

Case 1 For a module such asEvenCounter above that is effect-
free (i.e. evaluation of the structure body involves no effects) we
can use modulehashesas global names for abstract types, gener-
alising our earlier work [LPSW03] to dependent-record modules.
The typeEvenCounter.t is compiled toh.t, where the hashh is
(roughly)

hash(
module EvenCounter
: sig = struct

type t type t=int
val start:t let start = 0
val get:t->int let get = fun (x:int)->x
val up:t->t let up = fun(x:int)->2+x

end end
)

i.e. the hash of the module definition (in fact, of the abstract syntax
of the module definition, up to alpha equivalence and type equal-
ity, together with some additional data). If one unmarshals a pair
of type EvenCounter.t * EvenCounter.t the unmarshal type
equality check will compare withh.t*h.t. This allows interoper-
ation to just work between programs that share theEvenCounter
source code, without further ado.

In constructing the hash for a moduleM we have to take into
account any dependencies it has on other modulesM’, replacing
any type and term referencesM’.t andM’.x. In our earlier work
we did so by substituting out the definitions of all manifest types
and terms (replacing abstract types by their hash type name). Now,
to avoid doing that term substitution in the implementation, we
replaceM’.x by h ’.x, whereh ’ is the hash of the definition of
M’. This gives a slightly finer, but we think more intuitive, notion
of type equality. We still substitute out the definitions of manifest
types from earlier modules. This is forced: in a context whereM.t
is manifestly equal toint, it should not make any difference to
subsequent types which is used.

Case 2 Now consider effect-full modules such as theNCounter
module below, where evaluating theup expression to a value in-
volves an IO effect.

module fresh NCounter
: sig = struct

type t type t=int



val start:t let start = 0
val get:t->int let get = fun (x:int)->x
val up:t->t let up =

let step=IO.read_int() in
fun (x:int)->step+x

end end

This reads anint from standard input at module initialisation time,
and the invariant — that all values of typeNCounter.t are a
multiple of thatint — depends on that effect. For such effect-
full modules a fresh type name should be generated each time the
module is initialised, at run-time, to ensure abstraction safety.

Case 3 Returning to effect-free modules, the programmer may
wish to forcea fresh type name to be generated, to avoid acciden-
tal type equalities between different but overlapping runs of the
distributed system. A fresh name could be generated each time the
module is initialised, as in the second case, or each time the module
is compiled. This latter possibility, as in our earlier work [Sew01],
enables interoperation between programs linked against the same
compiled module, while forbidding interoperation between differ-
ent builds.

For abstract types associated with modules it suffices to generate
hashes or fresh namesh per module, using the varioush.t as the
global type names for the abstract types of that module.

We let the programmer specify which of the three behaviours
is required with ahash, fresh, or cfresh mode in the module
definition, writing e.g.module hash EvenCounter. In general it
would be abstraction-breaking to specifyhash or cfresh for an
effect-full module. To prevent this requires some kind of effect
analysis, for which we use coarse but simple notions ofvaluabil-
ity, following [HS00], and ofcompile-time valuability. The mode
defaults to the most liberal possible if omitted, andhash! and
cfresh! modes allow valuability to be overridden where neces-
sary.

Acute also provides first-class System F existentials, as the ex-
perience withPict [PT00] andNomadic Pict [SWP99, US01]
demonstrates these are important for expressing messaging infras-
tructures. For these a fresh type name will be constructed at each
unpack, to correspond with the static type system.

6. Naming: expression names
Globally-meaningfulexpression-level namesare also needed, pri-
marily as interaction handles — dispatch keys for high-level
interaction constructs such as asynchronous channels, location-
independent communication, reliable messaging, multicast groups,
or remote procedure (or function/method) calls. For any of these
an interaction involves the communication of a pair of a handle
and a value. Taking asynchronous channels as a simple example,
these pairs comprise a channel name and a value sent on that chan-
nel. A receiver dispatches on the handle, using it to identify a local
data structure for the channel (a queue of pending messages or of
blocked readers). For type safety, the handle should be associated
with a type: the type of values carried by the channel. (RPC is sim-
ilar except that an additional affine handle must also be communi-
cated for the return value.)

In Acute we build in support for the generation and typing of
name expressions, leaving the various and complex dynamics of
interaction constructs to be coded up above marshalling and byte-
string interaction. As inFreshOCaml, for any typeT we have a
type

T name

of names associated with it. Values of these types (like type names)
can be generated freshly at runtime, freshly at compile-time, or de-
terministically by hashing, with expression formsfresh, cfresh,

hash(M.x), hash(T,e ), and hash(T,e,e ). We detail these
forms below, showing how they support several important scenar-
ios. In each, the basic question is how one establishes a name shared
between sender and receiver code such that testing equality of the
name ensures the type correctness of communicated values (and
hence that there will be no unmarshal failures in the communica-
tion library).

For clarity we focus on distributed asynchronous messag-
ing, supposing a moduleDChan which implements a distributed
DChan.send by sending a marshalled pair of a channel name and
a value across the network.

module hash DChan :
sig

val send : forall t. t name * t -> unit
val recv : forall t. t name * (t -> unit) -> unit

end

This uses names of typeT name as channel names to communicate
values of typeT .3

Scenario 1 The sender and receiver both arise from a single
execution of a single build of a single program. The execution
was initiated on machine A, and the receiver is present there, but
the sender was earlier transmitted to machine B (e.g. within a
marshalled lambda abstraction).

Here the sender and receiver can originate from a single lexical
scope and a channel name can be generated at runtime with afresh
expression. This might be at the expression level, e.g.

let (c : int name) = fresh in

with sender code DChan.send %[int] (c,v) and re-
ceiver DChan.recv %[int] (c,f), for some v:int and
f:int->unit4, or a module-level binder

module M : sig val c : int name end
= struct let c = fresh end

These generate the fresh name when thelet is evaluated or the
module is initialised respectively. This first scenario is basically
that supported byJoCaml andNomadic Pict.

Commonly one might have a single receiver function for a
name, and tie together the generation of the name and the definition
of the function, with an additionalDChan field

val fresh_recv : forall t. (t -> unit) -> t name

implemented simply as

Function t -> fun f ->
let c=fresh in DChan.recv %[t] (c,f); c

and used as below.

module M : sig val c : int name end
= struct let c = DChan.fresh_recv %[int]

(fun x -> IO.print_int x+1) end

Note that thisM is an effect-full module, creating the name forc at
module initialisation time.

Scenario 2 The sender and receiver are in different programs,
but both are statically linked to a structure of names that was
built previously, with expressioncfresh for compile-time fresh
generation.

Here one has a repository containing a compiled instance of a
module such as

3 Acute does not yet support user-definable type constructors. If itdid we
would define an abstract type constructorChan.c:Type->Type and have
send : forall t. t Chan.c name * t -> unit.
4 The%[int] is an explicit type application, and later%[] are placeholders
for inferred types.



module cfresh M : sig val c : int name end
= struct let c = cfresh end

in a file m.aco, which is included by the two programs containing
the sender and receiver:

includecompiled "m.aco"
DChan.send %[int] (M.c,v)

—
includecompiled "m.aco"
DChan.recv %[int] (M.c,f)

Different builds of the sender and receiver programs will be able
to interact, but rebuildingM creates a fresh channel name forc, so
builds of the sender using one build ofMwill not interact with builds
of the receiver using another build ofM.

This can be regarded as a more disciplined alternative to the
programmer making use of an explicit off-line name (or GUID)
generator and pasting the results into their source code.

Scenario 3 The sender and receiver are in different programs, but
both share the source code of a module that defines the functionf
used by the receiver; the hash of that module (and the identifierf)
is used to generate the name used for communication.

This covers the case in which the sender and receiver are dif-
ferent execution instances of the same program (or minor variants
thereof), and one wishes typed communication to work without any
(awkward) prior exchange of names via the build process or at run-
time. The shared code might be

module hash N : sig val f : int -> unit end
= struct let f = fun x->IO.print_int (x+100) end

module hash M : sig val c : int name end
= struct let c = hash(int,"",hash(N.f) %[]) %[] end

in a filenm.ac, included by the two programs containing the sender
and receiver:

includesource "nm.ac"
DChan.send %[int] (M.c,v)

—
includesource "nm.ac"
DChan.recv %[int] (M.c,N.f)

The hash(N.f) gives aT name whereT = int->unit is the
type ofN.f; the surrounding hash coercionhash(int,"", ) con-
structs anint name from this.5 This involves a certain amount of
boiler-plate, with separate structures of functions and of the names
used to access them, but it is unclear how that could be improved. It
might be preferable to regard the hash coercion as a family of poly-
morphic operators, indexed by pairs of type constructorsΛ~t.T 1 and
Λ~t.T 2 (of the same arity), of type∀~t.T 1 name → T 2 name.

Scenario 4 The sender and receiver are in different programs,
sharing no source code except a type and a string; the hash of the
pair of those is used to generate the name used for communication.

let c = hash(int,"foo") %[] in
DChan.send %[int] (c,v)

—
let c = hash(int,"foo") %[] in
DChan.recv %[int] (c,f)

This idiom requires the minimum shared information between the
two programs. It can be seen as a disciplined, typed, form of the
use of untyped “traders” to establish interaction media between
separate distributed programs.

Scenario 5 The sender and receiver have established by some
means a single typed shared namec, but need to construct many

5 Such coercions supportChan.c type constructors too, e.g. to construct an
int Chan.c name from an(int->unit) name.

shared names for different communication channels. The hash co-
ercion can be used for this also, constructing new typed names from
old names, new types, and arbitrary strings. Whether this will be a
common idiom is unclear, but it is easy to provide and seems inter-
esting to explore.

7. Versions and version constraints
In a single-executable development process, one ensures the exe-
cutable is built from a coherent set of versions of its component
modules by choosing what to link together — in simple cases,
by working with a single code directory tree. In the distributed
world, one could do the same: take sufficient care about which
modules one links and/or rebinds to. Without any additional sup-
port, however, this is an error-prone approach, liable to end up
with semantically-incoherent versions of components interoperat-
ing. Typechecking can provide some basic sanity guarantees, but
cannot capture these semantic differences.

One alternative is to permit rebinding only to identical copies
of modules that the code was initially linked to. Usually, though,
more flexibility will be required — to permit rebinding to modules
with “small” or “backwards-compatible” changes to their seman-
tics, and to pick up intentionally location-dependent modules. It
is impractical to specify the semantics that one depends upon in
interfaces (in general, theorem proving would be required at link
time, though there are intermediate behavioural type systems). We
therefore introduceversionsas crude approximations to semantic
module specifications. We need a language of versions, which will
be attached to modules; a language of version constraints, which
will be attached to imports; a satisfaction relation, checked at static
and dynamic link times; and an implication relation between con-
straints, for chains of imports.

Now, how expressive should these languages be? Analogously
to the situation forresolvespecs, there is a tension between allow-
ing arbitrary computation in defining the relations and supporting
compile-time analysis. Ultimately, it seems desirable to make the
basic module primitives parametric on abstract types of version and
constraint languages — in a particular distributed code environ-
ment, one may want a particular local choice for these. ForAcute
once again we choose not the most general alternative, but instead
one which should be expressive enough for many examples, and
which exposes some key design points.

Scenario 1 It is common to use version numbers which are
supplied by the programmer, with no checked relationship to the
code. As an arbitrary starting point, we take version numbers to be
nonempty lists of natural numbers, and version constraints to be
similar lists possibly ending in a wildcard* or an interval; satis-
faction is what one would expect, with a* matching any (possibly
empty) suffix. Themeaningsof these numbers and constraints is
dependent on some social process: within a single distributed de-
velopment environment one needs a shared understanding that new
versions of a module will be given new version numbers commen-
surate with their semantic changes.

Scenario 2 To support tighter version control than this, we can
make use of the global module names (hash- or freshly-generated)
introduced in§5: equality testing of these names is an imple-
mentable check for module semantic identity. We let version num-
bers includemyname and version constraints include module iden-
tifiers M (those in scope, obviously). In each case the compiler or
runtime writes in the appropriate module name. This supports a
useful idiom in which code producers declare their exact iden-
tity as the least-significant component of their version number,
and consumers can choose whether or not to be that particular.
For example, a moduleM might specify it is version2.3.myname,
compiled to2.3.0xA564C8F3; an import in that scope might re-



quire 2.3.M, compiled to2.3.0xA564C8F3, or simply 2.3.*;
both would match it.

A key point is the balance of power between code producers
and code consumers. The above leaves the code producer in control,
who can “lie” about which version a module is — instead of writing
myname they might write a name from a previous build. This is
desirable if they know there are clients out there with an exact-
name constraint but also know that their semantic change from that
previous build will not break any of the clients.

Scenario 3 Finally, to give the code consumer more control, we
allow constraints not only on the version field of a module but
also on its actual name (which is unforgeable within the language).
Typically one would havea definition of the desired version avail-
able in the filesystem (inAcute bringing it into scope asM with
aninclude) and writename=M. (These exact-name constraints are
also used to construct defaultimports when marshalling.) One
could also cut-and-paste a name in explicitly:name=0xA564C8F3.
To guarantee that only mutually-tested collections of modules will
be executed together, e.g. when writing safety-critical software, this
would be the desired idiom everywhere, perhaps with development-
environment support.

In constructing hashes for modules we also take into account
their version expressions, to prevent any accidental equalities. That
version expression can mentionmyname, and, as we do not wish
to introduce recursive hashes, the hash must be calculated before
compilation replacesmyname with the hash.

8. Interplay between abstract types, rebinding
and versions

8.1 Definite and indefinite references

With conventional static linking, module references such asM.t
are definite, in the terminology of [HP05]: in any fully-linked
executable there is just a single suchM, though (with separate
compilation) it may be unknown at compile-time which module
definition for M it will be linked to. In contrast, the possibility
of rebinding makes some referencesindefinite— during a single
distributed execution, they may be bound to different modules.

For example, consider a module that declares an abstract type
that depends on the term fields of some other module:

module M : sig val f:int->int end
= struct let f=fun(x:int)->x+2 end

module EvenCounter
: sig = struct

type t type t=int
val start:t let start = 0
val get:t->int let get = fun (x:int)->x
val up:t->t let up = fun (x:int)->M.f x

end end

In the absence of any rebinding, the runtime type name for
the abstract typeEvenCounter.t would be the hash of the
EvenCounter abstract syntax withM.f replaced byh.f, where
h is the hash of the abstract syntax ofM. This dependence on theM
operations guarantees type- and abstraction-preservation.

Now, however, if there is a mark between the two module defi-
nitions, a marshal can cut and rebind to any other module with the
same signature, perhaps breaking the invariant ofEvenCounter.t
that its values are always even. TheM.f module reference below is
indefinite.

module M : sig val f:int->int end
= struct let f=fun (x:int)->x+2 end

import M : sig val f:int->int end version * = M
mark "MK"
module EvenCounter

: sig = struct
type t type t=int
val start:t let start = 0
val get:t->int let get = fun (x:int)->x
val up:t->t let up = fun (x:int)->M.f x

end end
IO.send(marshal "MK" (fun ()->EvenCounter.get
(EvenCounter.up EvenCounter.start)):unit->int)

—
module M : sig val f:int->int end

= struct let f=fun (x:int)->x+3 end
(unmarshal (IO.receive ()) as unit->int) ()

To prevent this kind of error one can use a more restrictive version
constraint in the import ofM that EvenCounter uses, either by
using an exact-name constraintname=M to allow linking only to
definitions ofM that are identical to the definition in the sender,
or by using some conventional numbering. If no import is given
explicitly, an exact-name constraint is assumed.

The version constraint should be understood as an assertion by
the code author that whateverEvenCounter is linked with, so long
as it satisfies that constraint (and also has an appropriate signature,
and is obtained following anyresolvespecpresent), the intended
invariants ofEvenCounter.t will be preserved.

Now, what should the global type name forEvenCounter.t
be here? Note that the original author might not have had anyM
module to hand, and even if they did (as above), that module is not
privileged in any way:EvenCounter may be rebound during com-
putation to otherM matching the signature and version constraint. In
generating the hash forEvenCounter, analogously to our replace-
ment of definite referencesM’.x by the hash of the definition of
M’, we replace indefinite import-bound references such asM.f by
the hash of theimport. This names the set of allM implementations
that match that signature and version constraint.

In the case above this hash would be roughly

hash(import M:sig val f:int->int end version * )

and where one imports a module with an abstract type field

import M : sig type t val x:t end
version 2.4.7- ...

the hashh =

hash(import M : sig type t val x:t end
version 2.4.7- ...)

provides a global nameh.t for that type.
In theEvenCounter example, the imported module had no ab-

stract type fields. In cases where there are such, for type soundness
we have to restrict the modules that the import can be linked to, to
ensure that they all have the same representation types for these ab-
stract type fields. We do so by requiring imports with abstract type
fields to have alikespec(in place of the... above), giving that
information. A compiledlikespecis essentially a structure with a
type field for each of the abstract type fields of the import.

At first sight this is quite unpleasant, requiring the importers
of a module to ‘know’ representation types which one might ex-
pect should be hidden. With indefinite references to modules with
abstract types, however, some such mechanism seems to be forced,
otherwise no rebinding is possible. Moreover, in practice one would
often have available a version of the imported library from which
the information can be drawn. For example, one might be import-
ing a graphics library that exists in many versions, but for which all
versions that share a major version number also have common rep-
resentations of the abstract types ofpoint, window, etc. A typical
import might have the form

import Graphics:sig type t end version 2.3.*
like Graphics2_0



(with more types and operations) whereGraphics2 0 is the name
of a graphics module implementation, which is present at the de-
velopment site, and which can be used by the compiler to construct
a structure with a representation for each of the abstract types of
the signature.

While the abstraction boundaries are not as rigid as inML, this
should provide a workable idiom for dealing with large modular
evolving systems, supporting rebinding but also allowing one to
restrict type representation information to particular layers. The
only alternative seems to be to make all types fully concrete at
interfaces where rebinding may occur.

To correctly deal with abstract types defined by modules fol-
lowing an import, which use abstract type fields of the imported
module in their representation types, compiledlikespecsmust be
included in the hashes of imports. On the other hand, we choose
not to includeresolvespecs in import hashes. This is debatable —
the argument against including them is that it is useful to be able to
change the location of code without affecting types, and so without
breaking interoperation (e.g. to have a local code mirror, to change
a web code repository to avoid a denial-of-service attack etc.).

Note that the indefinite character of ourimports makes them
quite different from module imports that are resolved by static link-
ing, where typing can simply use module paths to name any abstract
types and nolikespecmachinery is required. Both mechanisms are
needed.

8.2 Breaking abstractions

With changing versions, sometimes one must allow new code to
see through the abstraction boundaries of earlier abstract types,
either to make new types compatible with old (if their invariants
are essentially the same) or to express conversion functions. In
[Sew01, LPSW03] we proposed astrong coercionwith! to do this,
andAcute includes a variant thereof. By analogy withML sharing
specifications, we allow a module definition to have awithspec, a
list of equalities between abstract types and representation types
from modules constructed earlier (often this will be of previous
builds of the same module). The compiler checks the representation
type of theseM.t are equal to the types specified (respecting any
internal abstraction boundaries); if they are, the type equalities can
be used in typechecking this definition.

8.3 Exact matching or version flexibility?

In §6 we focussed on name-based dispatch, delivering an incoming
message by demultiplexing on a name it contains. An alternative
Acute idiom for remote invocation simply makes use of its dynamic
rebinding facilities, e.g. by marshalling a thunk mentioning an
identifier N.f. This involves dynamic subsignature and version
checks — much more costly than name equality, but also much
more flexible.

9. Mobility, thunkify, and local concurrency
We want to make it possible to checkpoint and move running com-
putations — for fault-tolerance, for working with intermittently-
connected devices, and for system management, e.g. to move
services to replacement hardware. Several calculi and languages
(JoCaml, Nomadic Pict, Ambients, etc.) provided a linear migra-
tion construct, which moved a computation between locations. It
is more generally useful to support marshalling of computations,
which can then be communicated, checkpointed etc., using what-
ever communication and persistent store constructs are in use. Tak-
ing a step further, as we have marshalling of arbitrary values, mar-
shalling of computations requires only the addition of a primi-
tive for converting a running computation into a value. We call
this thunkification. Checkpointing a computation can then be im-
plemented by thunkifying it, marshalling the resulting value, and

writing it to disk. Migration can be implemented by thunkification,
marshalling, and communication. Note that these are not in general
linear operations — if a computation has been checkpointed to disk
it may be restarted multiple times.

Distributed programming also requires support for local con-
currency, with threads and constructs for interaction between them.
In large programs we expect both shared-memory and message-
passing interaction to be required. InAcute we initially provide
shared-memory interaction between language-level threads, as in
OCaml: references can be accessed from multiple threads, with
atomic dereferencing and assignment, and mutexes and condition
variables can be used for synchronization. These enable certain
forms of message-passing interaction to be expressed as library
modules. (Some forms of message passing, e.g. Join patterns with
their multi-way binding construct, would need direct language sup-
port.)

Thunkification for a single thread would be close tocall/cc,
but in the concurrent setting there are many possible forms: asyn-
chronous or synchronous, with different atomicity, and with dif-
ferent interactions with naming, blocking system calls, and mod-
ule initialisation. The choices and our rationale are discussed in
[SLW+04]; here we note only that we have an asynchronous
thunkify that can atomically collect a group of named threads,
mutexes, and condition variables. It is a dangerous operation, as
one might for example separate a thread from a mutex on which it
is blocked, but this seems to be inescapable, arising ultimately from
the possibility of disconnection between subcomputations. We ex-
pect it to be used to implement libraries that simultaneously pro-
vide computation mobility (or checkpointing) and safe distributed
interaction mechanisms.

10. Pulling it all together: examples
We have written three example distributed communication libraries
in Acute: a distributed message-passing library; an implementation
of theNomadic Pict constructs for migration of mobile computa-
tions and communication between them; and an implementation
of the Ambient calculus primitives. There are also two games that
mostly exercise local computation,blockhead andminesweeper;
the latter using marshalling to save and restore the game state. The
distributed message-passing library shows how many of theAcute
features are needed and used. It has the following modules:

Tcp connection management maintains TCP connections to
TCP addresses (IP address/port pairs), creating them on demand.
Tcp string messaging uses that to provide asynchronous mes-
saging of strings to TCP addresses. These are bothhash modules,
with abstract types of handles; they spawn daemons to deal with
incoming communications.

Separately, a moduleLocal channel provides local (within
a runtime) asynchronous messaging, again with an abstract
type of channel management handles and with polymorphic
send:forall t. t name * t -> unit andrecv:forall t.
t name*(t->unit) -> unit (to register a handler). Channel
states are stored as existential packages of lists of pending messages
or receptors; anamecase operation is used to unpack existential
name/value packages, allowing a new type equality to be used in
the ‘true’ branch of a name equality test. Mutexes are needed for
protection.

Distributed channel pulls these together, with
send:forall t.string->(Tcp.addr*t name)->t-> unit
(and a similarrecv) for distributed asynchronous messaging
to TCP addresses. The string names the mark to marshal with
respect to. For a local address this simply usesLocal channel.
For a remote address thesend marshals itst argument and uses
Tcp string messaging; the recv unmarshals and generates a
local asynchronous output. This deals with the non-mobile case



— active receivers cannot be moved from one runtime to another.
However, code that uses this module, e.g. functions that invoke
send andrecv, can be marshalled and shipped between runtimes;
the module initialisation state includes the TCP messaging handles
and so rebinding to different instances ofsend andrecv works
correctly. Finally, a simpleRFI module implements remote
function invocation above distributed channels.

Clients of this library can use any of the various ways of creating
shared typed names discussed in§6 and§8.3. Moreover, the use of
first-class marks means that clients have the same flexible control
over the marshalling that goes on as direct users ofmarshal.

The Nomadic Pict library supports mobility of running com-
putations, with namedgroupsof threads, each with a local chan-
nel manager, that can migrate between machines. Migration uses
thunkify to capture the group’s channel and thread state. Threads
within a group can interact via local channels; groups can inter-
act with a location-dependentsend remote that sends a message
to a channel of a group assumed to be at a particular TCP ad-
dress. The location-independent messaging algorithms ofJoCaml
or high-levelNomadic Pict should be easy to express above this
(the former requiring the polytypicsupport andswap operations
to manipulate the free channel names of a communicated value).

TheAmbient library implements the mobility primitives of the
Ambient calculus. An ambient is a collection of running threads
and resources (including other ambients) that migrates as a unit:
mobility amounts to restructuring the nesting tree of the ambients.
In a distributed world, this nested structure is shared among differ-
ent runtimes. Interactions between ambients in the same run-time
are resolved using local concurrency, mutexes and cvars. Interac-
tion between remote machines may cause an ambient to migrate
to another runtime: this is implemented using thunkification and
marshalling, on top of theTCP string messaging library.

Each of these libraries is around 1000 lines ofAcute code, in-
cluding comments and utility functions. They took a few days or
weeks to write, in sharp contrast to the many months required for
the originalNomadic Pict implementation. Much of the remaining
complexity is related to local concurrency and locking. The dis-
tributed aspects were rather straightforward, with theAcute rebind-
ing semantics used to ensure that communicated code is correctly
rebound to the local state of the libraries at the receiver.

11. Related work
There is extensive related work on module systems, dynamic bind-
ing, dynamic type tests, and distributed process calculi. For most
of this we refer the reader to the discussion in our earlier papers
[Sew01, LPSW03, BHS+03], confining our attention here to some
of the most relevant distributed programming language develop-
ments. Many address distributedexecution, with type-safe interac-
tion within a single program that forks across the network, but there
has been little work on distributeddevelopment, on typed interac-
tion betweenprograms6, or on version change.

Early work on adding local concurrency toML resulted in
Concurrent ML [Rep99] and the initialFacile, both based on
theSML/NJ implementation.Facile was later extended with rich
support for distributed execution, including a notion oflocation
and computation mobility [TLK96].Erlang [AVWW96] supports
concurrency, messaging and distribution, but without static typing.

ThePict experiment [PT00] investigated how one could base a
usable programming language purely on local concurrency, with a
π-calculus core instead of primitive functions or objects. The Dis-
tributed Join Calculus [FGL+96] and subsequentJoCaml imple-
mentation [JoC] modified theπ primitives with a view to distri-

6 Several, includingJoCaml andNomadic Pict, have ad-hoc ‘traders’ for
establishing initial connections between programs.

bution, and added location hierarchies and location migration. The
runtime involved a complex forwarding-pointer distributed infras-
tructure to ensure that, in the absence of failure, communication
was location-independent. (Polyphonic C] [BCF02] adds the Join
Calculus local concurrency primitives to a class-based language.)
Other work in the 1990s was also aimed at providing distribution
transparency, notablyObliq [Car95], with network-transparent re-
mote object references aboveModula3’s network objects.

Distribution transparency, while perhaps desirable in tightly-
coupled reliable networks, cannot be provided in systems that are
unreliable or span administrative boundaries. Work onNomadic
Pict [SWP99, US01] adopted a lower level of abstraction, showing
how a wide variety of distributed infrastructure algorithms, includ-
ing one similar to that of theJoCaml implementation, could be
expressed in a high-level language; one was proved correct. The
low level of abstraction means the core language can have a clean
and easily-understood failure semantics; the work is a step towards
the argument of§2.

A distinct line of work has focussed on typing the entire
distributed system to prevent resource access failures, for Dπ

[HRY04] and with modal types [MCHP04]. Even where this is pos-
sible, however, one must still deal with low-level network failure.

Work on Alice [BRS+05, Ros03] is perhaps closest to ours,
with ML modules, support for marshalling (‘pickling’) arbitrary
values, and run-time fresh generation of abstract type names, but
without rebinding, our distributed type and term naming, or version
control. Furuse and Weis supports type-safe, but not abstraction-
safe, marshalling of non-functional values in OCaml [FW00].

Both Java and .NET have some versioning support, though
neither is integrated with the type system.Java serialisation,
used in RMI, includesserialVersionUIDs for classes of any se-
rialised objects. These default to (roughly) hashes of the method
names and types, not including the implementation. Class authors
can override them with hashes of previous versions. Linking for
Java, and in particular binary compatibility, has been studied by
Drossopoulou et al. [DEW99]. The.NET framework supports ver-
sioning of assemblies[Dot03]. Sharable assemblies must have
strong names, which include a public key, file hashes, and ama-
jor.minor.build.revisionversion. Compile-time assembly references
can be modified before use by XML policy files of the application,
code publisher, and machine administrator; the semantics is com-
plex [BMED05].

Explicit versioning is common in package management, how-
ever. For example, both RedHat and Debian packages can contain
version constraints on their dependencies, with numeric inequal-
ities and capability-set membership. ELF shared objects express
certain version constraints using pathname and symlink conven-
tions. Vesta [Ves] provides a rich configuration language.

As discussed in§3 Acute addresses the case in which complex
values must be communicated and the interacting runtimes are not
malicious. Much other work applies to the untrusted case, with
various forms of proof-carrying code and wire-format ASN.1 and
XML typing.

12. Conclusions and future work
We have addressed key issues in the design of high-level program-
ming languages for distributed computation, discussing the lan-
guage design space and presenting theAcute language.Acute is
a synthesis of anOCaml core with several novel features: dynamic
rebinding, global fresh and hash-based type and term naming, ver-
sions, type- and abstraction-safe marshalling, etc. It is an experi-
mental language, not a proposal for a full production language, but
(as demonstrated by our examples) it shows much of what is needed
for higher-order typed distributed computation.



The new constructs should also admit an efficient implementa-
tion. The two main points are the tracking of runtime type informa-
tion, and the implementation of redex-time reduction and rebind-
ing. For the first, note that an implementation does not need to have
types for all runtime values, but only (hashes of) the types that reach
marshal and unmarshal points. The second would be a smooth ex-
tension ofOCaml’s existing CBV implementation:OCaml cur-
rently maintains each field referenceM.x as a pointer until it is in
redex position, whereupon it is dereferenced. Since field references
inside a thunk remain as pointers, they could easily be rebound with
only modest changes to the run-time. Of course compile-time inlin-
ing optimisations between parts of code separated by a mark would
no longer be possible.

A great deal of future work remains. In the short term, more
practical experience in programming inAcute is needed, and there
are unresolved semantic issues in the interaction between explicit
polymorphism, coloured brackets, and marshalling. Straightfor-
ward extensions would ease programming: user definable type op-
erators and recursive datatypes, first-order functors, and richerver-
sion languages. A more efficient implementation runtime may be
needed for larger examples. Improved tool support for the seman-
tics would be of great value, for meta-typechecking, for confor-
mance testing, and for proofs of soundness.

More fundamentally: we must study more refined low-level
linking, for negotiation and for access control (revisiting the lin-
ear mark/module structure); subtyping is needed for many version-
change scenarios, perhaps with corresponding subhash relations;
and the constructs we have presented should be integrated with sup-
port for untrusted interaction. Expressing libraries of distributed
references with distributed garbage collection is also a challenge.
This combination would support a wide range of distributed pro-
gramming well.
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