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High-level programming languages

For non-distributed, non-concurrent programming, they’re pretty good.

We have ML (SML/OCaml), Haskell, Java, C#, with:

• type safety

• rich concrete types – datatypes and functions

• abstraction mechanisms for program structuring – ML modules with

abstract types, type classes and monads, classes and objects,...
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High-level programming languages

For non-distributed, non-concurrent programming, they’re pretty good.

We have ML (SML/OCaml), Haskell, Java, C#, with:

• type safety

• rich concrete types – datatypes and functions

• abstraction mechanisms for program structuring – ML modules and

abstract types, type classes and monads, classes and objects,...

But this is only within single executions of single programs.

What about distributed computation?
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Overview

In these talks I aim to introduce some of the main problems in designing

languages that are just as good for distributed programming as those are for

the local, sequential world. For some we have reasonable solutions; others

are still open.

It’ll be idiosyncratic, not a survey (but with pointers to other work).
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Challenges (1/2)

• Local concurrency: π calculus (92) and Pict (95) background

• Mobile computations: Join (96) and Nomadic Pict (WIPL98,POPL01a)

• Marshalling: choice of distributed abstractions, and trust assumptions

(Acute and HashCaml: POPL01b, ICFP03a, ICFP03b, ICFP05, ML06, JFP)

• Dynamic (re)binding and evaluation strategies: exchanging values

between programs

• Type equality between programs: run-time type names, type-safe and

abstraction-safe interaction (and type equality within programs)

• Typed interaction handles: establishing shared expression-level names

between programs

• Version change: type safety in the presence of, and controlling dynamic

linking Package and configuration managment?
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Challenges (2/2)

• Acute: prototype language, semantics and implementation

• HashCaml: type- and abstraction-safe distribution for OCaml

• Dynamic update: Proteus etc. (ICFP03a again, POPL05; c.f. Hicks)

• Semantics for real-world network abstractions: TCP, UDP, Sockets

(TACS01, ESOP02, SIGCOMM05, POPL06)

• Security

– Security policy: Cassandra (POLICY04, CSFW04)

– Executing untrusted code: PCC/TAL, secure encapsulation

(CSFW99,00), Xen

– Language-based (Myers, Sabelfeld, Simonet, Zdancewic, etc.);

– Protocols (Abadi, Fournet, Gordon, Paulson, etc.);

• Module structure again: first-class/recursive/parametric modules.

Exposing interfaces to other programs (via communication).

• Language support for semi-structured (XML) data; Integration with

databases (typing and transaction issues)
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• Local concurrency: π calculus (92) and Pict (95) background

• Mobile computations: Join (96) and Nomadic Pict (98)

• Marshalling: choice of distributed abstractions, and trust assumptions

• Dynamic rebinding and evaluation strategies

• Type equality between programs: run-time type names

• Typed interaction handles: expression-level names

• Version change — and interactions between language features

• Acute: semantics and implementation

• HashCaml: type- and abstraction-safe distribution for OCaml
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Local Concurrency

Local: within a single failure domain, within a single trust domain,

low-latency interaction.

• Pure (implicit parallelism or skeletons – parallel map, etc.)

• Shared memory

– mutexes, cvars (incomprehensible, uncomposable, common)

– transactional (Venari, STM Haskell/Java, AtomCaml,...)

• Message passing

semantic choices: asynchronous/synchronous, different synchronization

styles (CSP/CCS,Join,...), input-guarded/general nondeterministic

choice, ...

cf Erlang [AVWW96], Telescript, Facile [TLK96, Kna95], Obliq [Car95],

CML∗ [Rep99], Pict∗ [PT00], JoCaml [JoC03], Alice [BRS+05]

(∗ concurrent but not distributed)
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Process Calculi 1975–1995: Crash Course

1. labelled transition systems

2. equivalences and congruences

3. pure CCS-like calculi, with labelled-transition and reduction semantics

4. value-passing and name-passing

5. π-calculus, with reduction and labelled-transition semantics
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Nondeterminacy – Labelled Transition Systems

Svend = s0

50p

20p

s1

20p

s3

choc

s2

choc

A labelled transition system S is a tuple 〈L, S,−→, s0〉

• L is a set, of labels L = {20p, 50p, choc}

• S is a set, of states S = {s0, s1, s2, s3}

• −→⊆ S × L× S is the transition relation as above

• s0 ∈ S is the initial state s0 = s0
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Operations on LTSs – Parallel Composition and Restriction

The vending machine interacting with a sample customer Scust:

new 20p, 50p, choc in Svend | Scust

s0

50p

20p

s1

20p

s3

choc

s2

choc
| c0

20p

c1

20p

c2

choc

c3

= new 20p, 50p, choc in s0 | c0

τ

new 20p, 50p, choc in s1 | c1

τ

new 20p, 50p, choc in s2 | c2

τ

new 20p, 50p, choc in s0 | c3
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Parallel Composition and Restriction – Precise Definitions

Fix labels L = {n | n ∈ N } ∪ {n | n ∈ N } ∪ {τ} (pure CCS labels).

Define S | T to have states the pairs s | t, initial state s0 | t0, and transition

relation the least such that:

(Par)
s
`−→ s′

s | t `−→ s′ | t
(Com)

s
n−→ s′ t

n−→ t′

s | t τ−→ s′ | t′

and symmetric rules.

Define new n in S to have states new n in s for s ∈ S, initial state

new n in s0, and transition relation the least such that:

(Res)
s
`−→ s′ n 6∈ fn(`)

new n in s
`−→ new n in s′
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Equivalences and Congruences

Metatheory: focus on observational congruences and modal logics, not type

preservation (until we see fancy π typing)

An LTS is very intensional. Quotienting to factor out excess structure:

LTS isomorphism deals with node identity, but

s0

`

s1

6∼= s′0
` `

s′1 s′2

Partial traces say S 'ptr S ′ ⇐⇒ ptr(S) = ptr(S ′), where

ptr(S) = { `1 . . . `n | ∃s1, . . . , sn . s0
`1−→ s1 · · · `n−→ sn }

but this ignores termination/deadlock...
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Completed traces

ctr(S) = { `1 . . . `n | ∃s1, . . . , sn . s0
`1−→ s1 · · · `n−→ sn 6−→}

∪ { `1`2 . . . | ∃s1, s2, . . . . s0
`1−→ s1

`2−→ · · · }

but not a congruence for CCS parallel:

s0

a

s1

b c

s3 s4

=ctr s′0

a a

s′1

b

s′2

c

s′3 s′4

t0

a

t1

b

t2
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Strong Bisimulation Say ∼ ⊆ S × T is a strong bisimulation if for all (s, t)

such that s ∼ t we have

• if s
`−→ s′ then ∃t′ . t `−→ t′ ∧ s′ ∼ t′

• if t
`−→ t′ then ∃s′ . s `−→ s′ ∧ s′ ∼ t′

henceforth write ∼ for the largest such.

Theorem 1.1 Congruence of ∼ for |

(Par)
s ∼ s′ t ∼ t′
s | t ∼ s′ | t′

∼=
∼

=ctr

=ptr
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Diversion: Alternatives

Other synchronisation primitives Take labels L = N and A ⊆ N

(Com)
s
a−→ s′ t

a−→ t′ a ∈ A
s ||A t a−→ s′ ||A t′

CSP style (consider S ||A T ||A U). cf modelling vs programming.

Noninterleaving If S =
(
s0

a s1

)
and T =

(
t0

b
t1

)
then

S | T = s1 | t0
b

s0 | t0

a

b

s1 | t1

s0 | t1
a

emphasising that LTSs and the definition of | reduce parallelism to

nondeterministic choices between all interleavings. Sometimes convenient to

build more data into the model, cf Event Structures.

Shared variable models {x := 3} ||{y := x; z := x+ 1}
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Calculi and SOS (Structural Operational Semantics)

So far, been model-theoretic – LTSs could have arbitrary sets and relations.

Instead, can consider processes P defined by a syntax, e.g..

P,Q ::= 0 nil

P | Q parallel composition of P and Q

`.P do ` then be P

new n in P restrict n

P +Q nondeterministic choice between the

actions of P and Q

where the prefixes ` are n, n, or τ (exactly the labels from before).
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Now define transition relations inductively:

(Par) P
`−→ P ′

P | Q `−→ P ′ | Q
(Com) P

n−→ P ′ Q
n−→ Q′

P | Q τ−→ P ′ | Q′

(Res)
P

`−→ P ′ n 6∈ fn(`)

new n in P
`−→ new n in P ′

(Pre)
`.P

`−→ P
(Sum) P

`−→ P ′

P +Q
`−→ P ′

and symmetric rules. Now 〈L,P,−→, P 〉 is an LTS for any process term

P ∈ P.
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Reduction Semantics

A different way to define the τ transition relation. For example, for

P,Q ::= 0|P | Q|`.P , instead of

(Pre)
`.P

`−→ P
(Par) P

`−→ P ′

P | Q `−→ P ′ | Q
(Com)

P
n−→ P ′ Q

n−→ Q′

P | Q τ−→ P ′ | Q′

we define structural congruence as the least congruence s.t.

P | 0 ≡ P P | Q ≡ Q | P P | (Q | R) ≡ (P | Q) | R

and reduction by

(Par) P −→ P ′

P | Q −→ P ′ | Q (Com)
n.P | n.Q −→ P | Q (Str)P ≡ P

′ −→ P ′′ ≡ P ′′′
P −→ P ′′′

Theorem 1.2 P −→ Q iff P
τ−→≡ Q.
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Value Passing

Allow channels to carry values, so instead of pure outputs n.P and inputs

n.Q allow e.g.. n〈15 , 3 〉.P and n〈x1 , x2 〉.Q.

Value 6 being sent along channel x:

x6 | xu.yu
τ−→ {6/u}(yu) = y6

Tuple values (and tuple patterns):

x 〈8 , 3 〉 | x 〈z1 , z2 〉.yz1
τ−→ {〈8, 3〉/〈z1, z2〉}(yz1 ) = y8

Many outputs on the same channel competing for the same input:

x6 | y5

x5 | x6 | xu.yu

x5 | y6
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Many inputs on the same channel competing for an output:

y5 | xu.zu

x5 | xu.yu | xu.zu

xu.yu | z5

(do we really want all this expressiveness for programming?)

Restricted names are different from all others:

x5 | new x in (x6 | xu.yu) x5 | new x in y6

x5 | new x ′ in (x ′6 | x ′u.yu) x5 | new x ′′ in y6

(note that we’re working with alpha equivalence classes)
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Name passing

Now allow those values to include channel names.

The π calculus: Milner, Parrow, Walker 92

A name received on a channel can then be used itself as a channel name for

output or input – here y is received on x and then used to output 7:

xy | xu.u7 −→ y7

Finally, a restricted name can be sent outside its original scope. Here y is

sent on channel x outside the scope of the new y in binder, which must

therefore be moved (with care, to avoid capture of free instances of y). This

is scope mobility :

(new y in xy | yv .P ) | xu.u7 −→ new y in yv .P | y7

−→ new y in {7/v}P
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(new y in xy | yv .P ) | xu.u7 ≡ (new y in xy | yv .P | xu.u7 )

−→ new y in yv .P | y7

−→ new y in {7/v}P
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The Simplest π-Calculus: Reduction Semantics
Syntax

P,Q ::= 0 nil

P | Q parallel composition of P and Q

cv output v on channel c

cw .P input from channel c

new c in P new channel name creation

Structural Congruence

P | 0 ≡ P

P | Q ≡ Q | P
P | (Q | R) ≡ (P | Q) | R

new x in new y in P ≡ new y in new x in P

P | new x in Q ≡ new x in (P | Q) x 6∈ fn(P )
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Reduction

(Com)
cv | cw .P −→ {v/w}P (Par) P −→ P ′

P | Q −→ P ′ | Q

(Res) P −→ P ′

new x in P −→ new x in P ′
(Struct) P ≡ P ′ −→ P ′′ ≡ P ′′′

P −→ P ′′′

Focus on name creation, using scope extrusion as semantic tool for locally

generating globally fresh names (could do gensym semantics, but more

awkward).
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Expressiveness

A small calculus (and the semantics only involves name-for-name

substitution, not term-for-variable substitution), but very expressive:

• encoding data structures

• encoding functions as processes (Milner, Sangiorgi)

• encoding higher-order π in π (Sangiorgi)

• encoding synchronous communication with asynchronous

(Honda/Tokoro, Boudol)

• encoding polyadic communication with monadic (Quaglia, Walker)

• encoding choice (or not) (Nestmann, Palamidessi)

• ...
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Modelling vs Programming: Choices of Primitives

• Monadic

• No replicated input ∗xy .P or full replication !P ≡ P |!P

• No name (in)equality testing (natural to have in a programming lang)

• No + (don’t seem to need arbitrary P +Q for programming; can code

some choice)

• Asynchronous (fits with asychronous messaging. Can encode

synchronous communication – in some sense)

• No process-passing, or higher order values

Facile, CML, Pict, ...
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Programming: Pict (Pierce, Turner) [PT00]

An experimental concurrent (not distributed) programming language based

on the π calculus.

Process abstractions:

new plustwo in

∗plustwo〈x r 〉.r(x + 2 )

| new r in

plustwo〈56 r 〉 | rz .printiz
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Locks and methods:

new lock in

lock 〈〉

| ∗method1 arg .

lock 〈〉.

. . .

lock 〈〉

| ∗method2 arg .

lock 〈〉.

. . .

lock 〈〉

Objects: 〈method1 method2 〉
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The Simplest π-Calculus: Labelled Transition Semantics

The labelled transition relation has the form A ` P `−→ Q where A is a finite

set of names, fn(P ) ⊆ A, and ` is from

` ::= τ internal action

xv output of v on x

xv . input of v on x

Output of a free name: Output of a new name (for any w 6= x):

{x, y} ` xy
xy−−→ 0 {x} ` new ŷ in x ŷ

xw−−→ 0

Input of a name:

A ` xu.P
xw .−−→ {w/u}P
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SOS rules

(Out)
A ` xv

xv−→ 0
(In)

A ` xp.P
xv.−−→ {v/p}P

(Par) A ` P `−→ P ′

A ` P | Q `−→ P ′ | Q
(Com)

A ` P xv−→ P ′ A ` Q xv.−−→ Q′

A ` P | Q τ−→ new {v} − A in (P ′ | Q′)

(Open)
A, x ` P yx−→ P ′ y 6= x

A ` new x in P
yx−→ P ′

(Res)
A, x ` P `−→ P ′ x 6∈ fn(`)

A ` new x in P
`−→ new x in P ′

(Struct Right) A ` P
`−→ P ′ P ′ ≡ P ′′

A ` P `−→ P ′′

Structural congruence on the left of a transition is admissible, and the

reduction and transition semantics give exactly the same internal steps.

Theorem 1.3 If P ′ ≡ P then A ` P ′ `−→ Q iff A ` P `−→ Q.

Theorem 1.4 If fn(P ) ⊆ A then P −→ Q iff A ` P τ−→ Q.
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Scope extrusion (example from Slide 22):

(Com)

(Open)

(Par)

(Out)
{x, y} ` xy

xy−→ 0

{x, y} ` xy | yv .P
xy−→ 0 | yv .P

{x} ` new ŷ in x ŷ | ŷv .P
xy−→ 0 | yv .P

(In)
{x} ` xy .u7

xy.−−→ {y/u}u7 = y7

{x} ` (new ŷ in x ŷ | ŷv .P ) | (xy .u7 )
τ−→ new ˆ̂y in 0 | ˆ̂yv .P | ˆ̂y7
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π Equivalences and Congruences

Partial traces

ptrA(P ) = { `1 . . . `n | A ` P `1−→ · · · `n−→}

Strong Bisimulation Take bisimulation ∼̇ to be the largest family of

relations indexed by finite sets of names such that each ∼̇A is a relation over

{P | fn(P ) ⊆ A } and for all P ∼̇A Q,

• if A ` P `−→ P ′ then ∃Q′ . A ` Q `−→ Q′ ∧ P ′ ∼̇A∪fn(`) Q
′

• if A ` Q `−→ Q′ then ∃P ′ . A ` P `−→ P ′ ∧ P ′ ∼̇A∪fn(`) Q
′

Theorem 1.5 Bisimulation ∼̇ is an indexed congruence.

Define ∼ by P ∼A Q iff for all substitutions σ with dom(σ) ∪ ran(σ) ⊆ A
we have σP ∼̇A σQ.
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Typing

Simple typing:

T ::= ...|T chan

IO subtyping, Linear typing, Polymorphism, ...

(Honda, Kobayashi, Odersky, Pierce, Sangiorgi, Yoshida,...)

Adapting typing from functional languages – reasonably straightforward.

Knock-on effects on observational congruences – interesting!

Typing for subtle behavioural properties, e.g. deadlock freedom – interesting!



35

Pointers

There are many subtle technical choices in how one sets up a π-calculus

semantics. This presentation is based on

Applied Pi — A Brief Tutorial. Peter Sewell. Technical Report 498,

Computer Laboratory, University of Cambridge 2000

http://www.cl.cam.ac.uk/users/pes20/apppi.ps.

The mobility web page http://lamp.epfl.ch/mobility/ has pointers to

several other introductory tutorials, and to the books by Milner and by

Sangiorgi and Walker. See also forthcoming CONCUR 06 tutorial by

Nestmann.
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Reflections: Asynchronous π – a good fit to distributed systems?

+ clear treatment of concurrency

+ asynchronous π communication not far above real comms

+ π-style naming is widely applicable

• communication channels (with read/write operations)

• cryptographic keys (with decrypt/encrypt)

• reference cells (with deref/assign)

• process groups

• nonces

• type ids

(all are dynamically and locally generable pure names)
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but it doesn’t address:

− point-to-point or multicast comms

− failure (machines and comms); timeouts, transactions

− security properties (secrecy, integrity, authenticity, non-repudiation,

anonymity) and their implementation using crypto

− secure encapsulation; policy managment

− code, computation and device mobility

− performance

and

− proofs of concurrent algorithms are still difficult

− asynchronous π communication is far above real comms
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• Local concurrency: π calculus (92) and Pict (95) background

• Mobile computations: Join (96) and Nomadic Pict (98)

• Marshalling: choice of distributed abstractions, and trust assumptions

• Dynamic rebinding and evaluation strategies

• Type equality between programs: run-time type names

• Typed interaction handles: expression-level names

• Version change — and interactions between language features

• Acute: semantics and implementation

• HashCaml: type- and abstraction-safe distribution for OCaml
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The Distributed Process Calculi of the late 90s

– πl calculus (Amadio, Prasad, 94) [AP94], modelling the failure semantics of

Facile [TLK96, Kna95] (Thomson et al).

– Distributed Join Calculus (Fournet et al, 96) [FGL+96], as the basis for a

mobile computation language.

– Spi calculus (Abadi, Gordon 97) [AG97], for reasoning about security

protocols.

– dpi calculus (Sewell, 98) [Sew98], with locality enforcement of capabilities

with a subtyping system.

– Nomadic π calculus (Sewell, Unyapoth, Wojciechowski, Pierce 98) [SWP98b],

studying communication infrastructures for mobile computations.

– Ambient calculus (Cardelli, Gordon 98) [CG98], modelling security domains.

– Seal calculus (Vitek, Castagna 98) [VC98], focussing on protection

mechanisms including revocable capabilities.

– Box-π (Sewell, Vitek 99) [SV99, SV00], secure encapsulation of untrusted

components and causality typing.

– Dπ calculus (Riely, Hennessy, 99) [RH99], typing for open systems of mobile

computations.
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Grouping

π has names and processes (but they don’t have identity).

May want to add primitives for grouping process terms, into units of:

• failure (e.g.. machines or runtime system instances);

• migration (e.g.. mobile computations);

• trust (e.g.. large administrative domains or small secure critical regions);

• synchronisation (i.e.. regions within which an output and an input on

the same channel name can interact).
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Mobility

• Scope mobility (as in π). Fundamental.

• Code mobility. Fundamental. Varying timescales: deployment/runtime.

• Computation mobility. Late 90s fashion?

In-the-small: value unclear. In-the-large: key management win?

But might be as OS level (cf Xen, VMWare) rather than language level?

Nonetheless, focus here for the rest of this lecture — both for itself and

as a source of motivating examples of distributed abstractions.

• Device mobility. More networking issues than PL issues? (but note the

implicit crossings of trust boundaries)
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Computation Mobility – DJoin and JoCaml [FGL+96, JoC03]

The Distributed Join Calculus (Fournet, Gonthier, Lévy, Maranget, Rémy).

Take a tree of locations, each uniquely named. Generable.

Migration allows any location ` to move to become a child of any

non-descendant.

Join patterns combine restriction, replicated input and linearity –

def x (w ).P in Q is similar to new x in Q | ∗xw .P . An example reduction:

def (x1 (w1 ) ∧ x2 (w2 )).P in Q | x1 3 | x2 7

−→ def (x1 (w1 ) ∧ x2 (w2 )).P in Q | {3, 7/w1 ,w2}P

Synchronization conjunctions and disjunctions for expressiveness (encodings

to and from pi).

JoCaml: programming language implementation based on Join
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Reflections

Communication is location-independent (unique loc to deliver to) – complex

distributed infrastructure built in to implementation, for forwarding and also

for distributed GC (Le Fessant).

Hence the possible failure models are either simple, with forced kills (but not

perhaps useful), or very complex, reflecting what happens to that

infrastructure when part fails (not reflected in the semantics).
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Computation Mobility – Nomadic π and Nomadic Pict

(Sewell, Unyapoth, Wojciechowski, Pierce. 1997–2001)

Focus on distributed communication infrastructure for mobility. Two kinds

of communication:

• Low-level location-dependent (LD) primitives, that require an

programmer to know the current site of a mobile computation in order

to communicate with it. Easy to implement.

• High-level location-independent (LI) primitives, that allow

communication with a mobile computation irrespective of its current

site. This needs subtle distributed infrastructure algorithms.
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Questions:

• how can we express these distributed algorithms clearly?

• different algorithms have very different performance and robustness

properties – what’s the algorithm design space?

• how do we reason about them, to prove them correct?

Approach: design smallest calculus that’s rich enough to express the

algorithms and the application programs that use them.

Nomadic π allows such algorithms to be expressed as translations [[ ]] of the

whole calculus, including location-independent communication, into the

fragment with only location-dependent communication.

We implemented a corresponding Nomadic Pict distributed programming

language, prototyped many algorithms, and proved one of them correct.
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Take a short tree of sites and agents, each uniquely named. Agents are

located at sites, and are dynamically generable. Each contains a pi-like

process.

Migration allows any agent a to move to become a child of any site s.

streams;
location−dependent

Unix processes

LI

LD
migration and

migration and
location−inpendent

location−dependent
async reliable messages;

async reliable messages;
parallel

parallel

Unix/TCPIP

LOCAL VM

DIST INFRA

[[ ]]

APP
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The Nomadic π-Calculus

Take names of sites s, of agents a, b, and of channels c. Processes P,Q are as below.

Low-Level: Agents

agent a = P in Q agent creation

migrate to s.P agent migration

P | Q parallel composition

0 nil

π-calculus-style communication within agents

new c in P new channel name creation

cv output v on channel c in the current agent

cw .P input from channel c

∗cw .P replicated input from channel c

if a = b then P else Q name equality testing

Inter-agent communication

〈a@s〉c!v LD output to agent a on site s

iflocal 〈a〉cv .P else Q test-and-send to agent a on current site

High-Level: . . .all the above and:

〈a@?〉cv LI output to agent a
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Reduction Semantics

π-style communication, but synchronisation only within the same agent.

Write @a P for P as part of agent a. Record the current sites of agents in σ.

Low level is implementable with ≤ 1 async inter-site message / reduction.

Low-Level:

σ; @a agent b = P in Q −→ σ; new b@σ(a) in (@b P |@a Q)

σ; @a migrate to s.P −→ (σ ⊕ a 7→ s),@a P

σ; @a 〈b@s〉c!v −→ σ; @b cv if σ(b) = s

σ; @a 〈b@s〉c!v −→ σ; 0 if σ(b) 6= s

σ; @a (cv |cp.P ) −→ σ; @a {v/p}P
σ; @a iflocal 〈b〉cv .P else Q −→ σ; @b cv |@a P if σ(a) = σ(b)

−→ σ; @a Q if σ(a) 6= σ(b)

High-Level:

σ; @a 〈b@?〉cv −→ σ; @b cv
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Example Encoding – Central Daemon

Location-independent output

a D b

XXXXXXXXXXXXXz

message〈b c v 〉

XXXXXXXXXXXXXz

deliver 〈c v 〉

�������������9

dack

Creation
a b D

create rXXXXXXXXXXXXXz
register 〈b s 〉

�������������9

ack

�������������9

ack

Migration

a D

XXXXXXXXXXXXXz

migratinga

�������������9

ack

migrate
XXXXXXXXXXXXXz

migrateds

�������������9

ack
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Example Encoding – Central Daemon
[[〈b@?〉cv ]]a = 〈D@Dsite〉message![b c v ]

[[agent b = P in Q]]a = currentlocs .

agent b =

∗deliverc v .(〈D@Dsite〉dack ![] | cv)

| 〈D@Dsite〉register ![b s ]

| ack .(〈a@s 〉ack ![] | currentlocs | [[P ]]b)

in

ack .(currentlocs | [[Q]]a)

[[migrate to u.P ]]a = currentloc .

〈D@Dsite〉migrating !a

| ack .

migrate to u.

〈D@Dsite〉register ![a u]

| ack .(currentlocu | [[P ]]a)

[[0]]a =

[[P | Q]]a =

[[cw .P ]]a =

[[∗cw .P ]]a = ALL HOMOMORPHIC

[[iflocal 〈b〉cv .P else Q]]a =

[[new c in P ]]a =

[[if a = b then P else Q]]a =

DAEMON = new lock in

lockemptymap

| ∗registera s .

lockm.

let m′ = (m with a 7→ s) in

lockm ′ | 〈a@s 〉ack ![]

| ∗migratinga.

lockm.

lookup a in m with

found(s ).

〈a@s 〉ack ![]

| migrateds .

let m′ = (m with a 7→ s′) in

lockm ′ | 〈a@s ′〉ack ![]

notfound.0

| ∗messagea c v .

lockm.

lookup a in m with

found(s ).

〈a@s 〉deliver ![c v ]

| dack .lockm

notfound.0

[[@a P ]]s = @a new register ,migrating ,message, dack , deliver , ack , currentloc in

agent D = DAEMON in

let Dsite = s in

∗deliverc v .(〈D@Dsite〉dack ![] | cv)

| 〈D@Dsite〉register ![a s ]

| ack .(currentlocs | [[P ]]a)
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Example Encoding – Central Daemon
[[〈b@?〉cv ]]a = 〈D@Dsite〉message![b c v ]

[[agent b = P in Q]]a = currentlocs .

agent b =

∗deliverc v .(〈D@Dsite〉dack ![] | cv)

| 〈D@Dsite〉register ![b s ]

| ack .(〈a@s 〉ack ![] | currentlocs | [[P ]]b)

in

ack .(currentlocs | [[Q]]a)

[[migrate to u.P ]]a = currentloc .

〈D@Dsite〉migrating !a

| ack .

migrate to u.

〈D@Dsite〉register ![a u]

| ack .(currentlocu | [[P ]]a)
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Nomadic Pict Implementation (Wojciechowski)

Prototype implementation, and various algorithms:

http://www.cs.put.poznan.pl/pawelw/npict.html

Nomadic π Reasoning (Unyapoth)

Correctness of that central-server encoding:

Theorem 1.6 (roughly) For all P in the high-level calculus, P ' [[P ]].

This required new observational congruences and proof techniques, e.g. to

reason about the behaviour of processes that are temporarily immobile due

to a lock being held elsewhere in the system.
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Reflections

Our impression: good abstraction level for writing (& reasoning) such algorithms.

But for general PL design, better to go even further down:

• Many subtly different communication abstractions, even for LD – don’t want

to pick on one.

• Doing this as translations between calculi was good for semantics and proof

(keeping it simple) but lots of work for implementation.

Hence, instead, want to be able to write them libraries for an existing language.

What do we need in the language for that?

Interesting distributed abstractions have code on many sites

(e.g. forwarding-pointers infrastructure daemons, more recent P2P). Hence:

• Coherence among abstract types of high-level language site names?

• Versioning!

Location-dependent dynamic rebinding – useful.

In Join and Nomadic π, a single execution of a program could become distributed

as it runs, but type-safe interaction between programs was not considered.
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• Local concurrency: π calculus (92) and Pict (95) background

• Mobile computations: Join (96) and Nomadic Pict (98)

• Marshalling: choice of distributed abstractions, and trust assumptions

• Dynamic rebinding and evaluation strategies

• Type equality between programs: run-time type names

• Typed interaction handles: expression-level names

• Version change — and interactions between language features

• Acute: semantics and implementation

• HashCaml: type- and abstraction-safe distribution for OCaml
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Distributed Interaction

Non-local:

• between different invocations of a program build

• between different builds

• between different programs

• across multiple failure domains

• across multiple trust domains

• high remote/local access cost ratio
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Choice of distributed abstractions

We could build in some particular communication primitives, but...

...different applications need wildly different communication infrastructure,

with different synchronisation, security, and performance.

So:

1: A distributed programming language should not have any built-in

network communication. Instead, have marshalling (serialization, pickling)

of arbitrary values.

• this gives a level of abstraction that makes distribution explicit (so can

understand failure and security issues)

• but the language needs to be expressive enough so that varied

communication infrastructure can be coded as libraries.
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Typed Marshalling

But: distributed programming is especially hard — so want to program that

infrastructure, and applications, in a high-level type-safe language.

So:

2: a global language should provide type-safe marshalling

of arbitrary values.

then can express distributed infrastructure type-safely above byte-string

TCP, persistent store etc.



58

Underlying Theme

With distribution, we can’t statically prevent all errors — but we’d like to

discover them as soon as possible in the development & deployment process.

Do so by careful name generation, of runtime type and term names, so that...

...name equality testing suffices to guarantee type safety (including abstract

type invariants).
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Basic Type-Safe Marshalling

Machine A Machine B

send(marshal 5:int) 3 + unmarshal (receive ()) as int

The value 5:int is communicated.

A dynamic type equality check at unmarshal-time ensures type-safety

(here int = int succeeds).

(here send:string->unit and receive:unit->string are from a library written

in Acute, above the Sockets interface, not built-in primitives)
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Basic Type-Safe Marshalling

Three strengths of dynamic check:

1. just check equality of types

2. also check the marshalled value has that type

3. just check runtime representation consistent with expected structure

(Henry, Mauny, Chailloux [Hen])

(1) ok — at any type — if the marshalled value is trusted (using type

system to prevent accidental errors, as usual)

(2 or 3) necessary if the marshalled value is untrusted — but in general

cannot check the invariants of abstract types.

Where you can’t, you shouldn’t be receiving such values

Need both. For Acute we focus on (1) — the more challenging.
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• Local concurrency: π calculus (92) and Pict (95) background

• Mobile computations: Join (96) and Nomadic Pict (98)

• Marshalling: choice of distributed abstractions, and trust assumptions

• Dynamic rebinding and evaluation strategies

• Type equality between programs: run-time type names

• Typed interaction handles: expression-level names

• Version change — and interactions between language features

• Acute: semantics and implementation

• HashCaml: type- and abstraction-safe distribution for OCaml
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Marshalling Functions – Rebinding to local resources

send (marshal (function x -> print int (x+1)) : int->unit)

Have to rebind to local stdio print int at unmarshal-time.

(or make a distributed reference? no...)

A marshalled value might mention:

(1) ubiquitous standard library calls, e.g., print int;

(2) application-specific libraries that are location-dependent,

e.g. P2P routing;

(3) application code which is not location-dependent but is known

to be present at all relevant sites; and
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(4) other let-bound values.
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7→ rebinding slides
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Marshalling Functions – Rebinding to local resources

– what to ship and what to rebind?

module M1 = struct let y=6 end

..mark "MK".....................................................................

module M2 = struct let z=3 end

send( marshal "MK" (function ()-> (M1.y,M2.z))

: unit->int*int )

|

module M1 = struct let y=6 end

module M2 = struct let z=4 end

((unmarshal (receive ()) as unit->int*int) (), M2.z)

the M1.y reference to M1 is rebound, whereas the first defn of M2 is copied

and sent with the marshalled value. Result () | ((6,3),4).
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Marshalling Functions – Rebinding to local resources

– when does it take effect?

What’s the relative timing of variable instantiation and (un)marshalling?

Standard CBV would substitute out all definitions – so nothing could ever be

rebound. Instead use redex-time reduction strategy for module references:

instantiate M.x only when it appears in redex position.

module M = struct let x=6 end

import M : sig val x:int end version * = M

mark "MK"

send( marshal "MK" (M.x, function ()-> M.x) : int*(unit-

>int))

the occurrence M.x is instantiated by 6 before the marshal happens, but the

occurrence M.x would not appear in redex-position until a subsequent

unmarshal and application to (), so it is subject to rebinding.
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Rebinding to local resources

– executing partial programs?

Partial programs might be written explicitly – leaving a library to be

dynamically linked – or arise from unmarshalling.

1. Disallow. Have to fully link at unmarshal-time.

2. Allow. Can choose per unmarshal whether (i) to demand full linkability

then or (ii) not.

(ii) permits later errors (redex-time instead of unmarshal-time). Conversely,

it allows more programs to execute successfully.

For now, just (ii). Try to link an unlinked import only when a term field is

needed (appears in redex position).
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Rebinding to local resources

– what to rebind to?

Add resolvespec data to imports, for example:

import M : sig val y:int end

by "http://www.acute.org/M" = unlinked

M.y + 3

Should the resolvespec language be

1. general (Turing complete), or

2. restricted?

(1) sometimes necessary. (2) allows analysis of an upper bound on the set of

modules a program may demand (cf disconnection).

For now, have a list of URIs and Here already.
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• Local concurrency: π calculus (92) and Pict (95) background

• Mobile computations: Join (96) and Nomadic Pict (98)

• Marshalling: choice of distributed abstractions, and trust assumptions

• Dynamic rebinding and evaluation strategies

• Type equality between programs: run-time type names

• Typed interaction handles: expression-level names

• Version change — and interactions between language features

• Acute: semantics and implementation

• HashCaml: type- and abstraction-safe distribution for OCaml
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Local type equalities in ML module systems

In ML type fields can either be abstract, with the representation type held

private to the module body, or concrete, with the type field in the signature

manifestly equal to its representation type.

module Mabstract

: sig type t val get:t->int ... end

= struct type t=int let get=function x->x ... end

module Mconcrete

: sig type t=int val get:t->int ... end

= struct type t=int let get=function x->x ... end

In this scope ` Mconcrete.t = int.

(c.f. Harper & Pierce, ATTAPL)
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Marshalling for Abstract Types – The Problem

module BalancedTree

: sig = struct

type t type t = int tree

val empty : t let empty = ...

val insert : int -> t -> t let insert i x = ...

... ...

end end ;;

send ( marshal e : BalancedTree.t )

What dynamic type check should we do at unmarshal-time?

Want not just type safety with respect to the representation type, but also

abstraction safety, i.e. the receiver should respect the invariants of

BalancedTree.t.

Solution: construct globally meaningful runtime type names.
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Marshalling for Abstract Types – Summary of Main Cases

Interface Implementation Desired behavior

same same code; effect-free
√

succeed

same same internal invariants ? maybe

same
same external behaviour

but different internal invariants
×fail

same different external behaviour ×fail

different ... ×fail

... different representation types ×fail
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Naming: global type names (1 of 3)

Case 1: For effect-free modules, construct names by hashing module

definitions.

(taking their dependencies properly into account...)

For example, the runtime type name for BalancedTree.t is h.t, where the

hash h is roughly

hash(

module BalancedTree

: sig = struct

type t type t = int tree

val empty : t let empty = ...

val insert : int -> t -> t let insert i x = ...

... ...

end end ;;

)

Coincidence: in the single-program case any runtime (unmarshal time) check

h.t=T will coincide with the static provable equality ` BalancedTree.t=T.
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Naming: global type names (2 of 3)

Case 2: For effect-full modules, e.g.

module fresh NCounter

: sig = struct

type t type t=int

val start:t let start = 0

val get:t->int let get = fun (x:int)->x

val up:t->t let up =

let step=IO.read_int() in

fun (x:int)->step+x

end end

construct names freshly at run-time.

Implementation: hashes and fresh names are all 160-bit numbers. Fresh

names are generated randomly.
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Naming: global type names (3 of 3)

Case 3: ...or, for effect-free modules, allow the programmer to force

compile-time generation of a fresh name, thus allowing shared types between

distributed programs that link against the same object file.
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Marshalling for Abstract Types – Technicalities

• type system based on singleton kinds [Harper et al, Leroy]

• add h.t to type grammar, where h is either a hash or a fresh name

• type rules check h.t used correctly, but the implementation never needs

to look inside a hash

• compilation (or module initialisation):

• constructs a hash or name h for each module

• selfifies signatures, replacing type t by type t=h.t

• normalises types, replacing M.t by either h.t (if abstract) or by the

manifest T

• (have to deal with references to earlier type fields in a module)

• these normalised types can be compared with syntactic equality at

unmarshal time

• for sanity, the runtime semantics uses coloured brackets [e]Teqs GMZ

• avoid recursive hashes
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Marshalling for Abstract Types – Breaking Abstractions

In the presence of version change, sometimes need to break earlier

abstractions – e.g. to provide a new version of an abstract type,

type-compatible with the old.

The new version should satisfy the same key invariants, but may have a bug

fix, performance fix, or extra functionality.

Turing doesn’t let us check “same key invariants” (and typically they have

never been expressed precisely), so we let the programmer assert it.
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For example

module BalancedTree’

: sig = struct

type t = BalancedTree.t type t = int tree

val empty : t let empty = ...

val insert : int -> t -> t let insert i x = ...

... ...

end end

with! BalancedTree.t = int tree

Choices:

• use the extra equation in the module body, or just at the interface?

• have to specify the representation type explicitly?
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• Local concurrency: π calculus (92) and Pict (95) background

• Mobile computations: Join (96) and Nomadic Pict (98)

• Marshalling: choice of distributed abstractions, and trust assumptions

• Dynamic rebinding and evaluation strategies

• Type equality between programs: run-time type names

• Typed interaction handles: expression-level names

• Version change — and interactions between language features

• Acute: semantics and implementation

• HashCaml: type- and abstraction-safe distribution for OCaml
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Naming: establishing shared, typed, expression-level names

Need shared, typed, names for distributed channels, RPC handles, etc.

Can use the same machinery to build values of FreshML t name types:

Suppose we have a module DChan which implements a distributed

DChan.send by sending a marshalled pair of a channel name and a value

across the network.

module hash DChan :

sig

val send : forall t. t name * t -> unit

val recv : forall t. t name * (t -> unit) -> unit

end

How to establish a name shared between sender and receiver code such that

testing name equality ensures type correctness of communication?
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Naming: establishing shared, typed, expression-level names

Scenario 1: Sender and receiver both arise from a single execution of a

single build of a single program. Use expression-level runtime fresh.

(the JoCaml and Nomadic Pict semantics)

Scenario 2: Sender and receiver in different programs, but both are

statically linked to a structure of names that was built previously. Use

expression-level compile-time cfresh.

(a typed form of off-line GUID generators)

Scenario 3: Sender and receiver in different programs, but both share the

source code of a module M that defines the RPC function f used by the

receiver. Use hash(M.f).

(just works, without prior exchange of names at build- or run-time)

Scenario 4: Sender and receiver in different programs, sharing no source

code except a type and a string. Use hash(int,"foo"). (minimum shared

information – a typed form of “traders”)



81

• Local concurrency: π calculus (92) and Pict (95) background

• Mobile computations: Join (96) and Nomadic Pict (98)

• Marshalling: choice of distributed abstractions, and trust assumptions

• Dynamic rebinding and evaluation strategies

• Type equality between programs: run-time type names

• Typed interaction handles: expression-level names

• Version change — and interactions between language features

• Acute: semantics and implementation

• HashCaml: type- and abstraction-safe distribution for OCaml
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Version Change

We don’t just have pervasive distributed execution, but also:

• distributed software development and deployment,

• decentralized over many different administrative domains,

• on long timescales.

Cannot synchronize software updates, so:

3. We must support interaction between different executions

and different versions of programs.

• How can we retain type safety and abstraction now?

In particular, need globally coherent notion of type equality in the presence

of version change.
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Versioning

Good Old-Fashioned Software: (mostly) ensure coherent set of modules at

build time, with a single source tree, CVS, make, etc.

Global Software Development: dynamic linking and rebinding. Need versions

and version constraints.

(programmer-specified approximations to behavioural specs)

First cut: take some arbitrary languages of version numbers vn , constraints

vc , and satisfaction vn∈vc .

module M version 2.3.5 = struct let y=22 end

import M version 2.3.* : sig val y:int end

M.y + 3

Check vn∈vc at compile-time and at dynamic-link-time (in addition to

signature matching). Meaning of versions left to social process...
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Versioning – Balance of Power

Sometimes need tighter version control – to ensure that only a mutually

tested collection of modules can interact out there.

Can use hash machinery: insisting on exact matching of module hashes gives

an analogue of GOFS – use that for default marshalling behaviour.

Choose whether code producer or code consumer has control.

Subtle interactions between versions, hashes, and type equality...
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Versioning – Expressiveness

Should the version satisfaction relation be

1. built-in, and simple (as above), or

2. arbitrary code (Turing complete), with modules parametric on types of

versions and constraints?

(just as for resolvespecs) Again (1) allows static analysis of what linking will

succeed, but we may not wish to prescribe a single all-encompassing version

scheme.

Should versions contain hereditary data?
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Interactions: Rebinding, Type Abstraction, Versions

Without rebinding, module references M.t and M.x are definite.

module M : sig val f:int->int end

= struct let f=function x->x+2 end

module EvenCounter

: sig = struct

type t type t=int

val start:t let start = 0

val get:t->int let get = function x->x

val up:t->t let up=function x->M.f x

end end

The body of EvenCounter uses a unique M. Hashing follows this: the hash

of EvenCounter mentions h.f, where h is the hash of M. Marshalling of

EvenCounter.t values is abstraction-safe.
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Interactions: Rebinding, Type Abstraction, Versions

But... rebindable module references are indefinite.

module M : sig val f:int->int end

= struct let f=function x->x+2 end

import M : sig val f:int->int end version * = M

mark "MK"

module EvenCounter : ... = ...M.f...

send( marshal "MK" (function () -> EvenCounter.get

(EvenCounter.up EvenCounter.start)):unit->int)

|

module M : ... = struct let f=function x->x+3 end

(unmarshal (receive ()) as unit->int) ()

Typically want a tighter version constraint in place of * – e.g. 2.3.* or even

an exact-name constraint.
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Interactions: Rebinding, Type Abstraction, Versions

Then... what should the global type name for EvenCounter.t be?

Can rebind to any M matching

import M : sig val f:int->int end version 2.3.*

so in building a hash of EvenCounter should replace M.f by h.f where

h is the hash of that import.

The hash of an import is a global name for the set of modules that can be

bound to it.
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Interactions: Rebinding, Type Abstraction, Versions

But to make that sound we need to constrain the set of modules that

imports of modules with abstract types can be linked to, to ensure they all

have the same representation type.

Add a likespec to such imports, e.g.

import M : sig type t val x:t end

version 2.3.*

like struct type t=int end

or more typically

import Graphics : GraphicsSig

version 2.3.*

like Graphics2_0
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Interactions: Marshalling within abstraction boundaries

module EvenCounter

: sig

type t

val start:t

val get:t->int

val up:t->t

val send : t -> unit

val recv : unit -> t

end

= struct

type t=int

...

let send = fun (x:t) -> IO.send(marshal "StdLib" x : t)

let recv = fun () -> (unmarshal(IO.receive()) as t)

end

EvenCounter.send (EvenCounter.start)
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Back to computation mobility

If we can marshal arbitrary values...

...then to support computation mobility (as in DJoin/Nomadic Pict etc) it

suffices to turn computations into values.
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Computation mobility via thread thunkification

Atomically convert a collection of threads, mutexes, and cvars, to a thunk.

Those thunks can be marshalled, just like any other value.

let rec delay x = if x=0 then () else delay (x-1) in

let rec f x = IO.print_int x; IO.print_newline (); f (x+1) in

let t1 = fresh in

let _ = create_thread t1 f 0 in

let _ = delay 15 in

let v = thunkify ((Thread (t1,Blocking))::[]) in

IO.send( marshal "StdLib" v : thunkkey list -> unit )

—

let rec delay x = if x=0 then () else delay (x-1) in

let exit_soon = create_thread fresh

(fun () -> delay 15 ; exit 0) () in

let v = (unmarshal(IO.receive()) as thunkkey list -> unit) in

v ((Thread (fresh,Blocking))::[])
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Computation mobility via thread thunkification

Atomically convert a collection of threads, mutexes, and cvars, to a thunk.

Those thunks can be marshalled, just like any other value.

Analogous to call/cc — but to a boundary further out than usual:

capturing a parallel evaluation context (comprising a set of named

threads/mutexes/cvars) and removing it from the executing scheduler.
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Thunkify: Interactions

• thread naming (how unique? provided by runtime or programmer?)

• references, names, marshalling, and thunkify

treat locations and names differently: marshalling locations involves a

deep copy; marshalling names just gives the names; thunkify of

threads/mutexes/cvars is destructive

• module initialisation, concurrency, and thunkify

second-class module system — so can’t thunkify a thread that is

executing module initialisation

• thunkify vs inter-thread synchronisation primitives (key!)

– mutex/cvar primitives

– OS blocking calls
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• Local concurrency: π calculus (92) and Pict (95) background

• Mobile computations: Join (96) and Nomadic Pict (98)

• Marshalling: choice of distributed abstractions, and trust assumptions

• Dynamic rebinding and evaluation strategies

• Type equality between programs: run-time type names

• Typed interaction handles: expression-level names

• Version change — and interactions between language features

• Acute: semantics and implementation

• HashCaml: type- and abstraction-safe distribution for OCaml
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Acute

We set out in 2003–5 to build a prototype language, Acute (with a Caml

core), to experiment with these ideas, building on our earlier calculi and

(in the end) going well beyond them.

1. exploration of design space

2. complete Acute language definition (types, compilation, operational

semantics, 80pp)

3. Acute implementation (runtime interprets AST+closures, 25kloc

FreshOCaml)

Docs, source and binary distros (i386-linux & MacOSX) at

http://www.cl.cam.ac.uk/users/pes20/acute/. Try it!

Good for non-trivial examples, but not intended as a production language.

No proofs, but... implementation can do per-step runtime type checking.
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Acute Summary – Constructs

Mostly-conventional ML core and:

T ::= ...|T name|thread| h.t | n

e ::= ...|marshal e1 e2 : T |unmarshal e as T |
freshT |cfreshT |hash(MM .x)T |hash(T , e2)T ′ |hash(T , e2, e1)T ′ |
swap e1 and e2 in e3|supportT e|thunkify| [e]Teqs

sourcedefinition ::=

module mode MM : Sig version vne = Str withspec |
import mode MM : Sig version vce likespec by resolvespec = Mo|
mark“MK”

T ::= int|bool|string|unit|char|void|T1 ∗ .. ∗ Tn|T1 + ..+ Tn|T → T ′|T list|T option|T ref|exn|
MM .t|t|∀ t.T |∃ t.T |T name|T tie|thread|mutex|cvar|thunkifymode|thunkkey| thunklet|h.t|n
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Examples

Think this suffices for typeful programming of multi-layered, distributed,

evolving systems.

Examples – libraries for:

• Minesweeper game. Marshals game state to persistent store to save.

• RFI/Distributed channels/local channels/TCP string messaging/TCP

connection managment

• Nomadic Pict. Mobile computations that can be migrated between

machines, with distributed asynchronous messaging.

• Bounce (above Nomadic Pict library).

• Ambient primitives. Tree-structured mobile computations.

Moderate-scale — around 1000 lines each. Weeks, not years.
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Examples: The Ambient API

module hash! Ambients :

sig

val ambient : string -> (unit -> unit) -> unit

val spawn : (unit -> unit) -> unit

val c_in : string -> unit

val c_out : string -> unit

val c_open : string -> unit

val init : (Tcp.ip option * Tcp.port option) -> unit

val migrate : Tcp.addr -> unit

end

=

...
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Examples: The Npi API

module hash! Npi :

sig

type group

val create_group : forall t. (t -> unit) -> t -> unit

val create_gthread : forall t. (t->unit) -> t -> unit

val recv_local : forall t. t name -> t

val send_local : forall t. t name -> t -> unit

val init : (Tcp.ip option * Tcp.port option) -> unit

val send_remote : forall t. string

-> (Tcp.addr * group name * t name) -> t -> unit

val migrate_group : Tcp.addr -> unit

val local_addr : unit -> Tcp.ip option * Tcp.port

end
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Demo

In examples:

./go6 minesweep.ac

./go6 npi-recv.ac

./go6 bounce.ac

Look at code for the latter, and npi.ac

See also examples/ambients (ambient-primitives library, and a little OCaml

preprocessor to provide calculus-like syntax).

For small examples it can be interesting to turn on compiler flags to print

hash types etc.
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Reflections

• basic ideas pretty solid (typed marshalling, module-level redex time

reduction and rebinding, fresh and hash run-time type names for

abstract types, versioning at module level, thunkify)

(other things more debatable or just not addressed – will return to these)

• keeping impl and defn in sync was essential

• doing (semi-)full-scale language design was essential – many

unsuspected interactions between features

(warning: can be tricky to get this kind of thing across in 12 pages)

• ...but, all this is a lot of engineering – and the resulting impl only good

for modest examples.

• So, one more time, with feeling...
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• Local concurrency: π calculus (92) and Pict (95) background

• Mobile computations: Join (96) and Nomadic Pict (98)

• Marshalling: choice of distributed abstractions, and trust assumptions

• Dynamic rebinding and evaluation strategies

• Type equality between programs: run-time type names

• Typed interaction handles: expression-level names

• Version change — and interactions between language features

• Acute: semantics and implementation

• HashCaml: type- and abstraction-safe distribution for OCaml
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One more time, with feeling...

HashCaml: Type-Safe Distributed Programming for OCaml.

OCaml has marshalling of arbitrary values — but

“Anything can happen at run-time if the object in the file does not

belong to the given type.”

We adapt the OCaml bytecode compiler and runtime to support type-safe

and abstraction-safe marshalling, and associated expression-level name

constructs.
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Scope

From Acute:

• include fresh and hash-generated runtime type and term names.

• omit dynamic rebinding (except to the standard library), dynamic

linking, explicit versioning, thunkify

• use OCaml marshaller under the hood – so marshalling of function

values only permitted between identical builds

From OCaml:

• keep the existing OCaml static type system (except where really forced)

• don’t address marshalling for objects, polymorphic variants, extensions

• aim to address all the rest (get pretty close)
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Main issues

• the static and dynamic type equalities for features in (OCaml-Acute):

variant and record types, substructures, arbitrary ascription, functors,

separate compilation, external functions

• marshalling within polymorphic functions and the value restriction

• implementation strategy

Throughout: pragmatic issues with existing OCaml language design and

implementation.
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Ascription — the simple case

Abstract types in OCaml (as in SML) are introduced by signature ascription,

so statically:

module M

= struct

type t = int

let x = 3

end

module M1 : sig type t val x:t end = M

let id : M.t -> M1.t = fun z->z (* does not typecheck *)

(Acute was simpler: there each struct had a unique associated sig — but

so far this seems identical...).
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Ascription — the simple case

We mirror that in the HashCaml dynamic type equality:

module M

= struct

type t = int

let x = 3

end

module M1 : sig type t val x:t end = M

let s = Marshal.to_string M.x []

let (z : M1.t) = Marshal.from_string s 0

(* raises Unmarshal exception *)
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Ascription — the fresh case

module NCounter

: sig = fresh struct

type t type t=int

val start:t let start = 0

val get:t->int let get = fun (x:int)->x

val up:t->t let up =

end let step = read_int () in

fun (x:int)->step+x

end

Allow hash/fresh semantics arbitrarily, as needed hash semantics for effectful

modules in NPi and Ambient examples. Could base default on valuability

analysis.
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The myname Implementation Strategy

Where do we keep these runtime type names?

In the OCaml implementation, structures are compiled to records, and

ascriptions, e.g. module M : Sig = M’, have no existence at runtime

(except for coercion functions).

So we add a secret myname field to each structure, containing its hash or

fresh/cfresh name (h ).

For usages of the runtime type name of an abstract M.t, we generate

lambda code to build (M.myname, "t").
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But...

note that does give us a discrepancy between static and dynamic type

equalities:

module M = struct type t = int let x = 3 end

module M1 : sig type t val x:t end = M

module M2 : sig type t val x:t end = M

let id : M1.t -> M2.t = fun x -> x (* statically fails *)

module M = struct type t = int let x = 3 end

module M1 : sig type t val x:t end = M

module M2 : sig type t val x:t end = M

let s = Marshal.to_string M1.x []

let (z : M2.t) = Marshal.from_string s 0 (* dynamically ok *)

Does this matter? If so, which should we fix...?
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Can dynamically compare types across static scopes

module M1

: sig

module M2 : sig type t val x:t end

end

= struct

module M2 : sig type t val x:t val f:t->t end

= struct

type t = int

let x = 2

let f = fun z->z+2

let _ = (s3 := Marshal.to_string (3 : t) [])

end

let _=(s2:=Marshal.to_string(M2.f M2.x : M2.t) [])

end;;

let _ = (s1:=Marshal.to_string (M1.M2.x : M1.M2.t) [])
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Prefix Hashing

When we build the hash of a module, we have to take account of its

dependencies.

But how much?

module M

= struct

let iterate = List.iter

let x = 7

module N = struct let y = x end

module O = struct let w = 4 end

end

Depend on all the superstructure prefix? Regular but very awkward in

practice, e.g. making the result of a use of Set.Make in a file depend on all

the preceeding definitions.
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Applicative Functors

OCaml functors are all statically applicative, so in the scope of

module F (X:sig end) : sig type t end

= struct type t=int end

module U = struct end

module M = F(U)

module M’= F(U);;

((fun x->x) : M.t -> F(U).t);;

((fun x->x) : M.t -> M’.t);;

we have static type equalities M.t = M’.t = F(U).t. We mirror that in the

dynamic equality by constructing the hashes of M and M’ functionally.

Common cases, e.g. marshalling a value of a set or hashtable abstract type

produced by applying an OCaml standard library functor, should therefore

just work. (currently we reevaluate... sometimes wrong)
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Abstract Type Operators are Applicative

in both static and dynamic equalities — the latter again by functional

construction of hashes:

module M

= struct

type ’a t = int * ’a

let f x = (3,x)

end

module M1 : sig type ’a t val f:’a -> ’a t end = M

let s = Marshal.to_string (M1.f true) []

let (z : bool M1.t) = Marshal.from_string s 0

Here the runtime type name for bool M1.t is essentially

((M1.myname,"t"),[bool]).
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Variant Types

module M1 = struct type t = C of int end

module M2 = struct type t = C of int end

let f : M1.t -> M2.t = fun x->x (* statically fails *)

Conceivable dynamic equalities: build runtime type reps

• freshly at runtime (ok for single runs — otherwise useless)

• from a hash of the type definition and its path (demands too much

similarity?)

• from a hash just of the type definition

• from a hash of a normalised definition, ignoring the order of clauses

• from a hash of the structure of the definition, ignoring the names of

constructors, or

• any of the above, chosen per-type by the programmer. (insane?)
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Separate Compilation

just works ok

(the plumbing is handled automatically, due to the myname implementation

strategy.
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On-the-wire Marshalled Type Representations

In marshalled values: just 256-bit numbers.

Only operation on these is equality at unmarshal time

(but for subtyping [Deniélou, Leifer; ICFP06] or intensional type analysis

would need more structure)
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Internal Runtime Type Representations

Must build them compositionally in the type structure:

let pair_and_marshal : ’a -> string

= function x -> Marshal.to_string (x,x) []

let s = pair_and_marshal 17

let n = let (x1,x2)=(Marshal.from_string s 0) in x1+x2

and want to avoid re-hashing all over — so use a good representation

internally.

Implementation builds a type-passing translation, adding type parameters at

every generalization point. Conceptually naive (though not simple to actually

do!), but performance not too shabby.
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Marshalling at Non-Ground Runtime Types

Wouldn’t be in keeping with SML/OCaml ML polymorphism (and would

need structured type representations). So don’t.

let x = []

let s = Marshal.to_string x [] (* fails *)

let f x =

let s = Marshal.to_string x [] in (* succeeds *)

x + 1 in

f 0

let x=function y -> y

let s=Marshal.to_string (x:int->int) [Marshal.Closures]

(* succeeds *)



121

The Value Restriction

SML97 adopted the value restriction [Wri95], allowing polymorphic

generalisation only for syntactic values. In OCaml 3.09.1 generalization is

more liberal, in three ways:

• whether a conditional expression is generalizable is independent of the

condition;

• certain application expressions are generalizable; and

• type variables that occur only on the right of an arrow can be

generalised, as proposed by Garrigue [Gar04].

All three would lead to problems with our type-passing translation, as

inserting the internal type-representation lambdas would change the

evaluation order (twisty examples in the paper). Hence, HashCaml imposes

the value restriction.
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Implementation Intricacies

Lots
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Expression-level name features

There is a new family of types ’a name, represented as 256-bit values.

Expression-level names can be generated in several ways:

(1) freshly: just write fresh (of type ’a name);

(2) from a pair of a type rep and a string, writing hashname(t, s ), where

t is a type and s is a string, to yield a value of type t name;

(3) using the module hashes produced for calculating type representations,

for example fieldname M.f (of type t name where M.f:t ); and

(4) by applying name coercions namecoercion(path1,path2,e )

There is also a special conditional for comparing names:

ifname e1 =e2 then e3 else e4

where e1 :t1 name, e2 :t2 name, and and e3 is typechecked in an

environment where they are unified.
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Example

Source distro: hashcaml-3.09.1-alpha-795.

http://www.cl.cam.ac.uk/~pes20/hashcaml/index.html. Try it!

See the DCL example therein.
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Reflections

• This is a pretty good implementation — try it and see! But it would

need more engineering to make really robust, and some additional

features would be very handy (existentials, bytecode marshalling,

thunkify, native-code implementation).

• Type-safe marshalling isn’t a big syntax or static type system change —

but the dynamic type equality cuts across most of the existing language.

The static and dynamic type equality should be designed together, from

the start.

• At several places the existing OCaml (or SML) static equality wouldn’t

be the most useful dynamic equality:

– variant and record types

– complex ascriptions

(unclear how much of the current expressiveness is used?)

– value restriction

• type passing?
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Summing up

Seen an arc from simple calculi to almost-real language design.

Understood some problems — but many still left open, even in isolation, let

alone integrated into a whole.
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The End



128
(this is only a very partial list — Google for the others...)
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