
The Thin-Air Problem — Introduction

Peter Sewell

University of Cambridge

MMmeet workshop, September 2014

Cambridge

– p. 1

Problem

We don’t have a credible semantics for any
high-performance shared-memory concurrent language.

JMM (JSR-133): not sound w.r.t. implementations

C/C++11: sound but unreasonably weak, due to thin-air
problem

Linux C: not specified

– p. 2

The Question

What semantics can we adopt for PL shared-memory
accesses that:

1. are allowed to race (to be used in concurrent
algorithms;

2. should be implementable with (high-performance)
simple machine loads and stores, without extra barriers;
and

3. are compatible with reasonable compiler optimisations,
without excessively constraining existing compilers?

In particular, for C/C++ relaxed atomics.

– p. 3

Current Status

There are

example executions the semantics must allow (because
reasonable compiler optimisation + current h/w exhibits
them), and

example executions we want the semantics to forbid
(“thin-air 1 and 2”)

but we don’t yet have a good way to discriminate between
them.

– p. 4

Example LB (language must allow)

r1=loadrlx(x) //reads 42

storerlx(y,42)

r2=loadrlx(y) //reads 42

storerlx(x,42)

a:RRLX x=42

b:WRLX y=42

c:RRLX y=42

d:WRLX x=42

sbsb

rfrf

permitted by the ARM and IBM POWER architectures
(with obvious compilation)

experimentally observable on current ARM
multiprocessors

hence the language semantics must allow it for relaxed
atomics.

– p. 5

LB+datas (language can and should forbid)

r1=loadrlx(x) //reads 42

storerlx(y,r1)

r2=loadrlx(y) //reads 42

storerlx(x,r2)

a:RRLX x=42

b:WRLX y=42

c:RRLX y=42

d:WRLX x=42
rf rf

sb,dd sb,dd

Thin-air 1: a thin-air read value execution

architecturally forbidden on current hardware (x86,
ARM, and IBM POWER)

would need load-value prediction in future h/w

AFAWK cannot be exhibited by any reasonable current
compiler optimisation combined with current hardware

Hence, the language semantics could forbid it.

Moreover (cf BD2014) desirable to forbid it.

forbid cycles in rf ∪ dep? no...
– p. 6

Example LB+ctrldata+po (language must allow)

r1=loadrlx(x) //reads 42

if (r1 == 42)

storerlx(y,r1)

r2=loadrlx(y) //reads 42

storerlx(x,42)

a:RRLX x=42

b:WRLX y=42

c:RRLX y=42

d:WRLX x=42
rf rf

sb,dd sb

as LB, architecturally allowed on ARM and Power, and
observable on ARM

hence the language must allow it

– p. 7

LB+ctrldata+ctrl-double (language must allow)

r1=loadrlx(x) //reads 42

if (r1 == 42)

storerlx(y,r1)

r2=loadrlx(y) //reads 42

if (r2 == 42)

storerlx(x,42)

else

storerlx(x,42)

a:RRLX x=42

b:WRLX y=42

c:RRLX y=42

d:WRLX x=42
rf rf

sb,dd sb

forbidden on hardware if compiled naively (R-W ctrl)

but optimisation will collapse to LB+ctrldata+po

hence, the language must also allow this execution.

but this execution has a cycle in rf ∪ dep, so we cannot
simply exclude all those.

– p. 8

Then one might hope for some other adaptation of the
C/C++11 model, but the following example shows at least
that there is no per-candidate-execution solution.

– p. 9

LB+ctrldata+ctrl-single (can and should forbid)

r1=loadrlx(x) //reads 42

if (r1 == 42)

storerlx(y,r1)

r2=loadrlx(y) //reads 42

if (r2 == 42)

storerlx(x,42)

a:RRLX x=42

b:WRLX y=42

c:RRLX y=42

d:WRLX x=42
rf rf

sb,dd sb

Thin-air 2: a “self-satisfying conditional” execution

forbidden on hardware if compiled naively

unaffected by reasonable thread-local optimisation

Hence, the language could forbid it.

Moreover, desirable to forbid

But this candidate execution is identical to the previous
one, that we have to allow...

– p. 10

So we cannot do both simultaneously with any adaptation
of the C/C++11 per-candidate-execution definitions that
uses the same notion of candidate execution.

The basic point here is that compiler optimisations (such as
the collapse of the LB+ctrldata+ctrl-double conditional) are
operating over a representation of the program, covering all
its executions, while the C/C++11 definition of candidate
execution and consistency for those considers each
candidate execution independently (it ignores the set of all
executions); it is not able to capture the fact that the
conditional is unnecessary because the two candidate
executions corresponding to taking the two branches are
equivalent.

– p. 11

Not just a problem for relaxed atomics

In C can mix atomics and nonatomics, e.g. reusing malloc’d
region. Similar problems arise (see examples in
“Challenges”).

– p. 12

Possible approaches

1. ban all rf ∪ dep cycles after all – but costly

2. ban cycles involving relaxed – but via other compilation
units?

3. declare programs with non-annotated dep cycles to be
bad – unworkable?

4. prevent all load-to-store reordering – costly?

5. develop explicit out-of-order semantics – but

6. transitive closure of allowable abstract compiler
optimisations – but...

– p. 13

	Problem
	The Question
	Current Status
	Example LB (language must allow)
	LB+datas (language can and should forbid)
	Example LB+ctrldata+po (language must allow)
	LB+ctrldata+ctrl-double (language must allow)
	LB+ctrldata+ctrl-single (can and should forbid)
	Not just a problem for relaxed atomics
	Possible approaches

