The Thin-Air Problem — Introduction
Peter Sewell

University of Cambridge

MMmeet workshop, September 2014
Cambridge

_pll

Problem

We don’t have a credible semantics for any
high-performance shared-memory concurrent language.

JMM (JSR-133): not sound w.r.t. implementations

C/C++11: sound but unreasonably weak, due to thin-air
problem

Linux C: not specified

_p.2

The Question

What semantics can we adopt for PL shared-memory
accesses that:

1. are allowed to race (to be used in concurrent
algorithms;

2. should be implementable with (high-performance)
simple machine loads and stores, without extra barriers;
and

3. are compatible with reasonable compiler optimisations,
without excessively constraining existing compilers?

In particular, for C/C++ relaxed atomics.

_p3

Current Status

There are

example executions the semantics must allow (because
reasonable compiler optimisation + current h/w exhibits
them), and

example executions we want the semantics to forbid
(“thin-air 1 and 2”)

but we don’t yet have a good way to discriminate between
them.

_p.4

Example LB (language must allow)

rl=loadqx(x) //reads 42 ARpLX=42 C:Rrix Y=42

storenx(y,42) Sb¢ >< #sb
frf

r2=loadrix(y) //reads 42 D Wiy y=42 Wi 5 X=42

store i« (Xx,42)

permitted by the ARM and IBM POWER architectures
(with obvious compilation)

experimentally observable on current ARM
multiprocessors

hence the language semantics must allow it for relaxed
atomics.

_p5

LB+datas (language can and should forbid)

rl=1load, 4 (x) //reads 42 ARRLx X=42 C:Rrix y=42

storeqx(y,rl) Sb,dd¢ >< ¢sb,dd
frf

F2=10adr1x(Y) // I"eadS 42 b:WRLX y:42 d:WRLX X:42

store (X, r2)

Thin-air 1: a thin-air read value execution

architecturally forbidden on current hardware (x86,
ARM, and IBM POWER)

would need load-value prediction in future h/w

® AFAWK cannot be exhibited by any reasonable current
compiler optimisation combined with current hardware

°

°

Hence, the language semantics could forbid it.
Moreover (cf BD2014) desirable to forbid it.
forbid cycles in rf U dep? no...

°

_p6

Example LB+ctrldata+po (language must allow)

rl=load,x(x) //reads 42 a:Rg x X=42 C:RpLx =42
if (rl == 42) sb,dd¢ >< ¢sb
storepnx(y,rl) frf

r2=1loadx(y) //reads 42 D:Wrix y=42 d:Wrix X=42

store i (x,42)

as LB, architecturally allowed on ARM and Power, and
observable on ARM

#® hence the language must allow it

_p.7

LB+ctrldata+ctrl-double (language must allow)

rl=load «(X) //reads 42
if (rl == 42)

store ix(y,rl) aRpLx X=42 C:Rpx Y=42
r2=1load.x(y) //reads 42 Sb’dd¢ >< ¢sb
' rfrf
1f (FZ == 42) b:WRLXy:42 d:WRLXX:42

store iy (x,42)
else
store 4 (x,42)

forbidden on hardware if compiled naively (R-W ctrl)
but optimisation will collapse to LB+ctridata+po
hence, the language must also allow this execution.

© o o ©

but this execution has a cycle in rf U dep, so we cannot
simply exclude all those.

_p8

Then one might hope for some other adaptation of the
C/C++11 model, but the following example shows at least
that there is no per-candidate-execution solution.

_pg

LB+ctrldata+ctrl-single (can and should forbid)

rl=load «(X) //reads 42

if (r] == 42) a:RRLX X=42 C:RRLX y:42
store i, (y,rl) Sb’dd¢ >< ¢Sb
frf
r2=loadrlx(Y) //reads 42 b:WRny:42 dZWRLXX:42

1f (r2 == 42)
store iy (x,42)

Thin-air 2: a “self-satisfying conditional” execution
forbidden on hardware if compiled naively
unaffected by reasonable thread-local optimisation
Hence, the language could forbid it.

Moreover, desirable to forbid

© o o o o ©

But this candidate execution is identical to the previous
one, that we have to allow...

-p.10

So we cannot do both simultaneously with any adaptation
of the C/C++11 per-candidate-execution definitions that
uses the same notion of candidate execution.

The basic point here is that compiler optimisations (such as
the collapse of the LB+ctridata+ctrl-double conditional) are
operating over a representation of the program, covering all
Its executions, while the C/C++11 definition of candidate
execution and consistency for those considers each
candidate execution independently (it ignores the set of all
executions); it Is not able to capture the fact that the
conditional is unnecessary because the two candidate
executions corresponding to taking the two branches are
equivalent.

-p. 11

Not just a problem for relaxed atomics

In C can mix atomics and nonatomics, e.g. reusing malloc’d
region. Similar problems arise (see examples in
“Challenges”).

-p. 12

Possible approaches

. ban all rf U dep cycles after all — but costly

2. ban cycles involving relaxed — but via other compilation

units?

. declare programs with non-annotated dep cycles to be
bad — unworkable?

. prevent all load-to-store reordering — costly?
. develop explicit out-of-order semantics — but

. transitive closure of allowable abstract compiler
optimisations — but...

-p. 13

	Problem
	The Question
	Current Status
	Example LB (language must allow)
	LB+datas (language can and should forbid)
	Example LB+ctrldata+po (language must allow)
	LB+ctrldata+ctrl-double (language must allow)
	LB+ctrldata+ctrl-single (can and should forbid)
	Not just a problem for relaxed atomics
	Possible approaches

