
An out-of-order thread-local semantics for

something like volatile relaxed atomics in C

and the problems it highlights

Jean Pichon

24th of September 2014

Goal
How to avoid “out-of-thin-air” with C11’s relaxed atomics?

Remark by Mark Batty: no per-candidate-execution semantics
(like the C11 standard) can at the same time allow load
buffering

r1 = x;

y = 42 ‖ r2 = y;

x = 42

r1 = 42 ∧ r2 = 42 OK

but forbid “out-of-thin-air” behaviour
such as load buffering plus data dependencies (“LB+datas”)

r1 = x;

y = r1 ‖ r2 = y;

x = r2

r1 = 42 ∧ r2 = 42 BAD

where the value 42 appears “out of thin air”.

2/15

Contribution
1) A thread-local semantics with “the right amount” of
out-of-order execution.

thread source

base LTS

derived LTS +
non multi-copy-atomic
storage subsystem
(Power)

usual
thead-local
semantics

out-of-order
execution

whole-program semantics

2) And its use to illustrate problems.

3/15

Observation 1
Starting from the program

r1 = x;

if (r1 == 42) {
y = r1

} else {
y = 42

}
the base semantics gives the base LTS

a:Rrlx x=0 c:Rrlx x=1 ... y:Rrlx x=42 ...

b:Wrlx y=42 d:Wrlx y=42 ... z:Wrlx y=42 ...

The thread-local semantics does not specify what can be read
(receptivity).

4/15

Observation 2

r1 = x;

if (r1 == 42) {
y = r1

} else {
y = 42

}

a:Rrlx x=0 c:Rrlx x=42

b:Wrlx y=42 d:Wrlx y=42

The write to y can be executed before the read from x as

I it happens in all the branches of the program;

I nothing (in particular not Power “coherence”)
forces us to execute the read from x before.

5/15

Observation 3

On the other hand, if the write is to x, then it can’t be
executed before the read
(because of Power “coherence”):

r1 = x;

if (r1 == 42) {
x = r1

} else {
x = 42

}

a:Rrlx x=0 c:Rrlx x=42

b:Wrlx x=42 d:Wrlx x=42

6/15

Observation 4

If the write is not available in all branches of the program,
we can’t execute the write before the read:

r1 = x;

if (r1 == 42) {
y = r1

} else {
y = 37

}

a:Rrlx x=0 c:Rrlx x=42

b:Wrlx y=37 d:Wrlx y=42

7/15

Idea: ticking

Executing the base LTS out-of-order, by ticking sets of edges.

Like in the base LTS, we can have

a:Rrlx x=0 c:Rrlx x=42

b:Wrlx y=42 d:Wrlx y=42

a:Rrlx x=0✔ c:Rrlx x=42

b:Wrlx y=42 d:Wrlx y=42

a:Rrlx x=0✔ c:Rrlx x=42

b:Wrlx y=42✔ d:Wrlx y=42

R x 0

{a}
W y 42

{b}

But we can also have

a:Rrlx x=0 c:Rrlx x=42

b:Wrlx y=42 d:Wrlx y=42

a:Rrlx x=0 c:Rrlx x=42

b:Wrlx y=42✔ d:Wrlx y=42✔

a:Rrlx x=0✔ c:Rrlx x=42

b:Wrlx y=42✔ d:Wrlx y=42✔

W y 42

{b,d}
R x 0

{a}

because the Wrlx y=42 is available in all branches.

8/15

Frontier

a:Rrlx x=0 h:Rrlx x=42

b:Rrlx y=0 c:Rrlx y=42✔ i:Wrlx x2=42

d:Rrlx z=0 f:Rrlx z=42

e:Wrlx x2=42 g:Wrlx x2=42

j:Rrlx y=0 k:Rrlx y=42✔

l:Rrlx z=0 m:Rrlx z=42

9/15

No more out-of-thin-air
LB+datas is not problematic anymore:

r1 = x;

y = r1 ‖ r2 = y;

x = r2

yields

a:Rrlx x=0 c:Rrlx x=42

b:Wrlx y=0 d:Wrlx y=42

a:Rrlx y=0 c:Rrlx y=42

b:Wrlx x=0 d:Wrlx x=42

=⇒ no out-of-order execution
=⇒ no out-of-thin-air behaviour

10/15

Problems

11/15

Problem with (thread-local) optimisations

each action is executed once (and only once)
=⇒ sort of volatile: no introduction or elimination

Jaroslav Ševč́ık’s example:

r2 = y;

if (r2 == 42) {
r3 = y;

x = r3

} else {
x = 42

}

a:Rrlx y=0 c:Rrlx y=42

b:Wrlx x=42 d:Rrlx y=0 f:Rrlx y=42

e:Wrlx x=0 g:Wrlx x=42

r2 = y and r3 = y should be mergeable,
so that x = 42 is available in both branches.

12/15

Problem with inter-thread optimisations

r1 = x;

if (r1 == 0) {
y = 42

}
‖ r2 = y;

x = r2

Value-range analysis can determine x can only contain 0:

a:Rrlx x=0 c:Rrlx x=42

b:Wrlx y=42
‖ a:Rrlx y=0 c:Rrlx y=42

b:Wrlx x=0 d:Wrlx x=42

−→ a:Rrlx x=0

b:Wrlx y=42
‖ a:Rrlx y=0 c:Rrlx y=42

b:Wrlx x=0 d:Wrlx x=42

=⇒ out-of-thin-air reappears!

13/15

Problem with thread-locality
Variables as representations of data-flow (register variables r)
vs. variables as memory locations (shared variables x).

Escape analysis allows

int f(void) {
int x = 42;

e1; // no x

g(x);

e2; // no x

return x;

}

−→
int f(void) {

e1;

g(42);

e2;

return 42;

}

Optimisations are “automatic” on register variables.

Interacts with the problem with intra-thread optimisations:
 how much escape analysis?

14/15

Conclusion

Out-of-order execution by ticking frontiers

a:Rrlx x=0 c:Rrlx x=42

b:Wrlx y=42✔ d:Wrlx y=42✔

It covers relaxed reads and writes, fences, and non-atomic.

It gives the desired results on the “out-of-thin-air test suite”.

...but no optimisations (everything is volatile).

15/15

This page intentionally left blank.

Ticking
A set of edges can be ticked iff it forms a “frontier”:

1. all the edges have the same label;

2. all the edges are unticked;

3. all the edges are “executable”
(not blocked by coherence or a fence);

4. in each non-discarded path, there is one (and only one)
edge from the set.

a:Wrlx z=42

b:Rrlx x=0✔ d:Rrlx x=42

c:Wrlx y=42 e:Wrlx y=42

A path is discarded iff one of its edges
(necessarily labelled with a read)
has a ticked sibling edge.

17/15

Problem with inter-thread optimisations, part 2

r1 = x;

if (r1 == 0 || r1 == 42) {
y = 42

}
‖ r2 = y;

x = r2

a:Rrlx x=0 c:Rrlx x=37 d:Rrlx x=42

b:Wrlx y=42 e:Wrlx y=42

−→
a:Rrlx x=0 c:Rrlx x=42

b:Wrlx y=42 d:Wrlx y=42

Is this out-of-thin-air?
For Java, no. For common sense, maybe...

18/15

	Appendix

