
An overview of Jaroslav Ševč́ık’s

trace-set transformation semantics from

“Safe Optimisations for Shared-Memory

Concurrent Programs” (PLDI’11)

Jean Pichon

24th of September 2014



Goal

Replacement memory model for Java,
for which common subexpression elimination is sound
(and other typical optimisations too).

N.B. This is not the case for the current Java Memory Model.

2/11



Idea

Starting from the “naive” trace-set, the semantics is given by
the closure of the trace-set under reorderings and
optimisations.

Reordering and elimination of memory actions one by one on
thread-local trace-sets.

3/11



Trace-sets

Thread

y =NA xNA

has naive trace-set (the prefix-closure of)

{RNA x 0 WNA y 0, RNA x 1 WNA y 1, . . .}

(one for each value in the domain of x).

4/11



Reordering

Reorder two adjacent memory actions in a (thread-local) trace.

Example: thread x =NA 1; y =NA 2

has naive trace-set (the prefix closure of) {WNA x 1 WNA y 2}.

Now, because the two writes in the trace WNA x 1 WNA y 2 are
1) at two different locations,
2) not volatile,
3) non-dependent (here, because they are writes)1,
they can be reordered:

WNA x 1 WNA y 2 → WNA y 2 WNA x 1

Note: therefore, y =NA 2; x =NA 1 is a valid “optimisation”.

1see later

5/11



Roach motel reordering

Roach motel reordering is a design goal of Java2.

Non-atomic actions can be moved after a lock or volatile read:

t1 WNA x 1 L ` t2 → t1 L ` WNA x 1 t2

but not the other way around!

Symmetrically, non-atomic actions can be moved before an
unlock or volatile write:

t1 U ` WNA x 1 t2 → t1 WNA x 1 U ` t2

2to the best of my knowledge, it is not done by any compiler, at least
for C — please tell me if I’m wrong, I would really like to know!

6/11



Optimisations: release/acquire pairs

Definition: A release/acquire pair3 is the pair (in that order)
of a volatile write and a volatile read
(not necessarily to the same location),
or of an unlock and lock (not necessarily of the same lock).

Motivation: this is enough to
enforce synchronisation.

d =NA 0

x =V 1

while !xV {};
d =NA 42
y =V 1

while !yV {};
dNA // 42

3nothing to do with C11’s release/acquire

7/11



Peephole optimisations: RaR, WaR, RaW, OWE

We can define elimination of redundant read after read,
redundant write after read, redundant read after write, and
overwritten write.

For example, read after read:

t1 RNA x 1 t2 RNA x 1 t3 → t1 RNA x 1 t2 t3
if t2 does not contain any release/acquire pair.

...and overwritten write:

t1 WNA x 1 t2 WNA x 2 t3 → t1 t2 WNA x 2 t3
if t2 does not contain any release/acquire pair.

8/11



Irrelevant read elimination

If the trace-set contains all the traces of the form
t1 RNA x v t2, for all values v in the domain of x, then that
read is irrelevant, and can be removed, to yield trace t1 t2.

For example, thread

z =NA 1; y =NA xNA ∗ 0

has (naive) trace-set

{WNA z 1 RNA x 0 WNA y 0, WNA z 1 RNA x 1 WNA y 0, . . .}

so it also has optimised trace

WNA z 1 WNA y 0

9/11



Dependencies: LB vs. LB+datas

How to check for dependency: the inverse image (by the
transformation) of the prefixes of the transformed trace have
to be in the trace-set.

LB is allowed to return 42/42 for non-volatile:
xNA; y =NA 42 has naive trace-set (the prefix-closure of)

{RNA x 0 WNA y 42, RNA x 42 WNA y 42}

so the closure also contains, by IRE, WNA y 42,
so it also contains WNA y 42 RNA x 0 and WNA y 42 RNA x 42.

LB+datas is not allowed to return 42/42:

{RNA x 0 WNA y 0, RNA x 42 WNA y 42}

10/11



Conclusion
Advantages:

I Clean (I didn’t explain the subtleties of the technical
setup, but the ideas were there)

I DRF-SC theorem

I Validates common subexpression elimination and other
expected optimisations

I Validates C++’s 29.3p9 weak no-OOTA (I think)

I Proof of soundness for typical optimisations on the source

I Cheap to implement on TSO: non-atomic reads and
writes can be mapped to plain reads and writes, because
all TSO behaviour is accepted by the model

Disadvantages:

I Only considers thread-local optimisations

I Unknown implementation cost on Power/ARM

11/11



This page intentionally left blank.


	Appendix

