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Goal

Replacement memory model for Java,
for which common subexpression elimination is sound
(and other typical optimisations too).

N.B. This is not the case for the current Java Memory Model.
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Idea

Starting from the “naive” trace-set, the semantics is given by
the closure of the trace-set under reorderings and
optimisations.

Reordering and elimination of memory actions one by one on
thread-local trace-sets.
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Trace-sets

Thread

y =NA xNA

has naive trace-set (the prefix-closure of)

{RNA x 0 WNA y 0, RNA x 1 WNA y 1, . . .}

(one for each value in the domain of x).
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Reordering

Reorder two adjacent memory actions in a (thread-local) trace.

Example: thread x =NA 1; y =NA 2

has naive trace-set (the prefix closure of) {WNA x 1 WNA y 2}.

Now, because the two writes in the trace WNA x 1 WNA y 2 are
1) at two different locations,
2) not volatile,
3) non-dependent (here, because they are writes)1,
they can be reordered:

WNA x 1 WNA y 2 → WNA y 2 WNA x 1

Note: therefore, y =NA 2; x =NA 1 is a valid “optimisation”.

1see later
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Roach motel reordering

Roach motel reordering is a design goal of Java2.

Non-atomic actions can be moved after a lock or volatile read:

t1 WNA x 1 L ` t2 → t1 L ` WNA x 1 t2

but not the other way around!

Symmetrically, non-atomic actions can be moved before an
unlock or volatile write:

t1 U ` WNA x 1 t2 → t1 WNA x 1 U ` t2

2to the best of my knowledge, it is not done by any compiler, at least
for C — please tell me if I’m wrong, I would really like to know!
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Optimisations: release/acquire pairs

Definition: A release/acquire pair3 is the pair (in that order)
of a volatile write and a volatile read
(not necessarily to the same location),
or of an unlock and lock (not necessarily of the same lock).

Motivation: this is enough to
enforce synchronisation.

d =NA 0

x =V 1

while !xV {};
d =NA 42
y =V 1

while !yV {};
dNA // 42

3nothing to do with C11’s release/acquire
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Peephole optimisations: RaR, WaR, RaW, OWE

We can define elimination of redundant read after read,
redundant write after read, redundant read after write, and
overwritten write.

For example, read after read:

t1 RNA x 1 t2 RNA x 1 t3 → t1 RNA x 1 t2 t3
if t2 does not contain any release/acquire pair.

...and overwritten write:

t1 WNA x 1 t2 WNA x 2 t3 → t1 t2 WNA x 2 t3
if t2 does not contain any release/acquire pair.
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Irrelevant read elimination

If the trace-set contains all the traces of the form
t1 RNA x v t2, for all values v in the domain of x, then that
read is irrelevant, and can be removed, to yield trace t1 t2.

For example, thread

z =NA 1; y =NA xNA ∗ 0

has (naive) trace-set

{WNA z 1 RNA x 0 WNA y 0, WNA z 1 RNA x 1 WNA y 0, . . .}

so it also has optimised trace

WNA z 1 WNA y 0
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Dependencies: LB vs. LB+datas

How to check for dependency: the inverse image (by the
transformation) of the prefixes of the transformed trace have
to be in the trace-set.

LB is allowed to return 42/42 for non-volatile:
xNA; y =NA 42 has naive trace-set (the prefix-closure of)

{RNA x 0 WNA y 42, RNA x 42 WNA y 42}

so the closure also contains, by IRE, WNA y 42,
so it also contains WNA y 42 RNA x 0 and WNA y 42 RNA x 42.

LB+datas is not allowed to return 42/42:

{RNA x 0 WNA y 0, RNA x 42 WNA y 42}
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Conclusion
Advantages:

I Clean (I didn’t explain the subtleties of the technical
setup, but the ideas were there)

I DRF-SC theorem

I Validates common subexpression elimination and other
expected optimisations

I Validates C++’s 29.3p9 weak no-OOTA (I think)

I Proof of soundness for typical optimisations on the source

I Cheap to implement on TSO: non-atomic reads and
writes can be mapped to plain reads and writes, because
all TSO behaviour is accepted by the model

Disadvantages:

I Only considers thread-local optimisations

I Unknown implementation cost on Power/ARM
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