AlOoTa *

(Absolutely Lame OoTA)
 *: Ali's OoTA

Good

> Program

$$
\begin{array}{l|l}
r 1=x ; & \\
y=r 2=y ; \\
y=42 ;
\end{array}
$$

Execution

Still Good?

Program

Execution

\times SC Guarantee: $\left[x_{i} \approx y_{i} \approx 0 \Rightarrow x=0\right] \wedge\left[y_{i}>0 \Rightarrow x \approx 42\right]$
(Actual Guarantee: $\left[x_{i}=y_{i}=0 \Rightarrow x=0 \vee x=42\right] \wedge\left[y_{i}>0 \Rightarrow x=42\right]$

Bad

Program

$$
\begin{array}{l|ll}
r 1=x ; & & r 2=y ; \\
\text { if }(r 1>0) & \| & \text { if }(r 2>0) \\
& y=r 1 ; & \\
& x=r 2 ;
\end{array}
$$

Execution

$\times \quad$ SC Guarantee: $\left[y_{i}>0 \Rightarrow x=y_{i} \vee x=x_{i}\right]$
v Actual Guarantee: true $\{x$ can have any value\}

Under-approximation FTW

AlOoTa

- Remove "bad" executions.
- Keep "good" executions.
- Don't worry about the "questionable" executions (yet).

Terminology (really short)

Instructions

Potential Instantiations

$$
\begin{aligned}
r 1=x ; & \{R x=0, R x=1, R x=2, R x=3, \ldots\} \\
x=r 1 ; & \{W x=0, W x=1, W x=2, W x=3, \ldots\} \\
r 1=k ; & \{R x=k\} \\
x=k ; & \{W x=k\} \\
r 1=\operatorname{Expr}\left(r_{i}\right) ; & \left\{R x=k \mid k \in \mathbb{E x p r}\left(r_{i}\right) \mathbb{Z}\right\} \\
x=\operatorname{Expr}\left(r_{i}\right) ; & \left\{W x=k \mid k \in \mathbb{E} \operatorname{Expr}\left(r_{i}\right) \rrbracket\right\}
\end{aligned}
$$

Terminology (really short)

An instruction is determined if its set of possible instantiations is a singleton.

determined	$r 1=k ;$	\{ $\mathrm{R} x=k$ \}
undetermined	$x=r 1$;	$\{W \mathrm{x}=0, W \mathrm{X}=1, W \mathrm{x}=2, W \mathrm{x}=3, \ldots$ \}
determined	$r 1=\operatorname{Expr}\left(r_{i}\right)$;	$\begin{gathered} \left\{R \times=k \mid k \in \llbracket \operatorname{Expr}\left(r_{i}\right) \rrbracket\right\} \\ \text { if }\left\|\llbracket \operatorname{Expr}\left(r_{i}\right) \rrbracket\right\|=1 \end{gathered}$
undetermined	$r 1=\operatorname{Expr}\left(r_{i}\right)$;	$\begin{gathered} \left\{\operatorname{Rx}=k \mid k \in \mathbb{E x p r}\left(r_{i}\right) \mathbb{1}\right. \\ \text { if }\left\|\mathbb{E x p r}\left(r_{i}\right) \rrbracket\right\|>1 \end{gathered}$

Terminology (really short)

An instruction i is a provider for another instruction j if i modifies a register/location which juses.

Terminology (really short)

An instantiation in an execution is resolved if it belongs to a determined instruction or each of its operands are provided by resolved instantiations.

Terminology (really short)

An execution does not have AIOoTA relative to R if it is possible to mark each node as resolved by edges that do not conflict with R.

$R=r f$

Example 1

$R=r f$

No AIOoTA

Example 2

$R=r f$

AIOoTA

Example 3

$$
\{x=23, y=23\}
$$

$$
\begin{aligned}
& r 1=x ; \\
& \text { if }(r 1>0)
\end{aligned}
$$

$R=r f$

No AIOoTA

Example 4

$$
\begin{aligned}
& r 1=x \text {; } \\
& r 2=2 * r 1 \text {; } \\
& r 3=r 2 \% 2 ; \quad x=r 4 \text {; } \\
& D \quad y=42+r 3 ;
\end{aligned}
$$

$R=r f$

No AIOoTA

Example 5

$$
\begin{aligned}
r 1 & =x ; \\
r 2 & =r 1 \% 2 ; \\
D y & =42+r 2 ;
\end{aligned} \quad \begin{aligned}
& r 3=y ; \\
& x=r 3 ;
\end{aligned}
$$

$R=r f$

No AIOoTA

To AlOoTA or To not AIOoTa?

$R=r f$

$$
\begin{aligned}
& \stackrel{R}{R}_{{ }^{R}} W=21
\end{aligned}
$$

$$
\begin{aligned}
& W y=42
\end{aligned}
$$

To AIOoTA or To not AIOoTa?

$R=r f$

Final Words

- Speculations, how to "resolve"?
- Is there a way to quantify how far we are off relative to SC guarantees?
- Examples, examples, examples.

