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Abstract
In this paper, we consider the semantic design and verified compi-
lation of a C-like programming language for concurrent shared-
memory computation above x86 multiprocessors. The design of
such a language is made surprisingly subtle by several factors: the
relaxed-memory behaviour of the hardware, the effects of com-
piler optimisation on concurrent code, the need to support high-
performance concurrent algorithms, and the desire for a reasonably
simple programming model. In turn, this complexity makes verified
(or verifying) compilation both essential and challenging.

We define a concurrent relaxed-memory semantics for
ClightTSO, an extension of CompCert’s Clight in which the pro-
cessor’s memory model is exposed for high-performance code. We
discuss a strategy for verifying compilation from ClightTSO to x86,
which we validate with correctness proofs (building on CompCert)
for the most interesting compiler phases.

Categories and Subject Descriptors C.1.2 [Multiple Data Stream
Architectures (Multiprocessors)]: Parallel processors; D.1.3 [Con-
current Programming]: Parallel programming; F.3.1 [Specifying
and Verifying and Reasoning about Programs]

General Terms Reliability, Theory, Verification

Keywords Relaxed Memory Models, Verifying Compilation, Se-
mantics

1. Introduction
Context Multiprocessors are now ubiquitous, with hardware
support for concurrent computation over shared-memory data
structures. But building programming languages with well-defined
semantics to exploit them is challenging, for several inter-linked
reasons.

At the hardware level, most multiprocessor families (e.g., x86,
Sparc, Power, Itanium, and ARM) provide onlyrelaxed shared-
memory abstractions, substantially weaker than sequentially con-
sistent (SC) memory [Lam79]: some of the hardware optimisations
they rely on, while unobservable to sequential code, can observably
affect the behaviour of concurrent programs. Moreover, while for
some multiprocessors it has long been clear what the programmer
can rely on, e.g. the SparcTotal Store Ordering(TSO) model [Spa],
for others it has been hard to interpret the vendor’s informal-prose
architecture specifications [SSZN+09]. For x86, we recently pro-
posedx86-TSO[SSO+10, OSS09] as a rigorous and usable seman-
tics; we review this in§2.
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Compilers also rely on optimisations for performance, and again
many common optimisations (e.g., common subexpression elimi-
nation, and so on) preserve the behaviour of sequential code but
can radically change the behaviour of concurrent programs.

Hence, when designing a concurrent shared-memory program-
ming language, where one must choose what memory semantics
to provide, there is a difficult tension to resolve. A strong model
(such as sequential consistency) will be relatively easy for pro-
grammers to understand but hard to implement efficiently, because
compiler optimisations will not always be sound and because ex-
pensive processor-specific memory fences (or other synchronisa-
tion instructions) will be needed to enforce ordering in the tar-
get hardware. Another alternative is to forbid programs contain-
ing races and give SC semantics to the rest [AG96], relying on
synchronisation from the implementations of lock and unlock. Pre-
cisely defining a non-SC programming language model is a tech-
nical challenge in itself, as witnessed by the complexities in estab-
lishing a Java memory model that admits all the intended optimi-
sations [Pug00, MPA05, CKS07, SA08, TVD10], and the ongoing
work on C++0x [BOS+11].

However, when it comes to concurrent systems code and con-
current data structure libraries, for example as used in an OS ker-
nel and injava.util.concurrent [Lea99], it seems that a weak
model is essential. Compiler optimisations are not the main issue
here: these low-level algorithms often have little scope for optimi-
sation, and their shared-memory accesses should be implemented
exactly as expressed by the programmer. But for good performance
it is essential that no unnecessary memory fences are introduced,
and for understanding and reasoning about these subtle algorithms
it is essential that the language has a clear semantics. Moreover,
such algorithms are intrinsically racy. Such code is a small fraction
of that in a large system, but may have a disproportionate effect on
performance [Boe05]. This is illustrated by an improvement to a
Linux spinlock, where a one-instruction change to a non-SC prim-
itive gave a 4% performance gain [Lin99]. Recognising this, both
Java and C++0x aim to provide a strong model for most program-
ming but with low-level primitives for expert use.

In the face of all this intertwined semantic subtlety, of source
language, target language, compilation between them, and the
soundness of optimisations, it is essential to take a mathematically
rigorous and principled approach to relaxed-memory concurrency:
to give mechanised semantics for source and target languages and
to consider verified (or verifying) compilation between them. In the
sequential setting, verifying compilation has recently been shown
to be feasible by Leroy et al.’s CompCert, a verifying compiler
from a sequential C-like language, Clight, to PowerPC assembly
language [Com09, Ler09a, Ler09b, BL09]. In this paper, we con-
sider verifying compilation in the setting of concurrent programs
with a realistic relaxed memory model.

Contributions Our first contribution is the design and defini-
tion of ClightTSO(§3). ClightTSO is not intended to be a general-
purpose programming language, but rather a language in which
concurrent algorithms can be expressed precisely, and, more impor-



tantly, as a test case for reasoning about relaxed-memory computa-
tion. It essentially exposes the x86 or Sparc hardware load and store
operations (and synchronisation primitives) to the programmer, so
ClightTSO loads and stores inherit the hardware relaxed-memory
TSO behaviour, but can be implemented without memory fences
or atomic instructions. (As we discuss in§6, in a full language one
would expect to augment these with thread-local accesses that the
compiler is permitted to optimise away, for high-performance se-
quential code, but that is not our focus here.) The semantic design
of ClightTSO turns out to involve a surprisingly delicate interplay
between the relaxed memory model, the behaviour of block alloca-
tion and free, and the behaviour of pointer equality.

Our second contribution is one ofsemantic engineering(§4).
Relaxed memory models are complex in themselves, and a veri-
fying compiler such as CompCert is complex even in the sequen-
tial case; to make verifying compilation for a concurrent relaxed-
memory language feasible we have to pay great attention to struc-
turing the semantics of the source and target languages, and the
compiler and any correctness proof, to separate concerns and re-
use as much as possible. We factor out the TSO memory from each
language and build small-step ‘labellised’ semantics, allowing most
of the proof to be done by threadwise simulation arguments. A key
question for each compiler phase is the extent to which it changes
the memory accesses of the program. For most of our phases (8 of
15) the memory accesses of source and target are in exact 1:1 cor-
respondence. Moreover, for four phases the memory accesses are
identical except that some values that are undefined in the source
take particular values in the target; and one phase (register allo-
cation) has no effect on memory accesses except that it removes
memory loads to dead variables. For all these, the correctness of
the phase is unrelated to the TSO nature of our memory. That leaves
two phases that change memory accesses substantially, and whose
proofs must really involve the whole system, of all threads and the
TSO memory.

Thirdly, we present evidence that our approach is effective (§5).
We have implemented a compiler from ClightTSO to x86 multipro-
cessors, taking CompCert as a starting point, and have proved cor-
rectness (in Coq [Coq]) for key phases thereof. In addition, we have
successfully run the compiler on a number of sequential and con-
current benchmarks, including an implementation of a non-trivial
lock-free algorithm by Fraser [Fra03]. Finally, we reflect on the
formalisation process and on the tools we used (§6), discuss related
work, and conclude. The proof effort for each compiler phase was
broadly commensurate with its conceptual difficulty: some have es-
sentially no effect on memory behaviour, and needed only days of
work; a few were much more substantial, really changing the in-
tensional behaviour of the source and with proofs that involve the
TSO semantics in essential ways.
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Figure 1. x86-TSO block diagram

2. Background: x86-TSO
We begin by recalling the relaxed-memory behaviour of our tar-
get language, x86 multiprocessor assembly programs, as captured
by our x86-TSO model [SSO+10, OSS09]. The classic example
showing non-SC behaviour in a TSO model is the store buffer (SB)
assembly language program below: given two distinct memory lo-
cationsx andy (initially holding 0), if two hardware threads (or
processors) respectively write1 to x andy and then read fromy
andx (into registerEAX on thread0 andEBX on thread1), it is
possible for both to read0 in the same execution. It is easy to check
that this result cannot arise from any SC interleaving of the reads
and writes of the two threads, but it is observable on modern Intel
or AMD x86 multiprocessors.

SB
Thread 0 Thread 1

MOV [x]←1 MOV [y]←1
MOV EAX←[y] MOV EBX←[x]
Allowed Final State:Thread 0:EAX=0 ∧ Thread 1:EBX=0

Microarchitecturally, one can view this behaviour as a visible con-
sequence of store buffering: each hardware thread effectively has a
FIFO buffer of pending memory writes (avoiding the need to block
while a write completes), so the reads fromy andx can occur before
the writes have propagated from the buffers to main memory.

In addition, it is important to note that many x86 instructions
involve multiple memory accesses, e.g. an incrementINC [x]. By
default, these are not guaranteed atomic (so two parallel increments
of an initially 0 location might result in it holding1), but there are
‘LOCK’d’ variants of them:LOCK INC [x] atomically performs a
read, a write of the incremented value,anda flush of the local write
buffer. Compare-and-swap instructions (CMPXCHG) are atomic in
the same way, and memory fences (MFENCE) simply flush the
local write buffer.

The x86-TSO model makes this behaviour precise in two equiv-
alent ways: an abstract machine with an operational semantics,
illustrated in Fig. 1, and an axiomatisation of legal executions,
in the style of [Spa92, App. K] (the model covers the normal
case of aligned accesses to write-back cacheable memory; it does
not cover other memory types, self-modifying code, and so on).
For the relationship between the model and the vendor docu-
mentation (and with empirical testing) we refer to our previous
work [SSO+10, OSS09, SSZN+09].

3. ClightTSO
ClightTSO is a C-like language: imperative, with pointers and
pointer arithmetic, and with storage that is dynamically allocated
and freed, but not subject to garbage collection (GC)1. We choose
this level of abstraction for several reasons. First, it is what is
typically used for concurrent systems programming, for example
in an OS kernel (where garbage collection may be infeasible), and
many concurrent algorithms are expressed in C-like pseudocode.
Second, it is an attractive starting point for research in relaxed-
memory PL semantics and compilation because C source-level
shared-memory accesses will often map 1:1 onto target accesses,
without the complexity and cost of accesses required for GC. Last
but not least, the work of Leroy et al. on CompCert gives us a
verifying compiler for sequential programs, so by using that as
a starting point we can focus on the issues involved in relaxed-
memory concurrency.

Syntactically, ClightTSO is a straightforward extension of the
CompCert Clight language [BL09], adding thread creation and

1 Currently this is stack-allocated storage for function local variables, but
our development is structured so that adding explicitmalloc and free
should be straightforward.



type, ty ::= void | int (intsize,signedness)
| float (floatsize) | pointer (ty) | array (ty,len)
| function (ty∗,ty) | struct (id,φ) | union (id,φ)
| comp pointer(id) | (ty)

fieldlist , φ ::= nil | (id,ty)::φ

unary operation, op1 ::= ! | ~ | -

binary operation, op2 ::= + | - | * | / | % | & | | | ^ | << | >>
| == | != | < | > | <= | >=

expr , e ::= aty

expr descr , a ::= n | f | id | *e | &e | op1 e | e1 op2 e2 | (ty)e
| e1?e2:e3 | e1&&e2 | e1||e2 | sizeof (ty) | e.id

opt lhs ::= | (id:ty)=

atomic statement , as ::= CAS | ATOMIC INC | MFENCE

statement , s ::= skip | e1=e2 | opt lhs e ′(e∗) | s1;s2
| if (e1) then s1 else s2 | while (e) do s | do s while (e)
| for (s1;e2;s3)s | break | continue | return opt e

| switch (e)ls | l:s | goto l | thread create(e1,e2)

| opt lhs as(e∗)

labeled statements, ls ::= default :s | casen:s;ls

fndefn internal ::= ty id(arglist){varlist s}

program ::= dcls fndefns main =id

Figure 2. ClightTSO abstract syntax (excerpts)

some atomic read-modify-write primitives that are directly imple-
mentable by x86 LOCK’d instructions. An excerpt of the abstract
syntax is given in Fig. 2, where one can see that programs consist of
a list of global variable declarations, a list of function declarations,
and the name of amain function. Function bodies are taken from a
fairly rich language of statements and expressions.

Semantically, though, the addition of relaxed-memory concur-
rency has profound consequences:

TSO Most obviously, the ClightTSO load and store operations
must have TSO semantics to make them directly implementable
above x86, so we cannot model memory as (say) a function from
locations to values. Instead, we use a derivative of the TSO ma-
chine in Fig. 1 (the abstract machine style is more intuitive and
technically more convenient here than the axiomatic model).

Pointer equality C implementations are typically not memory-
safe: one can use pointer arithmetic to corrupt arbitary state (in-
cluding that introduced by compilation). But in order to specify an
implementable language, C standards rule out many programs from
consideration, giving them undefined behaviour. For example, the
draft C1X standard states “If an object is referred to outside of its
lifetime, the behavior is undefined. The value of a pointer becomes
indeterminate when the object it points to reaches the end of its
lifetime” [C1X, 6.2.4p2]. In Clight the memory state records what
is allocated, with equality testing of pointers giving the undefined
value (Vundef) if they do not refer to currently allocated blocks.
However, in a relaxed-memory setting any appeal to global time
should be treated with great caution, and the concept of “currently
allocated” is no longer simple: different threads might have differ-
ent views not only of the values in memory but also of what is allo-
cated. For example, in x86-TSO one thread might free, re-allocate
and use some memory while another thread compares against a
pointer to it, with the writes of the first thread remaining within
its buffer until after the comparison. One could make pointer com-
parison effectful, querying the x86-TSO abstract machine to see
whether a pointer is valid w.r.t. a particular thread whenever it is

used, but this would lead to a complex and unwieldy semantics.
Moreover, comparing potentially dangling pointers for equality is
useful in practice, e.g. in algorithms to free cyclic data structures.
Accordingly, for ClightTSO we take pointer comparison to always
be defined.

Block reuse In turn, this means that the ClightTSO semantics
must permit re-use of pointers (again contrasting with Clight, in
which allocations are always fresh), otherwise it would not be
sound w.r.t. the behaviour of reasonable implementations. For ex-
ample, in the program belowh must be allowed to return0 or 1, as
an implementation might or might not reuse the stack frame off
for g.

int* f() { int a; return &a; }
int* g() { int a; return &a; }
int h() { return (f() == g()); }

Memory errors and buffering of allocations and frees A read
or write of a pointer that is dangling w.r.t. that thread must still be a
semantic error, so that a correct compiler is not obliged to preserve
the behaviour of such programs. Now, implementations of mem-
ory allocation and free do not necessarily involve a memory fence
or other buffer flush: at the assembly language level, stack allo-
cation and free are simply register operations, while heapmalloc
andfree might often be w.r.t. some thread-local storage. To test
whether pointers are valid, therefore, we treat allocations and frees
analogously to writes, adding them to the buffers of the TSO ma-
chine. This is a convenient common abstraction of stack and heap
allocation (for the former, it essentially models the stack pointer).

An allocation must immediately return a block address to the
calling thread, but they should not clash when they are unbuffered
(when they hit the main memory of the TSO machine), so they must
return blocks that are fresh taking into account pending allocations
and frees from all threads. It is technically convenient if frees and
writes also fail immediately, when they are added to the TSO ma-
chine buffer, so we also take all possible sequences of the pending
allocations and frees into account when enqueuing them. Otherwise
one would have latent failures, e.g. if two threads free a block and
those frees are both held in buffers.

Finite memory A final novelty of ClightTSO, not directly re-
lated to concurrency, is that we support finite memory, in which
allocation can fail and in which pointer values in the running
machine-code implementation can be numerically equal to their
values in the semantics. The latter is convenient for our correctness
proofs, simplifying the simulations. It also means that pointer arith-
metic works properly (mod232) and may be helpful in the future
for a semantic understanding of out-of-memory errors. The mem-
ory usage of a compiled program and its source may be radically
different, as the compiler may be able to promote local variables
to registers but will need extra storage for stack frames and tem-
poraries. But (analogous to verifying rather than verified compila-
tion), it would be reasonably straightforward to make the compiler
emit and check, for each function, bounds on those. One could then
reason about real space usage in terms of a source semantics anno-
tated with these bounds.

Small-step semantics ClightTSO is a concurrent language, in
which execution of an expression or a statement may involve mul-
tiple memory reads and hence multiple potential interaction points
with other threads. We therefore need a small-step operational se-
mantics for both expressions and statements. Conceptually this is
routine, but it requires significant re-engineering (described in§5.1)
of definitions and proofs w.r.t. CompCert, where Clight had a big-
step semantics for expressions.



We use a frame-stack style, with thread states that can be an
executing expression paired with an expression-holed continuation
or an executing statement paired with a statement-holed continua-
tion:

expr cont , κe ::= [opτ
1 ] · κe | [

τ=e2] · κs | [v
τ= ] · κs | . . .

stmt cont , κs ::= stop | [ ; s2] · κs | . . .

state ::= e · κe |ρ
| s · κs |ρ
| . . .

Hereρ is a thread-local environment mapping identifiers to their lo-
cations in allocated blocks. The semantics is also parameterised by
an unchanging global environment of global variables and func-
tions, and additional machinery is needed to deal with l-values,
loops, and function calls, which we return to in§5.1. We also fix
a left-to-right evaluation order.

Examples We give a flavour of the language with some very
small examples of ClightTSO source programs.

SB The x86 visible-store-buffer behaviour can now be seen at the
ClightTSO level, e.g. if the following threads are created in parallel
then both could print0 in the same execution.

int x=0; int y=0;

void *thread0(void *tid)
{ x=1;

printf("T0: %d\n", y);
return(0); }

void *thread1(void *tid)
{ y=1;

printf("T1: %d\n", x);
return(0); }

Spinlock using CAS More usefully, an efficient spinlock can be
implemented directly in ClightTSO usingCAS. Any integer variable
can be used to represent the state of the spinlock, with lock and
unlock as follows:
void lock(int *mutex)
{ while (CAS(mutex, 0, 1))

while (*mutex) ; }

void unlock(int *mutex)
{ *mutex = 0; }

The generated assembler mimics the optimised implementa-
tion of Linux spinlocks mentioned in Section 1: as shown by
Owens [Owe10], the memory update performed by unlock does
not need to be synchronising on x86-TSO.

A publication idiom The memory model supports the common
publication idiom below:

double channel; int flag = 0;

// sender
channel = 5.2;
flag = 1;

// receiver
while (flag == 0);
printf ("%f\n", channel);

Since the store buffers are FIFO, when the receiver thread sees the
update toflag, the contents of thechannel variable must have
been propagated into main memory, and as such must be visible
to all other threads (that do not themselves have a pending write
to channel). For contrast, in C++0x [Bec10, BOS+11] (which also
targets non-TSO machines),flag must be accessed with sequen-
tially consistent atomics, implemented with costly x86 LOCK’d in-
structions or fences, or with release/acquire atomics, implemented
with normal stores and loads but with a much more involved se-
mantics.

4. Verifying Compiler Strategy
Having discussed our x86 target language in§2, and the design and
rationale of our ClightTSO source language in§3, we now consider
the semantics and proof structure required to make a verifying
compiler for a concurrent relaxed-memory language feasible.

Correctness statement The first question is the form of the cor-
rectness theorems that we would like the compiler to generate. We
confine our attention to the behaviour of whole programs, leaving
a compositional understanding of compiler correctness for relaxed-
memory concurrency (e.g. as in the work of Benton and Hur for
sequential programs [BH09]) as a problem for future work. We
take the observable behaviour of both ClightTSO and x86-TSO
programs to be labelled transition systems (LTS) with visible ac-
tions for call and return of external functions (e.g. OS I/O primi-
tives), program exit, semantic failure, and an out-of-memory error,
together with internalτ actions:

event , ev ::=call id vs | return typ v | exitn | fail | oom | τ

We split external I/O into call and return transitions so that blocking
OS calls can be correctly modelled.

Now, how should the source and target LTS be related? As
usual for implementations of concurrent languages, we cannot ex-
pect them to be (in some sense) equivalent, as the implementa-
tion may resolve some of the source-language nondeterminism
(c.f. [Sew97]). For example, in our implementation, stack frames
will be deterministically stack-allocated and the pointers in the
block-reuse example above will always be equal. Hence, the most
we should expect is that if the compiled program has some ob-
servable behaviour then that behaviour is admitted by the source
semantics — some kind ofbackward simulation2 result.

This must be refined further: compiled behaviour that arises
from an erroneous source program need not be admitted in the
source semantics (e.g. if a program mutates a return address on
its stack, or tries to apply a non-function). We have to distinguish
between such semantic errors (modelled withfail) and out-of-
memory allocation errors (modelled byoom) so that we can cor-
rectly blame the source program in the former case. Moreover,
the compiled program should only diverge, indicated by an infi-
nite trace ofτ labels, if the source program can. We express all this
with the following notion of backward simulation between a source
LTS S and a compiled target LTST .

DEFINITION 1. A family of relationsRi : States(S)×States(T ),
indexed by elementsi of a well-founded order>, is a measured
backward simulationif, whenevers Ri t and t

ev
−→ t′ for ev 6=

oom, then either

1. ∃s′. s
τ
−→

∗
s′

fail
−−→ (s can reach a semantic error), or

2. ∃s′, j. s
τ
−→

∗ ev
−→ s′ ∧ s′ Rj t′ (s can do a matching step), or

3. ∃j. ev = τ ∧ i > j ∧ s Rj t′ (t stuttered, with a decreasing
measure).

Given a measured backward simulation relatingS andT , one can
easily see that ifS has no semantic failures then any (finite or
infinite) completed trace ofT , that does not include an out-of-
memory error, is a trace ofS.

The CompCert 1.5 proof strategy ClightTSO is an extension
of sequential Clight, and its compiler has to deal with everything
that a Clight compiler does, except for any optimisations that be-
come unsound in the concurrent setting. We therefore arrange our
semantic definitions and proof structure to re-use as much as pos-
sible of the CompCert development for sequential Clight, isolating
the parts where relaxed-memory concurrency plays a key role.

CompCert 1.5 is around 55K lines of Coq subdivided into 13
compiler phases, each of which builds a semantic preservation
proof between semantically defined intermediate languages. The

2 Terminology: in CompCert “forward” and “backward” refer to the direc-
tion of the simulation with respect to the compiler phases, notto the di-
rection of transitions. Thinking of compilation as “forwards”, a forward
simulation means that source behaviours can be matched by the target.



overall strategy is to build some kind of forward simulation for
each phase; these can be composed together and combined with
determinacy for the target language (PowerPC or ARM assembly)
to give a backward simulation for a complete compilation. Forward
simulations are generally easier to establish than backward simula-
tions because compiler phases tend to introduce intermediate states;
a forward simulation proof does not have to characterise and relate
these.

As we shall see, this strategy cannot be used directly for compi-
lation of concurrent ClightTSO to x86, but much can be adapted.

Decomposing the proof by compiler phases Our compiler is
divided into similar (but not identical) phases to CompCert. The
above notion of backward simulation also serves as the correctness
criterion for each of our phases:

THEOREM 1. The composition of two measured backward simula-
tions is a measured backward simulation. [Coq proof]

Labellisation and threadwise proof In our concurrent setting
the languages are not deterministic, so the CompCert approach
to building backward simulations is not applicable. However, for
most of the phases we can re-use the CompCert proof, more-or-
less adapted, to give forward simulation results for the behaviour
of a single thread in isolation — and we can make our semantics
deterministic for such. We therefore ‘labellise’ the semantics for
each level (source, target, and each intermediate language). Instead
of defining transitions

(s, mSC) −→ (s′, m′
SC)

over configurations that combine a single-threaded program states
and an SC memorymSC (as most sequential language semantics,
including CompCert, do), we define the semantics of a single thread
(split apart from the memory) as a transition system:

s
te
−→ s

′

(together with extra structure for thread creation) where a thread
eventte is either an external event, as above, an interaction with
memoryme, an internalτ action, or the start or exit of the thread:

thread event , te ::=
ext ev | memme | τ | start opt tid p vs | exit

The whole-system semantics of each level is a parallel compo-
sition roughly of the form

s1 | . . . | sn | mTSO

of the thread statessi and a TSO machinemTSO. The threads in-
teract with the TSO machine by synchronising on various events:
reads or writes of a pointerp with a value v of a specified
memory chunk size, allocations and frees of a memory block at a
pointerp, various error cases, and thread creation. These transitions
are in the style of the ‘early’ transition system for value-passing
CCS [Mil89]: a thread doing a memory read will have a transition
for each possible value of the right type. For example, here is the
ClightTSO rule for dereferencing a pointer:

access mode ty ′ = By value c
typ = type of chunk c
Val.has type v typ

p · [* ty′ ] · κe |ρ
mem (read p c v)
−−−−−−−−−→ v · κe |ρ

LOADBYVALUE

External events of the threads (and of the TSO machine) are ex-
posed directly as the whole-system behaviour.

This conceptually simple change separates concerns: compiler
phases that do not substantially affect the memory accesses of the
program can be proved correct per-thread, as described in§5.4

(and those results lifted to the whole system by a general result
below), leaving only the two remaining phases that require proofs
that really involve the TSO machine.

The TSO machine Our TSO machine is based on the x86-TSO
abstract machine, with a main memory and per-thread buffers, but
with several differences. The TSO machine must handle memory
allocations and frees (which are buffered), and various memory
errors; the main memory records allocation as in CompCert. We
use the TSO semantics for software threads, not hardware threads,
which is sound provided that the scheduler flushes the buffer during
task switching. We use the same TSO machine for all the intermedi-
ate languages, and we uniformly lift threadwise LTSs to the parallel
composition with the TSO machine.

Lifting threadwise forward simulations to whole-system back-
ward simulations We convert forward threadwise simulations to
whole-system backward simulations in two steps. First, we observe
that a forward simulation from a receptive language to a determi-
nate language implies the existence of backward simulation.

We say that two labels are of the same kind, writtente ≍ te ′ if
they only differ in input values. In our case,te ≍ te ′ if (i) te and
te ′ are reads from the same memory location (but not necessarily
with the same value), or (ii)te andte ′ are external returns, or (iii)
te = te ′.

DEFINITION 2. A thread LTS isreceptiveif s
te
−→ t and te ′ ≍ te

implies∃t′. s
te′

−−→ t′.

DEFINITION 3. A thread LTS isdeterminateif s
te
−→ t ands

te′

−−→ t′

implieste ≍ te ′ and, moreover, ifte = te ′, thent = t′.

DEFINITION 4. A relationR between the states of two thread LTSs
S and T is a threadwise forward simulationif there is a well-
founded order< on the states ofS such that if given anys, s′ ∈ S,
t ∈ T and labelte, whenevers

te
−→ s′ and s R t, then either

te = fail, or ∃t′. t
τ
−→

∗ te
−→

τ
−→

∗
t′ ∧ s′ R t′, or te = τ ∧ s′ R t ∧

s′ < s.

DEFINITION 5. A relationR is a threadwise backward simulation
if there is a well-founded order< onT such that whenevert

te
−→ t′

ands R t, then either∃s′. s
τ
−→

∗ te
−→ s′ ∧ s′ R t′, or ∃s′. s

fail
−−→

s′, or te = τ ∧ s R t′ ∧ t′ < t. Moreover, ift 6−→ (t is stuck) and
s R t, thens 6−→ or ∃s′. s

fail
−−→ s′.

Note the subtle asymmetry in handling errors: if a source state
does an error or gets stuck, both the backward simulation and
forward simulation hold. In contrast, the target states’ errors must
be reflected in the source to make the backward simulation hold.
This is necessary to allow compilers to eliminate errors, but not to
introduce them.

THEOREM 2. If R is a threadwise forward simulation fromS to
T , S is receptive, andT is determinate, then there is a threadwise
backward simulation that containsR. [Coq proof]

Eliding details of initialisation and assumptions on global envi-
ronments, we have:

THEOREM 3. A threadwise backward simulation can be lifted to a
whole-system measured backward simulation, for the composition
of the threads with the TSO machine. [Coq proof]

To establish correctness of compiler phases that remove dead vari-
able loads and concretise undefined values, we have also proved
variants of Theorems 2 and 3 for suitably modified Definitions 4
and 5.



The two non-threadwise proofs In ClightTSO (as in Clight) lo-
cal variables are all in allocated blocks, but an early phase of the
compiler identifies the variables whose addresses are not taken (by
any use of the& operator) and keeps them in thread-local envi-
ronments, changing loads and stores into (τ -action) environment
accesses; moreover, individual stack allocations on function entry
are merged into one large allocation of the entire stack frame. Con-
versely, a later phase does activation record layout, and thread-local
state manipulation (τ actions) is compiled into memory accesses to
the thread-local part of activation records. In both cases, the thread
has different views of memory in source and target, and these views
involve the TSO-machine buffering of loads, stores, allocations and
frees. We return to this, which is the heart of our proof, in§5.2 and
§5.3.

Finite memory revisited To be faithful to a real machine seman-
tics, our x86 semantics uses finite memory and performs memory
allocations only when threads are initialized (the stack of the thread
is allocated). In Clight, however, small memory allocations happen
whenever a variable is declared; as a result, the memory should
be unbounded because the compiler can promote local variables
to registers and thus a Clight program can have a footprint that
would not fit in the x86 memory. In our intermediate languages,
we switch from infinite to finite memory in the Csharpminor to
Cstacked phase (§5.2), where we move local variables whose ad-
dress is not taken to local environments, and perform one allo-
cation (for the remaining local variables) per function call. Since
our pointer type needs to accommodate both the finite and infi-
nite nature of addresses, our pointers are composed of two parts:
an unbounded block identifier and machine integer offset within
the block. The lower-level language semantics uses only the fi-
nite memory in block0—the memory refuses to allocate any other
block. The higher level languages can allocate in any block. Note
that one memory block can contain more than one memory ob-
ject. A later phase (MachAbs to MachConc phase,§5.3) compiles
away the allocations per function call pre-allocating a thread’s stack
when it is created.

The final phase: targetting x86 We target x86 because x86-
TSO gives us a relatively simple and well-understood relaxed mem-
ory model for a common multiprocessor. CompCert 1.5 targets se-
quential PowerPC and ARM assembly language, but these have
much more intricate concurrent behaviour which is still not fully
understood (though c.f. [AMSS10]). We therefore need an x86
backend, described in§5.5, adopting parts of the new x86 backend
of CompCert 1.8.

5. CompCertTSO
Following the strategy above, we have built a working compiler
from ClightTSO to x86 assembly language with x86-TSO seman-
tics, and have proved correctness of the most interesting phases.
This shows (a) how we can reason about concurrent TSO be-
haviour, in the phases where that plays a key role, and (b) how our
overall strategy enables relatively straightforward adaptation of the
existing sequential proof, in the phases where concurrent memory
accesses do not have a big impact. Our development, all mecha-
nised in Coq, is available online3.

The structure of our compiler, and of its proof, is shown in
Fig. 3. The subdivision into phases between intermediate languages
follows CompCert 1.5 as far as possible, with our major changes
being:

• The source and target languages are ClightTSO and concurrent
x86 assembly, not Clight and PowerPC or ARM assembly.

3www.cl.cam.ac.uk/users/pes20/CompCertTSO
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Our proof structure is indicated by single arrows for threadwise forward
simulations; and straight double arrows for direct proofs ofwhole-system
backward simulations. Arrows are solid if the proof is completed and dotted
otherwise. The completed composite whole-system backward simulations
(lifted with Theorems 2 and 3, and composed with Theorem 1) are shown
with curved double arrows.

ClightTSO and Csharpminor perform a stack allocation for each individ-
ual variable in the program and assume an infinite memory, whereas the
languages below have only finite memory. From Cstacked to MachAbs a
stack allocation occurs for each non-empty stack frame (that is, almost ev-
ery function call), whereas in MachConc and Asm only when a thread is
created.

Figure 3. CompCertTSO phases



• The semantics is expressed with a TSO machine, which is
common to all phases.

• We need a stack of memory-model-aware abstractions for the
intermediate languages. While named after those of CompCert,
their semantics are all adapted to labellised TSO semantics.

• The simulation from ClightTSO to the first intermediate lan-
guage, Csharpminor, is a new proof above our small-step se-
mantics.

• The CompCert phase that does stack allocation of some local
variables (those whose address is taken by&), from Csharpmi-
nor to Cminor, is divided into two via a new intermediate lan-
guage Cstacked. Cstacked has the same syntax as Csharpminor
(and compilation to it is the identity on terms) but a memory
semantics more like Cminor. The proof of the Csharpminor-to-
Cstacked phase is a new direct whole-system backward simula-
tion argument, dealing with the very different patterns of mem-
ory accesses in the two languages and how they interact with
the TSO machine.

• The proofs of the middle phases of the compiler, from RTL to
MachAbs with various optimisations, are relatively straightfor-
ward adaptations of the CompCert proofs to our per-thread la-
bellised semantics and then lifted by the general results of the
previous section.

• Our Mach-to-Asm phase generates x86 rather than PowerPC or
ARM assembly.

The rest of this section discusses these in more detail. Our main
results are as follows.

THEOREM 4. Given a ClightTSO program,p, and its compilation
to a Cminor program,p′, there is a measured backward simulation
between the LTSes ofp andp′. [Coq proof]

THEOREM 5. If an RTL program,p, has been successfully com-
piled to a Machabs program,p′, by the following phases: tail call
recognition, constant propagation, restricted CSE, register allo-
cation, branch tunnelling, linearisation, reloading and activation
record layout, then there is a measured backward simulation be-
tween the LTSes ofp andp′. [Coq proof]

Proof outline: First, we construct threadwise forward simulations
from ClightTSO to Csharpminor, from Cstacked to Cminor, and
between each of the eight phases from RTL to MachAbs. (More
precisely, for the tail call recognition and reloading phases we es-
tablish a threadwise forward simulation with undefs, and for the
register allocation phase a lock-step threadwise forward simulation
with unnecessary load removal.) Then, we turn these threadwise
forward simulations to threadwise backward simulations by Theo-
rem 2 (and by the analogous theorems for the threadwise forward
simulation with undefs and for the lock-step threadwise forward
simulation with unnecessary load removal). Then, by Theorem 3,
we turn the threadwise backward simulations into whole-system
measured backward simulations. In§5.2, we also establish a mea-
sured backward simulation from Cstacked to Csharpminor. Finally,
by composing these measured backward simulations according to
Theorem 1, we get the overall measured backward simulations.

At the time of writing, the remaining proofs required for a
complete verifying compiler include our MachAbs-to-MachConc
phase, which involves memory manipulations very similar to those
of Csharpminor-to-Cstacked, and the forward simulations for com-
pilation from Cminor to RTL, which should be relatively straight-
forward adaptations from CompCert. These have been sketched out
in detail (in Coq), and we believe that the main intellectual chal-
lenges have all been addressed, though of course one can never be
certain until the proof is complete.

ClightTSO Csharpminor

v2 · [v1 +ptr∗int→ptr ] · κe |ρ

τ
(BINOP)

v2 · [n * ] · [v1 +ptr∗int→ptr ] · κ̂e |ρ̂

τ
(BINOP)

v · κe |ρ v̂2 · [v1 +ptr∗int→ptr ] · κ̂e |ρ̂

τ
(BINOP)

v · κ̂e |ρ̂

Hereint = int (I32,Signed) andptr = pointer (int). The type
annotation in the multiplication (*) context is omitted.

Figure 4. Part of the simulation relating ClightTSO and Csharp-
minor evaluation for addition of anint and a pointer.

ClightTSO Csharpminor

*((&(id ty1)ty2))ty3 · κe |ρ

τ

(DEREF)

id · κ̂e |ρ̂

mem (read p c v)

(VAR)

eval var ref ρ id p c

has type v

(type of chunk c)

(&(id ty1)ty2) · [* ty3 ] · κe |ρ

τ

(ADDR)

lval (id ty1) · [* ty3 ] · κe |ρ

τ

(VARLOCAL)
ρ!id= Somep

p · [* ty3 ] · κe |ρ

mem (read p c v)

(LOADBYVALUE)
...

v · κe |ρ v · κ̂e |ρ̂

Figure 5. ClightTSO compilation can sometimes eliminate
source-level transitions.

5.1 Small-stepping (ClightTSO to Csharpminor)

ClightTSO is compiled into Csharpminor, a high-level intermedi-
ate representation that has a simpler form of expressions and state-
ments. Most notably, the translation unifies various looping con-
structs found in the source, compiles away casts, translates union
and structs into primitive indexed memory accesses, and makes
variable l-value and r-value distinctions explicit. High-level type
information found in ClightTSO is compiled to a lower-level byte-
aware memory representation. Accounting for these differences in
the simulation is complicated by the relatively large size of the two
languages: ClightTSO’s definition has 90 rules, while Csharpminor
has 56.

Because expression evaluation is defined by a small-step seman-
tics, adapting the forward simulation proofs directly from Com-
pCert (which uses a big-step expression evaluation semantics) was
not feasible, and much of the proof, along with the simulation
change, had to be written from scratch as a result. Since the two lan-
guages are relatively close, however, the revised simulation could
sometimes simply map ClightTSO transitions directly to the corre-
sponding Csharpminor ones; evaluation of constants, unary opera-
tions, and certain components of function call and return are such
examples.



However, as we mentioned earlier, compilation often results in
a ClightTSO term becoming translated to a sequence of lower-level
simpler Csharpminor terms. To illustrate, the diagram shown in
Fig. 4 shows the evaluation of a binary addition of an integer and a
pointer. For ClightTSO, the multiplication of the integer operand by
the representation size of the pointer type is performed implicitly,
subsumed within the intrinsic definition of addition. In Csharpmi-
nor, an explicit binary multiplication operation is introduced. No-
tice that the continuations in the subsequent matching states are
structurally quite different from each other as a result; the simula-
tion relation must explicitly account for these differences.

Perhaps a more surprising consequence of using a small-step se-
mantics is that the simulation relation may sometimes be required
to match multiple ClightTSO transitions to a single Csharpminor
one. For example, compilation from ClightTSO to Csharpminor
eliminates various states defined in ClightTSO to deal with ad-
dressing and dereferencing. Consider the evaluation of an identi-
fier that appears in an r-value context. In ClightTSO, the identifier
is first translated into a pointer, and a separate step returns either
the contents of the pointer (in case it references a scalar type) or
the pointer itself (in case of e.g., arrays or structs). Compilation to
Csharpminor removes this intermediate step, generating the appro-
priate access instruction directly, since the pointer type is statically
known. This simplification generalizes to sequences of address-
of and dereferencing operations. We depict the sequence of steps
necessary to compute a variable’s address, and then dereference
it (if it is a scalar) in Fig. 5. The relationeval var ref states
that variableid, in the context of local environmentρ, evaluates
to pointerp that references an object with memory representation
c. The valuev read must have a type consistent withc as defined
by relationhas type. Notice that ClightTSO requires four steps to
perform this operation while compilation to Csharpminor requires
only one. To account for such differences, the simulation relation
forces Csharpminor transitions to stutter, incorporating a measure
on ClightTSO expressions and continuations that allows matching
of several intermediate ClightTSO states to a single Csharpminor
one. Indeed, such a measure, suitably adapted, must be defined for
most other compiler phases.

Besides memory read and write operations, the ClightTSO se-
mantics also generates events for function argument and local vari-
able allocation as part of the function calling sequence. The small-
step semantics requires these operations be performed in stages.
After all argument expressions and the function pointer have been
evaluated, memory is allocated for each formal parameter, as well
all local variables, in turn. Each distinct allocation is represented as
a separate labelled transition. After allocation, the values of the ac-
tuals are written to the formals. On function exit, allocated storage
is freed individually. The corresponding Csharpminor transitions
are similar, albeit with a change in the underlying type representa-
tion used to guide memory allocation and writes.

5.2 Changing memory accesses (1) (Csharpminor to
Cstacked)

Languages and Compilation The Csharpminor to Cstacked
phase bridges the semantic gap to the next intermediate language,
Cminor, by introducing a new semantics of the Csharpminor syn-
tax. That is, the program transformation from Csharpminor to
Cstacked is an identity function. However, the Cstacked memory
semantics closely follows that of Cminor, which differs radically
from Csharpminor.

To understand the motivation for introducing Cstacked, we
summarise the main features of the following compilation phase
(Cstacked to Cminor):

1. Local variable reads and writes are turned into explicit memory
accesses or local state reads and updates. Note that in Csharp-
minor, as in C, it is legal to take the address of a local vari-
able and even to pass it to another thread, so long as it is not
accessed outside its lifetime. Variables whose address is never
taken, however, are guaranteed to be thread-local, and the com-
piler lifts such variables from memory to local state. The re-
maining variables are kept in memory.

2. Individual local variable allocations are replaced with single
stack-frame allocation.

3. Switch-case statements are compiled to switch-table state-
ments.

Without the intermediate Cstacked phase, the first two steps
change memory semantics: step 1 replaces memory accesses to
local variables with local state manipulation that does not touch
memory, and step 2 replaces the individual variable (de)allocations
with a single stack-frame (de)allocation in Cminor.

To separate concerns, the Cstacked semantics only captures the
memory effects of the transformation, i.e., its transitions simulate
the compilation steps 1 and 2. Cstacked and Csharpminor only
differ in handling local variables. The change is most evident in
the types of local environments, which are part of the local state of
threads. In Csharpminor, a local environment is a map from names
to pointers and type information that essentially describes the size
of a local variable in memory:

var kind , vk ::=scalarmemory chunk | array size
cshm env , cshe ::=nil | ( id :( p , vk))::cshe

In Cstacked, a local environment consists of a stack frame pointer
and a map that assigns to each name a value or an offset within the
stack-frame:

st kind , sk ::=local v | stack scalarmemory chunk ofs
| stack array size ofs
cst items, csti ::=nil | ( id : sk)::csti
cst env , cste ::=( p , csti)

Note that Cstacked can keep values of local variables in the local
environment (when the correspondingst kind is local). This
contrasts with Csharpminor, which stores the values of all local
variables in memory.

The difference in the environment drives all the other changes
from Csharpminor to Cstacked: we adjust the rules for assignment,
the write of a function’s return value, local variable reads, function
entry, and function exit to handle local in-state variables and on-
stack variables separately. The most significant change is in func-
tion entry, where we scan the function body for the& operator and
compute the size of its stack frame together with offsets for on-
stack local variables.

We illustrate the radical difference between the memory seman-
tics of Csharpminor and Cstacked on the environment construction
and parameter binding in function entry. Consider the following
function:

int f(int i) {int j, k; g(i, &j, &k); return j+k;}

Fig. 6 shows the environment construction and argument binding
transitions following an invocation off with parameter1. The
states have the following meaning: the stateCall l f follows the
evaluation of actual parametersl in the invocation off ; Alloc l v e
is an intermediate state for allocation of local variablesv, wheree is
an accumulator for the environment andl is the list of values to be
bound to the function’s formal parameters;Bind l p e is a state for
binding parameter namesp to valuesl in environmente. TheAlloc
to Bind transition retrieves the parameter names from the state’s
continuation, which we omit in this example for brevity. Note that
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Figure 6. Function entry transitions in Csharpminor and Cstacked.

the states do not refer to memory directly. Instead, the transitions
expose the memory interaction in the labels. In Csharpminor, the
semantics of function entry allocates three different4-byte blocks,
one for parameteri, and two for variablesj andk. In Cstacked (and
in all languages between Cminor and MachAbstract), the function
entry semantics allocates a single8-byte stack frame for variables
j andk. No memory is reserved for variablei becausei’s value is
kept in the thread-local local environment. The binding transitions
are also different: Csharpminor writes the value1 of parameteri to
memory, but Cstacked simply stores the value in the environment.
Indeed, note the difference in the environment entry fori in the last
Bind states at the bottom of the figure: the Csharpminor entry only
contains a pointer to memory, whereas the Cstacked entry contains
the value of the variable.

Simulating Cstacked in Csharpminor Remember that the
Csharpminor-Cstacked phase switches from infinite memory to fi-
nite memory. This is necessary to be able to simulate the creation
of the Cstacked local environments by fresh memory allocation in
Csharpminor so that the memory cannot be allocated even by future
Cstacked allocations. We call the finite space used by Cstacked the
machine space. The remaining (infinite) part of the Csharpminor
memory space in other blocks is calledscratch space. Our rep-
resentation of pointers is of the form(b, ofs) whereb is an inte-
ger block identifier andofs ∈ {0, . . . , 232 − 1} is an offset. In
our semantics, the machine space pointers have blockb = 0, the
pointers with non-zerob are scratch space pointers. We simulate

Cstacked transitions so that we preserve equality of pointer values
in the states and the values in the (machine) memory:

• We simulate Cstacked stack frame allocation by allocations of
individual variables at the same (machine) memory location
as they have in Cstacked. Moreover, we allocate space for
Cstacked local environments in globally fresh blocks in the
scratch memory.

• Cstacked memory reads/writes are simulated by the same
reads/writes in Csharpminor.

• Cstacked local environment accesses (which areτ events in
Cstacked) are simulated by memory accesses to the correspond-
ing Csharpminor scratch memory.

• We simulate Cstacked stack frame deallocation by freeing the
individual variables, including the ones in non-machine mem-
ory, in Csharpminor.

The simulation relation on the states of the parallel composition
of threads and the TSO machine consists of three main compo-
nents: a thread state relation, a TSO buffer relation and a memory
relation.

Relating thread states The main source of difficulty is relat-
ing the local environments of Cstacked and Csharpminor because
the values of the local environments in Cstacked correspond to the
memory contents of Csharpminor. Therefore, the thread state sim-
ulation must relate Cstacked thread state with Csharpminor thread
stateandmemory.

In our TSO semantics, a thread’s view of memory may differ
from the real contents of the memory and from other threads’ views
of memory because of possibly pending writes, allocations and
frees in store buffers of this and other threads. We consider local
environments related for threadt if the values in the local environ-
ments in the Cstacked state are the same as the ones in the memory
of Csharpminor’s TSO machine witht’s buffer applied. Moreover,
we consider stack environments related if for each Cstacked envi-
ronment item of the stack kind with offsetofs, the corresponding
Csharpminor item’s pointer equals the sum of Cstacked stack frame
pointer andofs. Since Cstacked and Csharpminor only differ in
their environments, the thread state simulation relation is a natural
lifting of the environment relation.

All thread transitions preserve such a relation because they can
only affect the thread’s buffer. However, the simulation of applying
other threads’ buffers to the main memory (unbuffering) requires a
stronger relation. In particular, the state relation does not prevent
unbuffering in one thread from interfering with another thread’s
state relation. To get non-interference for unbuffering, we keep
track of memory partitioning among threads (this is also necessary
to make sure that threads do not free each others’ stack frames)
by augmenting the state relation with the partitions they own in
memory.

Relating buffers The buffer relation requires that a Cstacked
(stack-frame) allocation corresponds to individual disjoint Csharp-
minor allocations (of individual variables) that must be in the stack-
frame; Cstacked writes correspond to the same writes in Csharp-
minor buffer; frees in Cstacked buffer correspond to frees of sub-
ranges in Csharpminor. To relate frees, we must know the sizes of
objects in memory because a free label does not contain a size;
hence, we parametrise the buffer relation by the thread’s partition.
It is worth noting that the Csharpminor buffer may contain extra
memory labels for the local environment manipulation, which areτ
labels in Cstacked and thus do not appear in the Cstacked buffer. We
only require the operations in the labels to be valid in the thread’s
partition.
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Figure 7. Buffer relation.

Fig. 7 illustrates the buffer relation. Assuming that the TSO
machine inserts labels to the top of the buffer and applies the labels
to memory from the bottom, the buffer contents might be generated
by the functionf from the beginning of this section, where the
allocations correspond to the transitions from Fig. 6, the dotted part
of the buffer is generated by the functiong, the frees correspond to
local variable deallocations at function exit, and the write label is
issued by writing the return value to the caller’s stack frame. The
grey labels are the memory manipulation removed by the compiler,
or, more precisely, they are the labels introduced by the backward
simulation (note that they act on scratch memory).

In the simulation proof, the buffer relation says how to simulate
Cstacked buffer application in Csharpminor while preserving the
simulation relation. For example, if we are to simulate Cstacked
buffer application of thealloc label, we apply the three corre-
sponding allocations followed by the write from the Csharpminor
buffer.

Relating TSO states The whole-system simulation relation
states that there are Cstacked and Csharpminor partitionings, i.e.,
maps from thread ids to partitions such that

• The Csharpminor (resp. Cstacked) partitioning corresponds to
the ranges allocated in the Csharpminor (resp. Cstacked) TSO
machine’s memory. Moreover, the partitionings must be pair-
wise disjoint and for each thread, the Csharpminor machine
partitions must contain sub-ranges of Cstacked partitions. This
is necessary to guarantee that any Cstacked allocation can be
successfully simulated in Csharpminor4.

• The values in the machine memory are the same in Cstacked
and in Csharpminor. We need this property to establish that
reads of the same address give the same value in Cstacked and
in Csharpminor.

• Each thread’s Cstacked and Csharpminor buffers are related.

• For each threadt, the states oft in Csharpminor and Cstacked
are related in the partitions and memory updated byt’s buffers.

The relation also imposes several consistency invariants: to guar-
antee that Cstacked writes do not overwrite Csharpminor scratch
memory, we require scratch pointers only appear as pointers in
Csharpminor environments. With these ingredients, the relation on
the TSO states is a whole-system backward simulation relation.

4 A simulation of successful allocation is an interesting (andlengthy) ex-
ercise because one must show that in Csharpminor, no possible partial ap-
plication of other threads’ buffers conflicts with the simulated allocations.
The partial buffer applications create states that do not directly correspond
to any Cstacked state (e.g., partially allocated environments), forcing us to
invent a new simulation relation for this purpose.

5.3 Changing memory accesses (2) (MachAbs to MachConc)

In many respects, the simulation from MachAbs to MachConc
is similar to the Csharpminor-Cstacked simulation. MachAbs and
MachConc are again two different semantics for the same pro-
grams.

In MachAbs, the thread-local state consists of the current func-
tion being executed, the program counter, the stack pointer, the
register file, the current stack frame, and a sequence of the stack
frames for the function’s callers. Instructions that manipulate lo-
cal stack variables (getstack, setstack, getparam) perform a
τ -step, which accesses only the thread-local stack frames. In con-
trast, MachConc allocates the stack frames in (global) memory; so
the three aforementioned instructions generate read or write events
for communicating with the TSO machine.

The proof is by whole-system measured backward simulation,
which keeps track of which regions of MachConc’s memory are
local for a given thread (corresponding to the thread-local parts of
the stack frames) and which regions correspond to the possibly
shared parts of each thread’s stack frames. For the thread-local
parts, MachConc’s memory is related to the corresponding thread’s
frames only after the thread’s buffered updates have been applied,
whereas for the shared parts, MachConc’s memory is immediately
related to MachAbs’s memory (i.e., before any buffers have been
applied). In addition, the MachConc and the MachAbs buffers for
each thread are related in an element-wise manner if we ignore
the thread-local writes from the MachConc buffers (as they do
not correspond to any memory writes in MachAbs). Of course,
deciding whether a buffered write is thread-local depends on its
position inside the buffer, since preceding buffered allocations and
frees can affect whether an address is local or shared. The full
simulation relation also relates the states of each thread in the two
semantics and contains several administrative properties, such as
that the various thread-local and shared stack allocation ranges
are pairwise disjoint, and that stack frames are aligned to 16 byte
boundaries.

A distinguishing aspect of this simulation is that we compile
away stack-allocations and frees. In MachAbs, each non-empty
stack frame is allocated with a fresh address at function entry,
and deallocated at function return. Concretely, however, no mem-
ory allocation takes place; the stack pointer is simply incremented
or decremented accordingly. Therefore, in MachConc, each thread
is allocated a stack when created, and the stack pointer is simply
decremented at function entry and incremented at function return
(x86 stacks grow downwards). If decrementing the stack pointer
exceeds the allocated stack range, the semantics raises an ‘Out of
Memory’ error. In concrete x86 executions, this would correspond
to a segmentation fault due to stack overflow. Compiling away
stack-allocations and frees makes the simulation relation slightly
more intricate as the relations between buffers and between memo-
ries over the appropriate ranges are of equality on values; the Mach-
Abs values are less defined than the corresponding MachConc ones.
This is because a newly allocated stack frame in MachAbs will ini-
tially containVundef everywhere, whereas in MachConc the cor-
responding block, after decrementing the stack pointer, will contain
whatever values happened to be there.

5.4 The ‘easy’ phases, including optimisations

We have enabled all the CompCert 1.5 optimisations that are sound
under the TSO semantics. These are: constant propagation & partial
evaluation, a restricted version of CSE (common subexpression
elimination) that eliminates only common arithmetic expressions,
but does not eliminate common memory loads, redundant load
removal (as part of register allocation), branch tunneling, and tail
call optimisation. The only CompCert 1.5 optimisation we do not
perform is CSE for memory reads, because this is unsound under



the TSO memory model as demonstrated by the following example
(adapted from [Pug00]):

int x;

x = 0;
x = 1;

void f (int *p) {int a = x, b = *p, c = x;
printf("%d%d%d", a, b, c);}

f(&x);

CSE would replace the assignmentc = x with c = a, allowing
the second thread to print 010, a behaviour that is not allowed by
the TSO semantics.

Labellising CompCert’s definitions of RTL, LTL, LTLin, Lin-
ear, MachAbs, and MachConc and establishing that they are de-
terminate and receptive (so that they can be composed with the
TSO machine) was straightforward because the CompCert 1.5 def-
initions of these languages were already fully small-step. Porting
CompCert’s forward simulation proofs to threadwise forward sim-
ulation proofs and lifting them to measured whole-system back-
ward simulations using Theorems 2 and 3 was equally straightfor-
ward. (In the early days of the project, porting one phase took ap-
proximately two days, but by the end 3 hours were sufficient to
port constant propagation and lift it to a measured whole-system
backward simulation.) Elimination of redundant loads required a
small adaptation of the forward-to-backward simulation infrastruc-
ture. Moreover, the tail call optimisation and the spilling/reloading
phases may change some of the undefined values in the source se-
mantics to particular values in the target semantics requiring us to
prove another slightly more general version of Theorems 2 and 3.

5.5 The x86 backend

We adapted the x86 backend from CompCert 1.8 (CompCert 1.5
supported PowerPC and ARM only), with several notable differ-
ences in the semantics and proofs. Our x86 semantics is based on
a well-tested HOL4 formalisation of part of the x86 instruction
set [SSZN+09, Section 3]. The structure of our instruction AST
is closer to that of general x86 instructions, with their various com-
binations of immediate, register and addressing-mode arguments,
than that of CompCert 1.8, which is a flatter AST supporting just
the combinations used by the compiler. It does entail some addi-
tional complexity in the proof, however.

We replaced individual stackframe allocations with one-off
stack space allocation at the start of the thread and direct stack
pointer arithmetic. We detect stack overflow by checking that the
stack pointer register stays inside the thread’s stack space. If not,
the semantics issues an explicitoom event.

Using the more realistic single stack space gives us the added
benefit of direct access to function arguments and the return
address. This contrasts with CompCert that accesses arguments
through an indirect link to parent stackframe and models the re-
turn address with a virtual return-address register (similarly to Pow-
erPC’s real link register). The direct access to arguments buys us a
slight performance advantage over CompCert, while the direct re-
turn address access enables a more honest modelling of x86.

Several parts of the x86 semantics are less realistic than we
would wish. The most notable abstraction in the semantics is mod-
elling register and memory contents by the high-levelvalue
datatype (as in CompCert), which is a discriminated union of point-
ers, integers, floats and undefined value, instead of the more appro-
priate bit-vector representation.

5.6 Running CompCertTSO

Despite not making any attempt at optimising the generated code
results on simple sequential and concurrent benchmarks (mostly
drawn from [Com09]) show that our generated code runs at about
75% of the performance ofgcc -O1. As a more representative
example, we have also successfully compiled Fraser’s lock-free

skiplist algorithm [Fra03]; we are roughly 69% of the perfor-
mance ofgcc -O1 on this benchmark. Porting required only three
changes, all to in-line assembly macros, two of which were replac-
ing macros forCAS andMFENCE by the ClightTSO constructs.

6. Discussion
We reflect briefly on the impact of the tool chain and proof style
that we employed to ease development of our compiler.

The main tool was Coq. Here we found the proof style advo-
cated by SSREFLECT [GM07] to be helpful in ensuring proof ro-
bustness, but to retain backward compatibility with CompCert, we
employed it selectively. Occasionally, we used specialised tactics to
automate some of the more tedious proofs, such as the threadwise
determinacy and receptiveness of all the languages.

To give the reader a flavour for the effort involved in the de-
velopment, we list the number of lines of proof and specifications
(definitions and statements of lemmas) for some of the important
(and fully proven) phases of our compiler.

Phases Specs Proofs
TSO machine & memory 2079 2746
Simulations (§4) 1075 1810
ClightTSO definition 2010 186
ClightTSO-Csharpminor (§5.1) 1452 2379
Csharpminor-Cstacked (§5.2) 3481 8208
RTL-Linear (§5.4) 7141 5098
MachConc-Asm (§5.5) 2594 2803

Of those the RTL-Linear phases are adaptations of existing code (7
phases in total), as is the compiler part of MachConc-Asm; the rest
is largely new. For comparison, CompCert 1.5 has roughly 31K
lines of specifications and 23K lines of proofs for all the phases.
The project has taken approximately 36 man-months.

The semantics of ClightTSO is given as an inductively defined
relation, as usual and following Clight. To make it easier to check
the integrity of the definition, we also implemented a functional
characterisation of the threadwise single-step transition relation and
proved that the two definitions are equivalent. By extracting the
functional version into an OCaml program serving as an interpreter,
we were able to test the semantics on sample ClightTSO programs.
This revealed a number of subtle errors in our original definitions.
It would also be worth testing our x86 semantics against processor
behaviour, as we did for a HOL4 x86 semantics in previous work
with Myreen [SSZN+09].

A mechanised theorem is only useful if its statement can be un-
derstood, and for CompCertTSO the overall correctness theorem
involves the ClightTSO and x86 semantics. We defined ClightTSO
using Ott [SZNO+10], a tool that generates Coq and LATEX def-
initions from a single source; it also helped in enforcing naming
conventions. The ClightTSO grammar and semantic rules, and the
terms in examples are all parsed and automatically typeset.

7. Related Work
Research on verified compilation of sequential languages has a long
history. Notable recent work includes CompCert, which we have
already discussed in detail; Chlipala’s compiler from a small im-
pure functional language to an idealised assembly language, fo-
cussing on Coq proof automation [Chl10]; Myreen’s JIT compiler
from a bytecode to x86 [Myr10]; and Benton and Hur’s compila-
tion [BH09] from a simply typed functional language to a low-level
SECD machine. This last differs from most other work in giving
a compositional understanding of compiler correctness rather than
just a relationship between the whole-program behaviours of source
and target.



Verified compilation of concurrent languages has received much
less attention. Perhaps the most notable example is the work of
Lochbihler [Loc10] extending Jinja (a compiler from sequential
Java to JVM, verified in Isabelle/HOL) to concurrency. As here,
shifting to a small-step semantics required non-trivial proof effort,
but the Jinja memory accesses in source and target are very closely
related, so issues of relaxed-memory behaviour, memory layout,
finite memory, and so on seem to have played no role. To the
best of our knowledge, there is no prior work addressing verified
compilation for a relaxed-memory concurrent language.

An alternative approach to extending CompCert with concur-
rency has been suggested by Hobor et al. [HAZN08]. They de-
fine a concurrent version of Cminor equipped with a concurrent
separation logic. The idea is to do verifying compilation for pro-
grams that have been proved correct in such a logic, and theirora-
cle semanticsfor concurrent Cminor (factored rather differently to
ours) is intended to make that possible without extensive refactor-
ing of the CompCert proofs. That is in some sense complementary
to our work: we focus on intrinsically racy concurrent algorithms,
whereas programs proved correct in that logic are known to be race
free (as most application code is expected to be). However, we con-
jecture that an oracle semantics could be defined directly above the
labellised semantics that we use.

ClightTSO is not intended as a proposal for a complete lan-
guage: its load and store operations are loosely analogous to the
C++0x atomics [Bec10, BOS+11] and Javavolatiles [MPA05],
and it has no distinguished class of memory operations which are
supposed to be thread-local (and hence which a compiler is li-
cenced to optimise between synchronisation points). It is closer to
the pseudocode or C-with-macros that is commonly used for con-
current shared-memory algorithms, and the ClightTSO operations
can be implemented efficiently, with simple x86 loads and stores.
Volatiles and C++0x SC atomics need heavier implementations,
though C++0x also has cheaperlow-level atomicswith weaker se-
mantics that are cheaper to implement. Java and C++0x also have
more complex semantics, albeit not specific to TSO processors (es-
sentially x86 and Sparc).

8. Conclusion
The shift to commodity multicore processors has recently made
relaxed-memory concurrent computation pervasive, but semantics
and verification in this setting is a long-standing problem. As Lam-
port wrote in 1979 [Lam79]:

For some applications, achieving sequential consistency may not be
worth the price of slowing down the processors. In this case,one must
be aware that conventional methods for designing multiprocess algo-
rithms cannot be relied upon to produce correctly executingprograms.
Protocols for synchronizing the processors must be designed at the
lowest level of the machine instruction code, and verifyingtheir cor-
rectness becomes a monumental task.

This paper is a step towards putting them on a rigorous foundation,
both for programming and verification.
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S. Sarkar, and R. Strniša. Ott: Effective tool support for the
working semanticist.J. Funct. Program., 20(1):71–122, 2010.

[TVD10] E. Torlak, M. Vaziri, and J. Dolby. MemSAT: checking
axiomatic specifications of memory models. InPLDI, 2010.


