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Abstract

Service providers tend to place multiple routers in a single location called a Point of Presence (PoP),
which serves a certain area. Inferring PoP level maps is gaining interest due to its importance to many
areas, e.g., for tracking the Internet evolution and studying its properties. In this thesis I introduce
a novel structural approach to automatically generate large scale PoP level maps using traceroute
measurements from multiple locations. The PoPs are first identified based on their structure, and are
then assigned a location using information from several geo-location databases. I discuss the tradeoffs
in this approach and provide extensive validation details. The generated maps can be widely used for
research, and I provide some possible directions.

The geographical location of Internet IP addresses is important for academic research, commercial
and homeland security applications. Thus, both commercial and academic databases and tools are
available for mapping IP addresses to geographic locations. Evaluating the accuracy of these mapping
services is complex since obtaining diverse large scale ground truth is very hard. As an example for
the usage of PoPs, I show how they can be used to test the accuracy of IP Geolocation services.
I am able to group close to 100,000 IP addresses worldwide into groups that are known to share
a geo-location with high confidence. I provide an insight into the strength and weaknesses of IP
geolocation databases, and discuss their accuracy and encountered anomalies. I show that while
commercial databases claim to have a very high level of accuracy, the correctness of their databases
is questionable. Academic tools, based on delay measurements, were shown to have a large range of
error as well. In the third part of the thesis, I present a novel algorithm that crawls the Internet PoP
level graph to improve the accuracy of geolocation, combining information from both geolocation
databases and delay measurements. The algorithm uses PoPs with high level of confidence (as defined
in the first part of the thesis) to improve the location of PoPs with lower confidence, iteratively, and
then geolocate IP addresses. I show that the results provided by the algorithm are more accurate than
geolocation databases information while avoiding the pitfalls of delay measurements’ usage.

Considerable research is done in order to infer the undisclosed commercial relationships between
ASes. These relationships, which have been commonly classified to four distinct Type of Relation-
ships (ToRs), dictate the routing policies between ASes. The next part of this work leverages PoP
level maps to improve AS ToR inference. It proposes a method which uses PoP level maps to find
complex AS relationships and detect anomalies on the AS relationship level. I present experimental
results of using the method on ToR reported by CAIDA and report several types of anomalies and
errors. The results demonstrate the benefits of using PoP level maps for ToR inference, requiring
considerably less resources than other methods theoretically capable of detecting similar phenomena.

The last part of this work sets the foundations to the development of an evolution model of the In-
ternet based on the PoP level. The PoP topologies of the Internet are annotated with geographical,
economical and demographical information to achieve an understanding of the dynamics of the Inter-
net’s structure at different time periods, in order to identify the constitutive laws of Internet evolution.
These can be used to develop a realistic topology generator and a reliable forecast framework that can
be used to predict the size and growth of the Internet as economies grow, demographics change, and
as-yet unattached parts of the world connect.
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I Introduction

The study of the Internet topology attracted a great deal of work over the years. A good survey

of these efforts can be found in [27, 28, 125]. Internet topology maps are used for a vast number of

applications, such as building models of the Internet [83], studying the robustness of the network [29],

network management [102] and improving routing protocols design [88]. There are several levels

Internet maps are presented at, each level of abstraction is suitable for studying different aspects of

the network. The most detailed level is the IP level, which represents separately each and every IP

interface connected to the network. Many projects map the Internet at the IP level, such as Skitter

[55], RIPE NCC’s Test Traffic Measurement [38], iPlane [72], DIMES [25], Ark [58], and more.

This level is far too detailed to comprehend the network map as well as understand tradeoffs between

connectivity and redundancy [125], and the large number of entities makes it very hard to handle.

One level above the IP level is the router level, aggregating multiple IP interface addresses to a router,

using alias resolution, as done by projects such as Mercator [44], MIDAR [64], Ally [105], and

RadarGun [15]. While being less detailed than the IP level, this level of aggregation is still highly

detailed and difficult to handle. The most coarse level is the Autonomous System (AS) level. It is

most commonly used to draw Internet maps, as it is relatively small (tens of thousands of ASes) and

therefore relatively easy to handle: there is only one node for every AS, and a link between two nodes

is drown if the corresponding ASes have a direct peering relationship. There are different methods to

discover the Internet’s AS-level topology, from using traceroutes, as done in Ark, iPlane, and DIMES,

through BGP announcements, as done by Routeviews [117] to Internet Routing Registries (IRR) [79].

One limitation of using AS information for Internet mapping is that AS sizes may differ by orders

of magnitude. While a large AS can span an entire continent, and a small one can serve a small

community, yet both seem identical at the AS level map.

An interim level between the AS and the router graphs is the PoP level. Service providers tend to

place multiple routers in a single location called a Point of Presence (PoP), which serves a certain

geographical area. A PoP is defined as a group of routers, which belong to the same AS and are

physically located at the same building or campus.

5



AS1
AS2

AS3

PoPI

PoPII PoP1

PoP2 PoP3

PoP4

PoPa
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PoPc

AS Node

PoP Node

Router Node

Figure 1.1: The Internet’s Levels of Aggregation

Figure 1.1 demonstrates the Internet aggregation levels. The figure presents for clarity only the AS,

PoP, and router levels. Every AS, marked by a large circle, is made of a network of routers, marked

by small light gray circles. The routers may be part of a PoP (colored dark gray), or reside outside of a

PoP. A router which is not part of a PoP will still be connected to other routers, eventually connecting

to a PoP. The points of presence are connected to other PoPs within the same AS as well as to PoPs

outside their AS, thus creating AS level connectivity.

The technological nature of PoPs varies between service providers as well as within the same network.

Some PoPs operate entirely on the IP level, while other PoPs employ MPLS and VPLS switching. In

many cases, service provider mix switching and routing within the same PoP, combining both MPLS

and IP. In more rare cases, in Optical Transport Networks, the PoP may only serve as a channel based

cross connect. A good example of this mix is shown in CenturyLink’s network [17]: In some cities,

such as Atlanta, Los Angeles, and New York City, both IP and MPLS/VPLS are used. In other cities,

such as Sacramento, Duluth, and Cambridge, MA, there is an IP PoP, while in cities such as New

Orleans, San Antonio, and San Diego only MPLS/VPLS is used. Additional examples can be found

in the TeliaSonera network map [111] and XO network map [127] 1. Service provider also tend

to distinguish between different types of PoPs, often referring to the hierarchy in the network, e.g.,

1This information was also confirmed with a large networking equipment provider
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access or backbone PoP [17] or to the area it covers, e.g., a metro PoP [127]. A declining trend is to

refer to PoPs by their capacity, such as GigaPoP [61] or TeraPoP2 [87].

When studying the entire network, and not only specific ISPs, PoP maps give a better level of aggre-

gation than router level maps with a minimal loss of information. PoP level graphs provide the ability

to examine the size of each AS network by the number of physical co-locations and their connec-

tivity instead of by the number of its routers and IP links. Points of presence can be annotated with

geographical location, as well as information about the size of the PoP. PoP maps can also preserve

routing information by annotating links connecting PoPs that belong to different ASes with the type

of relationship (ToR). Thus, using PoP level graphs it is possible to detect important nodes of the

network and understand network dynamics as well as many more applications.

This chapter surveys the study of Internet PoP level maps, proving an overview of all related works

done so far in this field. The chapter is organized as follows: Section 2.1 discusses classification of

IP addresses into PoPs and surveys existing works in this field. Section 2.2 describes some methods

for assigning a location to points of presence. The validation efforts of PoP level maps is surveyed in

Section 2.3. In Section 2.4 I discuss applications of the PoP level graphs by various disciplines.

2As called by Qwest, before Qwest was acquired by CenturyLink
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II Related Work

2.1 Classification of PoPs

The first attempts to explore the PoP level graph were done by Andersen et al. [9] and Spring et

al. [105]. Spring et al. [105] tried to infer ISP topologies both on the router and the PoP level.

The focus of their contribution was in alias resolution and router identification based on in-order IP

identifiers and introducing Rocketfuel, their mapping engine. The PoP resolution was entirely DNS

based. To this end, they inferred ISP naming convention. For example, s1-bb11-nyc-3.0.sprintlink.net

is indicated to be a Sprint backbone (bb11) router in New York City (nyc). The naming convention was

deduced from the list of router names they gathered during the alias resolution and router identification

stage with some city names taken from [82]. For routers with no DNS names or where the names

lacked location information, the locations of neighbor routers were used. The generated PoP map did

not distinguish between backbone network nodes, data centers, or private peering points.

Ten ISPs were tested by Spring et al. and the number of PoPs discovered per ISP ranged from 11

(AS4755, VSNL India) to 122 (AS2914, Verio US). The PoPs’ analysis showed that the designs of

PoPs were relatively similar: generic PoPs are built from a few routers connected in a mesh while

in large PoPs the access routers connect one or more routers from a neighboring domain and to two

backbone routers for redundancy. The backbone routers connect both to routers within the same PoP

as well as to routers in other PoPs that connect to the ISP’s backbone. The result showed that small

PoPs had for redundancy two backbone PoPs, but in large PoPs with 20 routers or more, the number

of backbone routers varied significantly, from two to thirty.

Andersen et al. [9] used passive monitoring of BGP messages to cluster IP prefixes into PoPs: In

the preprocessing stage, BGP messages are grouped into time intervals of I seconds and massive

updates due to session resets are filtered. The clustering stage is based on a distance metric, which

is a function that determines how closely two items are. The distance metric used is the correlation

coefficient between every pair of BGP update vectors. u(t)p denotes the update vector for each prefix
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p:

u(t)p =

1 i f p updated during interval t

0 otherwise
(2.1)

C(p1, p2) is the correlation coefficient between two prefixes, with up being the average of u(t)p and σp

its variance.

C(p1, p2) =
1
n ∑

n
t=1(up1

(t)−up1)(up2
(t)−up2)√

σ2
p1

√
σ2

p2

(2.2)

A Single-linkage clustering algorithm [132] is applied for grouping prefixes. Using the distance met-

ric presented by Equation 2.2, each pairwise distance between two prefixes is computed and prefixes

with time window of 30 seconds are grouped.

Andersen et al. used BGP updates from two upstream feeds: a commercial feed via Genuity (AS

1), and an Internet2 feed via the Northeast Exchange (AS 10578). Due to their configuration, only

the best route to every prefix was recorded, thus some paths were omitted from their dataset. The

clustering was conducted on 2338 prefixes announced by UUNET (AS 701) and 1310 prefixes an-

nounced by AT&T (AS7018) and ended up with 6 clusters in UUNET and 5 clusters in AT&T, with

the number of clusters strongly dependent on the number of pairwise comparisons during the clus-

tering phase. The analysis observed the effect of the number of matches on the number of clusters

and their accuracy. The validation was conducted based on three methods: IP address similarity (the

number of IP addresses that separate two prefixes), Ratio of shared to unshared traceroute path length

(in hops) and DNS-based PoP comparison. The last means that they extracted a router location from

the ISP’s naming convention, managing to assign 97% of UUNET hops and somewhat less for AT&T.

Their results showed that correlation-based clustering grouped the UUNET prefixes into about 1200

clusters while with over 95% PoP-level accuracy as well as 900 clusters in AT&T with 97% accuracy.

The accuracy is defined as a match between the naming conventions. The concluding observation is

that clusters that are announced and withdrawn together tend to be located at the same PoP.

The iPlane project [73, 72] generates PoP level maps based on the Rocketfuel’s approach, with several

improvements: First, they determine the DNS names assigned to network interfaces, using two data

sources: Rocketfuel’s undns utility [105] and data from the Sarangworld project [2]. DNS alone is
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not enough, as some interfaces have no DNS names, others have no rules to infer their DNS name and

some interfaces may be misnamed, thus incorrect locations can be inferred [130]. For the last, inter-

faced are probed using ICMP ECHO packets and interfaces where the RTT is smaller than expected

are filtered. The main new contribution in this work is an algorithm that clusters router interfaces

based on their responses when probed from a large number of vantage points. iPlane estimates the

number of hops on the reverse path back from a router to the vantage point, guessing the initial TTL

value used by the router. The assumption is that routers in the same AS and geographically co-located

take the same reverse path back to the vantage point from which they were probed, while routers that

are not co-located will not display similar reverse path. iPlane detects about 135K PoPs, about 56K

of them in singleton clusters, meaning a single router in a cluster. iPlane uses the inter-cluster con-

nectivity to generate PoP level connectivity, using bidirectional links. The delay measured on links

is as follows: For every inter-PoP link, iPlane considers all the corresponding inter-IP links that are

measured in traceroutes. From every traceroute in which any such inter-IP link is observed, obtain

one latency sample for the link as the difference in RTTs to either end of the link and drop all la-

tency samples that are below 0. Compute the latency for the inter-PoP link as the median of all the

remaining samples for it. If there are no samples left after ignoring all the negative latency samples,

the latency of the link is indicated as -9999 (about 6% of the links).

Yoshida et al. [129] mapped PoP-paths in Japan using thirteen dedicated measurement nodes and

measuring the delay between these nodes. They tried to map the core network delay, derived from

the end-to-end delays and access delays and their corresponding PoP level paths, using a set of delay

equations:

delay(src,dst) = adsrc +addst + ∑
p,q∈N

xp,q× cdp,q +Esrc,dst (2.3)

In the equation, N denotes a set of candidate PoP locations of a measured ISP; p and q satisfy p,q ∈ N;

adsrc and addst denote the access delay at the source and the destination; cdp,q denotes a core delay

between p and q; Esrc,dst is the measurement error of the delay; xp,q = 1 if a direct path between p

and q exists and the path is used to connect between src and dst, otherwise xp,q = 0. delay(src,dst),

adsrc and addst are measurable through end-to-end measurements and cdp,q can be derived leveraging

the distance between p and q. To solve the equation, several restrictions are applied. One of the

assumptions used is that the network connections are deployed along other infrastructure services,
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such as railroads and expressways.

The work distinguished between five types of networks, differing by the way the backbone routers are

structured and by the way layer two is used. For example, if layer three being used in every location

in the network, or are layer three routers being used only in highly populated cities.

A different approach to PoP level maps is presented by Rasti et al. [89]. They term an eyeball AS as an

individual Autonomous Systems that directly provides service to end-users and use the eyeball ASes

to estimate the PoP-level footprint. The basic assumption is that each AS must have a PoP in areas it

has a high concentration of customers. Therefore, the AS eyeball offers a view of that AS’s PoP-level

infrastructure, referred to as PoP-level footprint. The algorithm begins by gathering a large number

of end-user IP addresses, collected by crawling P2P applications. The users are then mapped to cities

using geolocation services (discussed in Section 2.2) and are grouped to ASes based on Routeview’s

BGP tables [117]. Given the locations of the users, the geographical regions where the AS offers

service to end-users is inferred using KDE (Kernel Density Estimation). To extract the PoP footprint,

local maxima D(i) are detected in the density function, with the highest peak denoted by Dmax. PoPs

are indicated by any peak D(i) that is within a given range from Dmax, meaning D(i)> α×Dmax, with

α set to 0.01. The work focused on 672 ASes and found an average of 13.6 PoPs per AS when using

40km range as the kernel function bandwidth.

To conclude, there are several different approaches to the classification of IP addresses into PoPs.

These methods are mostly stochastic and individual IPs may be placed in the wrong PoP. Still, group-

ing the IP addresses into PoPs is just the first stage of generating PoP level maps, as discussed in the

following sections.

2.2 Geolocation of PoPs

An important feature of PoP level maps is the ability to assign a geographical location to PoPs. The

assignment is done using geolocation mapping services, providing longitude and latitude or a city

and a country per IP address. Geolocation mapping services can be divided to several groups. The

first group of geolocation mapping services is geolocation databases, holding a table mapping every

IP address to its geographical location. Geolocation databases range from free services to services

that cost tens of thousands of dollars a year. The most basic services use DNS resolution as the
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basis for the database [105], while others use proprietary means such as random forest classifier rules,

hand-labeled hostnames [4], user’s information provided by partners [24], and more.

Another group of geolocation mapping services is based on network measurements. IP2Geo [82] was

one of the first to suggest a measurement-based approach to approximate the geographical distance

of network hosts. A more mature approach is constraint based geolocation [49], using several delay

constraints to infer the location of a network host by a triangulation-like method. Later works, such

as Octant [126] used a geometric approach to localize nodes within a 22 miles radius. Katz-Bassett

et al. [63] suggested topology based geolocation using link delay to improve the location of nodes.

Yoshida et al. [129] used end-to-end communication delay measurements to infer PoP level topology

between thirteen cities in Japan. Eriksson et al. [30] applied a learning based approach to improve

geolocation. They reduced IP geolocation to a machine learning classification problem and used

Naive Bayes framework to increase geolocation accuracy.

One online geolocation service that allows querying specific IP addresses is Spotter, which is based

on a work by Laki et al. [70]. Spotter uses a probabilistic geolocation approach, which is based on

a statistical analysis of the relationship between network delay and geographic distance. To approxi-

mate the location of a target, Spotter measures propagation delays from landmarks to the target, and

then converts the delays into geographic distances based on a delay-distance model. The resulting set

of distance constraints is used to determine the target’s estimated location with a triangulation-like

method.

Not many works have focused on the accuracy of geolocation databases, but those who did showed

them to be inaccurate: In 2008, Siwpersad et al. [103] examined the accuracy of Maxmind [76] and

IP2Location [51]. They assessed their resolution and confidence area and concluded that their resolu-

tion is too coarse and that active measurements provide a more accurate alternative. Gueye et al. [47]

investigated the imprecision of relying on the location of blocks of IP addresses to locate Internet

hosts and concluded that geolocation information coming from exhaustive tabulation may contain an

implicit imprecision. Muir and Oorschot [81] conducted a survey of geolocation techniques used

by geolocation databases and examined means for evasion/circumvention from a security standpoint.

Poese et al. [84] studied five databases and showed that while on the country-level they are rather

accurate, the databases are highly biased towards a few popular countries. Using ground truth infor-

mation from one large European ISP and using DNS names as clues for two large other major ISPs,
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Poese et al. showed that the evaluated databases performed poorly on those ISPs.

Most of the PoP extraction algorithms described in Section 2.1 use a crude method of geolocation as

the basis for their geolocation: DNS names. This is an easy to use method, leveraging the fact that

the router’s location is often written in the router’s name used by the ISP. However, DNS suffers from

several problems: many interfaces do not have a DNS name assigned to them, and incorrect locations

are inferred when interfaces are misnamed [130]. In addition, rules for inferring the locations of all

DNS names do not exist, and require some manual adjustments. Assigning a geographical location to

PoPs is therefore a difficult task which is hard to validate without ground truth information.

2.3 PoP Maps Validation

An important question when examining PoP level maps is how the map was validated. Accuracy is

the most important validation evaluation aspect, and it entails multiple facets.

• How accurate is the classification of IP addresses to PoPs?

• How accurate is the assignment of PoPs to geographic locations?

• How accurate is the inference of PoP level links and their delay?

In addition, one may also want to evaluate the coverage of PoPs, meaning how many of the actual

ISP’s PoPs are covered by the extracted PoPs map, and how many IPs of a PoP are assigned to it. The

effort required to validate PoP level maps is thus considerably high.

Spring et al. [105] verified completeness with the help of three ISPs. The ISPs verified that no

PoPs or inter-PoP links were missing. However, in two of the cases there were spurious links. In

addition, some access PoPs were missing. Further validation was conducted on the router level, both

for completeness, impact of measurement reductions and alias resolution. The alias resolution, used

for PoPs detection, failed for about 10% of the IP addresses, and in Sprint network, 63 out of 303

routers were resolved incorrectly.

Andersen et al. [9] did not focus on the validation of their PoP maps results, rather they presented the

impact of different aspects of their clustering algorithm on the results. The PoP level maps were in

fact used to validate the clustering results.
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The iPlane PoP level maps [72], which are mostly based on the Rocketfuel’s approach, focus their

validation efforts on the inter-PoP connectivity. The validation uses measurements taken from 37

Planet Lab nodes to destinations in 100 random prefix groups. The first step in the validation is end-

to-end latency error estimation. Next, the two path based and latency based delay estimations are

compared to the results of Vivaldi [20]. They find that 73% of their predictions obtained using the

path composition approach are within 20 ms of the actual latency.

AS eyeballs [89] was validated by comparing the AS eyeballs results with public PoP maps informa-

tion published by 45 ASes. The scope of the averaging done using the KDE method is controlled by

the bandwidth of a kernel function. The validation showed that when kernel bandwidth was 40km, for

60% of ASes only 20% of the PoP locations matched the service provider’s map. However, for the top

10% ASes the locations match was over 50%. On the average, 41% of the PoP locations matched the

location on the reference ISP’s map. Increasing the kernel bandwidth to 80km increased the match to

60%, but decreased the number of PoPs found. Rasti et al. found that two causes for inaccuracy in

their approach were the existence of multiple PoPs within a short distance and the placement of some

PoPs away from major end users concentrations. They also compared their map with DIMES’ map

and found that for 80% of the eyeball ASes, the identified PoPs were a superset of DIMES’.

The Internet Topology Zoo [66] maps originate from the network operators, and are thus considered

reliable. While an ISP may present a somewhat simplified network map, this aspect can be consid-

ered negligible. A possible concern is the accuracy of maps’ translation into transcripts: The maps

are manually annotated by the project’s team, with one researcher doing the annotation and another

reviewing his work, however both works are manual. The project also omits large networks with

graphic links that are tangled or hard to follow.

For all the cases presented above, the validation of the generated PoPs was a very hard task: While

service providers provide graphic maps of their PoPs, the PoP’s actual details and the address range

used within the PoP’s routers are being kept confidential. PoP maps are therefore best validated when

checked by the ISP, yet this is not possible on a large scale map.
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2.4 Applications of PoP Maps

PoP level maps can be used for a variety of applications. Understanding network topology and dy-

namics is one clear usage, as was done by Spring et al. [105]. Teixeira et al. [109] used PoP level

topologies to study path diversity in ISP networks. The PoP level maps can also be used to evaluate

and validate results of other properties of the networks, as done by Andersen et al. [9] who used them

to check their clustering algorithm. Several works have considered the PoP level topology for delay

estimation and path prediction [71, 72].

A new look at the Internet’s topology is through dual AS/PoP maps: maps of the Internet that combine

both the AS and the PoP level graph views, leveraging the advantages of each level of aggregation.

One application of dual AS/PoP maps is the study of types of relationships between ASes. Using

the geographical location of PoPs, one can explore not only the connectivity between ASes on the

PoP level, but also how the relations between service providers change based on the location of the

PoPs. Some work in this field was done by Rasti et al. [89], who looked at AS connectivity at the

"Edge" in AS1267 (Infostrada) and AS8234 (RAI). They found that actual peering is significantly

more complex than expected, e.g., a single PoP may use five peering PoPs in different ASes for

upstream. Another application is distance estimation: instead of using router-level path stitching, one

can find the shortest path between every two nodes on the dual map. The shortest path can then be

used to find the distance between the two nodes. PoP level maps reduce the number of edges used for

the path stitching, as multiple routers are aggregated into a single PoP, and the delay-based distance

estimation is more accurate as the delay estimation of a PoP level link is better than that of a single

IP-level edge. Last, the PoP location can be used to improve geolocation of each node and thus the

distance estimation between the pair of nodes.

PoP level maps may also be useful for research related to homeland security. Schneider et al. [94]

used DIMES’ PoP level maps, which were generated as part of this work, to study the mitigation

of malicious attacks on networks. They considered attacks on Internet infrastructure and found that

cutting the power to 12% of the PoPs and 10% of power stations will affect 90% of the networks

integrity. Following, they suggested ways to improve the robustness of the network by using link

changes.

Annotating the PoP level maps with geographic, economic and demographic information, one can
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achieve an understanding of the dynamics of the Internet’s structure at short and medium time scales,

in order to identify the constitutive laws of Internet evolution. These can be used to develop a realistic

topology generator and a reliable forecast framework that can be used to predict the size and growth

of the Internet as economies grow, demographics change, and as-yet unattached parts of the world

connect.

2.5 AS Relationship Inference

Inferring the commercial relationships between service providers is an important line of research.

The knowledge gained through the understanding of commercial relationships is used in research on

Internet routing, can improve network performance as well as help increase its robustness. However,

commercial relations between service providers are interesting first and foremost as they determine

BGP routing policies between ASes. Contractual commercial agreements between Administrative

Domains (which control Autonomous Systems) are usually not publicly disclosed, as so inferring

them from measurement data has been a focus of many works. These relationships can be classified

into three Types of Relationships (ToR) [57]: customer-to-provider (c2p), peer-to-peer (p2p), and

sibling-to-sibling (s2s). Gao [35] was the first to present a method of inferring these relationships

from publicly available BGP route data, and introduced the valley free AS path rule. An AS path is

considered valley free if it consists of an uphill segment (customer to provider links), followed by

an optional peer to peer link and a downhill segment (provider to customer links). Subramanian et

al. [107] formally defined the “ToR Problem” as an optimization problem that seeks to find a ToR

labeling for an AS graph which maximizes the number of valley-free paths. Di Battista et al. [13]

and Erlebach et al. [31] showed that the ToR problem is NP-complete, and developed mathemati-

cally rigorous approximate solutions to the problem. Dimitropoulos et al. [26] acknowledged that

a solution that maximizes the number of valley-free paths is not necessarily correct, and improved

AS relationship detection by taking AS degrees into consideration. Shavitt et al. [98] suggested a

near-deterministic algorithm for solving the ToR problem using an Internet Core, a subgraph of the

Internet graph which contains the top-level providers. Their algorithm inferred AS relationships in

AS paths by examining their relation to the Internet core.

The relationship between two ASes is sometimes more complex than a single ToR between all border

routers. Gao [35] mentioned complex AS relationships as a cause for excessive sibling-sibling ToR
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inference. Subramanian et al. [107] introduced AS path anomalies as specific patterns which cause

paths not to be valley free. Dimitropoulos et al. [26] conducted a survey with several large ISPs, and

revealed backup links and hybrid c2p/p2p relationships. A hybrid relationship is one in which two

ASes connect in multiple peering points and have different types of relationships at these points.

2.6 Internet Evolution Models

Understanding the Internet’s infrastructure and topology alone is not enough. It is also important

to learn the dynamics of the network and correlate its structure to its drivers in the physical world.

These drivers may stem from economic incentives, geographic limitations or any other day-to-day life

aspect, as was shown in previous works; Many models have been suggested over the years to explain

the Internet’s evolution, most of them were surveyed and discussed by Pastor-Satorass and Vespignani

[83], but there are also later works such as Dhamdhere and Dovrolis [22], Wang and Loguinov [124]

and Shakkottai et al. [96]. The models are mostly evolving in the abstract Internet AS graph with no

connection to the real world geography, or with some naive connection with the Internet underlying

geography. Some of these works, such as [23], look at the economic aspects of AS level network

topology from the ISP’s Type of Relationship (ToR) direction.

As time goes by, there is a growing understanding that the evolution of an Internet region should be

estimated by tightly correlating the Internet structure with its underlying geography, and the changes

in the economic, social, and even political evolution of the region in question. For example, as the

economic status of a developing country improves, it results in a greater demand for Internet connec-

tivity, leading to a growth in the Internet graph related to this region. There are only a few works

in this research direction due to the difficulty of obtaining a good Internet map: Yook et al.[128]

compared router, domain and population density in economically developed areas of the world and

indicated that each of the three sets form a fractal with dimension D f = 1.5± 0.1. Combined with

preferential link attachment they proposed an evolution model. Lakhina et al. [69] studied the ge-

ographical locations of Internet routers and showed that its density varied widely across the world,

but that there is a strong superlinear relationship to population density in economically homogeneous

regions. They also showed that the majority of link formation is based on geographic distance, and

applied both aspects to the AS graph. Hameed et al. [50] used Rocketfuel’s [105] PoP Topology

and combined it with geographical locations based on population density and technology penetration.
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They validated their results against the published PoPs locations of seven ISPs within the US. Mátray

et al. [74] examined the spatial properties of the Internet topology and routing using Spotter. They

analyzed the direction-dependence of geographic deviations and gave a description of router density

in terms of the geographic layout of end-to-end paths.

The evolution of the Internet and its relationships to geographic and economic factors is also re-

searched in other fields of study, though applying different methods and on a different scale. Roller

and Waverman [91] studied how telecommunications infrastructure affects economic growth. This

work was followed by other works, such as [19] and [68] that studied the economic impact of broad-

band infrastructure on growth. A recent research by Kolko [67] studied the relationship between

broadband expansion and local economic growth in the US, but surveyed more indicators, such as

industry type, population density, employment and income. He found limited economic benefits for

local residents stemming from broadband infrastructure. A different type of research comes from the

field of urban studies, such as Vinciguerra et al. [123]. They modelled the evolution of infrastructure

networks as a preferential attachment process, yet assumed that geographical distance and country

borders provide barriers to link formation in infrastructure networks.

18



III Classification of PoPs

3.1 PoP Extraction Algorithm1

We define a PoP as a group of routers which belong to a single AS and are physically located at the

same building or campus. In most cases [93, 45] the PoP consists of two or more backbone/core

routers and a number of client/access routers. The client/access routers are connected redundantly to

more than one core router, while the core routers are connected to the core network of the ISP. Figure

3.1(a) shows a simple interconnection of four routers with a small number of interfaces. Assuming

that during traceroute measurements ICMP replies are received from the incoming interfaces of the

routers, the graph shown in Figure 3.1(b) is obtained. For example a traceroute measurement that

enters our network through interface A on router a and leaves the network from interface L on router

b will create an A→ I path on the graph. In a similar way a measurement that enters the network

from interface L on router b and leaves it from interface W on router c will create a L→ C→ Y

path on the graph. At the core of the Interface graph, which results from performing many traceroute

measurements through a PoP, there is clearly a bi-partite graph. We look for this specific structure

when trying to discover PoPs. Alon et al. [80] showed that many complex networks have repetitive

patterns of interconnections, called ‘network motifs’, which became a standard term in the networks

analysis community. Their work showed that real-world networks outside the communication field are

not purely random, but have a higher than (or lower than) expected number of specific motifs. We have

used their mfinder [1] package to search for motifs in graphs obtained by the DIMES measurements.

In order to show the significance of a specific motif, the software uses the Z-score measure, which is

calculated according to equation 3.1.

Z =
X−µ

σ
(3.1)

Where X is a number of a motif occurrences in a specific network, and µ and σ are the mean and

standard deviation of the motif occurrences within a certain random network. The number of motif
1The algorithm presented in this section is based on an algorithm introduced by Feldman and Shavitt in [33] and later

improved in this work
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Table 3.1: Common network motifs in IP interconnections networks of three ASes.
Z-Score

AS Number
AS6395 377 - 9.51 43.84 148.39
AS5111 329.29 36.42 - 74.63 73.57
AS3549 154.8 5.38 37.87 19.51 -

(a) Typical Router interconnection. (b) Equivalent Graph representation

Figure 3.1: Typical Network Connection

appearances in a random network is a stochastic function with mean and variance. The Z-score reveals

how many units of the standard deviation a specific count of a motif is above or below the mean.

Unsurprisingly, we have found a number of motifs with a high Z-score across all AS networks in the

graph; partial results displayed in table 3.1 show the clear dominance of the ‘bi-fan’ motif (number

204) in three large providers, Global Crossing, France Telecom and Broadwing (now Level3). Note

that motif 460 is bi-fan with one additional measurement in the reverse direction and motif 206 is a

bi-fan with an additional measurement.

Although mfinder [1] is a very useful tool for identification of important motifs, it is not designed to

be used for network clustering. In our work we do not look for a specific motif in the network, but for

highly connected clusters as described in the previous chapter. However, we do search for ‘bi-fan’s

(id204) repetitions under certain weight constrains as cores of the PoPs. The cores are extended with

other close by interfaces. The following steps, introduced in [33], are used to reduce the IP level
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graph G(V,E) to a PoP level network:

Initial Partition. Remove all edges with a delay higher than PDmax_th, the PoP maximal diameter

threshold, and edges with number of measurements below PMmin_th, the PoP’s edges measurements

threshold. PMmin_th is introduced in order to consider only links with a highly reliable delay esti-

mation to avoid false indication of PoPs. As a result, a non-connected graph G′ is obtained. Then,

for each connected component of G′ an induced sub graph is built by adding back all the edges that

connect nodes of the connected component. Each connected group is a candidate to become one or

more PoPs.

There are two reasons for a connected group to include more than a single PoP. First and most obvi-

ous is geographically adjacent PoPs, e.g., New York, NY and Newark, NJ2. Second is wrong delay

estimation of a small number of links. For instance a single incorrectly estimated link between Los

Angeles, CA and Dallas, TX might unify the groups obtained by such a naive method.

Refined Partition.

(a) Parent-Child classification. The next stage in the algorithm uses a classification to parent pairs

and child pairs .

Definition 3.1.1 A pair of nodes is marked as parent if both of them point to two or more nodes.

Definition 3.1.2 A pair of nodes are marked as child if both of them are pointed to by at least two

nodes.

All parent nodes are assigned to groups by pairwise unifying parent nodes. For example in figure

3.3, nodes {1,2}, {2,5} and {3,4} are defined as parent, thus we obtain two parent groups {1,2,5}

and {3,4}. The groups of child nodes are created according to the same process as defined for parent

groups. Some nodes might belong to both categories and it is allowable for a node to belong to one

parent group and to one child group. By definition, if a node belongs to two or more groups of the

same kind, these groups are unified. Figure 3.2 shows an example of parent/child classification.

The PoP algorithm checks for each connected group extracted in the initial partitioning of the al-

gorithm, if it contains more than one possible PoP. Note that each candidate partition looks like a

collection of highly connected bipartite graphs with rich connectivity between them. The considered
2This situation was also identified by [89] after our initial publication
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Figure 3.2: Parent-Child classification: blue nodes (left) - parent, red nodes (right) - child,
blue and red nodes (middle) - both parent and child, gray stripes nodes (right) - not classified

partition of parents and children is then divided according to the measurement direction in the bipar-

tite graph(each node or a group of nodes simultaneously can be a parent of one bipartite and a child

of another). In this operation the weights of the edges are ignored. The minimal size of each group is

two nodes.

(b) localization. Dividing the parents and children groups into physical collocations using the high

connectivity of the bipartite graph. The input for the localization stage algorithm is a highly con-

nected bipartite graph G(V,E) with a weight function W : E→R representing the estimated physical

link delay, as shown in Fig. 3.3. The other input to the algorithm is a partition of the graph to the

parent/child groups as previously described. The localization algorithm checks whether nodes of the

same type (parent/child ) belong to the same physical collocation. For this task the algorithm takes

advantage of the topological structure of the group. For instance, if we check the parent group P

we note that each child node of the group is pointed to by at least two parent nodes. Comparing the

delays from the child nodes we can partition nodes of the parent group to one or more geographic

collocations.

Formally, we represent each member of a group of two or more nodes (either parent or child group) in

a coordinate space of the nodes that points to them using the weight of the edges. Next, we check the

distance between each pair of nodes in that coordinate space. We assume that the link delay estimation

errors in [32] are caused mainly by an impulse noise, i.e., most of the measurements are fairly precise

or have only small noise, while a small portion of the measurements may have large errors. Therefore,

unlike the Gaussian noise case, where Euclidean distance is used as a representation of the distance

between nodes, we compare the similarity over the coordinates.
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Figure 3.3: Bipartite graph example, on the right side dark and bright nodes belongs to
different collocation

An example of the difficulties in determining geographic co-location is shown in Figure 3.3. By

looking at the delay spread, one can easily determine that nodes 6-8 (darken) are not co-located with

nodes 9-11. Looking at the distance between nodes 1-3 and nodes 9-11 it becomes clear that the

former are also co-located. However deciding whether node 5 is also collocated with nodes 1-3 is

not straightforward. Examining the delay spread between nodes 5 and 1-3 to nodes 9 and 11, gives a

positive answer for collocation, since the measurement to node 10 that puts node 5 away from nodes

1-3 may be discarded as noise. The existence of yet another group of measurements to node 6, which

is indecisive in its results, complicates the picture, and shows the difficulties in automating these

decisions.

We propose the following deterministic algorithm to classify the locations of nodes in the bipartite

graph. For each pair of parent nodes (u,v) ∈ P,u 6= v, we define the ‘common children’ group, CC by

CC(u,v) =
{

w ∈ G|(u,w) ∈ E
⋂
(v,w) ∈ E

}
(3.2)

We denote the members of CC(u,v) as {cc1,cc2, . . . ,ccm}. Then using the weights of the edges from

the pair of parent nodes to the ‘common children’, W (u,cci) and W (v,cci), we calculate the ‘Error
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Ratio’ vector, ER:

ER(u,v) =
[

W (u,cc1)

W (v,cc1)
,
W (u,cc2)

W (v,cc2)
, . . . ,

W (u,ccm)

W (v,ccm)

]
(3.3)

The selection between (u,v) and (v,u) for a numerator and a denominator results in identical results

when observing | log(ER(u,v))| due to the properties of logarithms. Another important property

of | log(ER(u,v))| is that for coordinates with a small relative error, the values of the elements in

ER(u,v) will be rather small, and will increase with a loss of the accuracy. Therefore comparing

er(u,v) = median(| log(ER(u,v))|) to a certain threshold gives a proper indication of the accuracy in

the majority of measurements.

We use the er values for the parents, to partition parents groups into smaller parent groups which are

geographically collocated. To this end, we produce a weighted clique of all the parent nodes in a

group, where the weight of the edge (u,v) is er(u,v). We remove all the links with a weight above a

certain small threshold. Each connected component in the remaining graph becomes a parent group

for the next step. To summarize, we partitioned the parent group to several parent groups that are

geographically co-located.

The same process is repeated for child groups, where the error vectors are calculated by the distances

to the common parents.

This kind of localization helps us to overcome a relatively large number of errors. However, if more

than half of the measurements to a certain node are incorrect, the algorithm may fail to determine its

location. Otherwise, there is no impact on the overall performance. Those ‘badly’ measured nodes

might not became a part of the correct PoP, but the PoP map will be formed correctly in spite of them,

i.e., no new PoPs will be created.

(c) Unification. Unifying parent/child group to the same PoP. If a parent and a child groups are

connected, then the weighted distance between the groups is calculated (if they are connected, by

definition more than one edge connects the two groups); if it is smaller than a certain threshold,

PPCmax_th, the pair of groups is declared as part of the same PoP.

Final Refinements.

Unification of loosely connected components. In some cases, e.g., due to insufficient measurements,

different parts of a PoP are only loosely connected in a way that does not form even a 2x2 bi-partite;

in the extreme case only a single link connects two parts of a PoP. This will not allow the unification
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process, just described above, to identify the parts as belonging to the same PoP. Thus, the algorithm

looks for connected components (PoP candidates) that are connected by links whose median distance

is very short (below PDmax_th). Note that at this point, due to the unification process, the graph has

shrunk considerably, and thus the search for ’close’ components is inexpensive.

(b) Singleton Treatment At the end of the process, the ISP graph has evolved through the multiple

node unifications described above into a graph that is comprised of several multi-nodes (the PoPs)

and a larger number of nodes (IP interfaces) that were not assigned to any PoP. Typically, these nodes

have only one or two links connecting them to the rest of the graph, and the path from a node to the

closest PoP is in most cases one hop and sometimes two. This final step assigns many of these nodes

to existing PoPs. The assignment is conducted by running a Dijkstra shortest path algorithm from a

node to all PoPs, and connecting a singleton to the closest PoP, providing the distance (in mSec) is

below a given threshold PDmax_th.

While this step has some advantages, it typically degrades the algorithm accuracy and does not add to

the number of discovered PoPs. Therefore, unless noted differently, it is eliminated in most presented

results. We discuss the effect of Singletons in Section 3.2.

3.2 PoP Extraction Validation

Following, we present our validation tests and the results of a full implementation. The validation

is then extended to discuss tradeoffs in the algorithm’s implementation and their effect on result’s

accuracy.

Two collected datasets for PoP extraction are taken from DIMES [97]. One is from 2009, with a

focus on weeks 27 to 30 for specific examples, and the other taken from weeks 42 to 43 of 2010. The

database from weeks 27 to 30, 2009 includes 56 million traceroute measurements, collected by 1415

agents. The 2010 database, from weeks 42 to 43, has a total 33 million measurements, an average

of 2.35 million measurements a day. The measurements were collected by 1308 agents, which were

located in 49 countries around the world.

First, we examine the best time period length for collecting measurements for PoPs, and select it to be

two weeks. DIMES produces five to six million daily measurements, both traceroute and ping, mean-

ing thirty to forty million measurements per week, which typically result in 5.5M to 6.5M distinct
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Compared Time Frame #PoPs #IPs in PoPs #Distinct Edges
1 Week to 1 Week < 1% < 1% ±20%
1 Week to 2 Weeks +58% +79% +43%
2 Weeks to 4 Weeks +10% +15% +59%

Table 3.2: Changes in PoP maps between different time frames

IP edges being discovered. The selection of a two weeks time period balances between two delicate

tradeoffs: the number of distinct edges used for the PoP construction and the sensitivity to changes in

the network. A time frame of a single week is too short, with considerably fewer distinct edges than

those from two weeks. A month, on the other hand, does add many more edges, but it is insensitive

to changes in the network, which we would like to track. In addition, the algorithm runs considerably

slower on such large data sets. Table 3.2 shows the changes in PoP maps between different time

frames. The first row in the table shows the difference in PoP maps between two consecutive weeks.

The second row refers to a one week period compared to two weeks, and the last row compares two

to four weeks measurements collection periods. The columns "#PoPs" and "#IPs in PoPs" refer to the

change in number of discovered PoPs and IPs included in these discovered PoPs over the compared

periods. "#Distinct Edges" refers to the change in distinct IP edges measured by DIMES. This number

is independent of the PoP algorithm.

We set PMmin_th, the minimal number of node’s measurements, to be 5. This threshold was found

to be optimal over many heuristic test cases, cleaning noisy measurements while filtering out only a

small number of edges. We then ran the median algorithm described in [32] to find the delay between

two adjacent nodes.

The resulting IP address to PoP mapping table typically consists of over 50,000 IP addresses, in about

4000 different PoPs. The average size of a PoP is 16 IP addresses, with a median of 6. The largest PoP

size observed was 2500. The size of the discovered PoPs depend both on our measurement method

and the ISP’s policies. When a PoP is measured from many different agents or there are many paths

between the source and destination nodes, the size of the PoP will be larger. However, measuring from

one direction or if there is a relatively small number of alternative routes, the size of the discovered

PoP will be small. The policies of the ISP can cause nodes inside the PoP to not answer traceroute

messages and become anonymous or transparent e.g., due to use of MPLS.

On a single day, DIMES may run several experiments in parallel, however, the vast majority of the
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Figure 3.4: Number of Discovered PoPs
vs. Number of measured IP Edges

Figure 3.5: Number of IPs in PoPs vs.
Number of measured IP Edges

measurements performed over a week belong to the DIMES default experiment where a set of roughly

2.5 million target IP addresses, selected to cover all the allocated IP address prefixes, are cyclically

sent to the agents. To test whether the target set limits us from discovering more PoPs, 2.5 million IP

addresses were added to this basic experiment, identified by the iPlane project [73] as belonging to

PoPs. The addition of the iPlane IP addresses increased the number of PoPs discovered by less than

20%, yet did not reach the numbers in iPlane. We believe that the immense number of IPs grouped

by iPlane into PoPs partly represent IPs which are not part of the PoP.

The number of PoPs found in an AS network correlates with its measured size. Figure 3.4 shows that

the number of PoPs discovered per AS depends logarithmically on the number of IP edges measured.

Figure 3.5, showing the number of IPs included in PoPs compared to the number of IPs edges mea-

sured, demonstrates even better the logarithmic relation between the number of measurements and

the discovered PoPs. As the number of IP edges reflects measurements through unique IPs and not

PoPs, this is an expected outcome.

Figures 3.6 to 3.9 explore the PoP extraction algorithm’s sensitivity to its two parameters PDmax_th

and PMmin_th. In each figure five ISPs are explored: Level 3, ATT, Comcast, MCI, and Deutsche

Telekom. In Figure 3.6 the number of discovered PoPs is compared with PDmax_th, the maximal

delay threshold. Figure 3.7 presents the number of IPs included in these PoPs under these conditions.

Neither the number of discovered PoPs nor the number of IPs within the PoPs are sensitive to the

delay threshold, as long as the threshold is 3mS or above. PDmax_th was therefore selected to be 3mS,
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Figure 3.6: Number of PoPs vs. Max-
imal Delay

Figure 3.7: Number of IPs in PoPs vs.
Maximal Delay

Figure 3.8: Number of PoPs vs. Mini-
mal Number of Measurements

Figure 3.9: Number of IPs in PoPs vs.
Minimal Number of Measurements

as it presents a good tradeoff between delay measurement error and location accuracy. Figures 3.8

and 3.9 show the effect of PMmin_th, the minimal number of measurements threshold, on the number

of discovered PoPs and the number of IPs included in them. The number of IPs included in PoPs

clearly decreases as the minimal number of required measurements increases, as can be expected.

The number of discovered PoPs shows a mixed behavior as the reduction of IP level links may have

two conflicting outcomes; An increase is caused by a loss of connectivity inside a PoP which in turn

causes it to split to several PoPs located at the same place, while a decrease is caused by the loss of

the ability to identify a PoP. In our experiments, PMmin_th was selected to be 5.

Additional validation tests repeatedly targeted previously identified PoP IP addresses within several

large ASes, such as Level3, ATT and MCI, from agents within the AS. They did not increase the num-
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ber of discovered PoPs, but proved that discovered PoPs are stable. To show that the PoP algorithm

succeeds when enough measurements are provided, two ASes were taken as an example: GEANT,

the pan-European academic network, and Proxad, a French ISP. Both were selected since their PoP

topology is public and since DIMES did not have many measurements in them by default. Com-

paring the amount of PoPs and IPs within PoPs discovered based on default DIMES measurements

and directed measurement tests, the number of discovered PoPs more than doubled and the number

of IPs within PoPs grew by a factor of ten. In both cases, the directed tests doubled the number of

distinct measured edges within the AS, thus increasing the connectivity required to discover PoPs.

We conclude that increasing the number of measurements improves the algorithm’s performance.

Other stability tests examined the IP addresses identified as part of PoPs and found 85% similarity be-

tween consecutive fortnights. The difference between PoPs was due to lack of measurements through

the PoP connecting nodes, rather than the PoP extraction algorithm. In addition, not all the tracer-

outes are identical every week, due to the community based nature of DIMES. Additional validation

actions taken are detailed in the next chapter. Validation of PoP maps was always an issue in related

work, e.g., in iPlane [73] or RocketFuel [104], and we find that the level of validation introduced in

this work is at least at the level of previous efforts.
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IV Assigning a Geographical Location to PoPs

4.1 Naive Geolocation Algorithm

Automatically assigning every discovered PoP to a geographical location is the second contribution

of this work. The first mean for PoPs geolocation, referred to as Naive Geolocation Algorithm uses

geolocation services in order to find the PoP’s geographic coordinates. Geolocation services provide

location information regarding a given IP address, including country, city, longitude and latitude.

We use several geolocation services to maximize the accuracy of our PoP location. The initial re-

sults from 2009 used MaxMind GeoIP [76], IPligence [62], and Hostip.info [53]. Later results were

extended to use also IP2Location DB5 [51] and GeoBytes [37]. Information from Netacuity [24],

Spotter [70] and Neustar [5] (formerly Quova [4]) was used to some extent as well.

To identify the geographical location of a PoP, we use the geographic location of each of the IPs

included in it. As all the PoP IP addresses should be located within the same campus, or within

its vicinity if singletons are considered, the location confidence of a PoP is significantly higher than

the confidence that can be gained from locating each of its IP addresses separately. The algorithm

operates as follows:

Initial Location Each of the geolocation databases used is queried for the location (longitude, lat-

itude) of each IP included in the PoP. Next, the center of weight of the PoP location is found by

calculating the median of all PoP’s IP locations. Unlike average calculation, where a single wrong

IP can significantly deflect a location, the median provides a better suited starting point, but does not

guarantee good results if there is complete disagreement between geolocation databases. We discuss

this further in Section 4.2.

Location Error Range Every PoP location is assigned a range of convergence, representing the

expected location error range based on the information received from the geolocation databases. For

every IP address in a PoP and for every geolocation database we collect the geographic coordinates.

Thus if there are N IP addresses and M databases, for each of the IP addresses we get at most (if all
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are resolved) N×M location votes. The algorithm finds the smallest radius which has at least 50% of

the votes, with 1km granularity. If the radius is above a given threshold, typically 100km or 500km,

the algorithm outputs the threshold radius and the percentage of location votes within it. If one of

the geolocation databases lacks information on an IP address, this IP element is not counted in the

majority vote.

Location Refinement After a range of convergence is found, the PoP location accuracy is further

improved. The new PoP location is set to the median of the location votes inside the range of con-

vergence. This ensures that deviations in the PoP location caused by a small number of IP elements

outside the range of convergence are discarded, and the PoP is centered based only on credible IP

addresses locations.

To summarize, the PoP geolocation algorithm provides per PoP longitude, latitude, range of conver-

gence and the percentage of location votes within its convergence range.

4.2 Validation of the Naive Geolocation Algorithm

The geolocation algorithm has two interesting outcomes. First, it validates the PoP extraction al-

gorithm by showing that PoPs are indeed scattered geographically, and locates points of presence

around the globe. Second, it examines the quality of the geolocation services and finds their faults.

This section discusses only PoPs location, and a survey of geolocation services is provided in section

4.3.

The algorithm converges successfully based on its validation’s results. 70% percent of the PoPs have

a range of convergence of ten kilometer or less. Although 89% of the PoPs have more than the

minimal requirement of 50% of the IP location votes within the convergence range, for only 9.1% of

the PoPs have over 90% of the location votes within the convergence range, indicating inaccuracies

in some of them. To strengthen this point, when requiring the PoP location to be agreed upon by

any three geolocation databases instead of five, over 90% of the PoPs converge within ten kilometers

range, which comes to show that the disagreement between the geolocation database is the cause to

the above.

Figure 4.1 shows the discovered PoPs located on a world map. Clearly, the US and Europe have very

good coverage. In East Asia many PoPs are discovered as well, but only a few are found in South
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Figure 4.1: PoPs World Map

Figure 4.2: QWEST US PoP Map

America and Africa.

We then proceed and generate a PoP location map per Internet service provider. The maps display

the PoPs of all the ASes residing under the same provider (sibling ASes), to provide a full picture

of the vendor’s network. The provider maps also show the connectivity between the different PoPs,

as measured by DIMES. Figure 4.2 shows as an example provider map of Qwest with its internal

network connectivity.

To validate our generated maps we compare them against the PoP maps published by the ISP, such as

Sprint [106], Qwest [87], Global Crossing [39], British Telecom [16], ATT [10] and others. The PoP

algorithm detects most of the large points of presence, but it detects very few small, local PoPs. There

are several explanations for this behavior. First, we measure mainly to and through nodes that pass a

lot of traffic, and filter out edges that were hardly measured, in order to filter out noise. Even when

we add the PoP IPs discovered by iPlane, most of these small PoPs are still not found. This leads
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us to the second reason some PoPs are not discovered: due to security reasons, many routers do not

answer traceroute ICMP packets, which reduces the algorithm’s ability to discover the PoP structure.

Last, some of the vendors employ encapsulating protocols such as MPLS, which may hide most of the

routing path. Luckily, as our results show, these protocols are not deployed widely enough to harm

our measurements.

As another method of validation, fifty PoPs that belong to universities around the globe were selected,

and the location given to them by the algorithm was compared against the institute’s actual location.

For 49 out of 50 universities, the location was accurate within a 10 kilometers radius. The last PoP,

belonging to The University of Pisa, was located by the algorithm in Rome instead (330km away), due

to an inaccuracy in the MaxMind and IPligence databases. Only Hostip.info provided the right coor-

dinates for this PoP. Each PoP location was also validated against its DNS name, yet many interfaces

had no DNS name assigned to them.

We compare our PoP geolocation also for GARR, the Italian research network. In weeks 42-43, 2010

we found eight PoPs in GARR, containing 99 IP addresses. GARR has a total of fifty eight PoPs

in Italy; however in several cases a few PoPs are located in a small area. For example, there are

eight PoPs in Milan’s area, and six in Florence’s vicinity. Our extraction algorithm thus merges such

PoPs into a single entity. Checking the assignment of PoPs to locations, based on DNS, information

provided on GARR’s website [36] and information from users, we successfully geolocate five of the

PoPs in their correct location based on 100% of the IP locations. In two PoPs, the PoP is located

correctly, however it seems to include a single IP address which is supposed to reside in a different

location. In both cases we observe that the edge delay to other IP addresses included in this PoP is

less than 2mS. For the last PoP, the PoP is located correctly in Milan, however it includes several IP

addresses that are supposedly part of different PoPs. We note that the geolocation databases are also

missing information for many of these IP addresses - only 55% of the IPs which are part of the PoP

have location information, and the agreement level that we assign for the PoP is low as well: 66%.

For less than 10% of the PoPs we fail to find the location with high confidence using five geolocation

databases. In almost all these PoPs the cause is lack of location information in the databases, mostly

in HostIP.Info, GeoBytes and MaxMind (MaxMind provides country level information). When a

majority is requested only amongst three databases, more than 99% of the PoPs are located with high

confidence. When IP location information is available, the main cause of PoP location failure is due
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to disagreement between the location services. To summarize, while in some cases the disagreement

is a result of incorrectly estimated links, as suggested in 3.1, the majority is caused by geolocation

database inaccuracies.

4.3 A Survey of Geolocation Databases

Relying on geolocation databases for PoP’s naive geolocation algorithm requires a high level of

database’s accuracy. In the following chapter we survey a large number of geolocation services,

of various kinds, in order to assess their accuracy.

4.3.1 Background

In the recent years, geolocation services have become a necessity in many fields and for many appli-

cations. While the end user is usually not aware of it, many websites visited everyday use geolocation

information for targeted localized advertising, localized content (such as local news and weather), and

compliance with local law.

The last decade presented a new threat to the world: cyber terrorism. Cyber terrorism and warfare

targets communication networks as well as important infrastructure facilities, and thus threatens to

cause havoc through online attacks. Finding and blocking such cyber attacks is in a high priority for

national security forces, and IP geolocation can help by providing geographic information about the

attacker hosts. The DHS cyber security center [52] classified geolocation research to be in the field of

situational understanding and attack attribution, with the intent to identify attackers. The DHS also

comments that geolocation improves visualization, thus simplifies large-scale data analysis. A patent

filed by the NSA [56] notes that geolocation can be used to monitor remote access and prevent login

using stolen passwords or login ID. It can only be speculated that military and government based

agencies use geolocation techniques to detect the source of activity on terrorist related websites as

well as trying to track down enemy communication centers.

Perhaps the most highlighted purpose of geolocation information is for fraud prevention and various

means of security. Banking, trading, and almost any other type of business that handles online money

transactions are exposed to phishing attempts as well as other schemes. Criminals try to break into

user accounts to transfer money, manipulate stocks, make purchases and other illegal activities. Ge-
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olocation information provides means to reduce the risk, for example by blocking users from certain

high-risk countries and cross-referencing user expected and actual locations.

The IETF has also commenced in defining standards for geolocation and emergency calling through

IETF GEOPRIV working group [60], which discusses internet geolocation standards and privacy

protection for geolocation. Some examples are DHCP location, as in RFC3825 and RFC4776, and

defining protocols for discovering the local location information server [112]. Even common emer-

gency services, such as dispatching emergency responders to the location of emergency use it.

Geolocation information is also important in many research fields. It improves internet mapping

and characterization, as it ties the internet graph to actual node positions, and allows exploring new

aspects of the network that are otherwise uncovered, such as the effect of ISP location on its services

and types of relationships with other service providers.

Many previous papers from various fields have discussed the usage of geolocation information in day-

to-day applications ([108, 41, 65] and more). However, not many works have focused on the accuracy

of geolocation databases. We survey these works as well as the improvement of location accuracy by

measurements in Section 2.2

In this chapter, we study the accuracy of geolocation databases. The main problem in such a study

is the lack of ground truth information, namely a large and diverse set of IP addresses with known

geographic location to compare against the geolocation databases. We avoid this need by mapping

IP addresses to PoPs. The PoP maps, based both on delay measurements and graph structure, have a

very small probability of mapping two IP addresses which are not co-located to the same PoP. Thus,

while we do not know the location of the PoP we know that all the IP addresses within a PoP should

reside in the same location. This serves as a mean to check a geolocation database coherency: if two

IP addresses in the same PoP are mapped to different locations, there is a database problem, and we

can use the distances among the various locations of IP addresses in the same PoP as a measure of

database accuracy. The results are presented in Section 4.3.4.1. We take a step further and compare

multiple databases results for the same PoP (Section 4.3.4.3) and study their spread.
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4.3.2 Geolocation Services

Geolocation services range from free services, through services that cost a few hundreds of dollars

and up to services that cost tens of thousands of dollars a year. This section surveys most of these

services, focusing on the main players.

Free geolocation services differ from one another in nature. Three representatives of such sources

are discussed here: DNS resolution, Google Gears and HostIP.Info. DNS resolution was probably

the first source for geolocation information. In 2002 Spring et al. [104] used DNS names to improve

location information as part of the Rocketfuel project. However, DNS suffers from several problems:

many interfaces do not have a DNS name assigned to them, and incorrect locations are inferred when

interfaces are misnamed [130]. In addition, rules for inferring the locations of all DNS names do not

exist, and require some manual adjustments. Google Gears provides geolocation API [42] that can

be used to query a user’s current position. The position is obtained from onboard sources, such as

GPS, a network location service, or from the user’s manual input. When needed, the location API

also has the ability to send various signals that the device receives (from nearby cell sites, WiFi nodes,

etc.) to a third-party location service provider, who resolves the signals into a location estimate [43].

Thus, the service granularity is based on a single IP address granularity and not on address blocks.

HostIP.Info [53] is an open source project. The data is collected from users participating in direct

feedback through the API, as well as ISP’s feedback. In addition, website visitors are updating their

location, which in turn is updated as a database entry. The city data comes from various sources, such

as data donation and US census data (for the USA). The data is provided as /24 CIDR blocks.

Another type of geolocation services emerges from universities and research institutes. These services

tend to use measurements alone or combined with other methodologies to improve geolocation data

quality. While many of the measurement based geolocation services that we discussed in Section 2.2

do not provide the ability to query specific IP addresses [63, 126, 129], one online geolocation service

that does allow it is Spotter, which is based on a work by Laki et al. [70]. Spotter uses a probabilistic

geolocation approach, which is based on a statistical analysis of the relationship between network

delay and geographic distance. This approach is shown to be independent of the landmark’s position

from where the measurement was performed. To approximate the location of a target, spotter mea-

sures propagation delays from landmarks to the target, and then convert the delays into geographic

distances based on a delay-distance model. The resulting set of distance constraints is used to deter-
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mine the target’s estimated location with a triangulation-like method.

Mid-range cost geolocation services include databases such as Maxmind GeoIP, IPligence, and

IP2Location. All these databases cost a few hundreds of US Dollars and supply to the user a full

database, typically as a flat file or MySQL dump. Some of the companies, such as MaxMind, also

provide a geolocation web service.

MaxMind [76] is one of the pioneers in geolocation, founded in 2002, and it distributes a range of

databases: from country level to city level, longitude and latitude. Information on ISP and net speed

can be retrieved as well. In addition to all the above, MaxMind offers to enterprises a database with

an accuracy radius for geolocation information. In this work, the MaxMind GeoIP City database is

being used for geolocation information. IPInfoDB [3] is a free geolocation service that uses MaxMind

GeoIP lite database and adds on top of it reserved addresses and optional timezone.

IPligence [62] is a geolocation service provider, existing since 2006. The company’s high end prod-

uct, IPligence Max, contains geographic information such as country, region and city, longitude and

latitude, in addition to general information such as owner and timezone. Hexasoft Development main-

tains IP2Location [51], a geolocation database with a wide range of geolocation information; from IP

to country conversion, to retrieving information such as bandwidth and weather. For this study, we

used their DB5 database, which maps IP addresses to country, region, city, latitude, and longitude. In

all the above products, the IP addresses’ location is given in ranges, which vary in size and reach the

granularity of a handful of addresses per range.

High end geolocation services are often priced by the number of queries and their cost may reach tens

of thousands of dollars a year for large websites. Amongst these services, and based on their pricing

level, are Quova, Akamai Edge Platform [8], Digital Element’s Netacuity Edge and Geobytes. Each

of these companies pride themselves of large tier-1 customers from different fields, who use their

services for targeted advertising, fraud prevention, and more.

Quova [4], founded in 1999, sells three levels of data information, bronze, silver, and gold. The ad-

vanced services contain attributes such as location confidence level, Designated Market Area (DMA),

and status designations for anonymized Internet connections. Quova’s database is based on data min-

ing classification techniques, hand-labeled hostnames and research note.

Akamai [8] was founded in 1998 and launched its commercial service in 1999. It provides IP location
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information through Edge Platform product. Akamai’s IP location services are a part of a much

larger package of tools and applications used for traffic management, dynamic sites accelerations,

performance enhancement and more.

Digital Element [24], founded in 2005, publishes two levels of geolocation information under the

products NetAcuity and NetAcuity Edge, with over thirty nine data points, including demographics,

postal code, and business type. The IP geolocation data source is anonymous data gathered from

interactions with users. One source for this user information is partner companies that use the product.

The information is validated using a proprietary clustering analysis algorithm.

Geobytes [37] launched its GeoSelect product, for geolocation information, in 2002. The extent

of data provided by Geobytes matches mid-range companies, but it is part of a broader package of

services, including reports, users redirection, etc. While in the past Geobytes used ICMP packets

to create an infrastructure map, current methods also include gathering information from websites

that require users to enter their location information and then processing this data onto Geobytes’

infrastructure map of the Internet [78]. No DNS information is used by Geobytes for their location

resolution.

In this work, databases from all three groups are being used. From the no-charge databases: HostIP.Info,

Spotter and DNS (partial). Mid-range databases used are MaxMind GeoIP City, IPligence Max, and

IP2Location DB5. GeoBytes and NetAcuity are the last two databases used in this work. Unfortu-

nately, we failed to reach a collaboration with Quova and Akamai for this project.

4.3.2.1 Databases Accuracy

The geolocation service provider is, in many cases, the sole source for database accuracy information.

Some vendors, such as IPligence, do not publish such figures at all, while others announce precision

figures without explaining how they were obtained. A few geolocation services, such as Akamai and

Quova provide accuracy information as obtained by external auditors. Table 4.1 presents a summary

of accuracy figures, as given by the geolocation service providers on their websites [4, 8, 24, 37, 51,

76]. The table includes information on country level, city level worldwide level and the USA city

level accuracy.

2US State level accuracy
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Database Country Level City Level USA City Level
IP2Location 99% 80%
MaxMind 99.8% Varies 83%
GeoBytes 97% 85%
NetAcuity 99.9% 95%
Akamai 97.22% 100%
Quova 99.9% 97.2% 2

Table 4.1: Geolocation Database Accuracy As Reported By Vendor

All the databases claim to have 97% precision or more at the country level and 80% or more at

the city level. MaxMind publishes detailed expected accuracy on city level based on country [75].

The published figures range from 40%− 44% in countries like Nigeria and Tunisia to 94%− 95%

in countries like Georgia, Qatar and Singapore. A correct location resolution here is considered to

be within 25 miles from its true location. Netacuity’s information is based on a test by Keynote

Systems. Quova’s precision results are based on an audit by PriceWaterhouseCoopers [86], which

used 3 reference third party databases.

The accuracy of the figures in Table 4.1 cannot be easily evaluated. For example, neither the means by

which Keynote Systems tested Netacuity nor the reference databases used to test Quova are revealed.

Akamai claims for 97.2% correct resolution at the city level worldwide and 100% accuracy at the city

level in the USA. The source for Akamai’s figures is a report by Gomez [40], which defined a node

location to be unique on /23 CIDR subnets. In addition, a Census Metropolitan Area (CMA) is the

basis of the naming convention used by Gomez to identify the physical location of its measurement

nodes. The precision of this method is thus debatable, as described in Sec. 2.2.

4.3.3 The Evaluation Model

4.3.3.1 Data Evaluation Method

The geolocation databases evaluation is conducted using the classification of IP addresses into PoPs

as described in the previous chapters. Since the classification is based on both structure and delay

measurements, the chances that two IP addresses, which our algorithm maps to the same PoP, are not

located in the same geographical location are slim. We do recognize that when two PoPs are very

close (within a few tens of kilometers) our algorithm may unify them to one. However, in this case

the median of their location is half their distance, namely not far.
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Figure 4.3: Map Of DIMES Agents, March-2010

To identify the geographical location of a PoP, we use the naive PoPs geolocation algorithm. The

extraction of PoPs and assignment to geolocation based on active measurements requires careful data

filtering. To this end, our PoPs extraction algorithm takes several precautions. First, at least PMmin_th

measurements are required per IP level edge in order for it to be considered by the PoP extraction

algorithm, and a median algorithm [33] is applied in order to reduce the delay measurement error.

Second, the distribution of the DIMES vantage points results in the measurement of an IP edge to be

done by different agents from different locations, thus reducing the inherited measurement error of a

specific path. Last, when DIMES measures a certain path, it sends four consecutive traceroutes per

destination, and the best time is used. If a path has several alternate routes all the hops from the first

divergence point are removed from the dataset.

4.3.3.2 Dataset

The collected dataset for PoP level maps is taken from DIMES [25]. We use all traceroute measure-

ments taken during March 2010, totaling 126.7 million, which is an average of 4.2 million measure-

ments a day. The measurements were collected from over 1750 vantage points, which are located in

74 countries around the world, as shown in Figure 4.3. About 16% of the vantage points are mobile.

The 126.7 million measurements produced 7.85 million distinct IP level edges (no IP level aliasing

was performed). Out of these, 642K edges had less than the median delay threshold, and had sufficient

number of measurements to be considered by the PoP extraction algorithm. As described above, two
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Figure 4.4: Map Of Discovered PoPs, March-2010

PoP level maps were generated by the PoP extraction algorithm, with and without singletons added.

A total of 3800 PoPs where discovered, containing 52K IP addresses from the first run, and 104K IP

addresses from the second run with singletons. Although the number of discovered PoPs is not large,

as the algorithm currently tends to discover mainly large PoPs while missing many access PoPs, the

large number of IP addresses and the spread around the world (see below) allow a large scale and

meaningful geolocation databases evaluation.

Figure 4.4 shows the geographical location (as calculated by our algorithm) of the PoPs discovered

by the PoP algorithm. The PoPs are spread all over the world, in all five continents, with high density

of PoPs in Europe and North America. As can be seen, PoPs are located even in places such as

Madagascar and Papua New Guinea, which comes to show the vast range of location information

required from the geolocation databases in this evaluation.

For most of the databases, the data which was used, was updated on the first week of April 2010.

NetAcuity database was obtained on the third week of April and Spotter located the IP addresses

during April and the beginning of May 2010.

4.3.4 Results

4.3.4.1 Basic Tests

Null Replies We first check the number of NULL replies returned for IP address queries. There are

four flavors to this question. First we distinguish between IP addresses in the core of the PoPs and the
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Core PoP IP With Singletons
Database Null IP Null PoP Null IP Null PoP
IPligence 3.9% 1.5% 2.9% 1.4%
IP2Location 0% 0% 0% 0%
MaxMind 36% 10.6% 30.1% 6%
HostIP.Info 64% 38.6% 64% 29%
GeoBytes 20.7% 4.3% 17.8% 2.7%
NetAcuity 0% 0% 0% 0%
Spotter 37% 18.1%
DNS 14.3% 12.2% 28.4% 2%

Table 4.2: Null IP Address Information

ones in singletons. As some databases may have better information on end users or access interfaces

than on core routers and main PoPs, this can be meaningful. The next observation regards NULL

replies that apply to all the IP addresses within a certain PoP: does the database fail to cover a range

of addresses or a physical location range, or are the NULL replies a matter of a single IP address lack

of information? This is considered both with and without singletons. Table 4.2 shows for each of the

databases the percentage of IP addresses which returned a NULL reply for each of these cases.

NetAcuity and IP2Location were the only databases to return a location for all the queried IP ad-

dresses. This alone does not indicate that the returned addresses are correct, only that an entry exists.

On the other end of the scale, HostIP.Info failed to locate most of the IP addresses, however on the

PoP level this percentage drops by half. This may imply that the nature of the failure for HostIP.Info

is the lack of information on specific IP addresses and not IP ranges. Furthermore, in most cases

HostIP.Info did return a reply with country information, but without longitude and latitude. Spotter

did not locate about a third of the IP addresses. The reason for such a failure can either be that the IP

did not respond to ping or that the roundtrip delays were too high to provide approximations for the

algorithm. Only core PoP IP addresses, without singletons, where tested here. For MaxMind, the per-

centage of Null replies refers to events where no specific location information was available. In most

of these cases, MaxMind did return longitude and latitude information, which represent the center of

the country where the IP used. DNS NULL replies were less than 15% for core PoP IP addresses, and

almost 29% when taking into account singletons. As there is a probability that singletons represent

end users and not router interfaces, this is expected. The effect of grouping into PoPs when looking

at DNS is significant: when taking into account singletons, only 2% of the PoPs have no DNS-based

location information.
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Figure 4.5: Range of Convergence Within Databases

Agreement within database By definition, IP addresses belonging to the same PoP reside in the

same area. One can leverage this information to evaluate the accuracy of a geolocation database: If IP

addresses that belong to the same PoP are assigned different geographical location, then the accuracy

of this information should be questioned. This statement is based on the assumption that the PoP

algorithm is correct and does not assign IP addresses from different locations to the same PoP. Our

experiments here further support this assumption: In all the PoPs evaluated, with no exception, there

are always databases that support the PoP vicinity requirement.

We run the algorithm separately for each database. Figure 4.5 presents a CDF of the convergence

range within each database without singletons, with the X-axis being the range of convergence in

kilometers. The convergence range is the radius which covers at least 50% of the IP addresses lo-

cations within a PoP. IPligence and IP2Location clearly have a range of convergence far better than

other databases: over 90% of the PoPs located using these databases have the minimal range of

convergence, one kilometer, which is in practice the exact same location. MaxMind, GeoBytes and

NetAcuity have 74% to 82% of their PoPs converge within one kilometer. For HostIP.Info, a bit less

than 57% of the PoPs converge within the minimal range, and almost all the rest fail to converge. This

is caused mostly due to lack of information on IP addresses, as many PoPs do not have even a single

IP with location information. Spotter is different than the others. As Spotter information is acquired

by measurements having almost a third of the PoPs converge within one kilometer is an indication

43



Figure 4.6: CDF of Location Votes Percentage Within 100km From PoP Center

of good performance. In addition, over 82% of the PoPs converge within 100km, and close to 98%

within 500km, which is similar or better than most of the other databases. The slow accumulation is

expected due to measurements errors. An interesting result is the curve marked as All, showing the

range of convergence when combining the information from all databases. Though all databases have

most of their PoPs located within the minimal range, less than 30% of the All PoPs converge within

this range, meaning that there is a disagreement between the databases, though as the range grows so

does the percentage of converged PoPs. This does not necessarily mean that all the databases have

agreed on the same location, nor that this location is correct, as databases which reply with a location

for every IP have more influence that databases with some NULL replies. We further explore this

question in Section 4.3.4.3.

Figures 4.6 and 4.7 present a CDF of the agreement within databases without singletons. The X axis

marks the percentage of IP addresses in PoPs that represent the majority, and the Y axis presents the

probability for this majority vote. For Figure 4.6 we set a radius of 100km and in Figure 4.7 the used

radius is 500km, within which a majority is required. Most databases have 95% or more chances

to have at least 50% of the location votes within the 500km radius, and at least 90% within 100km

radius.

For all databases there were PoPs with no majority vote, meaning that less than 50% of the location
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Figure 4.7: CDF of Location Votes Percentage Within 500km From PoP Center

votes were within the tested radius. IPligence and IP2Location have the highest probability to reach

a majority vote, while HostIP.Info, and Geobytes grow at the slowest pace. For a radius of 100km,

Spotter does not reach full agreement for almost 60% of the PoPs, probably due to measurement

accuracy limitations. Interestingly, for less than 4% of the PoPs there is 100% agreement by all

databases, which once again does not correlate with single-database observations and points to a

mismatch between databases.

4.3.4.2 Ground Truth Location

The best way to assess the accuracy of a database is to compare its information with the true geo-

graphical location of each IP address, through some "Ground Truth" database. Unfortunately, there

is no ground truth database of all IP addresses. A small number of IP addresses are covered by a

ground truth database provided by CAIDA. The database, described in [54], includes private data

from one tier-1 and one tier-2 ISPs. In addition it contains public data from five research networks.

The geographic location is provided based on host names, with their encoding provided by the ISP

and verified.

We use this database to evaluate the accuracy of the geolocation databases. The ground truth database

used is from January, 2010 and includes 25K IP addresses, their ISO code, country, region and city.
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Database Matched IPs Country Match City Match
GeoBytes 67.3% 80.1% 26.5%
HostIP.Info 28.1% 89.0% 17.9%
IP2Location 93.9% 80.9% 14.16%
IPligence 93.9% 81.0% 0.8%
MaxMind 79.6% 84.7% 29.4%
NetAcuity 67.9% 96.9% 79.1%
Spotter 54.1% 85.6% 27.8%

Table 4.3: Comparison with Caida’s Ground Truth Database

Each database is compared with the ground truth dataset to the maximal extent. For databases where

only PoP-IP data is available (Spotter, NetAcuity), CIDR/24 is used to match missing addresses. We

note that despite this extended match, our database is still too limited to match all. Before describing

the results, it is important to understand that this group of IP addresses is not necessarily representa-

tive, which may bias the results.

Table 4.3 presents the results of the comparison. The column "Matched IPs" presents the percentage

of IP addresses matched between the ground truth and the evaluated database, and returned with a

non-NULL value. Out of the matched IP addresses, "Country Match" presents the percentage of

matches on country level and "City Match" presents the percentage of matches on city level. We

allow a distance of 100km between a pair of returned city coordinates to consider a reply as a city

match.

It is interesting to observe that, with the exception of NetAcuity, none of the databases is close to its

acclaimed accuracy on the country level. In most cases, the databases indicate that the IP is located in

United States, while the ground truth database places them elsewhere. For IPligence and IP2Location

99% of the wrong placements are of this type, and 88% to 90% of the mistakes for MaxMind and

HostIP.Info. Geobytes, on the other hand, has an almost equal number of mismatches between the

USA and other countries, with no dominant trend. An expected mistake, common to IPligence and

IP2location, is the interchange between the USA and Canada.

On the city level, IPligence’s and IP2Location’s results are remarkably poor. The reason that we

observe is the large amount of IP addresses assigned to Washington DC by both databases: IPligence

assigns no less than 20.4K of the mismatched IP addresses to Washington, while IPligence does so for

10.1K of the IPs. This phenomenon is not evident in other databases, where the results tend to spread

across cities. Other cases of a large bias for a city are Geobytes, with 3.8K of the wrong assignments
2US State level accuracy
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set to New-York City, and MaxMind with 4.8K of the wrong assignments set to Washington DC.

Spotter measurements accuracy affects these results, too, which is evident when increasing the match

range from 100km to 300km: the number of matched cities to longitude/latitude doubles.

4.3.4.3 Comparison Between Databases

While some of the databases have proprietary means to gather location information, a large portion

of geolocation data is likely to come from the same source, such as getting country information from

ARIN. To examine this we use the 52K PoP IP addresses that are used in the first evaluation as a

sample of the IP space. We calculate for each pair of databases a distance vector that holds the

distance difference between their answers to the geolocation of each of the IPs in the list. Cases

where at least one of the databases returned a NULL answer were ignored. Figures 4.8 and 4.9 depict

the root mean square (RMS) of each distance vector and its median, respectively. The fairly large

RMS values are due to the long fat tail of large errors in the databases, which we discuss later in this

section. Maxmind, IP2Location, and IPligence seem to be much closer to each other than the rest.

This is evident in the median heatmap that shows a median distance of only 5-11km. Netacuity has

a small median distance to Maxmind, but much larger one to the other two. This is due to the many

country level values returned by Maxmind and ignored by this analysis; naturally these are the IPs

which are harder to locate and thus most databases have their acute errors in this group. As a result

Maxmind seems closer to databases more than others.

The large values in the RMS distances heatmap (Figure 4.8) are explained by Figure 4.10. The figure

presents the CDF of distance vectors for several selected database pairs. The pairs that had very

small median distance, such as IP2Location to MaxMind and IPligence or Maxmind to Netacuity,

grow at a very fast rate until a probability of about 0.6. This leads to a median that is only a few

kilometers. However, about 10% of the IP-distances will be between 500km to 1000km range. Some

of the addresses are even located very far away, thousands of kilometers apart. We assume that

most of these differences are caused by anomalies in at least one of the databases. Databases with

high median and RMS distance have the same trend of CDF as the other pairs, however the main

difference is that the initial distance between most IP addresses is larger: For Geobytes to HostIP.Info,

only 30% of the IP addresses are located within a close range, while 20% more are within 500km to

1000km range. Note that here the tail of CDF distance values is even longer than in the previous pairs.
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Figure 4.8: RMS Distance[km] Between Databases - Heatmap

Figure 4.9: Median Distance[km] Between Databases - Heatmap

NetAcuity to Spotter pair, selected for their relatively close median value, demonstrate the effect of

active measurements: the CDF curve is smooth, and there are almost no IP addresses placed within

a few kilometers range. The cause is that while most databases who place an IP address within the

same city will give it identical coordinates, like city center, while Spotter will triangulate the location

within the city premises.

Next, we compare the databases based on aggregated data collected from all sources and look at the

distance of each IP from the PoP median location. Note that due to the high correlation between 3-4

databases, that may be the result of using similar location sources, the PoP median location may be

shifted and not always correct.

We assess the similarity between databases by comparing an IP location in every database to the

location of its PoP as voted by all databases. Figure 4.11 depicts the CDF of the deviation of each

IP from the PoP median location for each database. The interesting observations here are at the
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Figure 4.10: CDF of Distances[km] Be-
tween Databases

Figure 4.11: CDF of Database Lo-
cation Deviation From PoP Median -
500km Range

Figure 4.12: Breakdown of deviation
from PoP majority CDF By region -
500km Range

Figure 4.13: CDF of Database location
deviation from PoP majority
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40km range, which is a city range, and 500km range, which can be referred to as a region. IPligence,

MaxMind and IP2Location have a probability of 62% to 73% to place an IP within 40km from the PoP

median location, with IPligence and MaxMind placing over 80% of the IP addresses within 500km

radius. Geobytes, HostIP.Info and Netacuity place 33% to 47% of the IP addresses within a city range,

and 48% to almost 60% within 500km from the majority vote. Spotter places only 10% within 40km

range and 30% within the same region.

Comparing Figure 4.11 with the median heatmap of Figure 4.9 shows that indeed the three strongly

correlated databases tend to bring the PoP median close to them. Looking at the distance error from

the PoP median (The horizontal line at 0.5 in Figure 4.11) we see that it crosses IPligence, Maxmind,

and IP2Location at a few kilometer distance, Netacuity at 150km, and HostIP.Info and GeoBytes at

roughly 400km, numbers that match the median distance in columns 2 and 3 in Figure 4.9. Spotter

values are above 500km, and indeed in Figure 4.11 at 500km its CDF is below 0.5.

Some of the databases, like HostIP.Info, Netacuity, Geobytes and Spotter, deviate less in Europe than

in the USA and the rest of the world, as depicted in Figure 4.12. Other databases, like IP2Location,

have greater deviation in Europe than the rest of the world. For clarity, only three of the databases are

shown in Figure 4.12. A drawback of all databases is that there is a long tail of IP addresses locations

which are placed 5000km or more from the PoP median location calculated from the majority of all

votes. Figure 4.13 shows that in some databases this tail can hold 15% of the IP addresses. Although

the majority vote may be incorrect, this demonstrates that at least one of the databases is significantly

far off from the real IP address location.

Figure 4.14 depicts a scatter plot of the range of convergence (X axis) versus the deviation of the

IP location from the PoP median location (Y axis)for each database. The figure demonstrates that

in many cases the range of convergence is small, yet the deviation from the PoP median location

may be thousands of kilometers. Furthermore, a large range of convergence does not imply that

that the PoP center is necessarily wrong; In all databases we see cases where the range is large, yet

the selected IP address location is the same as the majority location from all databases. IPligence

and IP2Location demonstrate an interesting phenomenon: though their range of convergence is very

small, the variation from the PoP median location is very large. This can indicate, as is demonstrated

next, that large groups of IP addresses are assigned a single false location.

For MaxMind and HostIP there are many PoPs at the far end of the graph, with a large range of
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Figure 4.14: Database Location Deviation From PoP Median vs. Range of Convergence

convergence. This is caused by lack of information on specific IP addresses which does not allow

them to reach a majority vote. Netacuity and Spotter seem to have no strong correlation between

the range of convergence and the deviation from the PoPs median location. For Netacuity these

may mean that IP addresses are assigned distinct locations within the same area, as with different

users in the same city. Spotter suffers from large range of convergence for some PoPs due to NULL

replies, however there is an obvious trend that places most PoPs IP addresses within 300km range

from each other, with a small number scattered at larger range of convergence, as can be expected in

a triangulation based method.

4.3.4.4 Database Anomalies

Though the results above may indicate that some databases have superb location information, this

is not the case. In many cases the returned data is deceiving, and actually may represent lack of

information in the database. For example, we identified 266 IP addresses in the PoPs that belong to

Qwest Communications. Out of those, 253 IP addresses are located by IPligence in Denver, Colorado.

Looking at the raw IPligence database, there are 20291 entries that belong to Qwest communications,

each entry representing a range of IP addresses. Out of those, 20252 entries are located in Denver,

which is the location of Qwest’s headquarters. The phenomenon was first detected by our algorithm
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in July/2009: 70 Qwest PoPs where detected. Maxmind assigned them to 55 different locations,

HostIP.Info to 46 locations, IP2locations to 35 locations and IPligence located them all in Denver. In

response to a query back then, IPligence have replied that "In some occasions you could find records

belonging to RIPE or any other registrar, these are most likely not used IP addresses but registered

under their name, anything else should be empty or null".

Quite a similar case exists with IP2Location. For Cogent, 2365 out of 2879 IP addresses were located

in Washington DC, which is Cogent’s headquarters location. Out of 57 PoPs belonging to Cogent,

only one was not placed by IP2Location in these exact same coordinates. For IPligence, all the PoPs

were located in the same place, too. However, Maxmind placed the PoPs in 13 locations, Geobytes

in 23 locations and Netacuity in 31 locations (only a handful in Washington’s area). In the Akamai

audit by Gomez [40] a similar case is described: A node in Vancouver, Canada was reported to be

in Toronto, and a node in Bangalore, India was reported to be in Mumbai, India. In both cases those

were ISP headquarters known locations.

Sometimes differences between databases may be very acute, with a reported node location being

far off by thousands of kilometers and even countries far apart. In Figure 4.15 one such example is

shown. We take a 4-nodes PoP in ASN 703 (Verizon/ UUNET/ MCI Communications) and display

on a map the location of the PoP based on each of the geolocation databases. IPligence, IP2Location,

Geobytes, Netacuity and DNS all internally have the PoP four IP addresses at the same location,

however each of the databases locate it differently: IPligence and IP2Location in Australia, Netacuity

and DNS in Singapore and Geobytes in Afghanistan. MaxMind and Spotter lack information on these

nodes and HostIP.Info places the PoP with 66% certainty in China. Extending our PoP view to include

singletons, thus including 10 nodes, the picture does not change. MaxMind and Spotter have location

on one of the IPs and they place it in Singapore. IPligence and IP2location place 9 out of 10 IPs in

Australia, and one in Singapore. Geobytes places this last IP address in Singapore too, yet 6 out of 10

IP locations still point to Kabul, Afghanistan. The rest three nodes are located in Australia. Geobytes

does give low certainty rate to the location, being 50 or less to both country and region. Netacuity

places 8 out of 10 IPs in Singapore and 2 in Australia. HostIP.Info has location information on 6 IPs,

3 of them are placed in China and 3 in Australia, but in Melbourne, far from IPligence and IP2location

designated location. Notably, all the edges in this PoP have less than 3.5mS delay and are measured

five to 173 times each.
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Figure 4.15: Mismatch Between Databases - UUNET

The mismatch between databases is not uncommon. Some examples exist inside the United States,

too: in Figure 4.16 we show one PoP in ASN 3549, Global Crossing, as it is placed by the different

geolocation databases all across the country. This PoP has over 160 IP addresses, counting singletons,

and as such a majority in each database has more substance. IPligence places the PoP with more than

90% majority in Springfield, Missouri. MaxMind and IP2Location point to Saint Louis, Missouri

with 92% and 82% accordingly. NetAcuity indicates that the PoP is in San-Jose, California with

100% certainty, while DNS and Spotter place the PoP in this vicinity, in a radius of a few tens of

kilometers. GeoBytes has somewhat above 59% of the locations pointing to New York, with other

common answers being spread across California (25%). Geobytes country certainty here was 100%

with 42% region certainty for the IP addresses it located in New York. HostIP.Info placed the PoP in

Chicago with 65% majority (28% of the locations had pointed to Santa Clara, California).

The examples given above are not single incidents. Similar cases have been found in other AS as

well, such as REACH (AS 4637), where IPligence, IP2location and Maxmind located a PoP in China,

Geobytes located it in Australia, while Netacuity and Spotter put it in the silicon valley, USA. Other

cases range from AS16735 (CTBC/Algar Telecom) where PoP locations in Brazil were set thousands

of kilometers apart, to Savvis (AS3561) which is another case of locations spread across the USA.
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Figure 4.16: Mismatch Between Databases - Global Crossing

4.3.4.5 Database Changes

One of the motivations to update geolocation databases is the claim that IP geolocation changes sig-

nificantly over time. Maxmind [76] claim that it loses accuracy at a rate of approximately 1.5% per

month. IP2Location [51] states that on average, 5%-10% of the records are updated in the databases

every month due to IP address range relocation and new range available. Based on the PoPs dataset,

we compare this information versus the databases at our disposal. For IPligence, an average of ap-

proximately one percent of the addresses change every month, with some minimal changes in some

consecutive months, such as 0.6% between November and December 2009. In HostIP.Info, 18% of

the IP addresses changed their location within nine months, meaning an average of 2% a month.

IP2Location changed only 1% of the locations over 4 months, meaning 0.25% per month, however

the reference set here included only 10K address range entries. For Netacuity, running only on our

dataset of 104K IP addresses, we observe that 2.4% of the IP addresses have changed location in less

than a month.

4.3.5 Discussion

Before we discuss our results, it is important to note that the assessment is based on a PoP extrac-

tion algorithm, and thus relies on its accuracy. The validation that we described here and in previous

sections make us believe that the results are valid. Furthermore, the fact that the results of each stan-

dalone database are very good in most cases, and problems appear mainly when comparing databases,

strengthens the algorithm correctness. Measurement errors can lead to the unification of interfaces
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of different locations in the same PoP, but since we use a conservative approach, the more common

error is for a PoP to be divided by our algorithm to multiple groups. The later will have some effect

on the geolocation database evaluation: it will not affect the IP level analysis (like in Figures 4.9 or

4.15), but where PoP level analysis is considered, the numbers may be slightly altered, yet the overall

results will stay the same.

Overall we see that on a region level (500km) the databases are mostly self-consistent, meaning they

place all the PoP IP addresses within the same region. This may be sufficient for many location aware

applications. At the city level, most databases are still consistent within 82% or more. Note that

some of the databases (IPligence, GeoBytes, HostIP.Info) have city-level granularity, namely all the

IP addresses within a certain city are placed in a single location. Other databases (like MaxMind)

provide sub-city granularity and as a result they may incorrectly seem to perform worse under the

40km or so range of convergence. Some databases (IP2Location and NetAcuity) provide latitude and

longitude at city level granularity, but also add zip or postal codes in several countries. These increase

the geolocation granularity but could not be leveraged in this work.

There is a big difference between the region level coherency of different standalone databases and

their aggregate. While for all databases 70% to 90% of the PoPs have 100% of the IPs within 500km

range, except for HostIP.Info with only 60%, the aggregate has 100% of the nodes only in 4% of the

cases. If one is willing to accept an aggregate majority vote among the databases, then at 500km

range close to 95% of the PoPs will be successfully located. This percentage drops to less than 70%

for city level.

Some faulty locations are easy to detect by users. Most evidently, the case of Qwest and Cogent,

where some of the geolocation services provided a single location for the vast majority of the AS’s

IPs. This is worrisome as geolocation services are probably aware of this fault, and still provide

this data. Other services, such as MaxMind, prefer to return NULL reply or only the country. On

some occasions, the geolocation service acknowledges the problem and fixes it. For every selected

geolocation database it is recommended to check with the vendor the default location returned for

unresolved IP addresses before starting to use it.

We find it troubling that there are too many cases where database disagreement spans across huge

geographic distances. The problem appeared not only in small PoPs, that may be affected by sporadic

errors in the database, but also in PoPs with hundreds of IP addresses, where the databases had high
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Figure 4.17: Breakdown of location
votes percentage CDF for Spotter by re-
gion.

Figure 4.18: Breakdown of convergence
range CDF for Spotter by region.

certainty on their indicated location (as shown in Figure 4.16).

4.3.5.1 Active Measurement Accuracy

Active measurements are used by many geolocation services [63, 126, 70] and by other projects for

different localization tasks, most notably for assigning IP addresses to PoPs [104]. Spotter geolocation

is based solely on active measurements, thus we selected to study its performance in greater depth

due to the importance of understanding the limitations of this approach.

Figures 4.17 and 4.18 show Spotter’s overall performance compared with its performance for PoPs

located only in Europe or in the USA. It is clear from both figures that in Europe Spotter performs

much better than in the USA and slightly better than the world average. For example, for 40km radius

(which is frequently used as a city diameter), Spotter reaches about 78% convergence in Europe com-

pared to 67% convergence worldwide, and only 44% for the USA. The difference can be explained1

by the spread of vantage points used by Spotter, which are almost entirely based on PlanetLab nodes.

While in Europe PlanetLab nodes are well spread geographically, in the USA, most PlanetLab nodes

are located along the coasts making localization of IP addresses in the middle of the USA less ac-

curate. Interestingly, other databases which are based on other geolocation techniques also achieve

better results for European addresses than for USA addresses.

Spotter convergence (Fig. 4.5) starts as the lowest which is an outcome of the measurement error that

tend to spread the results for different IPs around the ‘true’ location. However, at a radius of 100km it

closes the gap with most databases and reaches over 80% convergence (and close to 90% for Europe).

1We consulted Peter Haga and Peter Matray from the Spotter project on this aspect.
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However, 20% ‘error’ may make distance measurements unfit as the sole method for assigning IP

addresses to PoPs.

4.3.6 Conclusion

Section 4.3 presented a comprehensive study of geolocation databases, comparing a large number of

databases of different types. The results show that while most of the databases provide results that

seem coherent, the accuracy of the returned location can not always be trusted. There is a strong

correlation between some databases, which indicates that the vast majority of location information

replies are correct. However, there is a long and fat tail of errors in the databases; These errors are

in the range of thousands of kilometers and countries apart. The use of geolocation databases should

therefore be careful.

Our results also show that measurement based geolocation can achieve fair results that may compete,

at least in Europe, with geolocation information gathered by other means and that the achieved accu-

racy of geolocation using such tools can be reasonably high. However, this accuracy may not be high

enough to be used as the sole tool to map IP addresses to PoPs. There is room for better understand-

ing the roots of measurement based geolocation services inaccuracy in order to improve them. The

following chapter focuses on means to decide on ground truth when there is a disagreement between

the databases.

4.4 Crawling Geolocation Algorithm

The PoP geolocation algorithm was found to work well, however it is not error free as it depends on

the quality of the geolocation databases it uses. When the differences between databases are extreme,

as shown in the previous chapter, it fails to locate the related PoPs. We thus propose a method to

improve this initial geolocation using a crawling algorithm. This method can be further expended to

improve IP-level geolocation.

A property of our initial geolocation algorithm is that it gives a confidence to the PoP’s location.

Each PoP is assigned a range of error, being the minimal radius covering 50% or more of the PoP’s

IP addresses locations (but no more than 100 kilometers, a threshold set in the algorithm), and the

confidence is derived from the percentage of IP-level locations included within this radius. Using
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PoPs with a known location (such as universities) and PoPs marked with a high level of confidence,

we find the location of PoPs with a lower level of confidence.

The algorithm starts by identifying and marking the PoPs for which the location is certain. The

algorithm then discovers PoPs that are located in the same place as the marked PoPs, based on a PoP-

level link delay. Next it examines all the PoP’s IP-level locations in the geolocation services, and finds

one that gives the best delay-distance matching to marked neighboring PoPs. If no location passes a

goodness threshold, multilateration from the marked neighboring PoPs is used. The algorithm then

iterates and attempts to improve the location of PoPs that were not handled yet using the location of

newly marked PoPs. Figure 4.19 shows the stages of the algorithm, detailed as follows:

Initial PoP Map The algorithm begins running on a given PoP level map, shown in Figure 4.19(a).

Each vertex represents a PoP and each edge represents a link between two PoPs, annotated with delay

information. Each PoP is initially assigned a location based on the naive PoP geolocation algorithm

described in Section 4.1.

Primary Anchor PoPs Marking Mark all PoPs with a definite known location as anchors (dark

nodes), the rest of the PoPs (light nodes) are placed based on the previous naive geolocation algorithm

[34]. Anchor PoPs belong to universities, research facilities, and other known locations.

Additional Anchor PoPs Marking Mark all PoPs with a high level of confidence as anchors . An

anchor PoP can be used to geolocate other PoPs with a lower level of confidence. For high level of

confidence the following three conditions are required:

- Ptot ≥ Ptot_th, where Ptot is the percentage of IP level locations within the PoP’s error range and

Ptot_th is a threshold for this parameter.

- PIP ≥ PIP_th, where PIP is the percentage of IP level locations located within the PoP’s location error

range when "no location" replies are excluded and PIP_th is a threshold for this parameter.

- R≤ Rth, where R is the location error range of the PoP and Rth is the range radius threshold for this

parameter.

The anchor PoPs {B,F, I,N}, marked during the primary and additional marking stages, are shown as

dark nodes in Figure 4.19(b).

Co-Locate PoPs For each unmarked PoP node with a link delay below a certain threshold (Dco_th,

typically less than 1ms) to a marked PoP, one can assume that both PoPs are located in the same place.
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We thus define the PoPs as co-located, assign to the unmarked PoP the same location as the marked

PoP, and add it to the group of marked PoPs. In Figure 4.19(c) the co-located PoPs are A,C,D,O

since the link delays on edges (A,B), (B,C), (D,F), and (O,N) are all less than Dco_th = 1ms (1mS was

selected for demonstration). After updating the geolocation of PoPs A,C,D,O they are marked.

Location Update by Delay and Geolocation Data For each unmarked PoP in the map with at least

one neighboring marked PoP, POPMi 1≤ i≤ k (k is the number of such neighbors), go over locations

LIP of all the IP addresses included in the unmarked PoP, as indicated by each geolocation service.

For every LIP, calculate the delay to distance ratio RA from the location LIP to every POPMi and its

corresponding link delay. If there is LIP such that RAmin ≤ RA≤ RAmax, set the location of the PoP to

LIP and mark it. If there is more than one such location select the location with the best lexicographic

ordered RA ratio value. In our example (Figure 4.19(d)), PoP M has two neighboring marked PoPs:

N and D. The delay from M to N is 7ms and from M to D - 10ms. If we set RAmin = 95km/ms,

RAmax = 110km/ms, we expect PoP M to be in the range of 665km to 770km from PoP N and 950km

to 1100km from PoP D, as indicated by the shaded circles in the figure. While the location of PoP

M was initially set by the majority vote of all geolocation databases, two more alternative locations

were indicated by some of the databases: M1 and M2. Since M2 is located within the expected range

from N and D it is selected as the location of PoP M, and the PoP is marked.

Location Update by Delay Only For each unmarked PoP node with at least three neighboring marked

PoPs, POPMi 1≤ i≤ k (k is the number of such neighbors), update the PoP location such that the ratio

RA between the PoP’s geographic distance from every POPMi and its corresponding link delay will be

closest to the optimal ratio value RAopt . In other words, multilaterate the PoP’s location based on the

delay from the marked PoPs and their geographic location and mark it. A constraints based approach

is currently used for the multilateration, but other methods of multilateration may be used. In Figure

4.19(e) example, only node J is a candidate for location update by delay. The three shaded circles

around PoPs B,I,N indicate the expected location of PoP J relative to each one of them. The location

of PoP J is thus updated to the crossing area of all three ranges and the PoP is marked.

Crawling Iterate the Co-Locate and Location Update stages, using previously marked PoPs to update

the location of non-marked ones. As a result, the PoPs locations are propagated through the PoPs

network, such that PoPs with a high level of accuracy update the location of PoPs with a medium

level of accuracy, and those in turn update others. The process ends after no PoP can be added to the
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group of marked PoPs. Figure 4.19(f) shows the map of geolocated PoPs after the first iteration: there

are ten marked PoPs and four unmarked PoPs. PoPs E and K will be relocated in the second iteration,

as their neighboring PoP is now marked and their link delay is less than 1ms. PoP L will be relocated

in the Location Update by Delay Only step. PoP H either will be relocated in the Location Update by

Delay and Geolocation Data step or will not be marked. The third iteration will have no updates and

thus the crawling algorithm will terminate, as shown in Figure 4.19(g).

The algorithm description above provides the skeleton of the Crawling algorithm. The algorithm

includes several refinements, intended to identify and clear noisy data. First, the selection of marked

PoPs in the Additional Anchor PoPs Marking stage is refined in a manner that excludes PoPs with

an initial distance to delay ratio significantly different from other neighbor marked PoPs. Such PoPs

are likely to have their position incorrect in all geolocation databases, as rarely happens [99]. Even if

their location is correct but delay measurements to them are inaccurate, they should not be used for

positioning of further PoPs and are thus unmarked. Second, in the co-location stage, if a PoP is has

multiple possible co-locations, due to link delay below Dco_th to more than one marked PoP, while

the marked PoPs are not co-located, the PoP will not be marked. Furthermore, such a PoP will be

flagged as erroneous and will be manually checked later, as it may indicate that previously marked

PoPs were erroneous themselves. Note that if two PoPs are positioned in the same region but not in

the same place (e.g. 200km apart), such an occurrence is possible. Yet, executions of the algorithm

so far flagged no such PoP.

The algorithm can be further extended to IP-level geolocation. For a given target IP address, take the

following steps:

PoP Located If the target is part of a PoP, assign it the location of its hosting PoP.

CIDR/24 based If there is an IP address in a PoP with the same CIDR/24 as the target, assign to

the target the location of the PoP. If multiple such IP addresses exists, use the location of the longest

prefix match IP. We note that some loss of accuracy exists in such a case, but this provides at least the

same level of accuracy as most geolocation databases.

One-Hop Location If the target is one hop away from an IP in a PoP or an IP conforming with the

CIDR/24 rule, and the edge delay is less than Dco_th, assign the target the same location as its one-hop

neighbor.
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(a) Initial PoP Map (b) Anchor PoPs Marking (c) Co-Locate PoPs

(d) Update by Delay and Geo-Data (e) Update by Delay Only (f) Crawling

(g) Final PoP Map

Figure 4.19: Crawling Algorithm
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Two-Hop Location same as above but with two hops.

PoP-IP Multilateration Find the three IP addresses which are part of different PoPs, with minimal

delay from the target, and use multilateration for the target location.

4.5 Crawling Geolocation - Datasets

Two datasets are used for the validation of the crawling algorithm: one from 2012, and one from

2010, which was selected as it was carefully studied in sections 4.2 and 4.3 and its characteristics

are known. Both datasets use measurements from DIMES [25] and iPlane [73]. We note that the

traceroute measurements are performed differently by DIMES and iPlane, as every DIMES measure-

ment is combined of a train of four traceroute measurements, and only the best time of every hop is

used for an edge delay calculation. This affects the results beyond a ratio of 1 : 4 in the number of

measurements. For example, we filter out faulty traceroute hops, such as IP and AS level loops on

edge level. Over 170 million measurements are filtered out of the iPlane measurements, while only

61K such measurements are filtered from the DIMES data (DIMES filters some of the measurements

before adding them to the database). Due to the differences, edges discovered by DIMES are anno-

tated with delay information measured only by DIMES, and iPlane data is used to add edges that were

not discovered by DIMES. iPlane typically increases the number of discovered edges by 2̃0%, but it

measures only a small subset of the edges that DIMES discovered.

2010 Dataset The dataset is comprised of 478 million traceroutes conducted in weeks 42 and 43 of

2010, measured by 1308 DIMES agents and 242 iPlane vantage nodes. Five geolocation databases

are used for the naive geolocation of the PoPs: MaxMind GeoIP City[76] , IPligence Max [62] ,

IP2Location DB5[51] , GeoBytes [37] and HostIP.info [53]. Two more geolocation services, Ne-

tAcuity [24] and Spotter [70], were tested for the geolocation of PoPs measured by DIMES alone.

The generated PoP level map contains 4750 PoPs and 87.3K IP addresses in 1697 different ASes.

4098 PoPs are discovered using the DIMES data alone. We further extend the map by adding uni-

versities, research institutes and exchanges points, which were measured by DIMES and iPlane and

whose location is known.

2012 Dataset The measurements in this dataset are taken from weeks 19 and 20 of 2012, starting

the 6th of May. 203 million traceroutes were collected from 988 DIMES agents and 153 iPlane
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Crawling Algorithm Relocated PoPs
Stage 2010 2012
Anchors 17.9% 29.3%
Co-Location 28.3% 20.1%
Delay and 21.3% 13%
Geolocation Data
Delay Only 7.6% 6.1%
Not Relocated 24.8% 31.5%

Table 4.4: PoP Relocation By Algorithm’s Stage

vantage points. Five geolocation databases are used for the naive geolocation of the PoPs: MaxMind

GeoIPLite City [76] , IPligence Max [62] , HostIP.info [53] , DB-IP [21] and NeuStar’s IP Intelligence

(formerly Quova) [5]. The generated PoP level map contains 5215 PoPs and 98650 IP addresses in

2636 different ASes. This map contains also universities, research institutes and exchanges points, as

in the 2010 dataset.

4.6 Validation of the Crawling Geolocation Algorithm

The PoP Crawling algorithm is initially executed using very conservative thresholds, described in

subsection 4.6.1. The sensitivity of the algorithm to these parameters is studied later in this section.

Running the algorithm converges fast for both datasets: only five crawling iterations, the last iteration

without any update. 47.3% of the 2010 PoPs and 34.7% of the 2012 PoPs are marked on the first

iteration. The crawling algorithm results are broken in Table 4.4 by the algorithm stages (or relocation

method). Less than 8% of the PoPs were relocated based on link delay only.

Between a quarter to a third of the PoPs are not affected by the crawling algorithm, and maintain their

naive original position, as shown in Table 4.5. There are several reasons for not marking a PoP: First,

the PoP may not be connected to any other PoP, which is the case for over a quarter of the unmarked

PoPs in 2012. Note that such a PoP is connected to other nodes with IP-level edges, otherwise it

would have not been detected and it is likely connected to other PoPs, but such PoPs or links were not

measured by iPlane or DIMES. For many of the PoPs, there are no other marked PoPs in their vicinity

to allow crawling, thus creating "islands" of unmarked PoPs. Last, some PoPs fail the relocation by

delay only, mostly because their marked neighbor PoPs do not allow multilateration, e.g., if their

(three) neighbor PoPs are co-located.
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Cause for Failure % of PoPs Not Relocated
2010 2012

No Neighbors 8.4% 26.3%
No Marked Neighbors 41.8% 40.6%
Not Enough Marked Neighbors 2.4% 1.6%
For Multilateration
Multilateration Not Possible 43.6% 28.8%
Multilateration Failed Within 3.8% 2.7%
Required Thresholds

Table 4.5: PoP Relocation Failures Breakdown

Figure 4.20: Number of High Level Confidence PoPs vs. Thresholds Values

4.6.1 Algorithm’s Parameters

As several thresholds are involved in the algorithm, it is important to check their effect on its perfor-

mance. Our goal is to maintain the accuracy of relocation while minimizing the number of relocation

failures. The first thresholds to be tested are those controlling the selection of high level of confidence

PoPs: Ptot_th and PIP_th. Figure 4.20 demonstrates the algorithm’s sensitivity to these parameters, with

the solid line showing the number of PoPs marked during the "Additional Anchor PoPs Marking" step

as a function of PIP_th and the dashed line showing the effect of Ptot_th. For both thresholds the num-

ber of anchored PoPs linearly grows as the threshold decreases. However, even when selecting the

most conservative values, meaning setting PDATA_T H = 100% and Ptot_th = 100%, which provide both

a highest level of accuracy, enough PoPs are marked to use as anchors in the crawling process. The
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Year Delay [mS]
0 1 2 3 4 5

2010 28.3% 28.7% 26.5% 26.6% 23.8% 23.8%
2012 20.1% 22.9% 23.7% 23.8% 23.9% 24.3%

Table 4.6: Number of Co-Located PoPs vs. Threshold Value

threshold Dco_th is evaluated in the same manner, testing the stability of the "Co-Locate PoPs" stage.

Table 4.6 shows the percentage of Co-Located PoPs as a function of Dco_th. We set Dco_th = 0, the

most conservative value possible. Testing the algorithm’s sensitivity to Dco_th, varying its value from

zero to 5mS, we find up to 4% variance in the number of co-located PoPs both in 2010 and 2012. In

2010 increasing the threshold sometimes reduced the number of co-located PoPs. This is caused by

the crawling nature of the algorithm, as a PoP that was marked as co-located in a late iteration is now

marked in an earlier iteration, for example in the Location by Delay and Geolocation stage, as one of

its neighbor PoPs was marked for co-location using the higher Dco_th.

It is possible to find errors in the location of PoPs with a high level of confidence. Such can occur if

all databases share the same error. The algorithm searches for such errors during the Co-Locate PoPs

stage. Having a PoP co-located with multiple marked PoPs with a different location indicates that

the marked PoP location is incorrect and should be unmarked. Several such events were flagged and

the affected PoPs were unmarked and relocated, being treated as PoPs with a low level of confidence.

These cases happened within ISPs such as Cogent (AS174), which were shown [99] to have a large

number of false locations in the geolocation databases. The algorithm is thus tested using only anchors

with a definite known location. We find that the PoPs marked as anchors during the Additional

Anchor PoPs Marking stage fall within one of two categories: the algorithm either keeps them in

their original place (i.e., by co-location), or fails to relocate them, as they have no marked neighbors.

In 2010, these PoPs were 37.5% of all anchor PoPs, while in 2012 they were 70.3%. Consequently,

the overall number of PoPs that fail due to lack of neighbors or marked neighbors rose in 2010 by

240% when PoPs with a high level of confidence were not used, while in 2012, the usage of the

Additional Anchor PoPs Marking contributed only 1% of additional relocation rate.

As many previous works have shown [70, 63] delay measurements for multilateration purposes tend

to be inaccurate due to additive latency. The use of PoP level links allows to aggregate multiple edges

into a single PoP link and reduce the measurement inaccuracy, as shown in Figure 5.5. The spread

of edge level delays per PoP shows the importance of aggregating multiple edges into a single link.
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Thus, if a PoP level link is comprised of a single edge, and this edge was measured only a few times,

its latency is likely not to be sufficient from multilateration purposes. We note that 37%-39% of the

PoP links contain a single edge, and over 94% of those are measured less than five times. Such links

are not used for geolocation by multilateration, as they might introduce large errors.

We rigorously checked the thresholds used for multilateration, and report the main findings. RAopt

is selected based on delay to distance ratio on links between anchor PoPs. The ratio of the 2012

dataset is more stable and less sensitive to a change of the thresholds than in 2010 with the average

ratio always being in the region of 1.3ms/100km-1.5ms/100km. RA = 1ms/100km is a commonly

used value but was shown to be an under-estimate [49], we thus set RAmin = 0.95ms/100km and

RAmax = 2ms/100km. As fiber infrastructure depends on terrain conditions and obstacles bypass it is

expected that the routed fiber length will be closer to
√

2 air distance, which complies with the ratio

measured on 2012. We thus select RAopt = 1.44ms/100km.

The values of RAmin and RAmax do not have a considerable effect on the relocation of PoPs: for

RAmin = 0 and RAmax = ∞ the PoPs relocated by delay only have an average delay to distance ratio

of 1.002×RAopt and only 8.5% of these PoPs have a ratio outside the default (RAmin,RAmax) range.

The maximal measured ratio is 204 and the minimal is 2.1.

Since the algorithm is oblivious to the multilateration algorithm used, and less than 8% of the PoPs

are relocated by multilateration, we refrain from further analysis of this aspect, which was studied by

[49, 63, 70].

4.6.2 Validation of Location Assignment

When examining the Crawling algorithm location, we need to verify two points: the algorithm must

not damage the location of correctly assigned PoPs, and it should correct the location of PoPs that

were wrongly assigned. Since the initial location of PoPs is already verified to be very good [34],

by keeping the damage close to zero, any improvement in the location of wrongly placed PoPs will

result in a very accurate map. The lack of ground truth make geolocation validation difficult, but as

we show below, we manage to show that indeed the crawling algorithm performs well.

First, we compare the location assigned to PoPs that we already verified in previous works, and

find that relocation assignments are within 200km range. Next, we focus our efforts on ASes where
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geolocation issues exist, e.g., where the geolocation databases assign all the PoPs to a single location.

Validation of ISP’s PoPs is done based on the service providers maps. To this end, we use providers

maps that were collected by the Internet Topology Zoo project [66] at the same period as our dataset

or published by the ISP: Abilene, UUNET (AS701 through AS703), China Telecom, both within

China and International, and more. The validation shows that most PoPs are located where expected,

with the only exception applying to PoPs placed using multilateration, which are sometimes located

with an error of a few hundred kilometers.

Next, we check the correctness of the algorithm using primary anchor PoPs. By unmarking a primary

anchor PoP and applying the crawling algorithm to it, one can verify that the location assigned to this

PoP is correct and that the algorithm does not relocate PoPs away from their correct location. To this

end, we tested 180 primary anchor PoPs. 124 of the PoPs were assigned a location using co-location,

20 PoPs were relocated using Location Update by Delay and Geolocation Data, and the rest were

assigned a location in the Location update by delay stage. Table 4.7 shows the breakdown of these

PoPs relocation by crawling. Most of the PoPs (82%) retain their original position or are located

within 100km from their original location (5%). All the PoPs that are relocated using co-location

maintain their original position. A total of 94% of the PoPs are located within 500km range of their

original location.

We examine the PoPs that were relocated with an error larger than 500km, and find that the cause is

noise in the dataset. The PoPs that were located by Location Update by Delay and Geolocation Data

are characterized by lack of location in most of the Geolocation databases. For example, Harvard’s

GigaPoP (AS10578) does not have location information in three of the geolocation databases at all.

In one database (NeuStar) a single location appears for all the IP addresses, matching the original PoP

location. In the last database, location information appears only for some of the IP addresses. The

location information differs from NeuStar’s and also points to two different locations, one of them

later selected as the new relocation position. This PoP is also characterized by noisy link delay to

neighboring anchor PoPs, manifesting as long link delays (hundreds of milliseconds) to PoPs located

within a few hundreds of kilometers from Harvard. We find that also within the AS there are long link

delays that reach almost 30mS, even between IP addresses in the same CIDR/26. The combination

of disinformation in the geolocation database and noisy delay measurements leads to the algorithm’s

error. Similar noisy delay measurements also affect the PoPs located in the Location update by delay
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Crawling Number Same Within Within Beyond
Stage of PoPs Place 100km 500km 500km
Co-Location 124 100% 0% 0% 0%
Delay and 19 16% 47% 16% 21%
Geo-Data
Delay Only 37 54% 0% 25% 21%
Total 180 82% 5% 7% 6%

Table 4.7: Known PoPs Relocation Accuracy

stage.

One way to clean noisy link delay is to increase the threshold of required edges between two PoPs

above one for the Location Update by Delay and Geolocation Data and Location update by delay

stages. As the median number of edges between a pair of PoPs is two, with an average of 19.7, this

is a conservative rule. The advantage is an increased accuracy, while the disadvantage is the decrease

relocation success rate. For example, increasing the number of edges threshold to two, reduces the

number of known PoPs relocated from 180 to 145. Out of the 12 PoPs that were located with an error

range larger than 500km, 25% of the PoPs are now correctly relocated (within 100km range) and 25%

more can not be crawled. Increasing the number of required edges between a pair PoPs to at least

three, corrects the location of two more PoPs, thus eventually only 5 PoPs (2.8%) are located outside

500km error range.

The multilateration method used for the geolocation assessment was constraint based. To evaluate

possible improvement by using other multilateration methods, we use Spotter [70]. Due to Spotter’s

resources limitations, we were able to evaluate only the location of the 12 PoPs that were located

outside the 500km range, which include 980 IP addresses. Spotter provides a location to 88% of

the IP addresses, covering all PoPs. Using Spotter, the location of 58.3% of the PoPs is set within

100km of their true location, 25% more within 500km range, and only 2 PoPs are set outside the

500km region. One of these PoPs is located even further than was estimated by the constraint based

approach. We note that Spotter does have some accuracy leverage in the geolocation of the 12 PoPs

under study, as most of them belong to universities with, or very close to, PlanetLab [18] nodes. This

increases the measurement’s accuracy compared to a target located far from PlanetLab nodes.

An advantage of Geolocation using PoPs rather than other methods is shown when considering Spot-

ter’s results on the IP level: 41.7% of the IP addresses are located beyond the 100km range of error,

and 3.5% beyond the 500km range. Most of the IP addresses outside the 500km error range are lo-
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cated far from adjacent IP addresses, though the PoP to which they belong is located correctly. On

one extreme case, of Hong-Kong University, 86 out of 91 IP addresses are located correctly in Hong

Kong, three more are within 500km range, one in the Philippine Sea and one far off in Zimbabwe.

An example of an AS where the PoP Crawling algorithm has a significant effect is Telefonica. In

Telefonica (AS12956) at 2010, 26 pops are detected (using DIMES data only), and all are originally

assigned to Madrid, Spain. After running the PoP Crawling algorithm, the PoPs are assigned to 16

different locations, including Santiago, Chile, Amsterdam, the Netherlands, and more. At 2012, 21

PoPs are detected. The Telefonica PoP map misses some business users’ PoPs and some of the Latin

America PoPs, but is otherwise accurate. Figure 4.21 shows the PoP level map that was validated,

with the red pin indicating the PoPs location before running the algorithm, and the blue icons showing

the location of the relocated PoPs.

We also corroborated the data with one large ISP and the error range CDF is depicted in Figure 4.22.

65% of the PoPs were located by the algorithm within 100km from their true location, and 85% within

300km range. Less than 4% of the PoPs are not located within 500km from their true location and in

only one case there is a country-level error, where a PoP is located close to the Chilean border. The

ISP indicated that before the crawling algorithm was executed, only 23% of the PoPs were placed

within 500km range of their true location.

4.6.3 Comparison to Geolocation Databases

The effect of the crawling algorithm on a PoP’s location is demonstrated in Figure 4.23. The figure

presents a heatmap of the median distance between all the geolocation services used with each dataset

and the PoP geolocation algorithms, both naive and crawling geolocation, excluding IP addresses that

were not marked during the crawling process. As we have shown in our previous work [99], the

databases IPligence, IP2Location and MaxMind have high correlation. Due to the majority vote of

the naive algorithm, its median distance from these three databases is very small, less than 45-55km.

In the 2012 dataset we observe that Neustar’s database is also correlated with MaxMind and IPligence,

and consequently close to the location by the naive algorithm, as well.

The crawling algorithm leads to a median displacement of PoPs by over 400km (compared to the naive

algorithm) in 2010 yet only 80km in 2012. This points to a possible improvement in the geolocation

databases. The crawling also results now with locations closer to those indicated by IPligence and
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Figure 4.21: Telefonica PoPs Location Map

Figure 4.22: A CDF of a Large ISP Relocation Range of Error
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(a) 2010 Dataset (b) 2012 Dataset

Figure 4.23: Heatmap of Median Distance Between Geolocation Services

IP Geolocation 2010 2012
Algorithm Stage
PoP Located IP Addresses 87.3K 98.65K
CIDR /24 Blocks of 38.56K 45.96K
PoP’s IP Addresses
One-Hop IP Addresses 729K 441K
Two-Hop IP Addresses 1004K 672K
Two-Hop Routing Blocks 90525 87785
IP Addresses Measured 1.69M 1.32M

Table 4.8: IP Geolocation By Algorithm’s Stage

Maxmind (compared to 2010). From all the databases, the crawling results are closest to Neustar,

which is priced highest from all the geolocation services in use. The relatively small median distance

(region range), is a possible indicator of the database’s accuracy.

4.6.4 IP Geolocation

The contribution of IP-level geolocation using PoPs manifests mainly in the first four stages of the IP

geolocation algorithm, thus we evaluate the coverage of IP addresses by these stages as presented in

Table 4.8. Of all the IP addresses measured by DIMES and iPlane, 50% to 60% can be co-located

within 2-hops from a PoP with an overall delay of less than 2mS (up to 1mS per edge). As not all

the IP addresses are targeted for measurement, it is important to consider also the number of routing

blocks covered by this range. 90525 routing blocks (out of 219750 routing blocks, as indicated at

the time by Routeviews [117]) were covered in 2010 and 87785 routing blocks (out of 260954) were

covered in 2012.

We next use a set of IP addresses with a known location. They are taken from a 2010 ground truth

database provided by CAIDA, described in [54], includes private data from one tier-1 and one tier-2
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ISPs. In addition it contains public data from five research networks. The geographic location is

provided based on host names, with their encoding provided by the ISP and verified. The database

covers 25K addresses, but only 2241 are covered by our 2010 dataset (no aliasing used). 2201 of these

addresses were wrongly assigned by the original PoP algorithm. 1656 IP addresses were not marked

by the crawling algorithm, and out of the remaining 545 relocated IPs 418 were correctly relocated

within 100km, and additional 18 within 500km (The ground truth is highly biased to 2 ISPs and is

thus not representative [99])
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V Connectivity in PoP Level Maps

5.1 Defining PoP Level Connectivity

The connectivity between PoPs is an important part of PoP level maps. DIMES generates PoPs con-

nectivity graph using unidirectional links. We define a link LSD as the aggregation of all unidirectional

edges originating from an IP address included in a PoP S and arriving at an IP address included in

a PoP D. Each of the IP level links has an estimate of the median delay measured along it, with the

median calculated on the minimal delay of up to four consecutive measurements. Every such four

measurements comprise a basic DIMES operation. All measured values are roundtrip delays [34]. A

Link has the following properties:

• Source and Destination PoP nodes.

• The number of edges aggregated within the link.

• Minimal and Maximal median delays of all IP edges that are part of the PoP level link.

• Mean and standard deviation of all edges median delays.

• Weighted delay of all edges median delays. The edge’s weight is the number of times it was

measured.

• The geographical distance between source and destination PoP, calculated based on the PoPs

geolocation.

A weighted delay of a link is used to mitigate the effect of an edge with a single measurement on the

overall link delay estimation, where a link is otherwise measured tens of times through other edges.
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Figure 5.1: An Internet PoP Level Connectivity Map - A Partial DIMES Map of Week 42,
2010

5.2 Exploring PoP Level Connectivity

Using a dataset comprised of 478 million traceroutes conducted in weeks 42 and 43 (late October)

of 2010, measured by 1308 DIMES agents and 242 iPlane vantage nodes and applying DIMES’

algorithm to all the measurements, result in a PoP level map that contains 4750 PoPs, 82722 IP

addresses within the PoPs and 102620 PoP level links [101]. The links are an aggregation of 1.98M

IP level edges. All the PoPs have outgoing links, with only 2 PoPs having only incoming links and

one PoP with no PoP level links (only IP-level). As a full PoP level map is too detailed to display,

a partial map is shown in Figure 5.1. The figure demonstrates the connectivity between randomly

selected 430 ASes at the PoP level.

Most of the IP edges that are aggregated into links are unidirectional: 96.6%. This is a characteristic

of active measurements: vantage points are limited in number and location, thus most of the edges

can be measured only one way. However, at the PoP level, 18.8% of the links are bi-directional: six

times more than the bi-directional IP edges. This demonstrates one of the advantages of using a PoP

74



Figure 5.2: Number of Edges within a Link vs. Number of PoP Level Links in DIMES
Dataset

level map, as it provides a more comprehensive view of the networks’ connectivity without additional

resources. The average number of edges within a unidirectional link is 6.9, and the average number

of edges within a bidirectional link is 72.9. This is not surprising, as it is likely that most of the

bidirectional links will connect major PoPs, within the Internet’s core and thus be easily detected.

An additional view of edges aggregation into links is given by Figure 5.2. The X-axis shows the

number of edges aggregated into a link, while the Y-Axis is the number of PoP-level links. The graph

shows a Zipf’s law relation between the two, as 81.5% of the links aggregate ten edges or less, and

less than 2.5% aggregate 100 edges or more. The large number of edges per link is explained by

the fact that a measured edge is not a point-to-point physical connection: Take two routers, A & B,

connected by a single fiber; If one of the routers has 48 ports, and one measures through each and

every port, he will detect 48 edges between the two routers (incoming port i on router A and the single

connected incoming port of router B).

The number of links per PoP also behaves according to Zipf’s law, as shown in Figure 5.3. The figure

shows the total number of links per PoP, the number of outgoing links (source PoP) and the number of

incoming links (Destination port). The connectivity between PoPs is very rich: only twenty two PoPs

have one or two links to other PoPs, while 70% of the PoPs have ten or more links to other PoPs.
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Figure 5.3: Number of Links per PoP vs. Number of PoPs in DIMES Dataset

Many of the links are between PoPs that are co-located, which we define as links with a minimal

delay of 1mS or less, and over 90% of the PoPs have such links. Almost all the PoPs (over 97%) are

connected to PoPs outside their AS.

Figure 5.4 shows the minimum, weighted average and maximal delay per link, plotted on a log-log

scale with the delay (X-scale) measured in milliseconds. The solid black line shows the cumulative

number of measurements up to a given link delay. We omit from this plot links that include only a

single edge, which distort the picture as their minimal, weighted and maximal delay are identical.

An interesting attribute of this plot is that all three plotted delay parameters behave similarly and are

closely grouped. As all the links are an aggregation of multiple edges, this indicates the similarity in

the delay measured on different edges. One can also see that most of the measurements represent a

delay of 200ms or less, and that the extreme cases are rare (see the cumulative measurement line). In

almost all the cases where a minimal delay of 1sec or more are measured, this is a link that is made of

a single edge. The same logic applies also for links with a small maximal delay, meaning the maximal

delay was defined by only one or two measured edges. Here, however, a small maximal delay may

also indicate co-located PoPs.

Traceroute measurements are known to introduce delay errors [48, 95]. The errors tend to be of an

additive nature, though sometimes a measured single-edge delay may be lower than its physical de-
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Figure 5.4: Links Delay vs. Number of
Links in DIMES Dataset

Figure 5.5: Link Delay vs. Edge Delay
in DIMES Dataset

lay, due to an additive delay of the previous edge in the measured traceroute. This phenomenon is

demonstrated by Figure 5.5: The X-Axis of the figure shows the estimated minimal link delay (in mil-

liseconds), and the Y-Axis shows the spread of edge delay measurements. The figure focuses on the

interesting range of delays, up to 500mS link delay and one second edge delay. A few measurements

exist outside these boundaries, but their contribution to this discussion is small. Figure 5.5 clearly

demonstrates the effect of a single edge measurement error: some links have a minimum delay of

zero yet some of their measurements reach one second. Thus the aggregation of multiple edges into

PoP level links significantly cleans noise from the collected data.
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VI Improving AS Relationship Inference Using PoPs 1

6.1 Background

Inferring AS relationship is an important line of research [35, 107, 26, 98], yet over the years it was

conducted mainly on the AS level alone, assuming that the same relationship between ASes is kept in

all their peering points.

This chapter proposes a method that accepts as an input a collection of traceroutes and IP to PoP

mapping, converts the traceroutes to PoP level traceroutes, and analyzes the ToR at the PoP level. The

analysis at this level reveals oddities that help us make several contributions, which can be roughly

classified into two classes. First, by looking at Valley-freedom violation we can easily detect im-

perfections in our data-set inputs: errors in the initial ToR assignment, missing sibling relationships,

missing IXP address prefixes, and erroneous IP to AS mapping. Second, using the same method we

can identify complex ToRs, a holy grail in the field. An interesting subgroup of complex ToRs we

identified are "academic oddities": cases where academic networks do not follow the strict commer-

cial rules of relationships. While some of our findings can be achieved at the IP level, it is important

to point out that the analysis at the PoP level dramatically reduces the processing amount.

6.2 Analysis Process

We start by converting a traceroute dataset to a PoP level traceroute (preprocessing); then we deduce

missing ToRs, based on the ones we have; and finally we flag out anomalous ToRs, some of which

are clear suspects of complex ToRs. Some of the anomalies we find in the last stage are errors in our

input datasets, which are then corrected for future use. Thus, as we keep using the analysis method

periodically, we end up flagging only true anomalies and new changes in the Internet ToRs (like a

new merger between two ASes). A detailed description of the method stages is as follows:

1This part of the work was partially done by guiding Lior Neudorfer towards his MSc thesis
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6.2.1 Preprocessing

The algorithm receives as inputs:

1. A dataset of IP-level traceroute measurements.

2. A mapping of IP addresses to PoPs and ASes.

3. A dataset providing initial classification of AS-level links ToR: c2p / p2c / p2p / s2s.

The first step of the preprocessing is identifying for each IP address in the traceroutes dataset its

corresponding PoP and AS. IP addresses whose AS can not be identified (i.e., internal IP addresses)

are discarded. IP addresses whose AS is known but their PoP is not are retained. The next step

is identifying the path’s AS borders, by finding pairs of consecutive hops which belong to different

ASes. All IP-level hops which are not located on AS-AS border links are discarded, as we are only

interested in links between different ASes. Finally, the algorithm discards repeating paths and paths

which are fully contained within other paths. This last stage reduces the amount of paths, leaving

only paths that contribute new information over others.

Traceroute paths may contain PoP loops or cycles, caused by load balancing artifacts, misconfigured

routers or measurements taken during routing convergence periods [11]. For any path that contains

a loop, the algorithm trims the path’s prefix and suffix in order to retrieve the longest possible seg-

ment which does not contain a loop. We discard traceroute measurements which, when repeatedly

measured, show artifacts of load-balancing routers.

The last step in the preprocessing stage is discarding IXP hops from the traceroutes. As some IXPs

appear on traceroute paths as an additional AS hop, they may introduce errors in the following phases.

Thus, if hop N in the traceroute represents an IXP, we drop this hop and stitch hops N−1 and N +1

together, forming as AS-to-AS level link. We further discuss the reason and effect of this step in

section 6.4.

6.2.2 ToR augmentation

The ToR augmentation method, which is based on ideas from [98] and conducted on AS level, as-

sumes validity of the valley-free rule on existing paths and infers new ToRs in a way which preserves
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this rule. This assumption is used to assign a ToR to links that have no ToR classification in the initial

ToR database (See Section 6.4.1 for the initial ToR database coverage).

To find the ToR of unclassified links, we consider AS-level link paths generated in the preprocessing

stage. Only AS-level link paths that have a single unclassified link and that are otherwise valley-free

are considered. For each undetermined link in a given path, a vote is cast for each type of ToR which

will not violate the valley-free path property: A c2p vote is cast for links which are in the middle of

an “uphill” segment or links between an uphill segment and a p2p link. A p2c vote is cast for links

which are in the middle of an “downhill” segment or links between a p2p link and downhill segments.

For links which are before downhill segments in a path where only a downhill segment is detected, or

which are after uphill segments in a path where only an uphill segment is detected, or for links which

are located exactly between the uphill and downhill segments, all three possible votes are casted: c2p,

p2p and p2c.

After traversing all eligible paths, a new ToR is inferred for cross-AS PoP-links that had no ToR

assigned. Such a link is assigned a ToR if the percentage of votes which agreed on a ToR is larger

than a VOTING-THRESHOLD, and there were more than MIN-VOTES votes for the ToR. In case that

multiple ToRs pass the above thresholds, we give precedence to the p2p ToR. The process is then

repeated, taking newly discovered ToRs into consideration, and trying to infer ToR for the remaining

unassigned links, until no new ToRs are discovered.

6.2.3 Complex ToRs and anomaly detection

A path which is not valley-free and can be corrected by changing a single link’s ToR, is termed a

single-error path. For example, the path with the ToRs c2p-c2p-p2c-c2p-p2p-p2c can be corrected

to c2p-c2p-c2p-c2p-p2p-p2c. Single-error paths always contain one or two links whose ToR can be

changed in order to make the path valley-free. These links are denoted candidate anomalous links.

Each candidate anomalous link has one or two alternative ToRs: the ToRs which if assumed will make

the path valley-free. For each PoP-PoP link A-B, the algorithm finds:

1. P: the group of paths that link A-B is part of.

2. n: the overall number of unique PoP and AS nodes in the graph created by combining all the
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paths that contain link A-B. A large number means A-B was measured by traceroutes with

many diverse sources and destinations.

3. V P: the group of valley-free paths A-B is part of.

4. FPc2p: the group of paths which are not valley-free, in which A-B is a candidate anomalous

link, who can be made valley-free by assuming c2p ToR for A-B. FPp2p and FPp2c are defined

similarly.

The algorithm outputs anomalous PoP-PoP links which satisfy the following conditions:

• The link has a minimal measured graph size (n > min-nodes)

• The percentage of valley-free paths containing the link is smaller than an arbitrary min-valid-

percentage (|V P|/|P|< min-valid-percentage)

• There is a new ToR which, when assumed for the link, turns a large percentage of paths to be

valley free (|FPToR|/|P|> min- f ixed-percentage)

The three conditions capture cases when a PoP-PoP link has a significant evidence for a problem (first

two conditions) and a fix in the link ToR, which seems to correct the problem. The algorithm also

outputs the set of PoP-level links which comply with the first two rules, but for which a new ToR

could not be determined with a high level of confidence.

6.3 Datasets

Three types of datasets are used for this study:

DIMES traceroutes All the traceroutes measurements are taken from the DIMES project [25] The

dataset includes 29.2 million traceroute measurements and 506.3 million IP-level hops. The mea-

surements targeted 2.39 million destination IP addresses and were collected by 1017 DIMES agents.

RouteViews [117] and WHOIS databases were used to infer every IP address to an AS.

DIMES PoPs The DIMES IP to PoP mapping dataset is taken from weeks 19 and 20 of 2012. The

mapping of IP to PoP was based on traceroutes taken by both DIMES and iPlane [72] over the same

period of time. The map contains 5215 PoPs and 98650 IP addresses in 2636 different ASes.
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CAIDA ToRs The initial AS ToR mapping dataset is taken from CAIDA’s AS Rank Website2 from

August 2012. The dataset relies on BGP paths obtained on June 2012. It contains ToRs for 119,924

AS couples. 76781 (64%) relationships are customer/provider relationships, 40,900 (34%) are peering

relationships and 2243 (2%) are sibling relationships. We compare our results with a newer CAIDA

dataset, published September 2012.

6.4 Results

6.4.1 Preprocessing Results and ToR augmentation

The preprocessing stage of the algorithm takes the 29 million IP level traceroute measurements and

turns them into 1.63 million unique PoP level paths, thus reducing the dataset size by an order of

magnitude. 1.48 million PoP-level Paths (91%) are valley free.

Out of the 70714 AS-AS links found in the dataset, only 45202 links (64%) were covered by the

CAIDA dataset. It is thus necessary to augment the ToR dataset. We complete the missing ToR for

6699 links and fail to complete 18813 AS-AS links, out of them 495 appear only on paths which

are not valley free. Links of unknown ToR which appear only on paths which are not valley-free

can not be assigned a ToR with a high level of confidence. The augmentation increases the number

of customer-provider PoP links but only slightly increase the number of peer-peer links. For the

ToR voting, we use a VOTING-THRESHOLD of 80%, which gives a high level of confidence that the

inference is correct. We select this value based on experimentation with a range of values and find

that the effect on the results is marginal. Further information is omitted due to space limitations.

The ToR augmentation method requires a minimal number of paths in which the inferred AS-AS link

is included and that are valley-free, the MIN_VOTES threshold. This parameter is required as inferring

ToRs according to a few paths might introduce errors due to wrong traceroute replies or wrong AS

prefix resolution, similarly to the phenomena described by Zhang et al. [131]. We tested a range

of MIN-VOTES values, in order to select the best threshold and to verify sensitivity. Setting MIN-

VOTES= 5 infers 6699 new ToRs, while MIN-VOTES= 3 helps inferring 8594 new ToRs. However,

for a large number of AS-AS links there is only a single applicable path (regardless of the valley

free rule), which makes the augmentation difficult. Under such conditions we do not attempt to infer

2htt p : //www.caida.org/data/active/asrelationships/

82



the ToR. For lack of space we omit further discussion of MIN-VOTES sensitivity. We eventually set

MIN-VOTES= 5 which is a high confidence threshold, and allows to infer 26% of the missing ToRs.

6.4.2 Sensitivity analysis

Two parameters affect the anomaly detection method. The first, min-valid-percentage, determines the

minimal percentage of valley-free paths required to consider the PoP-PoP ToR correct (as detailed in

Section 6.2.3). The second parameter, min-fixed-percentage, determines the minimal percentage of

valley-free paths after the ToR was replaced required to consider the new PoP-PoP ToR correct. We

evaluate the effect these two parameters have on our anomaly detection method’s results.

min-valid-percentage and min-fixed-percentage capture the amount of confidence we wish to achieve

in determining whether a specific PoP-PoP link is anomalous. A larger min-valid-percentage may

cause non-anomalous links to appear as anomalous, but can also lead to the discovery of anomalous

links that by chance did not consistently cause path invalidity. A low min-fixed-percentage threshold

marks PoP-PoP links that even after changing their ToR appear as candidates to be anomalous due

to non valley-free paths. This may happen when some of the paths contain other errors, such as

traceroute measurement errors resulting from wrong AS resolution or ToR errors on other AS-AS

links.

To study the sensitivity to thresholds, we omit anomalies that turn out to be errors in the original

AS ToR database or that are caused by IXPs. This is done as these are one-time corrections and do

not affect the algorithm in later runs. Figure 6.1 shows the effect of changing the two parameters

on the number of discovered anomalous PoPs, with min-nodes set to 10 nodes. For the purpose of

sensitivity study, we consider as anomalous PoPs only PoPs that fall under the categories of complex

AS relationships and odd academic ToRs (see below). Clearly for a large range, between 0% and

35% for the min-valid-percentage threshold and between 70% and 100% of the min-fixed-percentage

threshold, there is little change in the number of discovered anomalies. Thus, We select the thresholds

from the non-sensitive region: min-valid-percentage= 20% and min-fixed-percentage= 75%.

An interesting observation is that eight PoP couples are "perfect anomalies": they appear in no valid

PoP paths, but when changing their ToR all the paths in which they appear become valley-free.
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Figure 6.1: Anomaly Detection vs. Thresholds Values.

6.4.3 Anomaly detection

After the first execution of the anomaly detection algorithm, we detect a couple of dozens anomalies.

We classify these anomalies into seven categories and highlight specific cases that exemplify the

anomaly type:

6.4.3.1 AS Prefix Resolution Errors

Our anomaly detection method detected three cases that were attributed to AS prefix resolution er-

rors. In these cases, the corresponding AS for a specific IP address in a traceroute measurement

was incorrectly resolved by the RouteViews dataset. This caused a large percentage of the paths

which contained this address to contain a valley, as the ToR between the wrongly assigned AS and

its neighbors was incorrect. AS prefix resolution errors might occur when the BGP blocks that were

announced to RouteViews were incorrect or not updated. Closer inspection, using other tools includ-

ing WHOIS, revealed the true owner of the IP address. Assessing the accuracy of multiple IP to AS

resolution databases is outside the scope of this paper.

Figure 6.2 demonstrates this phenomenon. In this case, an anomalous link is detected between

AS2116 (Ventelo) and AS3549 (Global Crossing), AS3549 is the provider according to CAIDA. In
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Figure 6.2: AS Prefix Resolution Er-
ror - Example

Figure 6.3: Complex AS Relationship
- Example

all the paths that contained this link, it appeared after a link between AS3356 (Level 3) and AS2116

(Ventelo), which is a p2c link, creating a valley in these paths. However, using WHOIS it was dis-

covered that the IP prefix to AS mapping was wrong, and that the PoP first associated with AS3549

actually belongs to Domeneshop (AS12996), which is a customer of Ventelo.

6.4.3.2 IXP and sibling detection

Usually, when IXPs appear in traceroute paths it is as an additional IP hop. In ToR analysis they

should be removed or else introduce errors since they are not part of the AS hierarchy, which we

did in our preprocessing stage using lists of known IXPs. However, we have found six IXPs that

appeared as anomalies in our PoP level traceroutes. Finding IXPs and consequently other anomalies

is an incremental process, as each detected IXP allows more paths to become valley-free (due to their

omission).

Similarly, we detected wrongly inferred siblings relationships. These are often cases of one ISP taking

over a second ISP, which was previously its customer. This change of ToR is not always updated in

the ToR dataset. Thus, when checking valley free routing, some of the paths between the pair of
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ASes will remain valid as c2p, while others will only be valid as s2s. Since in many routes a s2s ToR

is interchangeable with c2p ToR, the change of ToR between the two ASes may be hard to detect.

We manage to find 6 wrongly inferred s2s relationships, e.g., between TelePacific (AS14265) which

acquired Mpower (AS18687).

6.4.3.3 ToR inference errors

On three cases, a PoP-PoP link was deemed anomalous, but closer inspection revealed that the ToR for

the corresponding AS-AS link was wrongly inferred by CAIDA. In general, the method tries to avoid

flagging such cases as anomalies. It does so by discarding anomalous candidate links for which the

confidence for corresponding ASes’ ToR is not high enough. We deem two ASes’ ToR as confident

if there is a majority of paths containing the AS-AS link which follow the valley-free rule.

Two of the three cases we’ve discovered were corrected in CAIDA’s September 2012 ToR dataset,

a few weeks following this analysis. In the third case, CAIDA inferred a peering relationship be-

tween two ASes (AS12389 and AS8359), while in our measurements almost half of the paths which

contained this AS-AS link were not valley free.

One exemplary case of a wrongly inferred ToR, CAIDA inferred the AS3561-AS4134 (SAVVIS-

Chinanet) as a peering relationship. Our algorithm detected specific PoPs belonging to these organi-

zations as anomalous, and suggested a p2c relationship instead. The PoPs were deemed anomalous

as there was a small majority of paths containing PoP couples from AS3561 and AS4134 (80 out of

145 paths) which were valley free. In September 2012 CAIDA updated this ToR in their dataset and

changed the relationship between the two ASes to p2c, same as suggested by our algorithm.

6.4.3.4 Complex AS relationships

An interesting relationship was found between two PoPs of AS3561 (SAVVIS/CenturyLink) and

AS6453 (TATA) in Canada. As both ASes are Tier-1 providers, the assumed ToR between them is a

peering relationships (also indicated by CAIDA). However, only three out of the sixteen unique PoP

paths that include a link between this pair of PoPs are valley-free. Out of the remaining 13 paths, 11

traverse a PoP link between AS174 (Cogent) and AS6453 (TATA), clearly another p2p link between

tier-1 ASes (see Figure 6.3). When assuming a c2p relationship (the provider being AS6453’s PoP),
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all paths are valley-free.

It seems that while CenturyLink and TATA have a peering relationship in most locations, this specific

PoP-PoP link is configured differently: TATA’s specific PoP provides transit services between other

Autonomous Systems (namely, Cogent) and SAVVIS.

We have revalidated this finding a couple of weeks after the original experiment’s date, by running

a dedicated DIMES experiment that, issuing a large amount of traceroute measurements towards the

specific IP addresses of these PoPs from many widely spread vantage points. The phenomenon was

also reproducible by issuing traceroutes from Cogent routers, using their Looking Glass service.

6.4.3.5 Odd Academic ToRs

A couple of ToR anomalies are discovered in research institutes’ affiliated PoP links. Research insti-

tutes are less driven by commercial incentives and tend to be more collaborative in nature, thus setting

their ToR criteria differently than most ASes.

Figure 6.4 shows one such case, involving multiple PoPs belonging to research organizations. Traf-

fic flowed from multiple PoPs belonging to SWITCH, the Swiss Education and Research Network

(AS559) through CERN (AS513) and then through KPN (AS286), finally reaching the tier-1 provider

Level3 (AS3356). According to the ToRs inferred by CAIDA, SWITCH is a provider of CERN, and

KPN is a peer of Level3, causing this path to be non valley-free. CAIDA’s dataset missed information

on the ToR of CERN and KPN, but for any ToR this path violates the valley-free rules.

An additional anomaly, shown in Figure 6.5, is a single HP (AS71) PoP that is connected to the

Internet via Stanford University (AS32) and CSUNET (AS2153). CAIDA’s ToR for the HP-Stanford

link was p2p, and the Stanford-CSUNET link was c2p (Stanford is the customer), resulting in a clear

anomalous link.

6.4.3.6 Traceroute errors

We have found three cases in which we believe detected anomalies were probably caused by wrong

router replies. In these cases, a specific IP address which was part of a reported traceroute path was

not the actual IP address traversed by traffic on this path. This is caused by ICMP replies that are
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Figure 6.4: Academic ToR Anomaly -
First Example

Figure 6.5: Academic ToR Anomaly -
Second Example

sent through a different interface than the one the packets actually went through [59]. This error may

result in a wrong AS resolution, leading to wrongly assumed non-valley free paths.

6.4.3.7 Unresolved Anomalies

Three of the anomalies we found remain unresolved. While we have assumptions for the nature

of these anomalies, we did not manage to corroborate our finding and thus prefer to declare them

unclassified.

6.4.3.8 ToR Datasets

AS ToR datasets fail to capture a large amount of AS links, due to their reliance on specific data

sources. For example, CAIDA’s AS Relationships Dataset [6] only uses BGP routes in order to infer

AS ToRs. Shavitt and Shir [97], and more recently Gregori et al. [46], showed that BGP and traceroute

measurement sources complement each other. Therefore, our augmentation of an existing AS ToR

dataset according to an additional source of traceroute measurements is important by itself.
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6.4.3.9 ToR inference at different layers of aggregation

To better understand the contribution of PoP level maps to ToR research, the disadvantages in using

other levels of aggregation should be discussed in comparison.

For many years, using the AS level graph to infer ToRs seemed to be the right way, as this is seemed

to be the level at which ToRs are defined. In addition, the AS graph is relatively small and easy to

study. However, the AS level treatment does not allow the inference of complex relationships, where

two ASes have different relationships in two different locations. As demonstrated by Dimitropoulos

et al. [26], ASes might have a more complex relationship in various peering points. In addition, most

existing algorithms use specialized methods for sibling relationship detection, which rely on data

sources other than BGP and traceroute measurements [6].

Using router or IP level maps for complex relationship detection is also not a good solution as it is hard

to identify in them scattered errors and anomalies. IP level paths introduce noise to the measurements

and cause anomalies to be dispersed over multiple IP addresses, diminishing their significance and

preventing their accurate detection. In addition, router and IP level datasets are very large and require

considerable processing resources.

PoP level maps provide an answer to the above issues and propose a better level of aggregation

than AS, Router or IP level for anomaly detection. If two ASes have different relationships in two

different locations, these will be represented by two distinct PoP-PoP links, and one of them will

clearly violate the valley free rules, and thus can be easily flagged. While the same information

will also be detectable on the IP/router level, it will be hard to correlate it to a specific location

and to discard local errors. Considering the same problem the other way around, when detecting on

the IP/router level multiple non valley free routes it is hard to understand the nature of each link’s

anomaly or error. The aggregation of multiple IP/router level links to a single PoP-PoP link reduces

the complexity of this issue considerably, and provides a higher level of confidence to the inferred

new ToR.

6.4.3.10 Dataset Size Dependence

ToR Errors and PoP-PoP link anomalies are more likely to be found as we increase the number of

measurements and diversify the measurement vantage points. When measured from a small number
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of sources, an anomaly might not be identified, since a single path might not violate valley-freedom

even with the existing error or anomaly. For example, if a ToR is inferred as p2p instead of c2p, it

might not be discovered if the link resides between a c2p link and a p2c link. These paths would

be valley-free in both cases, and our method - which looks for improvement in the percentage of

valley-free paths when assuming a different ToR - would not identify this anomaly.

It is important to note that anomalies detected in a given dataset on the PoP level will remain valid

even if the dataset grows considerably, since the threshold to flag an anomalous ToR is based on the

number of violating PoP level paths and not their percentage.

6.4.3.11 Validation

The validation of our method is a hard task. Except for verifying results with ISPs, which are reluctant

to cooperate, there is no single ground truth dataset. As we show, many of the datasets that we use

as a reference have errors. Some of our results are corroborated by corrections done to the CAIDA

dataset shortly after we ran our analysis. Another mean of validation is from ISPs websites and public

information. This applies mainly for siblings ToR validation, often caused by one ISP acquiring

another.

Another method of validation is using targeted measurements through many scattered vantage points

to the point of anomaly. This is intended to eliminate transient routing effects and to confirm the

anomaly through as many distinct paths as possible. For some anomalies, such as mistakes in AS

resolution, reverse DNS and WHOIS, are useful tool in finding the true IP to AS mapping.

We believe that the level of validation provided in this work is sufficient under the given lack of

ground truth conditions and as the results show, it provides a good mean to validate other datasets and

sources for ToR information.
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VII Setting the Foundations for PoP-Based Internet Evolution

Models

7.1 Background

One of the dreams of mankind has always been to be able to predict the future. In scientific terms, this

corresponds to the mathematical description of patterns found in real world data in order to devise

models that can be used to predict future events. Researchers have pursued a similar goal over the

past decade in the area of Internet modelling and forecasting while using Autonomous System (AS)

level maps. Efforts have first been focused on obtaining topological maps of the Internet, principally

at the Internet Router (IR) and at the AS granularity levels. In both the IR and AS cases, Internet

maps are usually viewed as undirected graphs in which vertices represent routers or ASes and edges

represent the physical connections between them. Several large-scale measurement projects have

started to go beyond these purely topological characterizations of the Internet’s properties, and to

tackle the characterization and modeling of the relationship between economic factors and Internet

evolution. The promised forecast capabilities however have not yet been achieved due to the lack of

sufficient data and the difficulty of integrating Internet data with geographical and economical data at

a planetary scale.

In the previous chapters we have described a set of measurement tools and algorithms to obtain PoP-

level Internet maps. The PoPs, just like small ISPs, have a strong geographical grip and can better

represent the Internet evolution.

In the following section, the PoP topologies of the Internet are annotated with geographical, econom-

ical and demographical information to achieve an understanding of the dynamics of the Internet’s

structure, in order to identify the constitutive laws of Internet evolution. These can be used to develop

a realistic topology generator and a reliable forecast framework that can be used to predict the size

and growth of the Internet as economies grow, demographics change, and as-yet unattached parts of

the world connect.
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The combination of the technological infrastructure with monetary aspects can provide an understand-

ing of the forces driving the data-communications industry today. Using tools and methods from the

field of complex science (for example, from statistical physics) it is theoretically possible to develop a

prediction model. The practical uses of an evolution model are numerous: Internet service providers

can leverage the model to decide whether to expand their PoP, upgrade its technology or build a new

point of presence. City planners can predict its required infrastructure and assign resources for it in ad-

vance. Telecommunication firms and semiconductor corporates can better plan their next generation

of product and adapt its schedule and features to the market needs. Last, the growth and strength of

developing countries can be assed and predicted, providing country and world level decision makers

with essential information in times of economic crisis and market instability.

In this section, we set the infrastructure for a development of a future evolution model. As discussed

next, the information required for the development of such a model is yet out of reach. Thus, the

following chapter surveys the relationships between PoPs and economic and demographic aspects,

but only over specific time periods. Using this information, a model can be developed once more

information is gathered as years go by.

7.2 Datasets and Datasets Limitations

Several types of datasets are used in conjunction in this work. First, we use DIMES’s PoPs dataset.

Two PoP level maps are selected, one from 2012, and one from 2010. These are the same maps

described in Section 4.5. PoP level maps from earlier years lack information, either due to the extent

of the measurements, their accuracy or the lack of geolocation data from that time. We note that

geolocation data is likely to change over the years, as discussed in section 4.3.4, which may lead to

inaccurate PoPs geolocation.

Second, we use the World Bank’s World Development Indicators (WDI) [12] from May 2012. This

dataset contains a collection of development indicators, compiled from officially-recognized inter-

national sources. It presents the most current and accurate global development data available, and

includes national, regional and global estimates. The dataset in on country level and it contains indi-

cators such as population and population’s growth, GDP, percentage of Internet users and more (total

of 1287 parameters per country) on a yearly basis, from 1960 and up till 2012.
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Considerable amount of information is gathered from census data. To this end, several census sources

are being used. The United States Census Bureau [7] provides several types of USA census infor-

mation. It collects population and housing information every 10 years, conducts an economic census

every 5 years as well as smaller surveys and indicators released annually or several times a year.

IPUMS [92] is a project dedicated to collecting and distributing of United States and international

census data. It provides harmonized data for free in a manner that eases that analysis process.

In order to study the effect of transportation infrastructure, we focus on the United States and use

the Department of Transportation’s Bureau of Transportation Statistics [116] to retrieve information

on highways infrastructure, busiest airports and more. The bureau provides transportation related

economic information as well as connectivity and economic factors. A main source for economic

information is the Bureau of Economic Analysis in the US Department of Commerce [115], which

provides information on aspects such as GDP and income.

The population of cities is obtained from MaxMind’s World Cities database [77], which includes

information on the population of most of the world’s cities as well as their geolocation. We note that

some of the US level databases also include information about the population, but as the size of the

population differs from dataset to dataset due to different definitions of a city or a metropolitan area,

we stick to the same population dataset across the entire analysis.

7.2.1 Datasets Limitations

As the ultimate goal of the study of PoPs evolution is to come up with a realistic evolution model, the

datasets at hand put restrictions and sever limitations on the ability to develop the model over short

time periods. First, WDI dataset is only on country level and not on city level, thus it can not be

used to the city level modelling intended by this work. International census data is mostly provided

on country level and therefore has the same limitation. Census data poses an additional problem, as

census is conducted only once every few years (usually five to ten years) and thus does not allow

modelling over shorter time periods. As the Internet changes rapidly and technologies emerge and

die within a decade, such time frames are not useful. Large portions of the US datasets are provided

on state level, and only partial information is available on metropolitan level. The lack of per-city

information limits the coverage of PoP’s cities in the development of an evolution model over time.

The PoPs dataset limits the development of the model as well. First of all, due to the nature of the
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PoPs extraction model, it is not possible to tell whether two PoPs of the same AS in the same city

are truly separate or are part of the same PoP that was divided due to a missing measurement of

an inner link 1. For this reason, most of the analysis is based on the number of aggregated PoPs

per AS in a given city, with the information on the total number of PoPs and IP addresses within

these PoPs observed but largely not used as an indicator. While this may work well in most of the

western world, in other regimes the number of competing ISPs is limited or the government controls

the communication market (e.g. in Syria [100]). In such countries the number of PoPs per city is

limited by these external forces and the study of evolution is inaccurate. Last, and most important,

there is no ground-truth dataset of PoPs - neither on country nor on city level. This complicates the

validation of this work and mostly limits it to information shared by several specific ISPs.

7.3 Analysis

7.3.1 The Relation between PoPs and Population

Points of presence are likely to be closely related to economic factors of their area of residence. For

example, areas which are densely populated are likely to have more service providers than small

towns. We examine here the correlation both at the country level, which was done before (e.g. [128,

69, 23]), and at the city level, which we are the first to do

Figure 7.1 shows the number of PoPs discovered on country level compared to the country’s popula-

tion (in millions of people). For clarity, the figure omits the US from the chart, as it is on a different

scale. As can be seen, the size of the population is not a strong predictor for the number of PoPs in a

country. The correlation coefficient for population to number of PoPs is 0.22-0.23 both in 2010 and

2012. To demonstrate this point further, we present in Table 7.1 the number of PoPs per country com-

pared to its population for a set of selected large countries, both for 2010 and 2012. The country with

most PoPs discovered in 2010 is the US, followed by Germany, China, Canada and Japan. In 2012 the

list is led by the US, followed by South Korea (Republic of Korea), China, Canada, Russia and Japan.

We observe a large growth in the number of PoPs in South Korea and Japan, whereas in countries

such as Germany the number of detected PoPs in 2012 is larger than in 2010, yet in overall it is less

than in other countries. On the other hand, highly populated countries such as India, Indonesia and

1Refer to section 3.1 for more details
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2010 2012
Country Population PoPs Population PoPs
United States 306.8M 850 309.3M 1203
Germany 81.9M 109 81.8M 125
South Korea 49.4M 46 50M 170
China 1331M 93 1338M 138
Russia 141.9M 62 141.9M 127
Canada 33.7M 80 34.1M 130
Japan 127.5M 78 127.5M 125
United Kingdom 61.8M 78 62.2M 74
Australia 21.9M 67 22.3M 59
Indonesia 237.4M 18 239.9M 31
India 1207M 17 1224M 21
Pakistan 170.5M 5 173.6M 5
Bangladesh 147M 1 148.7M 6

Table 7.1: Population vs. Number of PoPs on Country Level (Selected Countries)

Figure 7.1: Country Level Population vs. Number of PoPs

Bangladesh have very few PoPs. While the number of PoPs does increase between 2010 and 2012,

these countries are still lagging behind other large countries. We note that in Pakistan the number of

detected PoPs is not only small (5) but also does not change over time. On the average, the number

of PoPs grew by 38% between 2010 and 2012 per country, and in 15% of the countries the number of

PoPs doubled itself, as shown in Figure 7.2. We note that in many of these countries only a handful

of PoPs was discovered in 2010. One of the exceptions is South Korea, that had 46 PoPs in 2010 and

more than tripled this number in 2012.

A different observation is gained by looking at the population versus the number of PoPs on city

level. Figure 7.3 shows the number of PoP discovered on city level compared to the city’s population
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Figure 7.2: Country Level Population vs. Growth in Number of PoPs

City Population PoPs 2010 PoPs 2012
Seoul 10.3M 41 128
Tokyo 31.5Ma 66 89
New York 8.1M 90 88
Los Angeles 3.9M 38 59
London 7.4M 40 49
Moscow 10.4M 39 40
Paris 2.1M 37 29
Shenzhen 10M 22 37

Table 7.2: Population vs. Number of PoPs on City Level (Leading Cities in Selected Coun-
tries)

aRefers to Tokyo metropolitan area

and a set of leading cities by PoPs in selected countries is shown in Table 7.2. The city with most

PoPs discovered in 2010 is New York, followed by Tokyo, Baltimore, Seoul and London. In 2012

Seoul takes the lead with 128 PoPs, followed by Tokyo, New York, Los Angeles and San Jose. In all

cases we count PoPs belonging to distinct service providers. In several cases the number of PoPs is

decreased between 2010 and 2012, which may be due to lack of measurements, but is also possibly

caused by the acquisition or merging of some ISPs. The correlation coefficients for a city’s population

and the number of PoPs are 0.49 (2010) and 0.51 (2012).

We study the inflation in the number of PoPs in Seoul and find that there are two reasons for that. First,

recall that all AS-level PoPs are aggregated on city level, thus we do not count the same autonomous

system more than once. When examining the active ASes located in Seoul we find that most of them

belong to universities: While in 2010 only three ASes that belonged to universities were detected, in
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Figure 7.3: City Level Population vs. Number of PoPs

2012 there are 56 such ASes. ASes that belong to other educational and technological institutes are

added on top of that, leading to a total growth from 15 to 83 PoPs. While these results raise suspicion

regarding the accuracy of the PoPs’ geolocation and possible mistakes in geolocation databases, this

was found not to be the case, except for a few cases that apply to Seoul’s suburbs, and it was manually

corroborated that the results are true 2.

In most of the capitals and large cities of the developed world, tens of PoPs are detected, but in some

of the most populated cities of the world, such as Bombay, Manilla and Delhi only a handful of PoPs

are detected. While the number of PoPs discovered in these cities grows between 2010 and 2012,

it does not significantly change: in Bombay the number of PoPs grew from 4 to 7, in Delhi from 2

to 6 and in Manilla from 9 to 14. In comparison, the number of PoPs in Seol grew from 41 to 128

and in Los Angeles from 38 to 59. While one may attribute this to the number of Internet users in

a country, correlating the number of Internet users or the percentage of Internet users in a country to

the number of PoPs is not a good indicator either (see Section 7.3.3). In addition, while the number

of PoPs depends on the number of measurements in a target country, in practice this effect is small,

as DIMES and iPlane try to reach all possible IP prefixes. PoPs are also detected in small cities, such

as Larnaca, Cyprus (less than 50K inhabitants).

Comparing the number of PoPs to the population is somewhat misleading, as countries are consider-

ably different from each other, and one can not compare, for example, the United States to Bangladesh

based on population alone. For this reason, we break down city level analysis and conduct it per coun-

2We’d like to thank Dr. Jong Hun Han for his assistance on this subject
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try. We include in the analysis only countries where PoPs were detected in at least 5 cities, and check

whether the number of PoPs in a city corresponds to the city’s size. The dataset, based on 2012 PoP

level map, includes 24 such countries and 508 cities. For each country we rank the cities by popula-

tion and check if the ranking by PoPs’ number is identical. We find that for 15 countries the rankings

of population and PoPs match, assuming that we allow disregard difference of up to two PoPs differ-

ence, since it is negligible. A different view on this aspect is gained by binning. The number of PoPs

per city is divided to three bins: 5 PoPs or less, 6-10 PoPs and more than 10 PoPs. Cities are also

divided to small cities (100K residents or less), medium cities (100K-1M residents) and large cities

(1M residents or more). We find that using this binning, 21 of the 24 countries have a full match

between the ranking of PoPs and the population’s ranking. This means that on a country level, the

size of a city is an excellent indicator to the number of PoPs in it, but the ratio between number of

PoPs and population varies between countries. The three countries that do not match this observation

are the United States, Italy and Germany. In Italy, Bologna has 6 PoPs, while in larger cities like

Turin and Naples only 3-4 PoPs are detected. In Germany, significantly more PoPs are discovered

in Frankfurt (24) compared to Berlin (4) and Hamburg (6) despite the later being more than twice its

size. In the US many such cases exist, possibly because in many cases the PoP is located in a small

town close to a large city. While the anomalies can be explained by other factors, the population is

shown not to be the only indicator to determine the number of PoPs per city.

7.3.2 The Relation between PoPs and GDP

The GDP of a country is a good indicator to its number of PoPs. There is a clear relation between the

GDP and the number of PoPs, as shown on Figure 7.4. The figure shows on country level the number

of PoPs per country compared to its GDP for 2010 and 2012 datasets; for the 2012 dataset we used

the GDP reported at the end of 2011 (as published in WDI’s May-2012 dataset). As the figure shows,

high GDP leads to a high number of PoPs on the country level. The correlation coefficient between

the GDP and number of PoPs is very high: 0.92 in 2010 and 0.90 in 2012. For countries with a GDP

of 100’s of billions of dollars, this is clearly the trend but it is not always the case. For example,

Sweden and Saudi Arabia have almost the same GDP (538 and 577 billions of dollars, respectively)

yet in Sweden we detect in 2012 thirty three PoPs, while only three PoPs are detected in Saudi Arabia.

For this reason, a simple equation that shows the relation between the GDP and number of PoPs can
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Figure 7.4: Country Level GDP vs. Number of PoPs

Figure 7.5: Country Level GDP (PPP) per Capita vs. Number of PoPs

not be found without a meaningful square root error. Both 2010 and 2012 datasets exhibit a similar

pattern and are overlapping in many points.

One may expect that other types of predictors relating to GDP will provide a better indication for

the number of PoPs. One such parameter is the GDP (PPP) per capita, meaning the gross domestic

product at purchasing power parity per person, which is often considered an indicator of a country’s

standard of living. However, this turns out not to be a good indicator, as shown in Figure 7.5: some

countries have very high GDP per capita but very few PoPs (e.g. Qatar, Kuwait) whereas countries

such as China and Russia have considerably lower GDP per capita, but many more PoPs. The corre-

lation coefficient in this case in only 0.25, both in 2010 and 2012.

Another possible predictor for the number of PoPs, complimentary to the previous one, is the multi-
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Figure 7.6: Country Level GDP x Country Level Population vs. Number of PoPs

plication of GDP in the population, however this turns out to yield results that are slightly less aligned

with the best fitted linear line than the dependence on GDP alone, as shown in Figure 7.6, but more

aligned than PPP. The correlation coefficient in this case is 0.55 in 2010 and 0.5 in 2012. This indi-

cator may explain why countries with high GDP and small population have the same number of PoPs

as countries with a large population but a medium GDP: the GDP is not the only factor, so very large

countries with a medium GDP will still need a significant PoPs infrastructure, to provide Internet

services its residents.

The growth in GDP is not an indicator to the number of PoPs, and countries with high GDP growth

do not have more PoPs than countries with low or negative GDP growth. The correlation coefficient

here is neutral: ranging from zero to −0.05. Similarly, the growth in the nuber of PoPs between 2010

and 2012 is not correlated with the growth in GDP. An example to this is Japan, that had at the end of

2011 a GDP growth of −0.7% whereas its number of PoPs grew by 60%.

7.3.3 The Relation between PoPs and Internet Users

At a first glance, the number of Internet users per country may seem a good indicator for the number

of PoPs: one may expect that the need for PoPs will rise as more Internet users require Internet

connectivity. This assumption, however, if not founded. When studying the relationship between

the number of PoPs and the number of Internet users per country3, there is some weak relation in

countries with many Internet users. Meaning, most countries with 20 PoPs or more have tens of

3This study is limited to the 2010 dataset only, as the WDI dataset included only the number of Internet users up till
2010, and for consistency we chose not to take this data from later datasets.

100



millions of Internet users. Yet this is not always the case: countries such as Austria, Sweden and

Switzerland have six to eight million Internet users, but over 25 PoPs in each. Considering the other

way around, i.e., whether a large number of Internet users calls for a large number of PoPs, there are

some exceptions as well: Nigeria, Turkey and Pakistan all have twenty eight million Internet users or

more, but five PoPs or less. The correlation coefficient between the number of Internet users and the

number of PoPs is 0.53 in this case.

One explanation may stem from the percentage of Internet users in the population (information taken

from the WDI dataset), but our analysis shows no connection between the percentage of Internet users

and the number of PoPs. It is not only weaker that the total number of Internet users versus PoPs, it

seems to be merely related, with a correlation coefficient of only 0.18. The same applies also for the

average bandwidth per user, where the correlation coefficient is 0.19 (based on [14] and covering 49

countries).

A possible explanation to why the number of PoPs does not depend on the number of Internet users, is

that service providers not necessarily have to increase the number of PoPs in order to handle increas-

ing demand for Internet access. For example, they can expand existing PoPs, adding more networking

equipment and thus exposing more ports towards the end users. The providers can also replace the

technology used in their PoP, e.g., using 10GE interfaces instead of 1GE. Last, it is possible that in

dense areas, such as crowded cities, we fail to detect multiple PoPs per a single ISP, due to the nature

of our algorithm.

7.3.4 A Study of the United States

The United States is a special case amongst all countries. First of all, the number of PoPs detected

in it is extremely high (1203 in 2012). Second, it is a vast country, with a high GDP, considerable

population and it is technologically advanced. Last, the large amount of economic and demographic

information which is available on city and metropolitan level, enables us to perform more accurate

and advanced studies.
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Figure 7.7: United States City Level Population vs. Number of PoPs

7.3.4.1 The Relation between PoPs and Population in the US

As noted above, the US is one of three countries where no direct relation is observed between city

level population and the number of PoPs in that city. Figure 7.7 demonstrates this, with the X-

axis being the number of residents in a city (in Millions) and the Y-axis being the number of PoPs

(aggregated by AS) in that city. The correlation coefficient, which is 0.79 and 0.78 in 2010 and

2012, correspondingly, does not tell the whole story: While for many cities, like New York and Los

Angeles, the rule that more residents mean more PoPs applies, there are many exceptions. Amongst

the medium-size cities (less than a million people) one can find cities like Boston or Baltimore with

500K to 600K residents but over 40 PoPs. Many PoPs are sometimes found in small cities as well: 23

PoPs in Springfield, MO (150K residents) or 10 PoPs in Albany, NY (94K residents). Consequently,

additional indicators need to be found for the number of PoPs in a city.

The study of additional indicators uses metropolitan level statistics, rather than city level, as this level

of aggregation has most information from official US government sources, such as the Bureau of

Economic Analysis (BEA), Bureau of Transportation Statistics (BTS) and above all the US Census

Bureau. On the PoP level the usage of metropolitans rarely affects the results due to range of conver-

gence applied when assigning PoPs to cities. In a handful of cases where a metropolitan area includes

more than a single city, such as Dallas-Port Worth, we aggregate the PoPs’ city level information to

the metropolitan level.
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Figure 7.8: United States Metropolitan Level GDP vs. Number of PoPs

7.3.4.2 The Relation between PoPs and GDP in the US

Another economical aspect that was studied on country level and can now be observed on metropolitan

level is GDP. We study the real GDP (in millions of chained 2005 dollars) as provided by the BEA

[119], as a total of all industries. The analysis covers the 50 largest metropolitans (by population)

in which we detected PoPs in 2010 and 2012. As opposed to what one may expect, the correlation

between GDP and number of PoPs in weaker on metropolitan level: only 0.78 in 2010 and 0.76

in 2012. While the correlation is still evident, it is not as strong as on the country level. This is

demonstrated in Figure 7.8. The GDP is shown in millions of dollars on the x-axis, whereas the

number of PoPs is shown on the y-axis. While in most metropolitan areas the change in GDP between

the years is small, while the number of PoPs rises, there are a few metropolitans where the number

of PoPs decreases. Although this may be attributed to lack of measurements, this is also the result of

acquisition or merging of some ISPs, which cause a convergence of PoPs in a given area, as we count

the PoPs of every AS only once per city.

Another way to consider the relation between GDP and PoPs is using ranking: We rank the metropoli-

tans by the number of PoPs in them, with the highest rank going to the metropolitan with most PoPs

and the lowest rank to the one with least PoPs. If two metropolitans have the same number of PoPs,

their ranking is similar. Identical ranking is applied to each metropolitan’s GDP. This method is

selected as much of the US metropolitan area statistics is published using ranking. Figure 7.9 demon-

strates the relation between the GDP ranking and the ranking of PoPs: generally speaking, the higher
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Figure 7.9: United States Metropolitan Level Ranking of GDP vs. Ranking of PoPs

the GDP of a metropolitan, the higher its PoPs’ ranking. However, this is not a clear linear relation

and there are some exceptions, e.g. San Francisco, ranked 8th by GDP but only 48th by PoPs (in

2012). The correlation coefficient in this case is another evidence: In 2010 it is 0.65 and in 2012 it

is 0.71. Both coefficients are weaker than the correlation coefficients between the Real GDP and the

number of PoPs.

Another economic factor that is considered is personal income: we study the per capita personal

income in the same metropolitan areas, as published by the BEA [118]. The correlation between

income and the number of PoPs is weaker than GDP, yet stronger than the country level PPP; It

reaches 0.5 in 2012 and 0.63 in 2010. The large gap between the two datasets is another reason not to

consider this parameter as a good indicator.

7.3.4.3 The Relation between PoPs and Transportation in the US

It is a common assumption that networking infrastructure is tightly related with transportation in-

frastructure [129], such as railways and highways, and that main transportation hubs also serve as

communication hubs. We examine this assumption when considering PoPs and various transportation

related statistics in the United States.

The first aspect under study is the US’ top freight gateways, in sea, air and land [122]. As these

gateways require significant infrastructure in order to transport the cargo, it is interesting to check

whether the same locations also serve as networks’ landing points and as centers of PoPs. The dataset
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is compared to 2012 PoPs dataset. It is found that only twenty of the metropolitans under study are

included within the Top 50 freight gateways (the size of the dataset). In this count we include also

gateways that are in proximity (up to 150km) of the metropolitan. Four of the metropolitans have

more than a single type of a gateway in the list: Houston, Los Angeles, Miami and New Orleans. Ten

of these gateways are through water, twelve through air and only three through land. The calculated

correlation coefficient between the total value of shipments through a gateway and the number of

PoPs is 0.58, and only 0.34 when the ranking of a gateway and the ranking of PoPs is considered.

This calculation uses only the small set of twenty metropolitans, and is thus very sensitive and prone

to fluctuations.

Following freight gateways, we focus on passengers transportation through airports. A database of

top 50 US airports is used for this end [121] and is compared with the 2012 PoPs dataset. Out of the

top 50 airports, 37 are included in the top 50 metropolitans with PoPs, and a total of 41 in the list of

all cities with PoPs. While this indicates that metropolitans with considerable air traffic are likely to

have a lot of active ISPs, the relation between the number of PoPs and the amount of passenger is

weak: a correlation coefficient of 0.3. The relation between the ranking of a metropolitan by PoPs

and by airport’s passenger is even weaker, 0.11.

Another type of transportation infrastructure is denoted by railways. While not a direct indicator

of railway tracks infrastructure, we examine the top 50 Amtrak stations by number of passengers

and compare it to the 2012 PoPs dataset. Just 15 metropolitans are shared between the list of top

metropolitans with PoPs and top Amtrak stations. Six more metropolitans appear in the full list of

metropolitans with PoPs. However, one needs to note that the Amtrak ranking list includes some cities

more than once, thus there are only 43 distinct metropolitans in it. Fifteen overlapping metropolitans

can be considered insufficient to calculate the correlation coefficient, but for illustration purposes, we

find it to be 0.44 for the relation between number of passenger and number of PoPs and 0.37 between

a station’s ranking and the PoPs’ ranking.

The last case relating to transportation under study is highway congestion in the 50 largest urban ar-

eas [120]. This set matches 35 metropolitans in the 2010 dataset4. Surprisingly, we find here better

correlation to the number and ranking of PoPs compared to the previous cases: the correlation coeffi-

cient between the total hours of delay and the number of PoPs is 0.61 and the correlation coefficient

4We use the latest BTS dataset available.
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Figure 7.10: United States Metropolitan Level Ranking of Highway Congestion vs. Ranking
of PoPs

between the ranking of a metropolitan by a highway congestion delay per commuter and its ranking

by PoPs is 0.66. While this is not a strong correlation as with GDP, it is better than for other types of

transportation indicators. The correlation between the highway congestion delay hours per commuter

and the number of PoPs is weaker, being 0.42. The relationship between a metropolitan ranking by

highway congestion per commuter versus ranking by PoPs is shown in Figure 7.10. Note that both

ranking lists have several metropolitans with the same ranking, due to identical number of PoPs or

identical hours of delay per commuter, which affects the correlation and is reflected in the graph.

7.3.4.4 The Relation between PoPs and Demographic Factors in the US

The United States census information is used to study the relation between two demographic aspects

and PoPs: age and race. These two aspects are selected due to their availability, compared to other

important aspects that are either not covered on metropolitan level or that were already covered before

in this work, such as income.

The 2010 US census information is used in conjunction with the 2010 PoPs dataset to study the

relation between different age groups in a metropolitan [113] and the number of PoPs in the area.

Table 7.3 shows the correlation coefficient between each age group and the number of PoPs. As can

be seen, the correlation coefficient is very similar for all age groups, which may indicate a relation

to all age groups. However, as there is a correlation of over 0.99 between the overall size of the

population and the size of a specific age group, the results actually reflect the relation between PoPs
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Age Group All Under 18 18-44 45-64 Over 65
Correlation 0.76 0.74 0.76 0.77 0.77
Coefficient

Table 7.3: Correlation Coefficient Between Size of Different Age Groups and The Number
of PoPs

and population as studied in the beginning of this section.

To study the relation between race and the number of PoPs, we use the information gathered on

the same 2010 US census with the 2010 PoPs dataset. The census dataset [114] states for each

metropolitan statistical area the number of people by race. Race may be White alone, Black or

African American alone, American Indian or Alaska Native alone, or Asian alone. We do not refer to

Native Hawaiian and Other Pacific Islander alone as the size of their population is negligible in most

metropolitans (a few hundreds of people). In addition, a person may define himself as from two or

more races. An exception is people from Latino or Hispanic origin, who may be of any race, and are

therefore counted separately (i.e. both under their race and origin). The results portray a complicated

story: The correlation coefficient between the size of the population of white, asian or people of two

or more races is almost identical to the correlation coefficient for the entire population. For white

people, who are about 78% of the population this is understandable, as the size of their population

has 0.99 correlation coefficient to the entire population. Asian and people of two or more race,

each pose about 2.7% of the population and have 0.91 and 0.96 correlation coefficient to the overall

population, which is weaker than for white people but still very high. The size of the American

Indian population has a correlation coefficient of only 0.51 to the number of PoPs, yet they are only

1% (on the average) of the overall population with 0.74 correlation coefficient to it, so their case might

not be well represented. The African American and Hispanic population are a different case: their

share of the population is rather large (each over 10%) and while their correlation coefficient to the

overall population is lower than White people or people of two races or more, it is almost the same as

that of the Asian population. Yet, the correlation coefficient of these two group is lower by 12%–18%

compared to other major races. This may still be attributed to the lower correlation between the size of

this population and the overall population, but it may also be driven by other social and demographic

factors.
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Race All White African American American Indian Asian Two Races Hispanic
Correlation 0.76 0.76 0.65 0.51 0.76 0.74 0.62
Coeff to PoPs
Correlation 0.99 0.87 0.74 0.91 0.96 0.89
Coeff to All
Average % 78.1% 10.7% 1.0% 2.7% 2.7% 12.4%
of All

Table 7.4: Correlation Coefficient Between Size of Different Race Groups and The Number
of PoPs

Figure 7.11: United States Number of TV Homes vs. Number of PoPs

7.3.4.5 The Relation between PoPs and TV Market in the US

Nielsen Media Research releases every year a rating of Designated Market Areas (DMA) across the

US. The size of a market is measured by the size of the television audience in it, where the audience

do not need to live within a city to be considered part of its DMA, rather live where its stations are

watched the most. For example, the Philadelphia DMA includes southern New Jersey and most of

Delaware. We take Nielsen’s 2011-2012 ranking and compare it to the 2012 PoPs dataset.

As the Nielsen dataset includes not only the ranking of the markets, but also their size by the number

of TV homes, we first check the correlation between the size of a TV market and the population

of the given DMA. A very high correlation may cause the results to mirror the correlation between

PoPs and population and thus make the size of the TV market a redundant indicator. The resulting

correlation coefficient is 0.88 (compared with the population dataset used in Section 7.3.4.1), which

is high but does not mean that the relationship is identical. The correlation coefficient between the

number of TV homes and the number of PoPs in a city is found to be 0.85, whereas the correlation
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coefficient between the ranking of a TV market and the ranking of its PoPs is 0.82. Both coefficients

are higher than 0.78, which is the correlation coefficient for the relation between population and PoPs.

Figure 7.11 shows the relationship between the number of TV homes and the number of PoPs, with

the dashed line showing the linear relation between the two. The line’s coefficient of determination

is 0.71. One can expect that the high correlation between the size of the TV market and the number

of PoPs will be a result of IPTV penetration, which requires such network infrastructure, however

in 2012 IPTV had only 9.66 million subscribers in the United States [85]. On the other hand, the

penetration of IPTV to broadband users in the country was almost 40% in 2012 [110]. It thus seems

that the right course is to study further the relation between broadband penetration and the number of

PoPs. Unfortunately, we did not manage to locate this information on the city or metropolitan level.

7.3.4.6 The Relation between PoPs and Sports Teams in the US

To continue the line presented in the previous subsection, one possible driver of TV markets is sports

events, such as NFL games, that often lead the TV shows ratings lists. It was thus suggested that cities

hosting such events require considerable infrastructure in order to support the media, and therefore it

may relate to the number of PoPs.

The major sports leagues in the United States and Canada are the MLB (baseball), NBA (basketball),

NFL (football) and NHL (hockey). These four leagues are often called "The Big Four". Adding also

the MLS (soccer) and CFL (Canadian football) is referred to as "The Big Six". The Big Six sports

teams are located in forty metropolitan area in the US, and 9 more in Canada. We focus on the US

sports teams and use the current allotment of teams to a metropolitan area. Information is collected

from the official websites of the leagues. We note that since there are no CFL teams in the United

States, only MLS teams make the difference between the Big Four and Big Six teams’ count.

Out of the forty metropolitan areas where teams are located, we detect PoPs in thirty seven places.

The average number of PoPs in each of these metropolitans is 21.1, with the median being 14, and

the minimum number of PoPs being 4 in Oklahoma (which has only one sports team, in the NBA).

The correlation coefficient between the number of PoPs and the number of Big Four sports team is

0.84 and the correlation to the number of Big Six teams is 0.86. This is a high level of correlation,

especially as the correlation between the number of sports teams and the size of the population is no

more than 0.7. To support this result, the average number of PoPs detected across the entire dataset
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is 6.5 PoPs per metropolitan area, with the median being 2.5 PoPs and the minimum a single PoP.

Considering the group of metropolitans with no sports teams, the average number of PoPs is 2.9 and

the median is two. The large gap in the number of PoPs between the group of metropolitans with and

without sport teams point that this may be a valid indicator.

While the results above suggest studying the relation between PoPs and National Collegiate Athletic

Association (NCAA) teams, such a case will be complex: there are hundreds of NCAA teams and the

games are on multiple broadcast networks as well as on local TV networks. This indicates that the

relation will involve not only the PoPs and number of local teams, but also other factors such as the

team’s division and ranking, and possibly its market size.

7.4 Discussion

The analysis of the PoP level map versus the various economic and demographic aspects teaches us

a few lessons. The most important lesson is that global analysis is too coarse to lead to a model

or a set of indicators that will apply to all countries. The difference between countries is too large

to expect that if a rule applies to the a country in North America or Europe it will also apply to

Africa and Asia. The differences stem not only from the country’s level of development or economic

status, but also from government policy - for better (South Korea) or worse (Middle Eastern countries

[100]). An evolution model that will try and predict PoPs evolution over time will therefore need to

apply different metrics to different types of countries. These results corroborate previous works, such

as Lakhina et al. [69], which showed that the number of router interfaces can’t be correlated on a

worldwide level, but that there is a correlation within economically homogeneous regions.

The analysis of the PoPs on US metropolitan level is in many ways more fruitful than on the country

level. While this is largely due to the availability of information on metropolitan level, the vast size of

the country and the large amount of PoPs detected in it, this is also due to derivative cultural aspects.

The combination of the advanced technological status of the US with leisure culture make the effect

of aspects like size of TV market and sports teams larger than in other places. If one would like

to compare these aspects to other comparable areas, e.g., the European Union, he may find that it

is hard. For example, in the TV market each country in the EU may have its own policy and use a

local language, which is different than the US. Sports teams are also managed differently (e.g., the

Football’s Champions league and the basketball’s Euroleague), as the sports team are included and
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excluded vary each year based on local achievements and thus do not form a constant set of teams

that requires long-term investment in communication infrastructure (except for a handful of leading

clubs).

The indicator that turns out to be the most influential on the number of PoPs is the GDP: strongly

on the country level and considerably on US metropolitan level. While analyzing the reason for

that compared to other economic factors is outside our field of expertise, there is no doubt in the

implications on the number of detected PoPs. On the US city level, the size of the population is a

strong indicator to the number of PoPs, and it also has a correlation to other aspects with high level

of correlation to the number of PoPs, such as age groups and TV market.

An unexpected result, from our point of view, was the low level of correlation between different

aspects of transportation and the number of PoPs on the US metropolitan level. As network infras-

tructure is considered related to transportation infrastructure (e.g. [90] and [123]), one would expect

higher correlation between the two. However, since the parameters that we study were limited due to

datasets availability, they may not necessarily reflect the entire scope of transportation infrastructure

in an area, which may be the cause for the results.

The lack of information for an evolution study of the PoPs level graph has two contributors. First, the

economic, geographic and demographic information that is not always accessible and or not available

on the required points in time, as discussed in Section 7.2.1. The second part is the short history of the

Internet and the radical changes the network has gone through in the recent decade. As information

from other fields of study has a long history and is commonly sampled on a decade and half decade

basis, there are not enough overlapping sampling points to devise a reliable model based on measured

data. The datasets used in the analysis are only a year and a half apart and thus are not far enough apart

to indicate growth or change trends over time. While we do detect more PoPs in 2012 than in 2010,

it will be incorrect to deduce anything based on these differences. The use of the two datasets does

support the results regarding the correlation between different indicators and the number of PoPs, as

the correlation coefficients are very similar across the years.
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VIII Conclusion

This thesis work presented a novel structural approach to automatically generate world-wide PoP

maps using the DIMES project infrastructure. The extraction algorithm is based on detection of a

network motif, and we discuss at length the theoretical background supporting this scheme. The

generated PoP maps have location information for each PoP, deduced from geolocation databases and

using a geolocation algorithm which increases the PoP location accuracy. An extensive validation

of both PoPs extraction and geolocation algorithms is provided, studying different aspects of the

approach.

The thesis also provides a comprehensive study of geolocation databases, comparing a large number

of databases of different types. We showed that the information in the databases may be largely

biased at the ISP level. Additionally, correlation was found between some databases, while minimal

correlation is found between others. The differences between databases is sometimes even in the

range of countries.

To mitigate the effect of geolocation services inaccuracies, we presented a new algorithm for PoPs’

geolocation that uses PoPs with high level of confidence to geographically locate PoPs with lower

confidence using PoP-level link delays. Details of the algorithm’s performance, sensitivity to param-

eters and possible limitations were also provided.

One of the Internet PoP-level maps applications discussed in this work is a method to infer AS re-

lationships using PoP data. The method is useful to detect complex types of relationships as well

as anomalies and mistakes in existing ToR datasets. The method leverages PoP-level maps, which

reduces the size of the analyzed datasets and highlights anomalies that are otherwise hard to detect

on the IP or the router level. Future work on this topic will extend this study, further examining and

validating complex AS relationships and anomalies. Additional future work will focus on geography

related aspects of ToR, and how they affect the robustness of the network.

In the last part of the thesis, we set the foundations for PoP-level Internet evolution models. We exam-

ined different aspects of geographic, economic and demographic factors and checked their correlation
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to the number of PoPs in different countries and cities around the world. The results show that GDP

is a good indicator of the number of PoPs, on the country level, and that on the US metropolitan level

the population may be a good indicator, as well as several other related aspects.

A future evolution model will need to take into account multiple PoP-level maps spread across a

longer span of time, in order to achieve a better understanding of the dynamics of evolution over time.

The model should look on the city level, where possible, and should distinguish between countries

based on their different characteristics (e.g. economic region). Further work should also involve

researchers from other disciplines, such as geographic and economic studies, in order to better analyze

the data and have a better understanding of the results. Another direction is to perform a focused study

of other countries than the United States, and to check similarities and differences.

Another aspect that we hope to study in the future is the evolution of the PoP level map’s technolog-

ical infrastructure. This means that one should look not only at the number of PoPs but also at the

technology that is used in them, e.g., 10GbE, 40GbE or 100GbE, and the number of exposed inter-

faces in each PoP. This kind of study will require collaboration with service providers, as the type

of infrastructure used is rarely revealed. This type of study may reflect better some changes in the

evolution of the network, due to the dominance of some tier-1 ISPs, who may have greater influence

on the network than the introduction of new ones to a city’s PoP level map.
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 תקציר

 
), Point of Presence )PoP בנקודה אחת הנקראת  רבים תקשורת נתבי למקם נוטים שירות ספקי

 בשל נושא בעל ענין רב הוא PoP-ה ברמת מפותבנית  .מסויםגיאורפי  באזורלתקשורת  המשמשתו
 מוצגת זו בתזה. ולימוד מאפייניו האינטרנט התפתחות אחר למעקב, לדוגמה, רבים לתחומים חשיבותו

 מדידות באמצעות גדול מידה בקנה PoP-ה ברמת מפות מובנה לזיהוי לבניה אוטומטית של גישה
traceroute מרובים ממיקומים . 

 מאגרי ממספר מידע באמצעות מיקום וקצהמ מכן ולאחר מתחילה בזיהוי מבני שלהם, PoPsבנית מפת 
 .ת ולידציה נרחבת של האלגוריתםספקמו זו בגישהש פשרותב העבודה דנה. גיאוגרפי מיקוםשל  מידע

 .ניתנים בעבודה אפשריים כיוונים כמהו, למחקר נרחב בשימוש להיות יכולות הנוצרות המפות

אבטחה  ויישומי מסחרי, אקדמי מחקרצרכי ל חשוב באינטרנט IP כתובות של הגיאוגרפי המיקום  
 למיקומים IP כתובות הממפים רבים  ואקדמיים מסחריים וכלים מידע מאגרי קיימיםבשל כך .שונים

קשה מאד להשיג מידע מבוסס על  שכן תמורכב הינה אלה מיפוי שירותי של יוקדהערכת ה. גיאוגרפיים
 שימוששונים תוך  מיפוי שירותי נבחנת מידת הדיוק של זו עבודה של השני חלקב. נכונות הנתונים

 ברחבי  IP-ה כתובות 100,000- ניתן לבחון קבוצה של כ זו בדרך. הראשון בחלק שהוצג באלגוריתם
. גיאוגרפי מיקוםחולקות את אותו  בביטחון גבוהה PoP-מתוך ידיעה כי כתובות השייכות לאותו ה העולם

 שלהם הדיוק ודנה במידת שירותי המיקום השונים של  והחולשה החוזקנקודות  על תובנות תמספק אני
, דיוק של גבוהה טוענים לרמה מאד מסחריים נתונים שמסדי בעוד כי המחקר מראה. שונות אנומליותבו

הוכחו , עיכוב מדידות על המבוססים, אקדמיים כלים. בספק מוטלת שלהם הנתונים מסדי שלם נכונות
 .כן גם שגיאה של כבעלי טווח רחב

 את לשפר מנת על PoP-המשתמש בגרף האינטרנט ברמת ה חדשנימיקום  אלגוריתםה מציג העבודה  
 האלגוריתם. השהיה ומדידות IPמספר מאגרי מיקום מ מידע שילובתוך  ,גיאוגרפי מיקום של הדיוק רמת

 את לשפר מנת על) התזה של הראשון בחלקה כהגדרת( רמת בטחון גבוהה במיקום עם -PoPsב משתמש
   כתובות למקם גיאוגרפית מכן ולאחר, בצורה איטרטיבית, יותר כהנמו ביטחוןרמת  עם PoPs שלם מיקומ

IP מאשר יותר מדויקות האלגוריתם ידי על הניתנות התוצאותהעבודה מראה כי במקרים רבים . בדידות 
 השהיה.ממלכודות הקיימות בשל שימוש במדידות  הימנעות תוך, גיאוגרפי מיקום מידע מאגרימ

 .(ASes) מערכות אוטונומיות בין נחשפו שלא המסחריים היחסים את להסיק מנת על נעשה רב מחקר  
 הניתוב מדיניות את מכתיבות), ToRs( שמבחינות לרוב בין ארבעה סוגי קשרים, אלה יחסים מערכות 

 היא. ToR היקש לשפרעל מנת  PoP-ה ברמת המפות את ממנף זו עבודה של הבא החלק. ASes בין
קשרים מורכבים וזיהוי אנומליות ביחסים בין  תאילמצ PoP-ה ברמת במפות משתמשתה שיטה מציעה

שדווחו על ידי  ToRעל גבי נתוני  בשיטה המשתמש  ניסוי תוצאותה מציג אני מערכות אוטונומיות.
CAIDA במפות שימוש של היתרונות את מדגימות התוצאות. שזוהו וטעויות חריגות וגיס מתארתו 

המסוגלות  אחרות שיטותב מאשר פחות ניכרים משאבים שיםוכי דרו ToR-ה היקש עבור PoP-ה ברמת
 .דומות תופעות לאתר תיאורטי באופן

-ה רמת על מבוססה האינטרנט של אבולוציה ודלמ פיתוחל היסודות את ניחמ זו עבודהב האחרון החלק 
PoP. טופולוגיותל PoP של  הבנה להשיג מנת על ודמוגרפי כלכלי, גיאוגרפי מידע מצורף האינטרנט של

 אלהנתונים  .אינטרנטה אבולוצית של היסוד חוקי את לזהות מנת על, ותשונ זמן בתקופותמבנה הרשת 
 לחזות כדי לשמש יםשיכול אמינה תחזית ומסגרת מציאותיטופולוגית רשת  גנרטור לפיתוח לשמש יכולים

כאשר ו, משתנים דמוגרפיים נתונים, לצמוחממשיכות  כלכלותככל ש האינטרנטרשת  של הצמיחה את
  מקומות שונים בעולם מתחברים לראשונה לרשת.
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 PoP -ה ברמת האינטרנט גרף

 

 

 

 

 נעה זילברמן

 

 

 

 

 

 "לפילוסופיה דוקטור" התואר קבלת לשם חיבור

 אביב-תל אוניברסיטת של לסנאט הוגש
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