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Abstract
Building scalable data centers, and network devices that fit
within these data centers, has become increasingly hard.
With modern switches pushing at the boundary of manufac-
turing feasibility, being able to build suitable, and scalable
network fabrics becomes of critical importance. We intro-
duce Stardust, a fabric architecture for data center scale net-
works, inspired by network-switch systems. Stardust com-
bines packet switches at the edge and disaggregated cell
switches at the network fabric, using scheduled traffic. Star-
dust is a distributed solution that attends to the scale lim-
itations of network-switch design, while also offering im-
proved performance and power savings compared with tra-
ditional solutions. With ever-increasing networking require-
ments, Stardust predicts the elimination of packet switches,
replaced by cell switches in the network, and smart network
hardware at the hosts.

1 Introduction
For the last ten years, cloud computing has relentlessly
grown in size [28]. Nowadays, data centers can host tens
of thousands [75] of servers or more. The complexity of
the data center network (DCN) has grown together with the
scaling of data centers. While scale has a direct effect on
the bisection bandwidth, it also affects latency, congestion,
manageability and reliability. To cope with these demands,
network switches have grown in capacity by more than two
orders of magnitude in less than two decades [85].

The computing community faced the end of Dennard’s
scaling [35] and the slowdown of Moore’s law [60] over a
decade ago, prompting a move to multi-core and many-core
CPU design [68]. Similar challenges are faced by the net-
working community today. In this paper, we discuss limita-
tions on network device scalability, and assert that in order
to continue to scale DCN requirements, data center network
devices need to be significantly simplified. We introduce
Stardust, a DCN architecture based on the implementation
of network-switch systems on a data center scale.

In Stardust, we divide the network into two classes of de-
vices: top-of-rack (ToR) devices maintain classic packet-
switch functionality, while any other device in the network
is a simple and efficient cell switch. We refer to the part
of the network created by these simple switches as the net-
work fabric. Devices within the network fabric do not re-
quire complex header processing and large lookup tables,
have minimal queueing and reduced network interface over-
heads. Their data path requires minimum clock frequency,
regardless of packet size. Creating a network fabric that is
made completely of a single type of a simple switch is a rad-
ical move from common approaches, whereby each network
device is a full-fledged, autonomous packet switch. To con-
quer the DCN scalability and performance requirements, we
build upon a number of insights, drawn from silicon through
the network level:
• The DCN can be compared to a large-scale network-switch
system, where complex routing decisions are taken at the
edge, and simple forwarding is applied within the fabric.
By using only basic routing mechanisms within the core of
the DCN, significant network-switch resources can be saved,
while maintaining functionality.
• The increase in port rates, utilizing an aggregation of N
serial links per port as a norm, limits the scalability of the
DCN. By using discrete, rather than aggregated links, the
scale of Fat-tree networks can improve by O(N2).
• Unnecessary packet transmissions can eventually lead to
packet loss. Credit-based egress scheduling can prevent
packet loss due to congestion, and increase fairness between
competing flows.
• Congestion can happen within underutilized networks due
to imperfect balancing of flows across available paths. By
evenly distributing traffic across all links, optimum load bal-
ancing can be achieved.
• Network-switch silicon is over-designed: it is under-
utilized for small packet sizes, and packet sizes not aligned
to the internal data path. By batching packets together, and
chopping them into cells that perfectly match internal data-
path width, maximum data path utilization can be achieved.
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Stardust has no sense of flows, and it does not require route
installation. The network fabric is completely distributed,
with no need for complex software-defined networks (SDN)
management, central control or scheduling. Stardust is also
protocol agnostic, reducing silicon level requirements by
33%. The resulting network provides full bisection band-
width. It is lossless, load balanced and provides significant
power and cost savings.

Switch-silicon vendors have produced, and shipped in vol-
ume, chipsets such as we exploit in Stardust (e.g., [20, 61]);
we do not claim these designs as a contribution. Similarly,
switch vendors have produced single-system switches that
internally use such chipsets to produce the illusion of a single
many-port packet switch (e.g., [14, 43, 26]). Our contribu-
tion, in this paper, is to architect and implement our approach
on a data center scale, using such commodity chipsets.

To summarize, we make the following contributions:
•We explore performance and scalability limitations in cur-
rent DCN network devices (§2), motivating the need for sim-
pler network devices.
•We introduce Stardust, an architecture offering a better ap-
proach to realizing DCN (§3,§4), and discuss its advantages
on a data center scale (§5).
•We evaluate Stardust (§6): experimental measurements on
O(1K)s of port environments, event simulations of O(10K)s
port systems and an analysis of large scale O(100K)s port
networks, illustrating the advantages of Stardust.
•We propose a future vision of DCNs (§8), where ToR func-
tionality is reduced to fit within network interface cards, with
ToR switches turned into cell switches.

2 Motivating Observations
The design of scalable network devices has hit a wall. If
a decade ago the main question was “how can we imple-
ment this new feature?”, now the question is “is this feature
worth implementing given the design constraints?”. We dis-
cuss three types of limitations to network device scalability:
resources, I/O, and performance. Our observations are or-
thogonal, providing trajectories to improving scalability.

2.1 The Resource Wall
Every network device is limited in its die size and its power
consumption. Chip architects need to balance the design to
avoid exceeding these resources limitations; die size is not
just a function of cost, but also of manufacturing and operat-
ing feasibility, and reliability.

Specializations and simplifications enabled DCNs to
evolve considerably from being an Internet-in-miniature us-
ing complex router and switch architectures. The data cen-
ter’s unique administrative environment allows Stardust to
present a dispersed switch design, eliminating the need to
support in each network hop a full suite of protocols, traffic-
control, or full interface flexibility.

Previous large switches have been custom-made machine-

room-wide HPC interconnects, or multi-chassis systems in-
terconnecting interface line-cards and control processors.
Such platforms, (e.g., [27, 43]) implement advanced packet
operations on the line-cards, interconnected using a simple
fabric consisting of minimal packet queuing or processing.
In DCN, the ToR switches take the role of the line-cards,
while the “interconnect fabric” is the spine and leaf switches
interconnecting all ToR devices. This model of the DCN
equally applies to Stardust.

Fig. 1 illustrates the difference between the two ap-
proaches: In both cases, the first switch (the ToR) pro-
vides packet processing, queueing, and full network inter-
faces. However, in the typical data center network approach,
traversing a Fat-tree will include going through all functions
(ingress and egress processing, queueing, scheduling,...) in
each and every hop. In contrast, with Stardust, scaled up
from the single system approach, these functions will be used
only at edge devices. By eliminating stages, logic and mem-
ory, consuming considerable silicon area [19], significant re-
sources can be saved. While the I/O remains the same, the
network interface is considerably smaller; there is no need
to support multiple standards (e.g., 100GE, 400GE), and
a single MAC functionality is sufficient. Stardust benefits
include reducing both network-wide latency and network-
management complexity as it practically presents as a single
(large) switch. Shallow buffering is not entirely eliminated
(see §6).

On the order of microseconds [16, 69] rather than millisec-
onds, the reduced fabric latency of a Stardust DCN behaves
as a single hop (albeit across a larger backplane fabric). This
allows applications to continue operating unchanged
Observation: Significant resources can be saved by simpli-
fying the network fabric and adopting a scaled-up single-
system approach.

2.2 The I/O Wall
The maximum number of network interfaces on network
devices has grown by an order of magnitude over the last
decade, climbing from 24 ports [31] to 260 ports [64]. De-
vice packages are big, 55mm× 55mm [79] or more, bigger
than high-end CPUs [44]. Such big packages raise concerns
about manufacturing feasibility, cost and reliability. It is un-
likely the I/O number will continue to scale at the same rate.

The second part of the I/O problem is that a network port
is not necessarily a single physical link. A Link Bundle (l) is
the number of serial links connecting two hops. For exam-
ple, connecting two switches using a port of 100GE CAUI4,
four lanes at 25Gbps each, is a link bundle of four. Link
bundling is a common practice in high-speed interfaces, used
to increase the bandwidth of a logical port through the mul-
tiplexing of information from multiple physical links. This
practice overcomes the signaling and physical limitations of
the media (e.g., copper), and also applies to integrated pho-
tonics devices for network switches [17].
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Figure 1: Traversing through a Fat-tree network, in a typical data center network (top) and in Stardust (bottom). In a network
with n tiers, a typical DCN requires n× (Ingress processing+Queueing+Scheduling+Egress Processing). Stardust requires
just 1× (Ingress processing+Queueing+Scheduling+Egress Processing).
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Figure 2: The scalability of a DCN using 12.8Tbps switch, for different link bundle values.
For the rest of this paper, we refer to each switch port as a

link bundle, and a switch radix indicates the number of ports
(link-bundles) in a switch. We use a Fat-tree topology to
demonstrate the effect of switch radix and link bundling on
DCNs scalability, and provide in Appendix A the mathemat-
ical justification. As each end host connects to a single ToR,
link bundling from the host has no effect on scalability.

Assume a network that consists of edge network devices
(e.g., ToR) and a network fabric connecting all edge de-
vices. The number of layers within the network fabric is
the number of Tiers. A network built from only ToR and
aggregation devices is a 1-Tier network, whereas the com-
mon Fat-tree Edge-Leaf-Spine structure is a 2-Tier network.
A network can be extended to include more edge devices
by introducing additional tiers. Fig. 2(a) demonstrates the
size of the DCN required to connect a given number of end
hosts, as a function of the link-bundle. In this figure, we
assume a network device of 12.8Tbps, using different link
bundling configurations, ranging from 256×50Gbps (l = 1)
to 32×400Gbps (l = 8), and assuming 40 servers connected
to each edge device using 100Gbps (l = 2) links. A link
bundle of one enables a 1-Tier network of over ten thou-
sand servers, whereas a 1-Tier network with a link bundle
of eight is limited to an eighth of this number of hosts. For
a 2-Tier network, a link bundle of eight allows connecting
only 20K hosts, compared with ×64 the number of hosts us-
ing a link bundle of one. The link bundle affects not just the
overall scalability of the network, but also the number of net-
work devices and links required to build a given size network
(Fig. 2). §5.1 and Appendix A expand on link bundling.

Observation: For a given switch bandwidth, a link bundle of
one will allow the optimum number of switches in a DCN.

2.3 The Performance Wall
Network-silicon devices support throughput in the order of
12.8Tbps [21]. This is equivalent to 32× 400Gbps ports or
19.05Gpps (19.05 billion packets per second) for 64B pack-
ets, and 5.8Gpps for 256B packets. The clock frequency of
switch silicon is in the order of 1GHz, meaning that even if
a new packet can be processed every clock cycle, between 6
(for 256B) and 20 (for 64B) packets need to be processed in
parallel. Even for 1500B packets, more than a single packet
needs to be processed every clock cycle. To address this
problem, network silicon today either does not support full
line rate for all packet sizes, or implements multiple data-
plane cores within each device, connected through an on-
chip switching module or a shared memory [39, 62]. See
Appendix B for a detailed analysis.
Observation: To support full line rate for all packet sizes,
network devices need to process multiple packets each and
every clock cycle.

In Fig. 3 we explore the scaling requirements for a
switch’s pipeline. We assume two 12.8Tbps devices: one
device implements standard packet switching, and the other
device (Stardust) optimally packs data into the pipeline, in
units that are equal to its data path’s width. The internal data
path frequency is 1GHz, and the data path is 256B wide1.
Fig. 3 shows the number of parallel buses, or processing

1Data path width is upper-bounded by timing and resources limitations,
and lower-bounded by performance requirements.
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Figure 3: The required parallel processing in a standard
switch and in a Stardust Fabric Element. We assume
12.8Tbps switch, 256B wide bus, 1GHz data path frequency.

cores, required to support the device’s 12.8Tbps. For small
packets, a design optimally packing data (Stardust) outper-
forms a packet-based design by a factor of ×4. Packing data
provides 41% improvement for 513B packets, and 18% for
1025B packets. Increasing the data path width eases the re-
quirements for large packets, but not for small ones.

Packets smaller than the internal data path width (which
can be over 50% of the traffic, assuming a 256B wide
bus [74]), benefit from data packing even more, as the on-
wire inter packet gap (IPG) and preamble are applied only
once per packed unit, rather than once per packet, increasing
the overall packet rate. From a silicon design standpoint, ex-
pecting standard switches within the DCN fabric to process
all packets at wire rate requires a huge amount of over design
for the task performed, with substantial penalties.
Observation: Packing data to optimally fit data path width
achieves higher throughput, for all packet sizes, at lower
clock frequencies. This simplifies switch design and enables
better scalability over time.

3 Architecture
Stardust is a new architectural paradigm for DCNs, address-
ing the resource, I/O and performance limitations discussed
in §2. Stardust scales up the switch-system to the DCN.

In order to support a scalable network, we define two types
of devices: the Fabric Adapter device, and the Fabric Ele-
ment device. The Fabric Adapter device, such as StrataDNX
Jericho [22], plays a similar role to a ToR device. The Fabric
Element device, such as StrataDNX Ramon [23], is used as
the building block of the network fabric. The Fabric Adapter
and Fabric Element used in the architecture differ from the
commonly used packet switches in at least one important as-
pect: the Fabric Element is not a packet switch but a sim-
ple cell switch, and the Fabric Adapter takes every incoming
packet and chops it into data units, which we refer to as cells.
Cells are still “packet” units, but with payload and header
sizes optimized to fit the Fabric Element pipeline.

3.1 Constructing a Stardust Based Network
The Stardust architecture is Clos based [30]. Fabric Adapters
are used as the first and last stage devices, whereas the mid-
dle stages are composed of Fabric Elements. For the rest of

this paper we limit the discussion to Fat-tree topologies [51],
a special case of a folded Clos topology.

The building of a network starts by connecting host ma-
chines, (e.g., servers) to a Fabric Adapter device that acts as
a ToR switch. Fabric Elements are used in the aggregation
and spine layers. The number of uplink connections from
the Fabric Adapter to the aggregation layer of the network
fabric depends on the desired uplink bandwidth and over-
subscription ratio. In Stardust every physical link is an inde-
pendent entity and is not bundled.

The network fabric is made only of Fabric Elements. Each
Fabric Element has k full duplex links. In the aggregation
layer, half of the links are connected to the Fabric Adapter
and half of the links are connected to a spine layer. In the
spine layer, all the Fabric Element’s k links are connected to
the aggregation layer.

We define the fabric speed up, fs, as the ratio between
links’ capacity to the network fabric and links’ capacity
to the hosts. 1/fs is the link utilization. A network fab-
ric may be under-subscribed with utilization < 1 or fully
utilized, from any device to any device, though some re-
dundancy is typically applied. Long-term over-subscription
from the hosts to the Fabric Adapter is handled as in any ToR,
i.e., packets will be dropped in the Fabric Adapter. Short-
term over-subscription is absorbed by the Fabric Adapter’s
buffers. Similarly, over-subscription is allowed between tiers
in the network fabric.

3.2 Dynamic Cell Forwarding
Packets arriving from the host to a Fabric Adapter are parsed,
and the destination is identified. Every destination is mapped
to a destination Fabric Adapter and port. Each Fabric
Adapter holds a reachability table indicating which links
can be used to reach the destination. The Fabric Adapter
collects multiple packets and chops them into bounded-size
(e.g., 256B) cells. The cells hold a small header including the
destination and a sequence number that allows reassembling
cells into packets.

A pivotal idea in Stardust is dynamic cell forwarding: each
cell is sent over a different link, while the Fabric Adapter ar-
bitrates over all the links in the reachability table marked as
leading to the destination. At each Fabric Element stage,
the same process is repeated by load balancing among all
available paths converging on the destination Fabric Adapter.
This dynamic cell forwarding is a radical departure from tra-
ditional static routing architectures, where a flow (or flowlet)
is bound to a specific path according to it headers, leading to
complex issues of provisioning, congestion avoidance, fail-
ure recovery, routing table configuration and more. Load
balancing on the links is nearly perfect and enables an opti-
mal use of fabric resources. The fabric behaves as a uniform
transport media, agnostic to incoming traffic patterns, or to
flow granularities. Dynamic forwarding may introduce out-
of-order fabric traversal. However, the load-balancing cre-
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ates a limit on the extent of out-of-order mismatching, and
reordering is managed at the destination Fabric Adapter (§4).

3.3 Buffering And Scheduling
Stardust is based on the combination of packet buffering at
the edge and a distributed scheduled fabric. The architecture
uses virtual output queues (VOQs) to queue packets arriving
to the Fabric Adapter. Each destination port (and priority)
has an assigned VOQ. The Fabric Adapter uses a buffering
memory, in the order of megabytes to gigabytes per Fabric
Adapter, storing the queued packets. Empty VOQs do not
consume buffering resources.

Distributed traffic scheduling is used in Fabric Adapter’s
Egress. Non-empty VOQs request from the destination port
permission to send traffic, and the port scheduler at the des-
tination Fabric Adapter is responsible for generating credits
without exceeding the port’s capacity, as it has a view of all
of the VOQs toward its ports. Stardust supports multicast
and broadcast, but this support is beyond this paper’s scope.

A credit entitles a VOQ to release an amount of data, (e.g.,
4KB) to the fabric. The VOQ dequeues packets up to the
credit size. The amount of surplus data is stored for later
accounting. The next VOQ is selected by the order of credit
arrival and a priority. The ingress packet buffer and sufficient
egress memory enable absorbing long bursts of data at the
ingress and momentary bursts of data at the egress.

3.4 Packet Packing
Using cells can be quite wasteful: sending packets that are
just one byte bigger than a cell size can lead to 50% waste of
throughput. Packet packing avoids such waste, effectively in-
creasing the packet processing rate, but operating on packed
packets rather than on individual ones (Appendix B). When
a VOQ receives a credit to send packets, it chops the pack-
ets in the queue into cells while treating the entire burst of
data as a unit. As a consequence, a cell may include mul-
tiple packets or multiple packet fragments (Fig. 4). Packet
packing is feasible only within the same VOQ.

4 Device Architecture
4.1 Fabric Adapter
The Fabric Adapter (Jericho) is the edge unit interconnecting
hosts with the network fabric. The Fabric Adapter resembles
a ToR switch, providing (programmable) header-processing,
scheduling and switching functionality. The size of its tables
resembles a ToR. However, it has additional functionalities:
• Chopping incoming packets from the hosts into cells, and
sending them to the network fabric
• Reassembling cells arriving from the fabric into packets
• Providing scheduling services by sending credits

Fig. 5 depicts an architecture of a Fabric Adapter de-
vice. On the Fabric Adapter ingress, packets arrive from the
host through multiple interfaces, (e.g., 40GE, 100GE). The
packet header is parsed and packets are stored in VOQs, ac-

cording to the destination Fabric Adapter and port. The num-
ber of VOQs is determined by the total number of downlink
ports on Fabric Adapters and the number of traffic classes
(rather than the number of routable IP addresses).

Non-empty VOQs send special control messages to an
egress scheduler at the destination Fabric Adapter. The
egress scheduler is consequently aware of all VOQs toward
its ports. It sends to the ingress Fabric Adapter a “credit”,
(e.g., 4KB). The total rate of credits matches the egress
port’s rate. The egress scheduler implements various QoS
policies, typically a combination of round-robin, strict prior-
ity and weighted among VOQs of different Traffic Classes,
allowing a flexible allocation of fabric and egress port ca-
pacities. While Jericho uses a proprietary scheduler, simi-
lar schedulers have been described before, e.g. in [56, 24].
To keep the egress buffer full, compensating for propagation
and processing delays, the credit rate is set slightly above the
egress port bandwidth (e.g., 2%) and slightly below the fab-
ric speed-up, to avoid congestion (§ 6.2). When the egress
buffer is close to full, the scheduler stops sending credits to
the VOQs and resumes as packets are drained.

Packets are dequeued from the ingress VOQ when a credit
arrives. The VOQ dequeues a number of packets, matching
the credit size. Packets are allocated to cells of a limited size
(e.g. up to 256B), distributed across multiple links toward
multiple Fabric Elements. The cell size matches the width
of the Fabric Element pipeline, and therefore fabric perfor-
mance is minimally affected by packet size distribution (§6).

At the network’s egress, cells arrive from Fabric Elements
over multiple links and are reassembled into packets. Cells
and packets can arrive out of order, and many hardware-
based solutions exist (e.g., [33, 15, 32]). However, as credits
are spread evenly over time, the number of concurrent inter-
leaved packets at the egress reassembly is bound by Fabric
Element queue size and does not scale with network size, or
the number of VOQs. If a packet reassembly timer expires,
e.g., due to a link error, the packet is discarded.

The minimum credit size is set by the Fabric Adapter’s
output bandwidth and the credit generation rate of its sched-
uler. For example, for a 10Tbps Fabric Adapter, using 1GHz
clock frequency and generating a credit every two clocks, the
minimum credit size will be 10T bps/(1GHz/2) = 2000B.
The maximum credit size dictates the amount of memory re-
quired at the devices. Consider a flow control to a port: the
egress memory will need to absorb the data in flight from
source Fabric Adapters, which is a function of credit size
and latency across the network (from last credit generated to
last bit of data arriving). To minimize the amount of Fabric
Adapter’s egress memory, credit size should be at the same
scale of the minimum credit size, as we validate (§6.2).

4.2 Fabric Element
The network fabric is composed only of Fabric Elements
(Ramon). Fabric Elements connect to either Fabric Adapters
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Figure 5: An architecture of a Fabric
Adapter device
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Figure 6: An architecture of a Fabric El-
ement device.

or other Fabric Elements. A Fabric Element handles only
fixed size cells, and does not parse packets, while providing
bare minimum buffering and scheduling. A possible imple-
mentation of a Fabric Element device is shown in Fig. 6.

The Fabric Element is a radical simplification of DCN
switches. It eliminates the logic and large tables associated
with protocols. There is also no need for complex software
configuring routing tables, handling bandwidth provisioning
or protection recovery. Additional logic handling congestion
avoidance and queue management is redundant as well.

In Stardust, a cell is transmitted on a single link in its en-
tirety (rather than over a link bundle) with a bounded cell
size and a small header that indicates the destination Fab-
ric Adapter. Packing packets into cells guarantees that only
a very small fraction of the cells are smaller than the max-
imum cell size (e.g., 256B). Thus, the Fabric Element data
path can be throughput optimized, regardless of packet size,
only bounded by technology and resource constraints.

Every Fabric Element holds a simple forwarding table that
relates every destination Fabric Adapter to an outgoing Fab-
ric Element link. If a Fabric Adapter is accessible through
multiple links, the Fabric Element load-balances the traffic
among them. As the destination is a Fabric Adapter and
not an end-host, the size of the table can be two orders of
magnitude smaller than a typical routing table. Beyond this,
the Fabric Element is essentially two k× k crossbars (e.g.,
256×256), one for data cells and one for control messages.

The forwarding table is automatically maintained by
hardware exchanging special reachability control messages,
where each device, Fabric Adapter and Fabric Element, ad-
vertises itself to all directly connected network-fabric de-
vices. The reachability messages are sent periodically. If
no reachability messages are received on a link periodically,
it is considered failed. Topology changes are incorporated
in the forwarding tables of the entire fabric in order of hun-
dreds of microseconds (see §5.9). This automatic setup in
hardware of forwarding tables, and the relative low latency
of the process, sets it apart from past proposals of extending
the internal structure of a packet switch to DCN scale.

As cells from different sources may compete on an output
link, shallow buffering is required within the device (§4.2.1).
If the link’s queue is a above a configured threshold, then

Fabric-Congestion-Indication (FCI) bits are piggybacked on
all cells. The FCI reaches the destination Fabric Adapter and
throttles the credit rate. The shallow queuing within the Fab-
ric Element guarantees low latency and jitter within cells’
travel time of the network fabric. The shallow buffering
within the fabric guarantees shallow buffering at the egress
of the Fabric Adapter, and easier packet reassembly.
4.2.1 Fabric Element Queuing Analysis
The probability distribution of queue size per link is a vi-
tal characteristic of Stardust. First, it determines latency and
jitter characteristics for traffic through the network fabric.
Second, it determines the amount of memory the egress Fab-
ric Adapter requires for absorbing in-flight data and packet
reassembly. Third, the queue size statistics determine the
maximal practical link utilization. Last, it affects the die size
of the Fabric Element.

A discrete queuing model represents the Fabric Element
queue behavior, as a function of link utilization. The time
unit is “fabric cell time”, which is the time it takes to transmit
a cell on a serial link. Consider a link’s queue at the last stage
of a network fabric: on average, a cell will be added to a
link with probability 1/fs. However, the cells arrival process
is bursty, as multiple Fabric Adapters may be sending cells
simultaneously.

Cell arrival is bound by a Poisson arrival process with pa-
rameter 1/fs. The discharge process is a constant one cell
every “fabric cell time”. With M/D/1 queuing model, the
probability of queue build-up on a link of size N can be ap-
proximated by o(fs−2N) (as corroborated in §6.2). The Pois-
son arrival model is a worst-case scenario, as it assumes an
infinite number of Fabric Adapters, and ignores the distribu-
tion effect of credits. As a limited number of Fabric Adapters
generates traffic, both the burstiness of the arrival process
and queue size’s tail probabilities decrease.

5 Stardust on a data center scale
5.1 Scaling, Tiers Reduction and Longevity
The Fabric Element utilizes a lean functionality, allowing
it to pack more interfaces into the same area and enables
higher radix devices. As Stardust eliminates the need for link
bundling logic, then when, e.g., 400GE is used (link-bundle
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of 8), the nth tier of a Stardust based network can support
×8n more ToR devices than a typical DCN, while still being
non-blocking.

Since the traffic from a source to a destination Fabric
Adapter is load balanced over all upstream links, the network
fabric behaves like a single large pipe whose bandwidth is
the bisection bandwidth (for example, 12.8Tbps pipe for 256
links of 50Gbps). Consequently, the fabric is agnostic to port
rate or flow rate.

Stardust supports a gradual growth of a DCN. A data cen-
ter operator will typically start with a small instance of a
network fabric, then expand it over time. When designing
a Stardust fabric, it is not necessary to populate the entire
fabric from the start. The auto-construction of reachability
tables, combined with dynamic forwarding, enables starting
with a partially populated fabric, and adding Fabric Elements
over time within a live network.

Stardust scales from switch-systems to data centers with
10K’s to 100K’s of nodes as the Fabric Elements, queueing
and reassembly processes depend on device radix and are
independent of network scale. Scheduling scales with the
amount of on-chip memory. The number of VOQs in Jeri-
cho [22], as well as in other high-end switches [13, 29], is
in the order of 100K, and increasing the number of VOQs is
feasible (see §C).

5.2 Push Fabric vs. Pull Fabric
The following example shows the fundamental difference
between a network fabric based on a “standard” Ethernet
switch and a Stardust scheduled fabric. Consider a network
fabric as in Fig. 7. On a single device there are two 100GE
ports, A and B. From one input device 100Gbps are injected
toward A (marked red), and additional 100Gbps are injected
toward B (marked green). Additional 100Gbps are injected
towards A from a second device (marked red).

In a fabric based on standard Ethernet switches, both of
A’s 100Gbps flows are pushed into the fabric. Even with
multi-path routing and load balancing, local congestion oc-
curs in the middle stage switch and both A’s and B’s traf-
fic is dropped. At the egress device only 66% of B traffic
passes, despite not being congested. The problem is exac-
erbated if we consider Traffic Classes, where the throughput
of the standard Ethernet switch based fabric may be half of
Stardust (Appendix F).

Ethernet switch fabric drops are due to local optimization
of the ToRs. The network fabric, made of autonomous Eth-
ernet switches, makes local decisions using local congestion,
oblivious to the-end-to-end traffic. Thus, congested ports can
block non-congested ports. While on a longer time scale
packet losses may be reduced by congestion control mech-
anisms (e.g. ECN marking), this is not the case for short
bursts.

In Stardust, the egress port scheduler of B sends 100Gbps
worth of credit toward B’s flows, and the egress port sched-
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Figure 7: Packet drops in Ethernet switch fabric vs. Stardust.

uler of A sends 50Gbps worth of credits toward each of A’s
sources. These flows, distributed through the fabric, reach
the egress, and transmit 100Gbps at B and 100Gbps at A.
The surplus 100Gbps of A’s traffic is stored at the ingress
buffer, and from there it may be sent (if over subscription is
momentary) or dropped (if persistent).

5.3 Optimal Load Balancing
Network fabric architectures based on typical Ethernet
switches use flow hashing to load balance traffic across a net-
work. This has been shown to be highly inefficient, allowing
only 40%-80% utilization of the bisection bandwidth [5].

Recent research [41] started investigating packet level
load balancing, giving rise to more uniform distribution,
lower queues, higher utilization [8], lower latency and jitter,
and therefore a much shallower buffer. However, even with
packet level load balancing, there is ×144 disparity between
the smallest 64B packet and the largest 9KB packet, leading
to substantial variance in queue length, and hence latency.

Stardust load balances fixed size cells, effectively achiev-
ing a perfect fluid model. At each Fabric Adapter, each
packet is segmented to fixed size cells that are distributed
in a round robin manner across all links leading to the des-
tination port. Thus, the same amount of data is sent down
each link. There are only two aspects that cause insignificant
variations in link loads. First, cells at the credit-worth tails
may be shorter. Their relative amount is negligible as mul-
tiple packets from the same VOQ are accumulated up to a
threshold (e.g., 4KB), before fragmentation. Second, recur-
rent synchronization between packet transmit times and the
load balancing mechanism bias load on some links for some
destinations. However, the round robin arbiter traverses the
Fabric Element links in a random permutation order, that is
replaced every few rounds. Thus, the probability of a persis-
tent synchronization is negligible.

5.4 Effective Buffer and Incast Absorption
Stardust provides a large and distributed packet buffer, en-
abling it to absorb incast. These packet buffers may be man-
aged by smart queue management (SQM). When a desti-
nation port is oversubscribed, the data accumulates only at

7



source Fabric Adapters and the packet buffers available for
storing data bursts are large. Even if the packet buffers are
not sufficient, the source Fabric Adapter can avoid packet
loss by sending flow control messages back to the host, as in
a standard ToR.

Let us compare a “standard” unscheduled network fab-
ric and a Stardust network, and assume a configuration of
128 ToR switches/ Fabric Adapters with 50Gbps×128 ports,
64 switches/ Fabric Elements with 50Gbps×128 ports, and
32MB packet buffer per device. Consider an incast event of
1MB from each ToR toward a single 50Gbps port (total of
128MB). In the Ethernet switch fabric, all traffic will reach
the egress ToR, and whatever is not transmitted at 50Gbps,
will fill the ToR’s packet buffer or be dropped. This happens
regardless of the load balancing granularity (flow, flowlet,
packet). Activating PFC flow control at the destination may
propagate and block the entire fabric. In Stardust, the in-
cast traffic from all Fabric Adapters will be admitted to the
fabric at an aggregate rate of 50Gbps. The rest (99%) accu-
mulates in the ingress Fabric Adapters, occupying 0.99MB
of each packet buffer. No packet is lost. The available
packet buffer memory per destination is effectively ×128
larger, distributed across all Fabric Adapters. The destina-
tion’s egress scheduler distributes bandwidth (credits) to in-
cast sources evenly, guaranteeing an even draining rate of
the VOQs, and an optimal flow completion time of the incast
event.

5.5 Lossless Transmission
The Fabric Element is lossless. As shown in §6, when under-
subscribed, the probability of a queue reaching it maximal
level is very low. The FCI reduces this probability further, as
credit rate is reduced when a queue starts building. This con-
trol loop is activated with a very low probability, and affects
only traffic heading to the congested destinations. When
the network fabric is intentionally over-subscribed, the FCI
mechanism is activated only when the fabric is actually over-
subscribed with traffic. Queue overflow is further reduced
using a shared queue-memory pool, permitting dynamic bal-
ancing between congested and non-congested links. As a last
resort, the Fabric Element pipe can be paused to avoid drop-
ping a cell. The probability of this event is infinitesimal, thus
the net effect on the entire fabric throughput is negligible.

5.6 Latency and Jitter
The packet latency and jitter through the network fabric are
governed by the queue size probability distribution within
the Fabric Element. The latency is at the scale of 0.5-4 mi-
croseconds per hop. In a multi-tier network fabric, the la-
tency is governed by fiber length as much as it is by the Fab-
ric Element latency, as every 100m of fiber translates to a
half microsecond propagation delay.

First packet latency depends on VOQ configuration. Re-
ceiving a credit will take about a microsecond, but a low

latency VOQ starts transmitting immediately. We assume
a limited aggregate bandwidth of all low latency VOQs,
bounded by Egress Fabric Adapter and Fabric Element mem-
ory resources, else packets may be dropped (as in a ToR).

5.7 Traffic Pattern Agnosticism
A valuable property of Stardust fabric is its agnosticism to
the traffic pattern at the edges (ToR/Fabric Adapter). The
single parameter that affects the fabric performance and la-
tency is the fabric speed-up fs2. If we consider the worst-case
scenario for latency and drop probability, it is for many (e.g.,
1000) sources sending traffic to a single output port. This is
bound by the M/D/1 queuing model. Other scenarios would
have a shorter-tailed queue size (hence latency) distribution.
If the total bandwidth toward a port exceeds its bandwidth,
as in incast, it does not matter; the egress distributes cred-
its at the egress port’s rate and no more, and excess traffic
remains queued in the source Fabric Adapters, while the fab-
ric experiences the same cell loads, and hence, will have the
same or better queue size distributions than that of the M/D/1
queuing model.

5.8 Dynamic Routing
Routing within Stardust’s fabric requires no routing protocol
or SDN controller inputs, and is dynamic per cell. When a
cell needs to be sent to a destination, there are multiple paths
that can be taken. Cells are load balanced on all available
paths, even if they are part of the same flow or packet. Con-
sequently, a large set of paths is taken between every pair of
source and destination Fabric Adapters. There is no set of
fabric routes per destination that is saved in a memory: for
each destination Fabric Adapter there is only the set of links
outgoing from the current device that can be used. This for-
warding database has a negligible size of Number-of-Fabric-
Adapters entries of size Number-of-Links.

Each device periodically transmits its Fabric Adapter
reachability table to its upstream neighbors, leading to an au-
tomatic update of routing tables. Any topology change due
to link failure is transmitted from its source to the routing
tables of all upstream devices, and affects their forwarding
decision.

5.9 Improved Resilience, Self-Healing Fabric
The use of non-bundled links improves the resilience of the
network. While for a 400GE port, a link failure means that
8×50Gbps links go down, in the Stardust, a link failure af-
fects only this single link. Therefore, the improvement in
resilience equals the link bundling between stages.

The reachability messages exchange, used for building the
destination’s reachability table, is also used to establish a
link’s status and health, making the network self-healing and
increasing its resilience. When a link is down, the reacha-

2And even then, as long as the fabric is < 90% utilized the dependence
of latency distribution on fabric speed-up is very weak
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bility tables in all devices are automatically updated, and the
load balancing is adjusted to exclude dependencies on this
link. The load balancing, starting at the first stage’s Fabric
Adapter, eliminates hot spots of congestions. Recovery time
is determined by the rate allocated for reachability messages,
i.e., interval between successive reachability cells. The re-
covery time is around hundreds of microseconds with neg-
ligible reachability cell overhead (Appendix E). While the
values are configurable, assume for example, a Fabric Ele-
ment reporting the reachability of 128 Fabric Adapters on a
link every 1ns× 10,000 clocks. It takes the Fabric Element
seven messages to report the status of a network connecting
32K hosts (40 hosts per Fabric Adapter). It takes 3 hops in
a Fat-tree to reach the ingress Fabric Adapter from the last
Fabric Element, amounting to 1ns×10000×7×3 = 210us.
Updating the status based on multiple (e.g, three) consecu-
tive updates will amount to roughly 630us. The mechanism
precedes BFD [47] and, as implemented in a dedicated hard-
ware, has a lower overhead.

5.10 Handling Failures
Load balancing cannot compensate for a link’s failure; if the
link is connected to a destination Fabric Adapter, the band-
width capacity toward the destination is reduced. Resilience
can be improved by adding redundant links. With traffic au-
tomatically spread across all links, and as there is no manage-
ment overhead for adding links, contrary to typical networks,
only the physical cost applies.

Stardust provides multiple mechanisms to handle failures,
from the link level to end-to-end detection and isolation. For
example, packets with Ethernet CRC errors are dropped at
the Fabric Adapters. On the link level, traditional mecha-
nisms are applied to protect against errors (e.g., Forward er-
ror correction). If the error rate on a link crosses a threshold,
the link marks itself as faulty on reachability cells, and is
excluded from cell forwarding. A link is declared valid only
after the number of good reachability cells received crosses a
threshold. The probability of an error on a link is unaffected
by the use of cells, as the number of bits on the wire is ap-
proximately maintained. As Stardust minimizes the number
of hops in a network, by saving tiers, the probability of an
error on a packet is reduced.

When a device fails, it stops sending reachability mes-
sages. Consequently, links leading to the device are re-
moved from the reachability tables, and the traffic bypasses
the faulty device. In a multi-tier network fabric, this infor-
mation is also propagated upstream to the Fabric Adapters. If
the load per link increases due to a device’s removal, the FCI
mechanism readjusts the credit rate toward affected devices.

Unlikely scenarios, such as a faulty Fabric Adapter send-
ing unlimited credits, will not collapse the network. Instead,
it will degrade the network to the performance of a standard
“Push” Ethernet network. While switch-systems are mature
solutions, where failure mechanisms have been thoroughly
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Figure 8: Throughput of switches running at 150MHz and
using (a) single packet size, (b) traces from [74].

debugged over the years, DCNs face additional reliability
challenges, which we intend to study in future work.

6 Evaluation
We take a three stage approach to the evaluation. First,
running experiment-driven measurements on stand-alone de-
vices and in an existing single-tier Stardust system. Second,
we conduct a precise simulation of a two-tier network. Last,
in §7 we analyze a large scale network, attending to aspects
of cost, power and scalability. The simulation and analysis
are based on the results of our measurements.

6.1 Experiment-Driven Measurements
6.1.1 Packet Packing
Measuring the effect of packet packing on throughput is not
possible on existing silicon devices. Instead, we use a pro-
grammable platform, NetFPGA SUME [84] to demonstrate
this effect. We compare four different architectures, all origi-
nating from the same source code: NetFPGA 4×10GE Ref-
erence Switch (Release 1.7.1), NDP switch [41, 40], Star-
dust, and Stardust-based using non-packed cells. The NDP
design originated from the NetFPGA Reference Switch, and
treats non-NDP packets similar to it. The Stardust design
is similar to the Reference Switch, but instead of switching
packets it switches packed cells. The Stardust-based non-
packed cells design is identical in implementation to the Star-
dust design, yet we inject non-packed cells. The credit size
is 2KB, and each cell is 64B, as the NetFPGA data path is
32B wide with 2 clock cycles per table lookup. We com-
pare the designs’ throughput at a data path clock frequency
of 150MHz (The NetFPGA platform is limited at lower fre-
quencies [63]). The traffic, generated using OSNT [12], is a
stream of TCP/NDP packets of various sizes. As a reminder,
our goal is to explore device-level performance and scalabil-
ity, rather than protocol-level properties.

As Fig. 8(a) shows, Stardust achieves full line rate for all
packet sizes, up to 15%, 30% and 49% better than the Refer-
ence Switch, NDP, and non-packed cells, respectively. The
Reference Switch achieves full line rate for all packet sizes
only at a clock frequency of 180MHz, while NDP fails to
reach full line rate for some packet sizes (65B, 97B, 129B)
even at 200MHz 3. Using real world traces [74], Stardust

3NDP’s TCP performance is identical to the Reference Switch, and only
NDP packets experience performance loss. NDP’s authors confirmed this
performance loss is expected in their design.
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maintains its performance edge, as shown in Fig. 8(b). NDP
is omitted as it performs worse than the standard switch.

These results indicate the power of packet packing:
achieving higher throughput, for all packet sizes, at lower
clock frequencies, simplifying network silicon design and
enabling better scalability over time.
6.1.2 Throughput and Latency
A number of relevant experimental results from a wider
evaluation of Fabric Adapters and Fabric Elements within
a single-tier Arista 7500E system are reported here. An ex-
tended set of results appears in [53]. The test platform con-
tained 1152×10GE/288×40GE ports, connecting 24 Fab-
ric Adapters with a single tier of 12 Fabric Elements, and us-
ing Ixia XG12 as a traffic source. The Fabric Adapter devices
used, older generation Arad, do not support packet packing.

In a configuration of 960 ports, the platform achieves full
line rate on all ports, for all packet sizes. In a configuration
of 1152 ports, full line rate is achieved for packets of 384B
or more (as packing was not supported), and no packet loss
occurred within the network fabric. In the same 1152 port
configuration, under full load, the minimum latency is al-
most independent of packet size (between 2.8µs and 3.5µs),
and for the average (3.3µs to 9.1µs) and maximum (5.6µs to
13.5µs) it increases with packet size, as the Fabric Adapter
used store-and-forward architecture. The maximal latency
for small packets decreases with packet size until reaching
the cell size. The average latency variance is in the order of
nanoseconds (1ns-11ns).

6.2 Simulation of a 2-Tier Network
To understand the queuing intricacies of Stardust in a two
tier network, we use a proprietary packet-level C++ simu-
lator, constructing a network of Fabric Elements and Fab-
ric Adapters, generating traffic and emulating scheduler and
control traffic exchange. We use this experiment to discuss
aspects of load balancing, queue size distribution and mem-
ory requirements.

The network is evaluated using 128K simultaneously ac-
tive flows. The number of Fabric Adapters is 256, each of
them connected using t = 32 links to the network fabric.
There are 128 Fabric Elements in the first fabric tier, each
with 64 links connected to the Fabric Adapters and 64 links
connected to the second tier. In the second tier, there are
64 Fabric Elements, each connected using all 128 links to
Fabric Elements in the first tier. The length of each link is
100m. We simulate two flows from each Fabric Adapter
to every other Fabric Adapter, creating 128K simultaneous
flows. The number of connected hosts does not affect the
simulation, but assuming the number of uplinks is no more
than the number of downlinks, it is in the range of 8K to 64K
hosts. The setup size is limited by simulator run times.

Fig. 9(left) presents the latency distribution of network
fabric traversal for different fabric utilizations. The latency
distribution is tight, and even at 95% utilization, the latency
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Figure 9: Probability Distribution of latency (left) and link
queue size (right) under different loads.

is bound by 13 microseconds. Fig. 9(right) presents queue
size distribution in the last stage of the network fabric, for
different fabric utilizations. The fabric utilization refers to
raw data utilization, after deducting physical protocol over-
heads, cell headers and control cell overheads. A distribution
of an oversubscribed fabric (120%) is included, using FCI to
control credit rate. In all runs no cells were lost with the
network fabric. With utilization<1, queue size probability is
an exponential function of fabric utilization, conforming to
the theoretical M/D/1 model. In the oversubscribed case, the
FCI reduced the effective fabric utilization to 0.9. 4

We extrapolate the simulation’s results to recent network
devices, equipped with 256×50Gbps links. For a cell size of
256B and a speed up of 1.05 the respective memory will be
128× 256B× 256, i.e. only 8MB. Given the 50Gbps links,
this stands for at most 5µs latency within the Fabric Element.

6.3 Comparisons to Existing Works
We compare Stardust with Multipath TCP [72], DCTCP [7]
and DCQCN [82]. We use htsim [72] for our evaluation, and
reproduce the experimental environment of [40, 41], imple-
menting a Stardust network, and running TCP. The simulated
environment uses a 432-node Fat-tree (see Appendix G).

We run a permutation experiment, where each node in a
Fat-tree continuously sends traffic to one node and receives
from another, fully loading the data center. Stardust uses
512B packets, 4KB credit size, and 3% credit speed up.
Other solutions use 9000B packets. Fig. 10(a) shows the
throughput achieved by each node in the network, in an in-
creasing order. Stardust achieves 9.44Gbps on 96% of the
flows, and a mean utilization of 94%, compared with 49%,
47% and 90% for DCTCP, DCQCN and MPTCP, respec-
tively.

We use the Web workload from [74] to exchange traffic
between a pair of nodes and measure the flow completion
time (FCT). The same 432-node setup is used, and all other
nodes source four long-running connections to a random des-
tination, thus testing the effect of queuing within the network
on short flows. Fig. 10(b) shows that Stardust significantly
outperforms all other schemes, as the fabric is scheduled.
Even flows of 1MB have a FCT of less than a millisecond.

Next, we test an incast traffic pattern. A frontend server

4Representing a single trade-off point between latency and throughput.
Higher utilization can be gained using less aggressive FCI reaction.
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Figure 10: Performance comparison, 432-node FatTree (a) Per-flow throughput (b) FCT in an over-subscribed network (c) In-
cast performance vs number of senders (d) Relative device area of a Fabric Element device (B) and a standard switch (A)
fans out work to many backend servers and then receives
their replies, creating an incast scenario. We use a con-
stant response size (450K) and vary the number of back-
end servers, measuring the FCT. Fig. 10(c) shows the first
and last FCT, a measure both of performance and “fairness”.
Stardust’s last FCT is the same as DCTCP and better than
MPTCP, but its fairness is considerably better. Furthermore,
no packets are dropped within the Stardust fabric.

7 Cost Analysis
The absolute cost of a Stardust based system is difficult to
calculate, as it depends on multiple factors, such as manu-
facturing costs and platform implementation. Thus, we take
a comparative approach and analyze the complexity of Star-
dust and closely related Fat-tree networks, showing that Star-
dust is more cost efficient.
Silicon cost Our silicon cost comparison is based on two
Broadcom devices, manufactured using the same process.
Device A is a standard Ethernet switch (ToR), whereas de-
vice B is a Fabric Element [23]. The table in Fig. 10(d)
compares the area of these two devices, normalized to their
bandwidth, accounting for a difference in the number of I/O
(which is favorable for the ToR), detailed further in Ap-
pendix C. The relative area/Tbps of a Fabric Element is only
66.6% of that of a ToR. The overall area of a Fabric Adapter
is very similar to device A, and is referred as identical hence-
forth. The area is a good indicator of silicon cost, dominating
yield, packaging costs and others factors.
Switch-Platform Cost A Fabric Adapter based switch-
platform will cost the same as a standard ToR, while a Fab-
ric Element box will be less expensive. A switch platform
is composed of many components, yet the high-end switch
silicon dominates the cost. In a Fabric Element platform, the
board complexity is reduced and a lower-cost CPU can be
used, as only basic control is needed5. The reduced complex-
ity also means that more than a single Fabric Element can be
used within a single platform, with two being the common
case for emerging OCP designs. While in switch-systems
the cost ratio between Fabric Adapter and Fabric Element
modules of the same generation is high 6, we use the conser-

5From discussions with leading cloud providers, some will prefer the
cost-driven CPU option, whereas others will prefer the same type of CPUs
across all platforms, for better manageability

6Comparison of modules from same manufacturer and platform, based
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Figure 11: The (a) cost and (b) power of building a Stardust
DCN relative to Fat-tree.

vative silicon-area ratio as a cost indicator.
Transceivers and Fibers Stardust always opts for the min-
imal number of transceivers in a DCN. If a network can
be constructed with a similar number of tiers using, e.g.,
400G and 100G transceivers, then Stardust supports build-
ing the network using the least expensive option. The de-
vices are oblivious to whether bundling was used in the
transceiver. Furthermore, breakout cables can be used to
connect transceivers of different bundling, easing a gradual
growth of a network. As every additional tier doubles the
number of links required (×4 transceivers, Table 2), a Star-
dust based solution becomes more attractive based on cost.
System Cost The cost of a large scale DCN can be cut in
half using Stardust. We analyze the relative cost of building
a DCN based on current generation data center components,
detailed in Appendix D. We assume 25G as the link speed
and its link bundles (50G, 100G). ToR and Fabric Adapter
platforms are of an equal cost. We use the relative sili-
con area (0.67) as a relative cost indicator for Fabric Ele-
ment platforms (See switch-platform cost). Each ToR/Fabric
Adapter is assumed to connect conservatively to 40 servers
using direct-attach cables, with no over-subscription from
the ToR/Fabric Adapter to the network fabric. 100m fibers
are used in the last tier (except for a 1-tier network), and 10m
fibers within any other tier. The number of devices and links
is calculated as detailed in Appendix A. Fig. 11(a) shows the
overall cost of building the network. Stardust is always the
most cost effective solution.
Power Power consumption significantly varies between
switch vendors, e.g., from 150W to 310W [57]. Fig. 11(b)
examines the relative power consumption of Stardust, com-
pared with Fat-tree networks with different link bundlings.
The calculation is as in Appendix A, using the power ra-
tio indicated in Fig. 10(d). Power per link and equal cross-

on e.g., https://h22174.www2.hpe.com/SimplifiedConfig/Welcome
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section bandwidth are considered. The biggest power saving
is in networks of up to ten thousands nodes: up to 25% of
the entire network’s power, and 78% saving within the net-
work fabric, a result of both the reduction in the number of
devices, and power saving per device.

The number of network tiers and devices required to build
a network (Fig. 2b), and the power consumption of each de-
vice, affect the physical space required. The amount of phys-
ical space also impacts performance: smaller networks re-
quire shorter fibers, reducing the latency, and in turn improv-
ing throughput. In Stardust, Fabric Element based chassis
can still be used within the network, further reducing space
requirements.

8 The Case for Future Data Centers
Using current Fabric Adapter and Fabric Element devices,
Stardust naturally fits within regional data centers, and can
similarly be used to build efficient clusters of 10K end-hosts
(see §6). However, while Stardust reduces the complexity
within the network’s fabric, the Fabric Adapter maintains the
complexity and resource consumption of current ToRs (§6).
The challenge becomes the scalability of ToR devices.

We make the case for future Stardust-based data centers,
made entirely of Fabric Element devices within the network
and of Fabric Adapter-like network interface cards (NICs)
at the edges. Here, the concept of a simple network-core is
further extended, and the complex network-edge diminished.

The divide-and-conquer approach adapts the end-host’s
NIC to Stardust through a reduction of the Fabric Adapter:
combining VM-facing functionality with the handling of
cells and scheduling, but at a smaller scale. The number
of VOQs will match host-scale requirements [34, 77]. The
host’s memory will be used for further buffering [54, 55, 58].
The NIC’s MAC will become lighter: a fabric interface. A
programmable header processor, as in the Fabric Adapter,
will also support acceleration in the NIC. Connecting a NIC
to a Fabric Element is the same as to a ToR, while the reach-
ability table required is smaller than in a Fabric Adapter,
by a factor of Num-of-Fabric-Adapter-Uplinks/Num-of-NIC-
ports, or can be entirely eliminated if the NIC connects to a
single Fabric Element.

This is a natural evolution, supporting trends advocating
smarter edge devices [52, 85, 34] and moving scheduling
close to the host [71, 78]. We estimate the power consump-
tion of such a NIC to be on-par with current smart NICs [34].
As Jericho [22] already supports a PCIe interface and a di-
rect memory access (DMA) engine to send and receive host
traffic, this vision is realizable.

9 Related Work
Switch systems today scale to thousands of ports and to mul-
tiple chassis [27, 43, 14, 65]. Their chipsets vary from com-
modity devices [20] to custom-made solutions [66, 61]. The

closed nature of the system, has allowed building upon con-
cepts that have failed in wide area networks (WAN), and in
particular in cell based solutions such as ATM [46, 50, 11],
while optimizing for system-scale needs (e.g., [48, 24, 10]).
While DCNs differ from supercomputing in many ways,
supercomputing research also explored aspects of credit-
based scheduling and cell-switched cores on a medium scale
(e.g., [49, 3, 1]). Stardust is deeply rooted in switch systems,
which inspired supercomputing networks.

Stardust is not a circuit switch. Circuit switching (e.g.,
recent [70, 36, 58]) allows a single path at a time be-
tween source-destination pairs and has strong (and some-
times high-latency) scheduling requirements, whereas Star-
dust allows any-to-any communication at all times and ap-
plies distributed end-to-end scheduling.

This paper focused on Clos [30], and Fat-tree topologies
[51, 4, 75]. Our link bundling observation is also applica-
ble to other topologies (e.g., [2, 38, 18]).Unlike other solu-
tions, Stardust makes no assumptions about traffic patterns or
network utilization, and its routing is trivial [18, 80, 76]. It
also remains a single network [59], providing better manage-
ability and resilience. Aspects of network reconfigurability
combining different topologies (e.g., [58, 81]) are beyond
the scope of this contribution.

Congestion control and load balancing research has tried
to optimize performance, from protocol and flow level (e.g.,
[5, 8, 73, 9, 41]), through flowlets (e.g., [45, 6]) and flow-
cells [42] to packets (e.g., [25, 37]). Stardust uses evenly
distributed dynamic forwarding, combined with end-to-end
scheduling. Stardust is refined by combining ingress buffer-
ing with congestion avoidance mechanisms (e.g., ECN), pro-
viding a lossless solution for short-term congestion.

10 Conclusion
We presented Stardust, a scalable fabric architecture for data
center networks, separating the simple network-fabric from
the complex network-edge. Stardust applies system-switch
architecture on a data center scale, while attending to the
scalability limitations of network devices: resources, I/O
and performance. The resulting network fabric devices are
a radical change from commodity Ethernet switches, elimi-
nating significant overheads in DCNs. Our demonstrated di-
vide and conquer approach is practical, power-efficient, cost-
effective, scalable, and, critically, a deployable approach.
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A The Math Behind Network Size
In this section, we provide the mathematical justification for
the number of elements used in a Fat-tree based network.
The number of devices required to build a Fat-tree network
is long known [51, 67], and we build upon it to demonstrate
the dependency on link bundling. For the clarity of the dis-
cussion, Table 1 lists the parameters used to describe the net-
work topology, and Table 2 provides the number of different
elements within a multi-tier, Fat-tree based, DCN and the
parameters used to describe the network topology. Note that
Table 2 shows the number of network elements, and not the
number of connected end hosts, and that unless noted other-
wise, downlinks from a ToR to end hosts are not counted.

In a 1-Tier network, the number of switches equals, at
most, the number of uplink ports from a ToR (t). The num-
ber of ToRs equals, at most, the number of downlinks from
a switch, which is in this case the number of ports on the
switch (k). The number of link bundles in this network will
equal the number of uplink ports from a ToR times the num-
ber of ToRs, which equals the number of downlinks from
a switch times the number of switches (t × k). As this is
a 1-Tier network, there is only one layer of links within it,
therefore the number of links per ToR will be the same as
the number of uplinks (t× l).

In a 2-Tier network, the number of downlink ports from a
switch in a second tier will still be k, but a switch in the first
layer will have k/2 downlink ports and k/2 uplink ports. The
number of uplink ports from a ToR is the same. This leads
to a network of k2/2 ToRs (at most). The number of link
bundles in the first tier will equal the number of ToRs times
the number of uplink ports per ToR (t× k2/2). With a naive
construction, assuming a fully provisioned network, this will
equal the number of link bundles between the switches in the
first and the second tier, bringing the overall number of link
bundles in the network to t × k2. The number of links per
ToR (excluding ToRs’ downlinks) equals the number of link
bundles in the network, multiplied by the number of links per
link bundle and divided by the number of ToRs (2× t × l).
The same logic is used to continue and build networks of 3,
4 and n tiers.

So far we have limited the discussion to the network de-
vices within the DCN. Next, we consider the number of end
hosts connected to this network. The number of end hosts
will always be O(kn/2n−1) in a fully provisioned n tier net-
work. The exact number of end-hosts will depend on the
number of downlink ports from the ToR switch. This num-
ber is not necessarily t: the link bundle from a host to the ToR
can be different than the link bundle from the ToR to the first
switch. Furthermore, a ToR can be over-subscribed, in which
case the number of uplink and downlink ports will be differ-
ent. Given d downlink ports from a ToR, the number of end
hosts connecting to an n tier network will be d× kn/2n−1.

While over-subscription is most common at the ToR level,
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Parameter Description
k switch radix
t number of ToR uplink ports
l number of links in a link-bundle

Table 1: The parameters used to describe a Fat-tree based
network.

it is also possible within the network. This does not change
the math of a 1-Tier network, but in a two (or n) tier net-
work, each switch will use u uplink ports, and k−u downlink
ports, and the math will be adjusted accordingly: the maxi-
mum number of ToRs will be k× (k−u), and the number of
switches will be t× (k+u).

B Parallel Processing of Packets
§2.3 discussed the number of processing cores required in a
device. In this appendix we explain this calculation. Here
we focus not on bandwidth, but rather on packet processing
rate.

Let us assume a packet of size S bytes, running through an
Ethernet switch of bandwidth B bits/sec. As this is Ethernet,
there are preamble, start of frame delimiter (SFD) and inter
frame gap between packets on the wire, G. The packet rate
R required from a device is therefore:

R = B/(8× (S+G)) (1)

Note that Equation 3 makes no assumption on the architec-
ture and design of the switch.

Most packet switches today are pipelined (e.g. [19]) as
a way to increase performance. The length of the pipeline
does not affect the rate at which packets are being processed,
rather the latency through the pipeline. Let us assume that
each stage through the pipeline takes c clock cycles, and that
the clock frequency of the device is f . This means that the
number of packets r processed in the pipeline every second
is:

r = f/c (2)

Under optimal conditions, c = 1, as in a pipelined de-
sign the minimum time required per stage is one clock cycle.
Note that an operation within a stage may take less than one
clock cycle, but a stage will always be clocked (and sampled)
in order to avoid metastability and close timing. This leads
to r = f .

We define the amount of parallelism required in a switch
P as:

P = R/r (3)

P defines the ratio between the number of arriving packets
that needs to be processed every second, and the rate at which
the pipeline can process packets. Where P > 1 it means that

more packets need to be processed every second by the de-
vice than a single pipeline can process.

For example, let us assume packet size S = 64B, switch
bandwidth of B= 12.8T bps, gap G= 12B+8B= 20B, clock
frequency of f = 1GHz and c = 1 clock cycle per packet.
The parallelism required is 19.047:

R = B/(8× (S+G)) = 19.047E +9
r = f/c = 1E +9/1 = 1E +9

P = R/r = 19.047
(4)

In a similar manner, a packet size of 256B will require
P = 6.06.

The way to handle P > 1 may vary between chip architec-
tures. One common solution is to use more than one pipeline
within a switch [39, 62]. Another solution is to process more
than one packet within the pipeline every clock (in a man-
ner not unlike CPU’s pipelines) - however such a solution is
much more complex. Packet packing effectively increases
the packet processing rate, but it operates on packed packets
rather than on individual ones.

Recent devices have used four pipelines as a way to in-
crease parallelism [39, 62], while processing one packet ev-
ery clock (c = 1). This means that such devices likely sup-
port full line rate only above a certain packet size 7.

C Silicon Area
§7 briefly introduced the silicon area comparison of Stardust
devices and a standard ToR switch. In this section we extend
this discussion, based on the Table in Fig. 10(d).

Device A is a standard Ethernet switch (ToR), whereas de-
vice B is a Fabric Element [23]. A significant difference be-
tween devices A and B is in the area consumed by header
processing. Device A supports advanced (programmable)
header processing, whereas device B supports only simple
cell header parsing. There is also a notable difference in
the resources required for lookup tables: Device B only re-
quires a reachability table, whereas device A requires stan-
dard forwarding tables, such as for IPv4 lookup. Assum-
ing a network with N end hosts, and only 40 servers per
rack, device A will require an exact match IPv4 table size
N× (32+ log2 k), where k is the device’s radix, whereas De-
vice B will only need to point to Fabric Adapters, thus its
table size will be (N/40)× log2k. Using hashing will re-
duce the required memory size, but this simplified explana-
tion gives a notion of the difference between the two devices.

In terms of I/O, both devices use the same libraries and
therefore have a relatively close I/O area ratio8. However, the
network interface modules beyond the I/O, e.g. the MAC, are
significantly different. Device A requires a full-blown MAC

7This is an estimation based on current manufacturing processes, as f
and c of switches are not published by vendors.

8The difference is for practical implementation reasons.
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Tiers Max ToRs Max of Switches Switches per ToR # of Link Bundles Links per ToR
1 k t t/k t× k t× l
2 k2/2 3/2× t× k 3× t/k t× k2 2× t× l
3 k3/4 5/4× t× k2 5× t/k 3/4× t× k3 3× t× l
4 k4/8 7/8× t× k3 7× t/k 7/8× t× k4 7× t× l
n kn/2n−1 (2×n−1)/2n−1× t× kn−1 (2×n−1)× t/k (1−1/2n−1)× t× kn (2n−1−1)× t× l

Table 2: The number of different elements within a multi-tier, Fat-tree based network. The maximum size of a network of n
tiers using a switch with port radix k is O((k/2)n).

supporting different Ethernet standards, whereas Device B
requires a simpler module to extract the cells. The gain in
area per port is 70%.

For the remaining functionality of the device, the savings
using a Fabric Element amounts to 40%. While in a stan-
dard switch, the amount of packet buffering is a compromise
between silicon area and packet drop under different traffic
scenarios, in the Fabric Element, cell buffering is agnostic to
traffic scenarios.

In a Fabric Adapter [22], functionality supporting Stardust
(e.g., cell generation, load balancing, and credit generation)
takes about 8% of the device’s area. This area is largely com-
pensated by the saving on network fabric facing interfaces,
a gain of 70% per port. The number of VOQs supported is
directly mapped to memory resources, where 128K VOQs
consume roughly 4MB, an order of magnitude less than con-
sumed by a header processing module [19]. The overall area
of the Fabric Adapter is very similar to device A.

The area of a device can vary based on a number of factors.
For example, an Ethernet switch can trade-off buffer space
for packet processing functionality or lookup table sizes, and
a Fabric Element may trade-off cell buffering for area. A
Fabric Element based on the design choices in [19] will re-
quire just 45% of the area of an RMT switch9. Table 10
does represent, however, existing devices and not a theoreti-
cal case.

D Cost Estimation
Cost estimation is conducted using list prices collected from
online resellers on September 12, 2018. The prices are listed
in Table 3. The websites are authorized resellers of the listed
components. Prices are used to calculate cost ratio, rather
than as indicative costs. Our calculations do not take into ac-
count other real-world considerations that affect cost, such as
the pricing for high quantities or a buyer’s bargaining power.

E Resilience
Recovering from a link failure follows a local detection of
a link failure, and the propagation of this information to
all other devices. Local detection of a failure is done on a
nanosecond scale, as a result of a loss of signal or high bit
error rate (BER). The time it takes to propagate the infor-
mation using reachability messages is configurable. This ap-

9 [19] has insufficient data to compare to the Fabric Adapter.

Item Price [USD] Source
Edgecore AS7816-64X $16200 Colfax
64-Port 100GbE
Edgecore Wedge 100BF-65X $16200 Colfax
65-Port 100GbE
Passive Copper Cable $84 Colfax
100GbE, 2 meters
100G QSFP28 Optical Module $435 Colfax
Short Range
50G QSFP28 Optical Module $280 Estimated
Short Range
25G SFP28 Optical Module $125 Colfax
Short Range
Fiber, 10m $8 FS
Fiber, 100m $62 FS

Table 3: Indicative component costs - List prices.

pendix formulates this time, and Table 4 lists the parameters
used below.

Let f be the core frequency of a device, and c the config-
urable number of clock cycles between messages, per link.
The time t ′ between every pair of messages will be:

t ′ =
c
f

This means a message is generated every c/ f seconds.
Assume that each reachability message is of B bytes and
includes a bitmap of b bits indicating the reachability of b
Fabric Adapter devices. Assume that each Fabric Adapter
connects to h hosts. The number of messages M required
to propagate the reachability table of a DCN connecting N
hosts will be:

M =

⌈
N

h×b

⌉
If a network has n tiers, then at the worst case, the link

that failed was between a Fabric Adapter and a Fabric Ele-
ment, which means that the information needs to propagate
through the entire network (2×n hops), minus one hop (the
failed link). The time it would take to propagate the updated
reachability table through the entire network would be:

t = t ′×M× (2×n−1) =

c
f
×
⌈

N
h×b

⌉
× (2×n−1)
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Parameter Description Example Value
f Core frequency 1GHZ
c Number of cycles between messages 10,000
t’ Time between reachability messages 10µs
b Reachability bitmap size 128
B Reachability message size 24B
h Number of hosts per Fabric Adapter 40
N Number of hosts connected to the DCN 32,000
n Number of tiers 2
M Number of messages propagating a full reachability table 7
th Reachability status change threshold 3
pdi Propagation delay through link i 50ns, 500ns
s link speed 50Gbps

Table 4: The parameters used to describe the propagation of reachability updates.

To avoid momentary effects and account for a potential loss
of a reachability message during the updates, one would usu-
ally opt for multiple updates of a link’s value (th) before up-
dating its state, which means the time it takes to react to a
link failure would be t× th.

A slightly more accurate calculation will also take into ac-
count the propagation delay on each link (pdi):

t× th =
2×n−1

∑
i=1

(
(t ′+ pdi)×M× th

)
=

2×n−1

∑
i=1

(
c
f
+ pdi

)
×
⌈

N
h×b

⌉
× th

The value of c is determined such that the effect of reacha-
bility messages on the available bandwidth will be minimal.
Assume that the link speed is s. The relative bandwidth con-
sumed by reachability messages would be:

B×8
t ′× s

=
B×8× f

c× s

Using the example values indicated in Table 4, the over-
head of reachability updates is 0.04% of the bandwidth, and
the time it takes to recover from a failed link, which is the
time it takes to propagate an update to the farthest Fabric
Adapter, is 652µs. Note that the difference from the illustra-
tive example in §5.9 is the propagation delay on the links.

F Push Fabric vs Pull Fabric
§5.2 made the case for Pull Fabric vs Push Fabric, with no
traffic classes. Here we illustrate the case of traffic classes
on an Ethernet based network fabric, compared with Star-
dust. The scenario is depicted in Fig. 12. On a single device
there are two 100GE ports, A and B. From one input de-
vice, 100Gbps of a high traffic class are injected toward A
(marked red), and additional 100Gbps of a low traffic class
are injected toward B (marked green). Additional 100Gbps
of a high traffic class are injected towards A from a second
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Figure 12: Packet drops in Ethernet switch fabric vs. Star-
dust scheduled fabric with traffic classes

device (marked red). As a result, B’s traffic will be pushed to
the fabric, where all of it will be dropped at the packet switch.
The throughput of the destination ToR will be 100Gbps, all
toward port A.

In Stardust, credits are sent separately from port A and
from port B to each ingress Fabric Adapter. Each input de-
vice receives credits sufficient for just 50Gbps toward port
A, and the first device received credits sufficient to send
100Gbps toward port B. As cells are distributed across all
links, the traffic toward A and B is evenly divided between
the links, meaning that no link is over-subscribed and no traf-
fic is dropped within the network. The eventual throughput
from Stardust is twice the throughput using the standard Eth-
ernet switch.

G Performance Simulations
The simulator of choice for performance comparison is ht-
sim [72]. Htsim is used as it provides, under an open-
source license, implementations of several data center proto-
cols (TCP, MPTCP, DCTCP, DCQCN and NDP), along with
scripts allowing the experiments of [41] to be reproduced.
The simulator used in §6.2 is unsuitable for this purpose, as
it is an architecture-specific, low-level simulator, that would
take days to run experiments that are conducted in htsim
within minutes.
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The setup used in §6.3 reproduces the setup used in [41],
using a 432-node Fat-tree. All links in the system are of
10Gbps, and the same number of tiers is used across proto-
cols and the experiments. Although the htsim simulator is
fast, it still takes many hours to simulate a permutation ma-
trix of Stardust in a 432 node Fat-tree.

Our simulations reproduce as-is the experiments from [41]
using DCTCP with ECN, DCQCN and MPTCP . We imple-
ment a model of Stardust into this environment. We use an
unmodified TCP (New Reno) on top of Stardust, which is the
least favorable scenario. While the Fabric Adapter supports
sending congestion notifications to the host, the presented
results do not take advantage of such features, presenting
‘raw’ Stardust performance. DCTCP and MPTCP use 100
packet output queues, and DCQCN uses 100 buffers per port,
shared between interfaces. Stardust uses similar buffering re-
sources, providing an apple-to-apple comparison.

The Stardust configuration used in the experiment uses
512B cell size, 4KB credit size and 3% credit speed up. The
use of 512B cell size and 4KB credit size is intended to re-
duce simulation time. A simulation using 256B cells and
2KB credits takes 12 hours per permutation on a Xeon E5-
2660 v4 server. Both settings are realistic, though a smaller
credit size will improve fairness in the given setup. The
scheduler at the egress Fabric Adapter uses a simple round
robin between all flows, intended to show fairness. Other
scheduling schemes are also supported by the Fabric Adapter
(§4).

The performance simulations use different workloads.

The throughput simulation (Fig. 10(a)) uses continuous
flows and 9000B packets, which favors existing data cen-
ter protocols. The FCT simulation uses the Facebook Web
workload [74] flow size distribution, which was imple-
mented by [41]. Background traffic is similar to the through-
put simulation. The Incast experiment, sending traffic from
an increasing number of sources to a single destination, uses
450KB flow size and 9000B packets. In all the simulations,
the packets are chopped into cells by Stardust.

The simulation results presented in this paper do not
capture all the minutiae of the Stardust design, for exam-
ple, avoiding synchronization issues when distributing cells
across links. Consequently, the actual performance of Star-
dust, e.g., as measured in §6.1, is better than simulated in
§6.3. Most of the aforementioned features are not imple-
mented due to the level of abstraction provided by the sim-
ulator. Htsim treats the network as a collection of pipes and
queues, and is oblivious to hardware limitations, such as de-
scribed in §2.

DCQCN is not included in the incast experiment depicted
in Fig. 10(b) as it is missing from the reproducibility pack-
age of [40], and due to insufficient resources to accurately
re-implement it. We opt to omit NDP from our performance
comparison as we find that it is very sensitive to the experi-
mental setup and configuration. For example, a very realistic
scenario of using 1500B packets rather than 9000B reduces
its mean utilization by 14%. In a different case, changing the
simulation’s seed resulted in performance collapse. We refer
the reader to [83] for a detailed analysis.
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