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Abstract

NDP is a novel data centre transport architecture that claims to achieve near-optimal
completion times for short transfers, and high flow throughput in a wide range of scenar-
ios. This work presents a performance evaluation of NDP, both on the simulation and the
hardware level. We show that NDP’s implementation achieves lower switch throughput
than simple TCP, and that the simulated performance is highly dependent on the selected
parameters.

1 Introduction

In 2017, Handley et al. proposed a new data centre protocol, NDP [5]. NDP aims to achieve
both low latency and high throughput by combining several concepts. First, it allows flows to
start sending immediately at full rate, without connection setup. Second, it load-balances using
per-packet multipath. Third, it trims packets in the switch, when the switch’s queue fills up.
The trimming leads to loss of payload but no loss of metadata. The NDP protocol is then built
on top of these concepts.

The NDP design claimed the following contributions:

• Better short-flow performance than DCTCP or DCQCN.

• Greater than 95% of the maximum network capacity in a heavily loaded network with
switch queues of only eight packets.

• Near-perfect delay and fairness in incast scenarios.

• Minimal interference between flows to different hosts.

• Effective prioritization of straggler traffic during incast

The authors of NDP have released the evaluation environment of NDP [4], including both
the source code of the switch design and the simulation environment. As part of the Stardust
project [15], we have used the NDP evaluation environment to study different aspects of data
centre network (DCN) performance, and came across some surprising results. In this paper, we
summarize these results. In particular, we find that:

• The NDP switch fails to achieve full line rate, for certain packet sizes.

• The throughput of the NDP switch is inferior to TCP.
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• The throughput achieved by NDP in simulation is highly dependent on assumed param-
eters.

• In NDP, flows may timeout and never complete, leading to a significant performance loss.

The work presented in this paper does not represent a comprehensive study of NDP, how-
ever it provides greater depth into understanding its performance and limitations.

2 Evaluation Environment

The evaluation environment of NDP is open source and available in [4]. The environment
contains four components: a simulation environment, an implementation of NDP switch in P4,
an implementation of NDP switch on the NetFPGA platform, and an implementation of the
host side.

In this paper we use for the evaluation NDP repository commit 69d27f53c90f441ae1562b47
15d084cebe544b3a from January 8th, 2018. The NDP environment is relatively easy to use,
and is provided with wrappers for most of the tests, enabling reproducibility of the tests con-
ducted by the authors of NDP. The code itself is not well documented.

The implementation of the P4 switch targets only the P4 behavioural model, and in [5]
the authors omitted evaluation results. It was not evaluated as part of this work, neither for
performance nor for correctness.

The host side implementation was released after the completion of this evaluation work.
The code used for the evaluation of NDP is available as a fork of the original NDP repo,

under https://github.com/noaz/NDP-eval. For some of the tests we had access to code
not openly released by NDP authors but made available to us. This code is not included in our
public repository.

2.1 Hardware Environment

The Implementation of NDP on NetFPGA SUME [14] is based on the NetFPGA Reference
Switch design. The NDP design supports both NDP and non-NDP traffic, with non-NDP traffic
passing through the design as in the Reference Switch, while NDP traffic is treated according
to the NDP protocol, i.e. adding support for trimming and priority queues. In addition, the
Input Arbiter of the switch is modified, supporting deficit round robin (DRR), instead of the
reference round robin (RR).

In this work, we synthesize the NDP switch using NetFPGA-SUME release 1.7.1 (71c98c8b
d84af624c3d59e09d9152f0210645c62) from December 14th, 2017. We evaluate the perfor-
mance of NDP compared with the NetFPGA Reference Switch, running traffic through the
both designs.

We evaluate the switches using OSNT [1], an open source network tester, implemented over
the NetFPGA SUME platform. We use OSNT SUME release 1.7.0 (e116fdba2a3cf791d44f748
7d3b9b973cf08835a) from July 14th, 2017, and use the bitfile released by the OSNT team
(https://www.cl.cam.ac.uk/research/srg/netos/projects/netfpga/bitfiles/
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OSNT-SUME-live/osnt-extmem-20170810.bit). We use OSNT only as a traffic genera-
tor, and not for latency measurements.

Our setup is composed of two identical NetFPGA SUME boards, one configured as OSNT,
and the other as the device under test. The boards are hosted within two identical i7-6700K
machines running at 4GHz and using Ubuntu 14.04, yet the host has no effect on the test.

2.2 Simulation Environment

The simulation environment is based on htsim [10]. The simulator and its codebase are pro-
vided as part of the NDP repository [4]. The code contains implementations of TCP NewReno
(not SACK), a version of MPTCP, DCTCP, and PFC/DCQCN. The DCQCN implementation
is based on the DCTCP code and is window based rather than rate based.

We run all the simulations on a Xeon E5-2660 v4 server, using 256GB of DDR4-2400,
running at 3.2GHz. The operating system used is Ubuntu 14.04, kernel version 3.13.0-32-
generic.

3 Hardware Performance

In this section we evaluate the performance of the NDP switch, in comparison with the
NetFPGA Reference Switch. We focus our evaluation on the throughput of the design, and do
not measure the latency through the device.

The NetFPGA SUME data path is 32B wide (256 bit), and every packet starts a new trans-
action on the data bus, meaning that different packets do not share the data bus on the same
clock cycle. The data path width dictates that it will take at least 2 clock cycles to pass a 64B
packet through a certain stage of the design, and at least 3 clock cycles for a 65B packet. In
general the number of cycles per packet is:

Cycles ≥
⌈
SIZE BY TES

32

⌉
NetFPGA SUME Reference Switch supports 4 × 10GE, which is roughly 59.52Mpps for

64B packets. As 64B packets take 2 clock cycles, the minimum core frequency required is
120MHz. For 65B packets, it is expected that full line rate will be achieved at a core clock
frequency of roughly 180MHz (58.8Mpps× 3cycles), and so on.

In the following experiment, we study the throughput of the NetFPGA Reference Switch
and the NDP switch for different packet sizes and different core clock frequencies. We connect
4 × 10GE ports between OSNT and the NetFPGA board, and use OSNT to generate traffic
at full line rate. In every experiment, only a single packet size is used. We send either TCP
or NDP headers, and use the NDP packets generation script written by NDP’s authors. The
experiment is repeated multiple times, and the results reproduce with minor variations (not
documented below). We note that in some of the experiments the setup crashes, regardless of
the device under test, and we believe the source of the problem is OSNT.

In each iteration, we send a hundred million packets from each of the four ports on OSNT,
and use the NetFPGA SUME counters to check how many packets successfully passed through
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Figure 1: The throughput of the evaluated switches running at different core clock frequencies.
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the data path, and were sent back to OSNT. We compare the counters in multiple places in
the design, checking for packet drops and unrelated issues, e.g., 10G port limitations. Our
baseline for the comparison is the Reference Switch: NDP is expected to perform better than
the reference design, but problems that exist in the reference design, such as outside the data
path, are not expected to be fixed by NDP and are not considered an issue with NDP.

We start our experiments at 120MHz, however we find that due to a limitation of the NetF-
PGA 10G ports this frequency is not practical [7]. We then benchmark the design at 150MHz,
180MHz and 200MHz. Both designs are expected to support full line rate using the last two
frequencies. We scan a range of packet sizes: 64B, 65B, 96B, 97B, 128B, 129B, 160B, 161B,
192B, 193B, 224B, 225B, 256B, 257B, 384B, 385B, 512B, 513B, 768B, 769B, 1024B, 1025B,
1514B. The choice of packet sizes is on 32B granularity: a perfectly aligned packet size, fol-
lowed by a misaligned packet size.

The results of our evaluation are presented in the following three figures: Figure 1(a) shows
the performance using a core clock frequency of 150MHz, Figure 1(b) shows the results using
180MHz clock, and Figure1(c) shows the performance using 200MHz clock. As the results
show, the Reference Switch consistently outperforms the NDP design, using NDP packets. Not
only it achieves higher throughput at 150MHz, but it also achieves full line rate for all packet
sizes at 180MHz, whereas NDP fails to achieve full packet rate for some packet sizes (65B,
97B) even at 200MHz.

As far as the authors of this paper can tell, the reason for NDP’s performance loss is that the
design is not fully pipelined, using a state machine that requires more clock cycles than actual
packet length. NDP’s authors confirmed this performance loss is expected in their design.

We have attempted to run a second test, in which we evaluate the performance of the
switches based on packet size distributions from real traces [12]. Unfortunately, the NDP de-
sign continuously crashed and we were not able to complete the experiments. This crash is not
caused by OSNT, and evaluation of the Reference Switch using the same traces was successful,
as documented in [15].

4 Simulated Performance

The second part of our evaluation focuses on the simulation environment of NDP. We use
the simulation environment “as is”, except for the minimum amount of changes required to
evaluate a specific aspect, e.g., setting the packet size or changing packet size distribution.

There is an important note to remember when considering all the reported results, which
is that this evaluation explores both the simulation framework and the algorithms, thus some
results that may seem surprisingly good, bad or unexpected, may be a result of the implementa-
tion of the simulation model, or the implementation of the simulator, rather than an indication
of an algorithms performance. The evaluation, however, can either support our confidence in
the results or discourage such confidence.

4.1 Per flow throughput

We reproduce the per-flow throughput experiment from [5], using the original scripts, and re-
ceive similar results. The experiment uses a 432-node fat-tree configuration, where each server
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Figure 2: Per-flow throughput, permutation traffic matrix, 432-node Fat-Tree.

has a single long-running connection to another random server, and each server has exactly one
incoming connection. The server exchanges single size packets, originally a constant 9000B.
The reproduced results are presented in Figure 2.

The use of a single size packet, and in particular the maximum size packet, raises the ques-
tion “what is the sensitivity of the protocols to packet size?”. We maintain the same experimen-
tal environment as before, but now change in each experiment the packet size. It is important
to note that we do not change any parameters within the simulation environment: we want to
find if the results will differ if the workload suddenly changes, not to find the optimum setup
for the new workload.

Our results show that DCTCP and DCQCN are quite agnostic to packet size, with the
exception of 64B which may be a corner case of the simulation environment. MPTCP is also
mostly unaffected by packet sizes, though at packet sizes of 256B or less it starts to exhibit a
bigger throughput loss.

In contrast to the other three protocols, NDP is extremely sensitive to packet size. The
minimum and average throughput drop by approximately 14% when the packet size is changed
from 9000B to 1500B. We note that 1500B is currently a common maximum transmission unit
in DCN (MTU) [2, 9]. Using 750B packets will reduce the minimum and average throughput
by 28% and 29.5%, respectively. Smaller packet sizes lead to even further performance loss.
This is not entirely surprising, given some of the results presented in [5], e.g., in the overload
paragraph in Section 6.2. The reason for the performance collapse is that NDP achieves a low
compression ratio when trimming occurs. It is also expected that more packets need to be
trimmed when a smaller packet size is used, thus saving even less bandwidth.

4.2 Flow completion time
We evaluate flow completion time using the fat-tree network described above, and based on
flow size distributions described in [12]. Beyond reproducing the results from [5], we explore
the sensitivity to flow size distribution and the repeatability of the results, both in a fully loaded
setup and in an over-subscribed one. In the fully loaded setup, similar to the experiment in
§4.1, there is one flow between from each node in the system, and one incoming flow. In the
over-subscribed setup, there is a ratio of 4:1 of flows to nodes.
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Figure 3: Per-flow throughput, permutation traffic matrix, 432-node Fat-Tree, for different pro-
tocols and packet sizes.

The setup of this simulation is slightly different to the one presented in the NDP paper, as we
use the setup used in Fig. 15 (“FCT for 90KB flows with random background load, 432 node
FatTree.”), but with variable flow size. Our setup is consistent with the previous simulation.
Each simulation runs for two (simulated) seconds, and measures the flow completion time of
the simulated flows.

4.2.1 Workload

The workload used in the simulation is not a real one, but the flow size distribution extracted
from [12]. While Roy et al. released traces, these traces are sampled and provide only packet
size distribution. We were not able to obtain the raw data used to generate the flow size dis-
tributions presented in [12], and therefore extracted the distributions from the paper using [11]
and validated manually. We use the CDFs marked “All” in Figure 6 of [12]. The distribution is
in steps of 5%, with the last entry representing the 99% rather than the maximum value at the
tail.

4.2.2 Results

The results of our simulations largely reaffirm the claims made in [5]: The FCT of NDP out-
performs other protocols both in the fully utilized (1:1) and the oversubscribed (4:1) scenarios,
as shown in Figure 4, using the original distribution from the paper. The results using the ex-
tracted Web, Cache and Hadoop are presented in Figures 5,6,7, respectively. The seed used in
all the experiments is 1.

An interesting point in the results above is that the minimum FCT of NDP is lower than
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Figure 4: FCT using the Web distribution from [5].
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Figure 5: FCT using the extracted Web distribution.
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Figure 6: FCT using the extracted Hadoop distribution.
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Figure 7: FCT using the extracted Cache distribution.
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Percentile Web [5] Web Cache Hadoop
5% 144B 208B 288B
10% 250B 300B 326B 320B
15% 300B 360B 350B
20% 500B 375B 540B 367B
25% 550B 550B 495B
30% 1000B 670B 712B 550B
35% 1000B 1134B 600B
40% 1500B 1300B 2354B 600B
45% 1360B 7898B 615B
50% 2000B 1500B 20960B 700B
55% 1700B 55616B 770B
60% 3000B 2200B 111984B 880B
65% 2500B 174170B 1600B
70% 4000B 3500B 239778B 6680B
75% 5000B 360000B 45000B
80% 10000B 8722B 1561000B 48000B
85% 23000B 1903000B 80000B
90% 100000B 61400B 2248000B 110000B
95% 208500B 2600000B 290000B
99% 1000000B 1000000B 3067000B 2000000B

Table 1: Flow size distributions used in the simulation, extracted from [12].
Web [5], 1:1

Completed Flows Min Median 95% 99% Maximum
NDP 1728 0.055ms 0.078ms 0.89ms 0.90ms 0.92ms
DCTCP 1235 0.097ms 0.344ms 3.20ms 4.14ms 4.8ms
DCQCN 1053 0.097ms 0.43ms 5.53ms 6.15ms 7.08ms
MPTCP 1226 0.097ms 0.42ms 2.00ms 1.65ms 4.029ms

Table 2: FCT results using Web workload, as in [5], fully utilized system.
Web [5], 4:1

Completed Flows Min Median 95% 99% Maximum
NDP 1674 0.063ms 0.11ms 0.97ms 1.00ms 1.10ms
DCTCP 1240 0.11ms 0.29ms 3.29ms 3.92ms 4.61ms
DCQCN 1237 0.13ms 0.29ms 3.26ms 3.87ms 4.66ms
MPTCP 89 0.14ms 2.16ms 9.13ms 18.12ms 21.9ms

Table 3: FCT results using Web workload, as in [5], over-subscribed system.
Web, 1:1

Completed Flows Min Median 95% 99% Maximum
NDP 1786 0.055ms 0.077ms 0.26ms 0.90ms 0.92ms
DCTCP 1330 0.097ms 0.33ms 1.20ms 4.20ms 5.34ms
DCQCN 1174 0.097ms 0.43ms 1.08ms 6.55ms 7.23ms
MPTCP 1239 0.11ms 0.45ms 1.77ms 2.66ms 4.89ms

Table 4: FCT results using Web workload, fully utilized system.
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Web, 4:1
Completed Flows Min Median 95% 99% Maximum

NDP 1723 0.062ms 0.11ms 0.94ms 0.99ms 1.07ms
DCTCP 1352 0.12ms 0.29ms 2.76ms 3.72ms 4.54ms
DCQCN 1332 0.13ms 0.31ms 2.79ms 3.86ms 4.59ms
MPTCP 172 0.14ms 1.79ms 6.68ms 13.63ms 18.4ms

Table 5: FCT results using Web workload, over-subscribed system.

Cache, 1:1
Completed Flows Min Median 95% 99% Maximum

NDP 1305 0.055ms 0.11ms 2.2ms 2.57ms 2.58ms
DCTCP 643 0.15ms 0.44ms 8.73ms 10.72ms 12.6ms
DCQCN 549 0.25ms 0.48ms 10.98ms 13.47ms 15.68ms
MPTCP 827 0.13ms 0.73ms 4.32ms 8.33ms 18.44ms

Table 6: FCT results using Cache workload, fully utilized system.

Cache, 4:1
Completed Flows Min Median 95% 99% Maximum

NDP 1215 0.062ms 0.15ms 2.68ms 2.74ms 2.8ms
DCTCP 725 0.13ms 0.35ms 7.75ms 8.57ms 9.65ms
DCQCN 720 0.13ms 0.36ms 7.44ms 8.55ms 9.37ms
MPTCP 150 0.054ms 2.35ms 40.92ms 50.95ms 831ms

Table 7: FCT results using Cache workload, over-subscribed system.

Hadoop, 1:1
Completed Flows Min Median 95% 99% Maximum

NDP 1712 0.056ms 0.08ms 0.33ms 1.71ms 1.72ms
DCTCP 1182 0.097ms 0.34ms 1.47ms 7.73ms 9.51ms
DCQCN 1020 0.097ms 0.44ms 1.39ms 10.5ms 12.86ms
MPTCP 1167 0.13ms 0.49ms 2.06ms 4.12ms 7.86ms

Table 8: FCT results using Hadoop workload, fully utilized system.

Hadoop, 4:1
Completed Flows Min Median 95% 99% Maximum

NDP 1663 0.062ms 0.11ms 0.40ms 1.83ms 1.89ms
DCTCP 1200 0.11ms 0.30ms 5.25ms 6.73ms 8.15ms
DCQCN 1194 0.13ms 0.32ms 5.24ms 6.75ms 7.23ms
MPTCP 15 0.14ms 2.51ms 20.28ms — 25.23ms

Table 9: FCT results using Hadoop workload, over-subscribed system.
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other protocols. We assume that this is due to NDP starting to transmit a flow as soon as a flow
arrives, without a three-way handshake. A discussion of the necessity of a three-way handshake
is outside the scope of this paper. To verify that, we run an experiment with a zero-load system
(a single active flow), and see that the result holds. We also observe that the minimum FCT
is not necessarily for the minimum flow size. More detailed results for the zero-load system
appear in §4.3.

One may note that the number of flows completed by MPTCP is sometimes significantly
smaller than all other protocols. Following further inspection, and while this may not be the
cause, we found that in some experiments there are flows that timeout in MPTCP and never
complete - there is one such flow in MPTCP cache 1:1 and MPTCP Hadoop 4:1, and eight such
flows in MPTCP cache 4:1. The surprising result, however, is that we find that flows timeout
also in NDP: 1 flow in NDP web 1:1, NDP web 4:1, NDP cache 1:1 and NDP Hadoop 4:1. 2
flows in NDP Hadoop 1:1 and 3 flows in NDP cache 4:1. We don’t observe any NDP timeouts
using the web distribution from [5]. This does, however, lead us to ask: how sensitive are the
results to the seed?

4.3 Sensitivity Test
We conduct a limited sensitivity test, in which we only change the seed used in the experiment.
We first focus on the Web distribution used in [5] and on NDP. Instead of running once, we run
50 times (the number of experiments is time and resources limited) and compare the results.

In the fully utilized configuration (1:1) we find two cases (seeds 26 and 38) where a single
flow timeouts. In the over-subscribed scenario (4:1) we find 2 seeds (8,36) where there is a
timeout. For one specific seed (10), however, the number of timeouts is no less than 153.
Furthermore, the number of completed flows is just 353, compared with 1636 to 1690 in all
other runs. The command used to trigger this event is:

<path>/htsim_ndp_perm_shortflows -o ndp_logfile4_10 -strat perm
-nodes 432 -conns 1728 -cwnd 23 -q 8 -seed 10 > debug_ndp_4load_10

To reproduce this result, use the original NDP repository, but extend the run time in
datacenter/main ndp perm shortflows.cpp to two seconds.

We have made the authors of NDP aware of this issue, but at the time this text is written it
was not resolved yet.

As a timeout was observed in MPTCP, we also explored timeouts in MPTCP for 50 different
seeds, and found that in 27 out of 50 over-subscribed scenarios there were between one and four
flow timeouts. We also find that the number of completed flows ranged from 2 to 1055 with the
median being 371. We didn’t find a correlation between flow timeouts and the number of flows
completed by MPTCP.

Next, we repeat the same experiment but with the Cache workload. The Cache workload is
selected as NDP had the highest FCT under this workload, and we want to check whether the
high FCT leads to greater performance variance under different seeds.

In the fully utilized configuration (1:1) we find 37 seeds with flow timeouts, detailed in
Table 11. In the oversubscribed scenario, 40 seeds lead to timeouts, as the same table shows.
The number of timeouts is significantly higher under this workload: not only in the number
of seeds leading to a timeout, but also the probability for a lot of timeouts is higher, with 5
seeds leading to more than twenty timeouts. In the most extreme case, there are 176 timeouts
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Figure 8: NDP: FCT using the Web distribution used in [5], for 50 different seeds.
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Figure 9: NDP: FCT using the Cache distribution, for 50 different seeds.

(seed=22). Here, just 111 flows are completed, compared with a median of 1222. Four out of
the five seeds that had more than 20 timeouts also complete less than a thousand flows. The
exception is seed 46 that had 24 timeouts, where 1117 flows were completed. A different seed
completed less than a thousand flows: seed 26 has 3 timeouts and completes 710 flows.

To look differently at the timeout problem, we consider the throughput, i.e., the number of
bytes in completed transfers. In the fully utilized configuration (1:1) the average throughput
per experiment is 780MB. In the oversubscribed scenario (4:1) it is 718MB, while for seeds
where no timeouts occurs the throughput is also around 780MB. However, timeouts often lead
to significant throughput loss: in experiments with tens of timeouts, the throughput drops by
20% to around 580MB, while in the worst case (seed 22) the throughput drops to 75MB, an
order of magnitude less than other seeds.

When flows complete, the performance gap between them is small: the minimum FCT
ranges between 55.8µs and 63.3µs (13%), and the maximum FCT ranges from 2.57ms to
2.73ms (6%)1.

To better understand flow completion time under different scenarios, Figures 10 and 11
show the FCT per flow size, with each flow size marked by a different colour. We omit the
legend from the graph for clarity, but the flow sizes correspond to Table 1, and the smallest
flow has the smallest FCTs (left most lines), while the largest flow exhibits the longest FCTs
(right most lines). The data used in these graphs is identical to Figures 8 and 9, only broken
down by flow sizes. This breakdown of FCT by flow size explains the shape of the CDFs
presented in Figures 8 and 9, as each flow size has a distinct FCT, creating “steps” shapes in
the overall CDF of FCT. Small flow sizes appear as batched in Figure 10, but not in Figure 11,

1The values in Table 7 are based on a different seed
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Seed #Timeouts 1:1 #Timeouts 4:1
1 1 3
2 1 0
3 0 1
4 2 3
5 1 5
6 9 36
7 7 3
8 3 0
9 8 2
10 5 0
11 4 0
12 4 0
13 1 1
14 1 1
15 0 2
16 0 1
17 1 2
18 0 2
19 3 5
20 0 0
21 0 3
22 0 176
23 2 1
24 2 43
25 5 2
26 0 3
27 0 0
28 0 0
29 4 1
30 0 6
31 1 4
32 5 0
33 3 4
34 1 45
35 5 2
36 0 1
37 4 1
38 6 2
39 0 2
40 1 5

Table 10: Cache workload: the number of timeouts occurring in each experiment.
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Seed #Timeouts 1:1 #Timeouts 4:1
41 1 4
42 3 3
43 9 3
44 1 4
45 4 3
46 1 24
47 1 0
48 1 6
49 5 2
50 2 1

Table 11: Cache workload: the number of timeouts occurring in each experiment - continued.
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Figure 10: NDP: FCT by flow size, using the Web distribution from [5], for 50 different seeds.

where starting 20KB flow size it becomes easy to distinguish between the FCT of different flow
sizes, even in 1:1 traffic ratio scenario, due to the increased FCT.

To complete this evaluation, we study NDP’s flow completion time under zero load, using
fifty different seeds and for different packet size distributions. The results are presented in
Figure 12, and are as one would expect: the latency is as expected, and mostly the same in all
runs (some expected variations exist due to the variance in packet sizes between runs). There
are no flow timeouts, and the number of flows completed is largely the same for all seeds.
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Figure 11: NDP: FCT by flow size, using the Cache distribution, for 50 different seeds.
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Figure 12: NDP: FCT using the different distributions, using 50 different seeds, zero load.

4.4 Incast
We leave the study of incast to a later version of this paper.

4.5 Simulation Environment - Discussion
Exploring our simulations’ results, we try and separate results that are a consequence of the
algorithm, and results that may be caused by simulator’ implementation issues. We don’t have
confirmed answers for any of the cases.

Per flow throughput dependence is believed to be a result of the algorithm, since the com-
pression ratio between packet size and trimmed packet is the probable cause, and as some
results in the original paper indicate packet size sensitivity. We do find it, however, concerning
that there are comments in the code such as:

set_packet_size(9000); // it’s a datacentre, use jumbograms

as this assumption does not match many data centre workloads [12] and configurations [2, 9],
and limits the flexibility of the simulation environment (e.g., background traffic).

It is unclear if flows timeout and throughput collapse (i.e., overall throughput and completed
flows per experiment) are the result of the algorithm or the simulator. With timeouts being seen
also for MPTCP, it is not unlikely that the cause lies in the simulator.

The htsim simulator is modelling the network as “a collection of pipes (that add delays) and
queues (with fixed processing capacity, and finite buffers)” [3]. As such, the simulator conducts
simulations quite quickly, and is applicable for many functional and high-level evaluations.
However, using such a model, it misses many of the intricacies of today’s switches, for example,
queue occupancy is only a function of packet size and not of a queue’s data-bus width, which
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can lead to up to 50% estimation error [15]. It is also easy to miss some of the phenomena (e.g.,
timeout) reported in this paper.

5 Related Work

Several works have already used NDP and evaluated it for different needs. Homa [6] com-
pared its performance to NDP, with each solution running on its native simulator, and has shown
that NDP’s network utilization limit was lower than compared solutions (pias, pHost, pFabric
and Homa). Homa also demonstrated that NDP shows the worst median and 99% slowdown
as a function of message size. Homa reported failing to run their experiment using NDP for a
network load of over 70%.

Shoal [13] also demonstrates improved performance compared to NDP, but more interest-
ingly it shows that NDP does not performs better than DCTCP and DCQCN: it confirmed that
NDP has better 99.9% FCT for short flows (≤ 100KB), but for different applications with
disaggregated workload it had the worst 99.9% FCT. Unfortunately, Shoal uses a proprietary
simulation environment that is not open source. and thus its results cannot be reproduced here.

MDTCP [8] reproduced some of NDP’s results, but has shown that for other scenarios,
NDP’s FCT is worse than DCTCP. MDTCP used htsim for its evaluation.

Stardust [15] was the motivation for this evaluation work, and this paper extends the results
provided in the NSDI’19 version of Stardust.

6 Conclusion

This paper has provided a performance evaluation of NDP, complementing the Stardust [15]
paper. We report several issues that we detect while evaluating the performance, both in the
hardware and the simulation environment of the protocol. In particular, we show that the hard-
ware implementation of NDP on NetFPGA performs worse than the Reference Switch imple-
mentation on the same platform, that the simulated throughput is highly dependent on packet
size, and that flow timeout can lead to significant performance drop. While the concept of NDP
uses many interesting ideas, the evaluation backing these ideas, as used in the NDP paper [5],
was not sufficiently rigorous. We hope that this paper will help improve the quality of NDP.
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