
Extending programs with debug-related features,
with application to hardware development

Nik Sultana[Salvator Galea[David Greaves[Marcin Wójcik[Noa Zilberman[Richard Clegg]

Luo Mai\ Richard Mortier[Peter Pietzuch\ Jon Crowcroft[Andrew W Moore[
[Cambridge University \Imperial College, London]Queen Mary University, London

Abstract
The capacity and programmability of reconfigurable hard-
ware such as FPGAs has improved steadily over the years,
but they do not readily provide any mechanisms for mon-
itoring or debugging running programs. Such mechanisms
need to be written into the program itself. This is done us-
ing ad hoc methods and primitive tools when compared to
CPU programming. This complicates the programming and
debugging of reconfigurable hardware.

We introduce Program-hosted Directability (PhD), the
extension of programs to interpret direction commands at
runtime to enable debugging, monitoring and profiling. Nor-
mally in hardware development such features are fixed at
compile time. We present a language of directing commands,
specify its semantics in terms of a simple controller that is
embedded with programs, and implement a prototype for
directing network programs running in hardware. We show
that this approach affords significant flexibility with low im-
pact on hardware utilisation and performance.

Keywords debugging, FPGA, program directing, profiling,
high-level synthesis, aspect-oriented programming

1. Introduction
When debugging and monitoring programs running on mi-
croprocessors we usually benefit from hardware support that
is leveraged by an Operating System to inspect and modify
running processes (Gagnon et al. 2007). But when a program
is run on reconfigurable hardware platforms, one does not
usually have an operating system, a notion of process, nor
any hardware support for debugging. Programs must contain
additional logic to enable debugging, monitoring, and profil-
ing during their execution, because the environment does not
provide visibility into running programs by default.

Field-Programmable Gate Array devices (FPGAs) are a
form of programmable hardware consisting of a grid of logic
blocks whose function and wiring can be flexibly recon-
figured. FPGAs are used to perform functions for which a
full-featured general-purpose CPU is not appropriate. For
such functions, FPGAs can operate at a higher throughput
and consume much less electricity than CPUs (Mittal 2014,

§4.4). This makes FPGAs especially appealing for some
problems and environments, a recent example being data-
centres (Putnam et al. 2014).

Despite their appeal as a computing device, the pro-
grammability of FPGAs has been hampered by the need
for low-level hardware-description languages traditionally
used to program them, such as Verilog and VHDL, which
“requires programmers to assume the role of hardware de-
signers” (So et al. 2002). Research has yielded various ap-
proaches for high-level synthesis (HLS): this tends to consist
of using (fragments of) existing languages, such as C or Java,
to describe hardware.

In addition to a programmability gap between FPGAs
and CPUs, there is a debuggability gap that has received
far less attention. The programmability of FPGAs has im-
proved over the years, but they are not debuggable by de-
fault (Potkonjak et al. 1995). FPGAs provide no visibility
into the running program, and their standard tooling provides
very limited support for this. For full visibility one could
simulate the program, (e.g., on a workstation) but the simu-
lation can be slower by a factor of 106 (Camera et al. 2005)
because of the sheer amount of detail that must be simulated.

In this paper we propose to improve the debuggability
of programs running on FPGAs by using a domain-specific
control language inspired by program directing (Sosič 1992)
to generate in-program support for debugging. In addition to
debugging, this can be used to monitor and profile programs.

We call our approach Program-hosted Directability (PhD).
It involves extending the user’s program to service direc-
tion commands at runtime. Extending the program involves
inserting (i) named extension points which can contain
runtime-modifiable code in a computationally weak lan-
guage (no recursion), and (ii) state to be used for book-
keeping by that code, to implement direction features.

For example, the direction command “trace X
max_trace_idx” (where X is a variable in the program’s
source code) logs updates made to a variable, and appends
these updates to a buffer (of size “max_trace_idx” for later
inspection). We translate this command into (i) a snippet that
gets injected into the program (Figure 1) and (ii) a mod-
ification of the program to allocate space for this snippet,

if V_trace_idx < max_trace_idx then
V_trace_buf[V_trace_idx] := V;
inc V_trace_idx;
continue

else
inc V_trace_overflow;
break

Figure 1. Code that implements the direction command
“trace X max_trace_idx”. If the buffer is not full then the
new value of X is logged, the index incremented, and control
is handed back to the program that hosts this code. Other-
wise indicate depletion of the associated buffer resource and
break the program’s execution.
and for state require by this snippet: such as the variable
V_trace_idx, and array V_trace_buf. More examples are
given in §3, and the overall scheme is shown in Figure 2.

Idiomatic direction features (such as tracing, breakpoints,
etc) are compiled down to a weak language and executed
by an interpreter embedded in the program. For consistency
with the description of the interpreter’s behaviour as hard-
ware, we refer to it as a controller. The controller is invoked
by extension points, which are inserted into the program
through transformation. In the above example, the extension
points would be added after each update to a variable, to en-
sure that the update is considered for logging.

Extension points are added at compile time depending
on what direction commands we want to support at run-
time. For example, starting with the sequence of statements
. . . ; si; si+1; . . . we insert two extension points @L and
@M , resulting in the program . . . ; si; @L; si+1; @M ;
When extension point L is reached at runtime, a stored pro-
cedure associated with L is executed by the controller. This
procedure ultimately hands back control to the host pro-
gram, or starts an interactive session with a program direc-
tor, which can send the controller further commands, and
update its stored procedures.

Our work systematises ad hoc debugging and profiling
extensions to programs, and generalises the facilities cur-
rently made available for hardware development. Moreover,
we can include only the features needed, thus improving
the utilisation of the hardware, and its power consumption.
The approach is extensible: one can code additional direc-
tion commands, or variations (§3.3). In this paper we show
how to give semantics to program direction commands in
terms of the placement of extension points, the code that is
to be run by the controller, and the interaction between the
controller and the direction tool that manages it.

We prototype PhD using an HLS and obtain a uniform
interface for directing the software and hardware instances
of the same program, allowing us to unify the debugging of
these instances (which otherwise require diverse tools).

We believe that PhD can yield practical benefits in hard-
ware development and deployment. As a technique, PhD is
vendor-neutral and compiler-neutral, and the communica-

Controller DirectorProgram(Normal interaction
with external world)

Original program behaviour Hosted directability

Figure 2. A controller is embedded into the program, and
acts as the agent of the director. The director and controller
implement a protocol to exchange commands and their out-
puts.

tion between the director and controller can be adapted to
suit the program. For example, in our prototype we send di-
rection commands via the network. PhD can be implemented
in different ways: in our prototype we implemented it en-
tirely in a high-level language via HLS, but one could also
bolt it onto more finely engineered hardware blocks. Despite
running as hardware, the directability features can be en-
abled and reconfigured at runtime: this consists of updating
the code stored by the controller. In contrast, existing tech-
niques for FPGAs involve including fixed function circuits in
the design. Finally, PhD extends a program with a direction
mode, thus facilitating the in-field debugging of programs.

Through PhD we hope to contribute to the convergeance
between the debuggability of programs on FPGAs, and those
on CPUs, which enjoy extensive hardware and OS support,
and which in turn benefits sophisticated monitoring systems
such as DTrace (Gregg and Mauro 2011). The ideas de-
scribed in this paper are not necessarily tied to the languages,
compilers, FPGA or other equipment we used in our proto-
type. We make the following contributions:

• We describe how to translate familiar high-level idioms
for debugging, profiling and monitoring (§3.1), which
we call direction commands, into a low-level language
for controlling program state at runtime (§3.2), for an
example language §3.4.1.

• We relate the direction commands with our low-level lan-
guage through a specification (§3.4) in which programs
are ordered by the directability features they support.
This provides a basis on which we can reason that one
program is “more debuggable” than another at runtime.

• A prototype implementation and its evaluation (§4),
where we measure the effect of directability on FPGA
utilisation and performance.

2. FPGA debugging gap
Irrespective of how we write our program as a hardware
description, once a so-called “bitstream” is generated that
configures an FPGA to run our program, the program can
only be tested as a black box, and we cannot understand or
further influence its behaviour at that stage.

The need for better FPGA debugging features is becom-
ing more urgent since:

• FPGA chips are getting larger, which allows them to run
more complex programs. Complex programs are more
likely to be buggy, which necessitates more debugging.

• FPGAs are also used for simulating hardware designs,
since behavioural simulations are very slow. (Wang et al.
2011; Chu et al. 2015)

• FPGAs are being deployed in large production environ-
ments, such as Microsoft’s datacentres (Putnam 2014).

Hardware development has driven the development of
formal methods to establish system correctness (Fix 2008),
which enabled the development for methods for software (Ball
et al. 2006; Godefroid et al. 2012). Unfortunately the ver-
ification is done on the Register-Transfer Level (RTL), a
higher-level description of a hardware circuit in languages
such as Verilog, and not on the generated bitstream. Thus
debugging may still be needed.

2.1 Debugging(FPGA) != Debugging(CPU)
Debugging concepts from software do not correspond di-
rectly with debugging the same program on an FPGA. A lot
of the core issues involved were discussed in the pioneering
work of Koch et al. (1998) and in many other work on HLS
debugging (Goeders and Wilton 2014; Monson and Hutch-
ings 2015). These are the main points:

• Multiple source lines might be executed concurrently in
hardware. Code is represented at the source, register-
transfer, and gate levels. This has important conse-
quences for debugging, described in the following points.
The correspondence between these levels necessitates
keeping metadata from compilation for debugging.

• Depending on the debugged artefact, stepping by (source)
line might be less useful than stepping by cycle.

• Breakpoints become more tricky to interpret, since they
are usually set on a specific line of code. In hardware
there may be several overlapping lines being executed at
a breakpoint (Koch et al. 1998, §4.3). Moreover, the out-
put of operations on previous lines might only be avail-
able after some clock cycles have elapsed. Depending on
what the user wishes to do, they might prefer if the break-
point is triggered after the elapsing of these cycles. Fur-
thermore, part of the next line of source code might have
started executing. This suggests that a strict indication of
sequentiality needs to be communicated to the HLS com-
piler if the usual breakpoint semantics are desired.

• As mentioned in the introduction, FPGAs do not provide
hardware support such as debug registers to assist with
analysing running programs.

2.2 Current techniques for FPGA debugging
Some existing techniques help narrow the debugging gap on
FPGAs. Co-simulation involves comparing the behavioural
simulation between HLS and RTL. This can be considered

a special case of relative debugging (Sosič and Abramson
1997) but it does not provide visibility into the hardware
instance of a program. Another technique involves in-system
testing: testing a large part of the system, though possibly not
all. This does not provide visibility into the hardware either.

Current practice employs two techniques for FPGA de-
bugging. Trace buffers are the most popular technique for
debugging FPGAs. It requires a programmer to identify sig-
nals of interest in the circuit at compile time, then an em-
bedded logic analyser is synthesised that uses on-chip mem-
ory to record traces for these signals. This suffers from two
problems: only a limited number of signals may be viewed
(limited by on-chip memory), and traces have a limited win-
dow size (for the same reason). Traces may be conditional, to
avoid using up buffer space unnecessarily, but this technique
is difficult to use because it involves generating the bitstream
each time. Register scanning allows you to see the values of
all registers on the FPGA, but requires “stopping the world”
to enable reading and sending it off-chip. This slows down
tests, and thus register scanning has been supplanted by trace
buffers.

Both register scanning and trace buffers usually send
recorded data off-chip via the JTAG (Joint Test Action
Group) interface, a standardised instrumentation method (Ben-
netts and Osseyran 1991). This method is not scalable, since
its transfer rate is far less than the FPGA throughput.

In summary, existing techniques consist of including
“fixed function” modules as part of your hardware de-
scription at compile time. This has the advantage of being
lightweight since these circuits are specialised to perform a
single function, but it has the disadvantage of being inflex-
ible. Generating a hardware bitstream can take hours, and
the added overhead costs for runtime-reconfigurable debug-
gability and monitoring features might not be affordable in
some use-cases. Furthermore, these techniques cannot be
used in production environments.

2.3 High-Level Synthesis (HLS)
HLS involves the use of a high-level language, such as Java,
C, C++, and OCaml, to write a hardware description. This
takes advantage of the features of, and tooling available
for, the high-level language. An RTL description is then
generated from the high-level description.

Using an HLS to describe hardware enables one to run
the HLS description as a software program, and to debug it
as such, by using standard tools to compile and debug Java
programs for instance. This prunes bugs from the eventual
bitstream and avoids regenerating the bitstream. Irrespective
of whether testing is directed at software or hardware, it can
take many tests to find a fault.

Software-based testing could help detect logic errors in
our code, but it could not help us find some important classes
of problems: ‘[Testing in] the silicon mode permits the anal-
ysis of bugs that are “invisible” at the RTL level’ (Calagar
et al. 2014). We outline the main cases below:

1. Interface mismatch. We need to understand whether a
problem occurs because of a mismatch between one mod-
ule and the rest of the circuit. Recall that behavioural sim-
ulation might not be applied to the whole design, and in-
correct assumptions about the enclosing circuit can result
in the simulation test succeeding but the hardware tests
failing.

2. Reproducability. Some faults are triggered during high-
throughput tests, and are difficult to find when test-
ing other instances of the program. Other faults result
from features of the hardware and transient environmen-
tal states – such as “Single Event Effects” manifested
through the flipped or stuck bits from the interaction of
charged particles with semiconductors (Sari et al. 2014;
Krishnaswamy et al. 2008).

3. Toolchain problems. Diagnosing bugs in the compiler
toolchain becomes easier if we can see into the compiled
program’s operation. Bugs are not unusual in both HLS
and RTL toolchains.

2.4 Current research on FPGA debugging
Various improvements have been explored for the techniques
described above. For example, one could write summaries
to the trace-buffer, rather than the explicit trace (Goeders
and Wilton 2014). Another idea consists of multiplexing all
signals and choosing which to observe at debug time rather
than at compile time (Hung and Wilton 2013), enabling
“observation without recompilation”. An additional idea is
to buffer into a fast external memory (Panjkov et al. 2015).

Table 1 surveys closely related work, classifying it ac-
cording to the features they provide. Related work is con-
trasted in more detail in §5. In Table 1 extension points
means being able to extend the program at certain points
at runtime. Interruption refers to asynchronous interruption
of a program by a debugger. Fine granularity means that
we can look at arbitrary parts of a program; for instance
McKechnie et al. (2009) only allow inspecting at the module
boundary. Software instance means that the program can be
run on the CPU as a process, independent from the FPGA.
Network/Control refers to how a technique is implemented:
as a control loop or as a network that feeds signals to a
logic analyser. Use leftover resource means that the debug
circuitry does not compete with the program’s circuit. And
embed at Source/HDL refers to whether the source code or
its HDL image is updated to include the debug circuitry.

2.5 PhD design features
PhD came about after we found ourselves extending our ad
hoc debugging and monitoring code to support additional
features, instigating us to study the problem more rigorously.

Table 1 shows the features supported by PhD. Initially
it supported state inspection and update. Updating state en-
abled us to influence data-dependant control flow. Extending
the controller to include branching and extension points en-

abled us to support more features, such as assertion check-
ing, which involves breaking if a condition is satisfied.

As an idea, PhD is neither committed to HLS nor HDL
description. In our prototype we implemented it in HLS for
convenience, but often better performance can be gained by
relying partly or fully on modules written in HDL.

3. A language and model for program
directing

In this section we describe D, a language of direction com-
mands that we extracted by analysing the commands com-
monly given to profilers and debuggers such as gdb.1 In Fig-
ure 1 we described one such command and how we code
the high-level direction command as a program that will be
executed by the controller.

3.1 Direction language D

Our direction language D consists of the commands listed in
Table 2. These commands can have three kinds of parame-
ters: (i) symbols relating to the program, (such as variable or
function names, or labels), (ii) relations over program vari-
ables, which we denote by the symbol 〈B〉, indicating the
conditions on which statements might apply, and (iii) mea-
sures of resource, which we symbolise by 〈$〉, indicating a
finite resource that is allocated for the execution of a com-
mand. Symbol X is a metavariable ranging over variable
identifiers in the source program, and L is a metavariable
ranging over labels in the source program. A label is asso-
ciated with a single position in the program, (e.g., line 5 in
function “main”), but a single position might be associated
with multiple labels. below.

Let D〈B〉 be the set of possible conditions that can be
used. We assume that at least true ∈ D〈B〉. We can also
allow additional truth conditions, and in this model we will
have (V1 = V2) ∈ D〈B〉 for arbitrary V1, V2 ranging over
program values or variables. For example, “watch v (v =
5)” would instruct the controller to watch a variable v, and
switch to interactive directing when v = 5.

D〈$〉 ∈ N describes the maximum quantity of some re-
source when carrying out a direction command. This value
must be less than the compile-time allocation of the re-
source, to ensure the provision of sufficient resource for
the command at runtime. This is needed to size the buffers
used for tracing. For example, “count reads v true 5000”
will count the number of reads of v, and break after 5000
reads have been made. This could be done to avoid over-
flow, or to capture some behaviour of interest. Similarly,
“trace start v true 500” breaks after 500 instances of v
have been recorded in the trace. The trace buffer must ac-
commodate at least 500 entries.

1 https://www.gnu.org/software/gdb/

System

Fe
at

ur
es

st
at

e
in

sp
ec

tio
n

tr
ac

e
re

co
rd

in
g

st
at

e
up

da
tin

g

ex
te

ns
io

n
po

in
ts

br
ea

k
po

in
ts

st
ep

pi
ng

in
te

rr
up

tio
n

fin
e

gr
an

ul
ar

ity

as
se

rt
io

n
ch

ec
ki

ng

ha
ng

de
te

ct
io

n

tim
in

g
ch

ec
ks

so
ft

w
ar

e
in

st
an

ce

ru
nt

im
e

re
co

nfi
gu

ra
bl

e

H
L

S
(v

s
H

D
L

)

N
et

w
or

k/
C

on
tr

ol

us
e

le
ft

ov
er

re
so

ur
ce

em
be

d
at

So
ur

ce
/H

D
L

(Sosič 1992) Dynascope X X X X X X X X X X X
(Goeders and Wilton 2014) HLS-Scope X X X X X X C S

(Calagar et al. 2014) Inspect X X X X X X C H
(Panjkov et al. 2015) X X C S

(Hung and Wilton 2014) QuickTrace X X X X X N X H
(Koch et al. 1998) SLE/CADDY X X X X X X C H

(Monson and Hutchings 2015) X X X C S
(Curreri et al. 2011) X X X X C H

(Camera et al. 2005) BORPH X X X X X X X C H

(see §2.5) PhD X X X X X X X X X X C

Table 1. Survey of features provided by debugging systems. Blacked-out boxes mean “not applicable”.

Command Behaviour

print X Print the value of variable X from the source program.
break L 〈B〉 Activate a (conditional) breakpoint at the position of label L.
unbreak L Deactivate a breakpoint.
backtrace 〈$〉 Print the “function call stack”.
watch X 〈B〉 Break when X is updated and satisfies a given condition.
unwatch X Cancel the effect of the “watch” command.

count

 reads X 〈B〉 〈$〉
writes X 〈B〉 〈$〉
calls fname 〈B〉 〈$〉

 Count the reads or writes to a variable X , or the calls to a function fname .

trace

start X 〈B〉 〈$〉
stop X
clear X
print X
full X

Trace a variable, subject to a condition being satisfied, and up to trace some length.
Stop tracing a variable.
Clear a variable’s trace buffer.
Print the contents of a variable’s trace buffer.
Check if a variable’s trace buffer is full.

Table 2. Directing commands making up language D. Note that count has similar subcommands to those of trace, to clear
the counters, get their current value, and find out if a maximum value has been reached.

3.2 Controller
High-level direction commands such as those in Table 2 are
ultimately translated into programs that run on a simple con-
troller embedded in the program. We model the controller as
a CASP machine (for “Counters, Arrays, and Stored Proce-
dures”, the constituents of the machine’s memory).

CASP machines are very weak. They are more struc-
turally complex than register machines (Shepherdson and
Sturgis 1963) since they have separate memories for storing
arrays and registers, but CASP machines are computation-
ally much weaker than register machines, unable to encode
partial computable functions. A limited form of memory in-
direction is permitted through a collection of arrays. The lan-

guage lacks any means for defining recursive functions, or
branching to arbitrary addresses. Any more complex com-
putation must be done by the director; the controller simply
provides a controlled access to the program’s memory.

We describe the language of CASP programs in Figure 3.
We rely on the following meta-variables and syntax cate-
gories: P programs, E expressions, I indices, U updatable
values, V values, N numerals (corresponding to Z), X vari-
able identifiers, and R the array identifiers, where the names
for variables and those for arrays are disjoint, X ∩R = ∅.

@L : {P} is a placement command: it updates the code at
extension point having label L to be P . Note that placement
commands may not be nested in our model: for instance, this
is not a valid program:

P ::= E
| U := E
| op U

op ∈ {inc, dec}
| P1;P2

| if E then P1

else P2

| break

| continue

| @L : {P ′}

E ::= V
| −V
| V1 op V2

op ∈ {=, <}
I ::= N

| X
U ::= X

| R[I]
V ::= I

| R[I]

Figure 3. Syntax for CASP programs.

@L : {if x = 1 then @M : {break}
else @M : {continue}}

We do not want to allow programs to be self-modifying in
this way, since it complicates reasoning about them.

Ending programs. Both continue and break indicate
the end of a CASP program, but differ in what happens
before resuming the host program (in which the controller
is embedded). continue simply resumes where the host
program left off, whereas break switches into an interactive
direction mode. In this mode, the controller may receive
commands from the director, execute them, and send an
acknowledgement back.

The remaining syntax forms and constants used above are
standard and intuitive. Owing to its simplicity the semantics
of this language are straightforward, and are given in §C.1.

3.3 Examples
CASP programs are to D what microprograms are to an In-
struction Set Architecture (Smith and van Leeuwen 1974).
We give some examples of coding program direction com-
mands below, before describing the behaviour of program
direction commands in more detail in the next two sections.

Conditional tracing. Let BASIC represent the program
that codes the behaviour of “trace V...” from Figure 1.
We can code the conditional variant of this command,
for example when V is less than some threshold value
V_trace_threshold (and where >= is syntactic sugaring):

if V >= V_trace_threshold then
continue

else
BASIC

Sampled tracing. The sampled variant involves allocating
an additional variable to count the interval between samples,
and storing the desired sample interval:

if V_trace_samp = 0 then
V_trace_samp := V_trace_samp_interval;
BASIC

else
dec V_trace_samp;
continue

Profiling. The command “count writes v” causes a counter
to be incremented each time a variable is updated:

if V_count_writes > V_count_writes_max then
break

else
inc V_count_writes;
continue

Watchpoints. The command “watch v 〈B〉” causes the
program to break (for interactive guidance) when a vari-
able’s value satisfies some predicate. Let B be the CASP-
level value to the D-level 〈B〉 parameter (we give such a
function in §3.5.1). The code is similar to that in the profil-
ing example above, except that B is user-provided.

if B then break else continue

Breakpoints. “break L 〈B〉” causes the program to break
when it reaches a specific label, and if condition B is sat-
isfied. The coding is identical to that in the watchpoint
example, but they differ in their placement: breakpoints
are placed at programmer-specified positions in the code
whereas watchpoints are associated with labels where vari-
ables are updated. This difference cannot be seen from the
snippet, but will become evident in the formalisation of the
program direction commands, which we start next.

3.4 Directability ordering
In this section we define a relation x @ x′ to mean “x′

is more directable than x”, where x, x′ are triples (D, C, p)
and (D′, C′, p′), each representing three interdependent par-
ties: the director, controller and program. The user (or their
agent) issues direction commands to the director, which in-
teracts with the program’s state via its agent, the controller,
embedded in the program. We use this relation to give se-
mantics to the direction commands in terms of interaction
with CASP machines.

Our directability relation gathers information about the
three parties involved, and describes how their interdepen-
dence is revealed by the directing commands: for example,
the director would not be able to execute trace X if the pro-
gram did not have a variable called X , or if the controller
had not been allocated a trace buffer.

In our notation, D represents the director’s state (a set of
facts representing its knowledge about the controller’s state,
such as which breakpoints exist, and whether they are active
or not). C is the controller’s state, consisting of a (C,A,SP)
machine, cf §3.2. p is a program. We will define an example
language in §3.4.1 to aid our formalisation.

We also include in the relation some information about
why one triple is less directable than the other. We therefore
index the relation by (i) C ⊆ D the direction commands
(§3.1) supported by (D, C, p), (ii) c ∈ D the additional
command supported by (D′, C′, p′), and Dc ∈ (D′ → D′)
the semantics of this command. Note that C denotes the set
of direction commands that is supported simultaneously by
(D, C, p), i.e., these commands are allocated separate state.

Written out in full, we obtain this relation:

(D, C, p)
c
@C (D′, C′, p′) : Dc

In §3.5 we will instantiate such a relation by formalising
commands from D in terms of CASP machines. Note that
this describes how the directing commands are translated
into CASP programs, but we do not fully formalise the
director: Dc is written in an ML-like pseudocode.

Our formalisation is devised in away that avoids the mu-
tual interference of direction commands. That is, the same
program can be subjected to any combination of direction
commands. To make this non-interference more precise, we
introduce some definitions. Let D̆ = D′\D and C̆ = C′\C.
We say that Dc is relevant to D′\D if it only manipu-
lates state or elements introduced in D′ and C′. Furthermore
commands are disjoint if they introduce non-overlapping
state. That is, for any two commands c1 and c2, for any
prior states C and D their respective new states are disjoint:
(D1\D) ∩ (D2\D) = ∅ = (C1\C) ∩ (C2\C).

3.4.1 Program language
In this section we specify a first-order imperative language to
support our formalisation of program direction commands.
Unlike CASP machines (§3.2) this language is computa-
tionally strong: recursive functions over the integers can be
encoded. The language’s simplicity enables the relation of
program direction with CASP machines, while avoiding ex-
cessive formal complexity. Formalising transformations for
realistic languages—even simple transformations (Schäfer
et al. 2008)—is usually fraught with complex definitions,
and we avoid that here.

The language grammar is given next. Note that for sim-
plicity we deliberately overlay the meta-variables for vari-
ables and numerals (X and N) over those for CASP ma-
chines. This simplifies the interface with CASP programs,
which will be executed at extension points within host pro-
grams. p ranges over programs, s over statements, e over
expressions, τ over types, and vdecl and fdecl over the dec-
laration of variables and functions respectively.

p ::= vdecl fdecl return fname(ē)
vdecl ::= τ X
fdecl ::= τ fname(x̄){s; return e}

s ::= skip
| X := e
| if e then s; s
| extend{L1, . . . , Ln}

e ::= N
| X
| fname(ē)
| e1 op e2

op ∈ {+,−,==, <}

In this language the only data type in τ is the inte-
ger type. The only unusual construct in this language is

extend{L1, . . . , Ln}. This indicates an extension point,
where control is passed to the CASP machine (§3.2). As
before, L is a metavariable ranging over labels drawn from
a denumerable set.

The semantics of this language are straightforward, and
are given in §C.2. Intuitively, the behaviour of extend{L1,
. . . , Ln} is as follows. If n = 0 then the command has no
effect. Otherwise, the stored procedure associated with each
Li is called, in any order, and run to completion, noting the
last instruction of each Li. The last instruction of any CASP
program is either ‘continue’ or ‘break’ (§3.2). If all Li end
in ‘continue’, then the behaviour of extend{L1, . . . , Ln}
is to continue executing the next statement in the host pro-
gram. Otherwise, if at least one Li ends in ‘break’, then the
controller switches into interactive mode. In this mode, con-
trol remains with the controller, until the director sends it a
‘continue’ command, at which point control is returned to
the program.

We make the simplifying assumption that all the state-
ments in the user’s program are interspersed with ‘extend’:
that is, if the user writes s0; . . . ; sn then this is translated
into extend{}; s0; extend{}; . . . ; extend{}; sn; extend{}.
In the next section we populate these extension points with
labels, to extend the directability of a program.

3.5 Semantics for D

In this section we encode program direction commands (§3.1)
into interactions between the director and controller (§3.2).
Note that this describes how the directing commands are
translated into CASP programs, but we do not fully for-
malise the director:Dc is written in an ML-like pseudocode.

3.5.1 Break
We start by formalising the meaning of the “break” com-
mand. Intuitively, this command adds a breakpoint to a pro-
gram: an extension point is at the position of the breakpoint
is labelled with L, and the associated state is set up in the
director and controller. To support this command:

• A program p is extended to include a label L at the posi-
tion where the breakpoint is to be placed. This extension
is formalised by the premise p <1

L p
′, which means that p

is identical to p′ except for the label L occurring at some
extension point. This is defined formally in §B along with
related definitions, such as that of a position in the pro-
gram.

• The label L must not appear in the original program. We
write this as L 6∈ p using an abbreviation defined in §B.

• The controller’s state is extended to store the procedure
associated with L. Furthermore, the breakpoint is acti-
vated by default. We use the abbreviated notation C̆ =
{SP [L 7→ break]} to indicate this extension, where SP
is the stored-procedure memory in the CASP.

• The director’s state is extended to encode whether the
breakpoint is currently active or not. It is activated by
default, thus: D̆ = {(«bp», L, 1)}, where “«bp»” is a
unique token we use for breakpoints, and 1 is a token
we use to indicate that the breakpoint is active. Soon we
will formalise the “unbreak” command, which flips this
value to 0.

• The director’s behaviour for the “break” command, Dc,
involves activating the breakpoint unless already active.

In the definition of Dc below we use the notation P
N , which we use to mean that the director sent the CASP
program P to the controller, and received the reply N . Thus
“@L : {break} pLq” means that the director instructed
the controller to store the program break at L, and that it
expects to get pLq back (which is a code indicating where
the program is stored, as formalised in §C.1).

In Dc we use the notation “(«bp», L, 0 7→ 1) :∈ D′” to
abbreviate {(«bp», L, 1)} ∪ (D′\{(«bp», L, 0)}).

The formalisation of the “break” command follows. We
can use a simplified notation since our commands will be
both relevant to D′\D and disjoint:

L 6∈ p p <1
L p
′

p
break L 〈B〉
@C p′

D̆ = {(«bp», L, 1)}
C̆ = {SP [L 7→ Jbreak L 〈B〉KSP]}
Dc = λD′. if («bp», L, 1) ∈ D′ then D′

else
Jbreak L 〈B〉K pLq;
(«bp», L, 0 7→ 1) :∈ D′

where

Jbreak L 〈B〉KSP = conditional 〈B〉 break
Jbreak L 〈B〉K = @L : {Jbreak L 〈B〉KSP}

We use Jbreak L 〈B〉K to denote the meaning of
“break L 〈B〉” to the director, as a CASP program.
Jbreak L 〈B〉KSP is the value used to initialise the stored
program associated with L.

The meaning of 〈B〉 is translated for inclusion in the
CASP program by the following function:

conditional 〈B〉 t =
t if 〈B〉 = true

if I1 == I2 then t

else continue

if 〈B〉 = (I1 = I2)

We now turn to the “unbreak” direction. To be able to
issue this direction, the breakpoint needs to exist—thus we
have a dependency on the “break” direction earlier:

(break L 〈B〉) ∈ C

p
unbreak L
@C p

D̆ = {}
C̆ = {}
Dc = λD′. if («bp», L, 0) ∈ D′ then D′

else Junbreak LK pLq;
(«bp», L, 1 7→ 0) :∈ D′

where

Junbreak LK = @L : {continue}

Note that the program, and the states of the controller and
director are not changed. The only extension is made to the
behaviour of the director, which is extended with a function
to unset the breakpoint. This time we didn’t set anything
in the controller since there is no default behaviour and
additional state required for unsetting a breakpoint. This
is because unbreaking a breakpoint doesn’t establish the
breakpoint, whereas breakpoint does.

To print the value of a variable X , that variable needs to
exist in the program (X ∈ Varp), and we need to have at
least one extension point (through which we can send the
print command).

(break L 〈B〉) ∈ C X ∈ Varp

p
print X
@C p

D̆ = {}
C̆ = {}
Dc = λD′. X N ;

print(N)

This time we didn’t use a placement command to update the
behaviour of the controller; we simply ran a query. print(N)
is pseudocode that uses a print function in the director. Re-
call that we formalise directions in terms of CASP machines,
and don’t formalise the director’s behaviour. X ∈ Varp en-
sures that X is a variable in p. Varp is defined in §B.

3.5.2 Trace
The most important command related to tracing is “trace
start”; the other commands depend on it.

X ∈ Varp ∀L ∈ XL. L 6∈ p Positionsp′(XL) = PostUpdatep′(X) p <XL
p′

p
trace start X 〈B〉 〈$〉

@C p′

D̆ = {(«t», X, 1)}

C̆ =

 C [Xi] = 0,C [Xof] = 0,A[Xa[〈$〉]],
SP [L 7→ Jtrace start X 〈B〉 〈$〉KSP]

for each L ∈ XL

Dc = λD′. if («t», X, 1) ∈ D′ then D′

else
for each L ∈ XL:

@L : {Jtrace start X 〈B〉 〈$〉KSP}
 pLq;

(«t», X, 0 7→ 1) :∈ D′

Jtrace start X 〈B〉 〈$〉KSP =
conditional 〈B〉

if Xi < 〈$〉 then
Xa[Xi] := X;
inc Xi;
continue

else

inc Xof ;
break

Applying this rule depends on a set of labelsXL in p′ that
don’t exist in p. p′ is the least extension of p that includes
these labels. Furthermore, these labels coincide with the
positions in the program occurring afterX has been updated.

The controller’s state is extended with the buffer index,
Xi, initialised to 0; the overflow indicator Xof , initialised to
0 (for false); and Xa is an array that can hold 〈$〉 elements.
Each L ∈ XL labels the positions immediately after the
variable has been updated.

(trace start X 〈B〉 〈$〉) ∈ C Positionsp(XL) = PostUpdatep(X)

p
trace stop X
@C p

D̆ = {}
C̆ = {}
Dc = λD′. if («t», X, 0) ∈ D′ then D′

else
for each L ∈ XL:

@L : {Jtrace stop XKSP} pLq;
(«t», X, 1 7→ 0) :∈ D′

where Jtrace stop XKSP = continue.
The remaining commands are formalised in §A, sup-

ported by program-level predicates and functions defined
in §B.

4. Implementation and Evaluation
We prototyped the ideas described in the previous section
by extending network programs with program-hosted di-
rectability, and compiled them to run on an FPGA. We then
evaluated the effect of these directability features on the pro-
gram in which they are embedded. Our approach enables us
to make fine-grained modifications to directability, and we
evaluate the overhead from supporting different CASP ma-
chine instructions.

4.1 Prototype
In our prototype we manually transformed programs to in-
clude the controller. This transformation was straightfor-
ward: we wrote the controller (implementing a CASP ma-
chine) and added extension points to the program (consisting
of calls to the controller to execute a stored procedure).

Focus. From its description, the PhD idea is not con-
strained to a specific kind of program. In our prototype we
focussed on using it to work with network programs how-
ever, for two reasons:

1. It allows us to test remote directing over standard net-
work equipment. In our survey of tools and techniques
(Table 1) only Dynascope has network access, but it does
not work for FPGAs.

2. It allows us to use industrial high-precision network mea-
suring equipment to see the effects on the program host-
ing a controller.

Program
Packet in

Packet out
Controller

Program

Figure 4. Transformation of the program to include a con-
troller. Normal packets are handled as normal, but direction
packets are passed to the controller. Pink dots represent ex-
tension points, one of which is added within the control flow
of the original program in this illustration.

Use-cases. As programs we used implementations of DNS
and Memcached that we had written previously to run on FP-
GAs, as part of earlier research. DNS (Domain Name Sys-
tem) is a ubiquitous name-resolution system used on pri-
vate and public packet-switched networks such as the In-
ternet (Mockapetris 1987). This implementation was around
700 lines of C#. Memcached (Fitzpatrick 2004) is a well-
known, in-memory key/value store that caches read results
in memory to quickly respond to queries. The protocol uses a
number of basic commands such as GET (retrieve a value as-
sociated with the provided key), SET (store a key/value pair)
and DELETE (remove a key/value pair) and has both ASCII
and binary protocols. In this work as proof-of-concept we
have implemented a limited version of Memcached support-
ing GET/SET/DELETE using the binary protocol over UDP
and supporting 6 byte keys and 8 byte values. This imple-
mentation was almost 900 lines of C#.

Method. We transformed the DNS and Memcached imple-
mentations in two ways: (i) adding code to check whether a
received packet is a direction packet intended for the con-
troller (see Figure 4), in which case the controller (and not
the original program) processes the packet; (ii) adding an ex-
tension point in the body of the (DNS or Memcached) main
loop, allowing us to influence and observe the program from
that point. We form an enumerated type that corresponds to
the program variables whose values the controller may ac-
cess and change at runtime. The code for each value of the
enumerated type is used to refer to the program value, to
instruct the controller to increment it, for example. Building
tool support to automate parts of this process seems feasible.

Direction packets. Direction packets are network packets
in a custom and simple packet format, whose payload con-
sists of (i) code to be executed by the controller, or (ii) sta-
tus replies from the controller to the director. It enables us
to remotely direct a running program, similar to gdb’s ‘re-
mote serial protocol’.2 Our design uses a simple direction
language, and works for instances of a program that run both

2 http://www.embecosm.com/appnotes/ean4/
embecosm-howto-rsp-server-ean4-issue-2.html

http://www.embecosm.com/appnotes/ean4/embecosm-howto-rsp-server-ean4-issue-2.html
http://www.embecosm.com/appnotes/ean4/embecosm-howto-rsp-server-ean4-issue-2.html

10G Port

10G Port

10G Port

10G Port

PCIe & DMA

Input
Arbiter

Output
Queues

Main Logical Core

10G Port

10G Port

10G Port

10G Port

PCIe & DMA

Figure 5. NetFPGA Reference Pipeline. Each of the imple-
mentations in our prototype consists of a separate Main Log-
ical Core.

as software and hardware (on FPGAs), whereas gdb requires
special backends for each architecture.

Controller. Our controller follows the description of CASP
machines very closely (§3.2). It has two features. First,
memory is organised into Counters, Arrays and Stored pro-
cedures. Counters include variables in the original program,
as well as extra registers used for program directing. In this
prototype we only support numeric datatypes; structured
datatypes could be encoded in principle. Secondly, a func-
tion that interprets the language of CASP machines. This is
used to branch to stored procedures when their correspond-
ing extension points are reached.

Tools and equipment. We wrote our programs in C#, and
used the Kiwi high-level synthesis (HLS) system (Singh and
Greaves 2008) that statically recompiles .NET bytecode into
Verilog. The Verilog code generated by Kiwi was slotted
into open-source reference code from the NetFPGA project,3

and compiled to run on the NetFPGA SUME board (Zilber-
man et al. 2014), a low-cost, PCIe host adapter card able
to support 40Gb/s and 100Gb/s applications. At the core
of the board is a Xilinx Virtex-7 690T FPGA device. The
NetFPGA reference designs share the same FPGA architec-
ture, illustrated in Figure 5, of multiple physical interfaces
surrounding a logical data-path. Traffic to the FPGA enters
through one of four 10Gb/s ports or from a PCIe interface,
and is passed into the main data-path by an input arbiter,
which arbitrates between all ingress interfaces. Packets are
then processed within the main logical core, and are diverted
to their destination through an output queues module. From
this module, the packets are passed to the physical interfaces
and are transmitted.

4.2 Evaluation
We evaluate our prototype by carrying out a quantitative
analysis of the impact that the controller has on the program
in which it is embedded. This impact is measured in terms of
utilisation of resources on the FPGA, and the performance
of the host program.

An FPGA consists of an interconnected grid of logic
blocks, which in turn contain resources such as memory and

3 http://netfpga.org/

logic functions (in the form of so-called look-up tables).
Flip-flops are primitive storage circuits.

Table 3 shows the utilisation and performance for DNS
and Memcached, extended with different controller features.
These features show a fine-grained decomposition of the
instructions supported by the controller: reading a variable,
writing a variable, and incrementing a variable. We see that
the impact on utilisation and performance is minimal.

Performance is analysed in three ways. The duration is
the number of clock cycles that are needed by the program
to process a packet within the main logical core, as extracted
from simulation. In our hardware, each clock cycle takes
10ns. Latency is the time taken for a program to service
requests from the network. Throughput is the rate of requests
that can be serviced by the program (before packets start to
be dropped).

Using the controller we can read and change the pro-
gram’s state at the packet rate. Using JTAG and the Virtex-7
FPGA we can read data at up to 66Mbps, three orders of
magnitude less than the maximum throughput that the NetF-
PGA can sustain over high speed serial interface –e.g. the
PCIe channel. In principle the direction controller could use
any slice of that, subject to not interfering with the hosting
program too much.

In Table 4 we compare DNS extended with one extension
point, against DNS extended with an embedded logic anal-
yser (ELA). An ELA is a standard technique in hardware
development, and consists of a circuit that passively mon-
itors the program, creating a trace of the program’s execu-
tion. DNS+2e is the DNS extended with one extension point
that only contains a NOP. In (Count) the extension point’s
stored procedure is changed into a counter, and in (Trace) it
is changed to emulate the behaviour of the ELA.

These results confirm that the resources overhead is min-
imal, making PhD a feasible solution. We note that in the
use-cases detailed below the FPGA resources were never ex-
hausted, and consumed less than 25% of the logic resources,
even for complex services.

In addition to the quantitative evaluation, we note that
PhD is vendor-neutral and runtime-reconfigurable, and can
be used for remote in-field debugging, whereas standard
techniques for FPGA debugging do not provide this.

Test setup. We use a host running Ubuntu server 14.04LTS,
kernel version 4.4.0-45-generic. The host hardware is a sin-
gle 3.5GHz Intel Xeon E5-2637 v4 on a SuperMicro X10-
DRG-Q motherboard. An Endace 9.2SX2 DAG card (7.5ns
time-stamping resolution) and a NetOptics passive-optical
tap are used to intercept client-server traffic and permit in-
dependent measurement of client & server latency. For the
throughput tests, OSNT (Antichi et al. 2014) is used to con-
trol the rate of the generated requests.

http://netfpga.org/

Artefact Utilisation (%) Performance

Logic Flip-flops
Duration
(#cycles)

Latency
(µs)

Queries-
per-sec
(KQPS)

DNS 100.00 100.00 57 1.85 1176
+R 103.40 102.76 - 1.85 1176

+W 115.05 106.04 - 1.84 1176
+I 109.79 106.12 - 1.84 1176

Memcached 100.00 100.00 64 2.03 952
+R 99.17 100.29 - 2.03 952

+W 99.80 100.74 - 2.04 952
+I 100.63 100.69 - 2.03 952

Table 3. Profile of utilisation and performance. Read,
Write, and Increment are instructions supported by the con-
troller. Latency is indicated at the 99th percentile. The hard-
ware generation process involves an optimisation step to
place and route components, and on occasion this results in
more utilisation-efficient allocations. The duration for exten-
sions to DNS (clock cycles) did not change since the critical
path of the circuit was not affected.

Artefact Utilisation (%) Performance

Logic Flip-flops
Duration
(#cycles)

Latency
(µs)

Queries-
per-sec
(KQPS)

DNS+ELA 99.74 100.40 57 1.83 1176

DNS+2e 234.61 151.06 57 1.86 1176
(Count) 234.46 151.81 62 1.94 1064
(Trace) 218.30 151.84 70 1.99 1010

Table 4. Utilisation and performance profile of the
DNS+ELA against the DNS having one extension point,
where the extension point is NOP, packet counting, or vari-
able tracing. Latency is indicated at the 99th percentile.

5. Related work
Portable debugging, program directing, and debugging
languages. We were inspired by previous work on portable
debugging (Ramsey and Hanson 1992; Hood 1996; Han-
son and Raghavachari 1996) and program directing (Sosič
1995). That work usually makes the assumption that soft-
ware is compiled to run on a general-purpose CPU however,
whereas we also target reconfigurable hardware. The study
of languages for debugging is a decades old subject (Balzer
1969) and includes sophisticated languages for high-level
querying of programs (Johnson 1977; Golan and Hanson
1993; Winterbottom 1994). Compared to that work, our
work separates more starkly between the role (and language)
of the director, and that of the controller, which have separate
languages. This separation guided our modelling in §3.

Dynascope. Dynascope (Sosič 1992) provides an extremely
fine grained execution stream of events–at the level of ma-

chine instructions–providing a complete description of a
program’s runtime behaviour. We provide selective (and
programmable) visibility by default, in the interest of perfor-
mance. A more detailed stream could be produced if wished.
Dynascope is generative by default (since you need to set fil-
ters to ignore events) whereas we are generative by direction
(you only get events that you inserted code to generate).

High-level synthesis and runtime debugging. The closest
work is that by McKechnie et al. (2009) who adapt a debug-
ging paradigm first developed for network-on-chip devices
(NoC). They provide transaction-level granularity, consist-
ing of domain-specific (high-level) events–less fine grained
than Dynascope’s execution stream. Compared to our work
they offer a less flexible interface, but they take a more de-
tailed account of different sorts of interconnects between
components–formats such as LocalLink and PLB.

Many other systems inject code to emit and observe
events to aid with debugging of complex designs, such as
“System on Chip” designs (Lee and Lysecky 2015). SeaCu-
cumber (Tripp et al. 2002) was the first to support source-
level (HLS) debugging, both during behavioural simula-
tion and during hardware execution. Monson and Hutchings
(2015) take a different approach: source-code transformation
(at the HLS level) to introduce “event observability ports” to
enable runtime visibility of variables’ values –but note that
it’s not always possible to observe an expression an inter-
est. We took the approach of Monson and Hutchings (2015),
relying on source transformation rather than on the HLS
system.

Overhead can be reduced by being selective about what to
monitor, rather than monitoring everything by default. This
was studied by Goeders and Wilton (2016) who compared
the amount of visibility afforded by different schemes when
recording events such as reads and updates. We left the
choice of what to observe to the programmer.

At present the LegUp HLS system (Calagar et al. 2014)
appears to provide the best support for debugging. In a con-
tribution to that system, Hung and Wilton (2014) take a
different approach to us: they use a two-step incremental
compilation, the second step of which compiles the moni-
toring system by reclaiming unused FPGA resources. This
approach is less likely to interfere with the timing behaviour
of the observed circuit. Their model is more specialised to
trace-buffers, and it would be interesting to generalise it to
support our directing controller.

Testing of hardware is traditionally concentrated on the
RTL description, where tools and techniques have been de-
veloped to verify designs prior to synthesis (Foster 2008; Fix
2008) . The difficulty of checking hardware entirely prior
to synthesis has led to research into the inclusion of run-
time monitors in hardware (Todman et al. 2015). Curreri
et al. (2011) describe a system that translates source-level
assertions into monitors. This technique is also used to de-
tect hangs and possible timing overruns. We currently do not

support such monitoring, since it requires a source-level no-
tion of time that we currently do not provide, and “watchdog
threads” that we currently do not include.

Finally, Camera et al. (2005) described a hardware OS,
the Berkeley Operating system for ReProgrammable Hard-
ware (BORPH), on which user programs were run. Their
stitcher extend the user program to support debugging, pro-
viding a rich system. Like BORPH we require the designer
to provide “hints to the system of what aspects of the design
may need to be explored at runtime.”

Formalising program directors. Since ‘debugging’ is such
a vague term (compared to ‘compiling’, which has a clearer
functional behaviour), its verification objective is hard to for-
malise. Perhaps as a consequence of this there has been lit-
tle work on formalising and verifying debuggers, and usu-
ally entirely theoretical (Zhu 2001). Kishon et al. (1991) de-
scribe transformations over functional programs to include
monitoring behaviour. Compared to this work, our transfor-
mations are not based on continuations (and we deliberately
avoid needing first-order functions to avoid departing too
much from the conventional hardware programming mind-
set). We use an approach based on operational semantics,
similar to that used by da Silva (1992), but different in sev-
eral ways: (i) we support a different set of directing com-
mands, (ii) we don’t insert commands into the bytecode for
the debugger to keep track of separations between subex-
pressions, and to keep track of the path through the ex-
pression (program), (iii) da Silva (1992), introduces a lan-
guage for specifying debuggers whereas we introduce an
operational language for inspecting and changing the pro-
gram’s runtime state, (iv) we do not consider the equiva-
lence between debuggers. Sansom and Peyton Jones (1997)
describe the profiling of functional programs by using “cost
centres”, a paradigm to identify locations in a program at
an expression-level (rather than functional-level) granularity.
Others have continued that to make it more practical (Fad-
degon and Chitil 2015). All the techniques described above
rely on program transformation. They all use functional lan-
guages as examples whereas we use a simpler imperative
language, to model the paradigm of register-level hardware
programming more directly. Because of the weaving of de-
bugging code into the program all these techniques can (ret-
rospectively) be seen as special-cases of aspect-oriented pro-
gramming, described next.

Aspect-oriented programming (AOP). AOP involves the
inclusion (“weaving”) of code (called “advice”) during
compile-time or run-time, depending on whether certain
compile- or run-time conditions are satisfied. AOP is a linch-
pin paradigm for tracing and monitoring (Avgustinov et al.
2006; Hamlen and Jones 2008) but advice can be arbitrary
functions, and as a consequence they might have undesirable
effects on runtime (Avgustinov et al. 2007). This is an impor-
tant characteristic to our work, where we wanted to reduce
the power of added code. Djoko Djoko et al. (2012) have

categorised advice based on the degree of influence they can
have on the observable behaviour of a program; and Dantas
and Walker (2006) characterise less intrusive advice in their
work on “harmless advice”.

6. Conclusion
Having poor programming and debugging support hinders
the potential of computing architectures such as FPGAs,
which are gaining importance in modern datacentres. By
using a program directing approach we subsume several
activities that can involve the interactive runtime analyses
of programs (Sosič 1992). Our language-based approach has
two extensibility benefits: (i) more efficient controllers can
be implemented without changing the source language, and
(ii) third-parties could extend or customise the language of
direction commands without changing the controller that
these commands compile to.

Using a program director brings security risks, since it
may alter the control-flow of a program, and this may be ex-
ploited (Abadi et al. 2005). We sought to mitigate this risk
by making the presence of the debug mode very apparent,
to reduce the chances of excessive debug functionality being
included in deployment (Pauli 2016). Dynascope was used
to diagnose errors in the Dynascope compiler itself (Sosič
1992, §3.1), but bugs could render such a task impossible,
for reasons similar to the hereditary potential of vulnera-
bilities in compilers (Thompson 1984). This highlights the
preference to have the code for the director be “correct by
construction”, preferably automatically generated.

In work such as this we invariable come across the ob-
server effect (Mytkowicz et al. 2008) that monitoring code
has on the monitored code. This is known to affect the vis-
ibility of timing bugs in software (Neville-Neil 2014), but
even “invisible” such bugs can leak important information
to an adversary (Cock et al. 2014).

The overhead due to monitoring is a very important con-
sideration when evaluating system measurements, and mon-
itoring systems try to do their utmost to reduce it (Gregg and
Mauro 2011; Anderson et al. 2014). A key weakness of our
prototype is that it does not use low-level (RTL-level) tech-
niques to reduce overhead, but we mitigate this by allowing
extension points to be specialised, e.g., these may only be
a breakpoint, a watchpoint, or both, etc. This simplifies the
circuitry we get. A more sophisticated approach would in-
volve organising the director to operate in a different clock
domain if possible, following McKechnie et al. (2009). Not
having to sustain a large clock-distribution network leads to
power saving, since unused logic blocks don’t need to be
switched, and less heat is dissipated from leakage. It also
makes placement and routing easier, which usually reduces
the compilation time.

The main strength of our approach is that it provides a
uniform interface for the flexible directing of software and
hardware instances of programs at runtime. To our knowl-

edge no other system provides this. We used an HLS system
that allows us to run the resulting code both on software and
on hardware, but the debugging methods used for either were
hitherto separate.

Acknowledgments
We thank the many people who contributed to this paper.
Matthew Grosvenor helped us with evaluation ideas and
reusing the QJump infrastructure. Olaf Chitil, Paolo Costa,
Klaus Gleissenthall, Tim Harris, Simon Moore, and Robert
Soulé helped improve the paper through their feedback.

This work has received funding from the EPSRC NaaS
grant EP/K034723/1, European Union’s Horizon 2020 re-
search and innovation programme 2014-2018 under the SSI-
CLOPS (grant agreement No. 644866), and the Leverhulme
Trust Early Career Fellowship ECF-2016-289.

References
M. Abadi, M. Budiu, U. Erlingsson, and J. Ligatti. Control-flow

Integrity. In Proceedings of the 12th ACM Conference on Com-
puter and Communications Security, CCS ’05, pages 340–353,
New York, NY, USA, 2005. ACM. ISBN 1-59593-226-7. doi:
10.1145/1102120.1102165. URL http://doi.acm.org/10.
1145/1102120.1102165.

J. Anderson, R. N. M. Watson, D. Chisnall, K. Gudka, I. Marinos,
and B. Davis. TESLA: Temporally Enhanced System Logic
Assertions. In Proceedings of the Ninth European Conference
on Computer Systems, EuroSys ’14, pages 19:1–19:14, New
York, NY, USA, 2014. ACM. ISBN 978-1-4503-2704-6. doi:
10.1145/2592798.2592801. URL http://doi.acm.org/10.
1145/2592798.2592801.

G. Antichi, M. Shahbaz, Y. Geng, N. Zilberman, A. Covington,
M. Bruyere, N. McKeown, N. Feamster, B. Felderman, M. Blott,
et al. OSNT: Open source network tester. IEEE Network, 28(5):
6–12, 2014.

P. Avgustinov, E. Bodden, E. Hajiyev, L. Hendren, O. Lhoták,
O. de Moor, N. Ongkingco, D. Sereni, G. Sittampalam, J. Tib-
ble, and M. Verbaere. Aspects for Trace Monitoring. In
Proceedings of the First Combined International Conference
on Formal Approaches to Software Testing and Runtime Ver-
ification, FATES’06/RV’06, pages 20–39, Berlin, Heidelberg,
2006. Springer-Verlag. ISBN 3-540-49699-8, 978-3-540-49699-
1. doi: 10.1007/11940197_2. URL http://dx.doi.org/10.
1007/11940197_2.

P. Avgustinov, J. Tibble, and O. de Moor. Making Trace Monitors
Feasible. SIGPLAN Not., 42(10):589–608, Oct. 2007. ISSN
0362-1340. doi: 10.1145/1297105.1297070. URL http://doi.
acm.org/10.1145/1297105.1297070.

T. Ball, E. Bounimova, B. Cook, V. Levin, J. Lichtenberg, C. Mc-
Garvey, B. Ondrusek, S. K. Rajamani, and A. Ustuner. Thor-
ough Static Analysis of Device Drivers. SIGOPS Oper.
Syst. Rev., 40(4):73–85, Apr. 2006. ISSN 0163-5980. doi:
10.1145/1218063.1217943. URL http://doi.acm.org/10.
1145/1218063.1217943.

R. M. Balzer. EXDAMS: EXtendable Debugging and Monitor-
ing System. In Proceedings of the May 14-16, 1969, Spring

Joint Computer Conference, AFIPS ’69 (Spring), pages 567–
580, New York, NY, USA, 1969. ACM. doi: 10.1145/1476793.
1476881. URL http://doi.acm.org/10.1145/1476793.
1476881.

R. G. Bennetts and A. Osseyran. IEEE standard 1149.1-1990
on boundary scan: History, literature survey, and current status.
Journal of Electronic Testing, 2(1):11–25, 1991. ISSN 1573-
0727. doi: 10.1007/BF00134941. URL http://dx.doi.org/
10.1007/BF00134941.

N. Calagar, S. D. Brown, and J. H. Anderson. Source-level debug-
ging for FPGA high-level synthesis. In 2014 24th International
Conference on Field Programmable Logic and Applications
(FPL), pages 1–8, Sept 2014. doi: 10.1109/FPL.2014.6927496.

K. Camera, H. K.-H. So, and R. W. Brodersen. An Integrated De-
bugging Environment for Reprogrammble Hardware Systems.
In Proceedings of the Sixth International Symposium on Auto-
mated Analysis-driven Debugging, AADEBUG’05, pages 111–
116, New York, NY, USA, 2005. ACM. ISBN 1-59593-050-7.
doi: 10.1145/1085130.1085145. URL http://doi.acm.org/
10.1145/1085130.1085145.

T. V. Chu, S. Sato, and K. Kise. Ultra-fast NoC emulation on a
single FPGA. In 2015 25th International Conference on Field
Programmable Logic and Applications (FPL), pages 1–8, Sept
2015. doi: 10.1109/FPL.2015.7294021.

D. Cock, Q. Ge, T. Murray, and G. Heiser. The Last Mile:
An Empirical Study of Timing Channels on seL4. In Pro-
ceedings of the 2014 ACM SIGSAC Conference on Computer
and Communications Security, CCS ’14, pages 570–581, New
York, NY, USA, 2014. ACM. ISBN 978-1-4503-2957-6. doi:
10.1145/2660267.2660294. URL http://doi.acm.org/10.
1145/2660267.2660294.

J. Curreri, G. Stitt, and A. D. George. High-level Synthesis of
In-circuit Assertions for Verification, Debugging, and Timing
Analysis. Int. J. Reconfig. Comput., 2011:1:1–1:17, Jan. 2011.
ISSN 1687-7195. doi: 10.1155/2011/406857. URL http:
//dx.doi.org/10.1155/2011/406857.

F. Q. B. da Silva. Correctness Proofs of Compilers and Debuggers:
an Approach Based on Structural Operational Semantics. PhD
thesis, School of Informatics, University of Edinburgh, Oct.
1992.

D. S. Dantas and D. Walker. Harmless Advice. In Confer-
ence Record of the 33rd ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, POPL ’06, pages 383–
396, New York, NY, USA, 2006. ACM. ISBN 1-59593-027-2.
doi: 10.1145/1111037.1111071. URL http://doi.acm.org/
10.1145/1111037.1111071.

S. Djoko Djoko, R. Douence, and P. Fradet. Aspects Preserving
Properties. Sci. Comput. Program., 77(3):393–422, Mar. 2012.
ISSN 0167-6423. doi: 10.1016/j.scico.2011.10.010. URL http:
//dx.doi.org/10.1016/j.scico.2011.10.010.

M. Faddegon and O. Chitil. Algorithmic Debugging of Real-world
Haskell Programs: Deriving Dependencies from the Cost Centre
Stack. In Proceedings of the 36th ACM SIGPLAN Conference on
Programming Language Design and Implementation, PLDI ’15,
pages 33–42, New York, NY, USA, 2015. ACM. ISBN 978-
1-4503-3468-6. doi: 10.1145/2737924.2737985. URL http:
//doi.acm.org/10.1145/2737924.2737985.

http://doi.acm.org/10.1145/1102120.1102165
http://doi.acm.org/10.1145/1102120.1102165
http://doi.acm.org/10.1145/2592798.2592801
http://doi.acm.org/10.1145/2592798.2592801
http://dx.doi.org/10.1007/11940197_2
http://dx.doi.org/10.1007/11940197_2
http://doi.acm.org/10.1145/1297105.1297070
http://doi.acm.org/10.1145/1297105.1297070
http://doi.acm.org/10.1145/1218063.1217943
http://doi.acm.org/10.1145/1218063.1217943
http://doi.acm.org/10.1145/1476793.1476881
http://doi.acm.org/10.1145/1476793.1476881
http://dx.doi.org/10.1007/BF00134941
http://dx.doi.org/10.1007/BF00134941
http://doi.acm.org/10.1145/1085130.1085145
http://doi.acm.org/10.1145/1085130.1085145
http://doi.acm.org/10.1145/2660267.2660294
http://doi.acm.org/10.1145/2660267.2660294
http://dx.doi.org/10.1155/2011/406857
http://dx.doi.org/10.1155/2011/406857
http://doi.acm.org/10.1145/1111037.1111071
http://doi.acm.org/10.1145/1111037.1111071
http://dx.doi.org/10.1016/j.scico.2011.10.010
http://dx.doi.org/10.1016/j.scico.2011.10.010
http://doi.acm.org/10.1145/2737924.2737985
http://doi.acm.org/10.1145/2737924.2737985

B. Fitzpatrick. Distributed caching with memcached. Linux Jour-
nal, 2004(124), 2004.

L. Fix. Fifteen Years of Formal Property Verification in Intel, pages
139–144. Springer Berlin Heidelberg, Berlin, Heidelberg, 2008.
ISBN 978-3-540-69850-0. doi: 10.1007/978-3-540-69850-0_8.
URL http://dx.doi.org/10.1007/978-3-540-69850-0_8.

H. Foster. Assertion-Based Verification: Industry Myths to Re-
alities, pages 5–10. Springer Berlin Heidelberg, Berlin, Hei-
delberg, 2008. ISBN 978-3-540-70545-1. doi: 10.1007/
978-3-540-70545-1_3. URL http://dx.doi.org/10.1007/
978-3-540-70545-1_3.

M. N. Gagnon, S. Taylor, and A. K. Ghosh. Software protection
through anti-debugging. IEEE Security Privacy, 5(3):82–84,
May 2007. ISSN 1540-7993. doi: 10.1109/MSP.2007.71.

P. Godefroid, M. Y. Levin, and D. Molnar. SAGE: Whitebox
Fuzzing for Security Testing. Commun. ACM, 55(3):40–44, Mar.
2012. ISSN 0001-0782. doi: 10.1145/2093548.2093564. URL
http://doi.acm.org/10.1145/2093548.2093564.

J. Goeders and S. J. E. Wilton. Effective FPGA Debug for High-
Level Synthesis Generated Circuits. In 2014 24th International
Conference on Field Programmable Logic and Applications
(FPL), pages 1–8, Sept 2014. doi: 10.1109/FPL.2014.6927498.

J. Goeders and S. J. E. Wilton. Quantifying observability for in-
system debug of high-level synthesis circuits. In 2016 26th
International Conference on Field Programmable Logic and
Applications (FPL), pages 1–11, Aug 2016. doi: 10.1109/FPL.
2016.7577371.

M. Golan and D. R. Hanson. Duel – A Very High-Level Debug-
ging Language. In USENIX Winter Conference, pages 107–117,
1993.

B. Gregg and J. Mauro. DTrace: Dynamic Tracing in Oracle
Solaris, Mac OS X, and FreeBSD. Prentice Hall Professional,
2011.

K. W. Hamlen and M. Jones. Aspect-oriented In-lined Reference
Monitors. In Proceedings of the Third ACM SIGPLAN Workshop
on Programming Languages and Analysis for Security, PLAS
’08, pages 11–20, New York, NY, USA, 2008. ACM. ISBN 978-
1-59593-936-4. doi: 10.1145/1375696.1375699. URL http:
//doi.acm.org/10.1145/1375696.1375699.

D. R. Hanson and M. Raghavachari. A machine-independent de-
bugger. Softw., Pract. Exper., 26(11):1277–1299, 1996.

R. Hood. The P2D2 Project: Building a Portable Distributed De-
bugger. In Proceedings of the SIGMETRICS Symposium on Par-
allel and Distributed Tools, SPDT ’96, pages 127–136, New
York, NY, USA, 1996. ACM. ISBN 0-89791-846-0. doi: 10.
1145/238020.238058. URL http://doi.acm.org/10.1145/
238020.238058.

E. Hung and S. J. Wilton. Towards Simulator-like Observability
for FPGAs: A Virtual Overlay Network for Trace-buffers. In
Proceedings of the ACM/SIGDA International Symposium on
Field Programmable Gate Arrays, FPGA ’13, pages 19–28, New
York, NY, USA, 2013. ACM. ISBN 978-1-4503-1887-7. doi:
10.1145/2435264.2435272. URL http://doi.acm.org/10.
1145/2435264.2435272.

E. Hung and S. J. E. Wilton. Accelerating FPGA Debug: Increas-
ing Visibility Using a Runtime Reconfigurable Observation and

Triggering Network. ACM Trans. Des. Autom. Electron. Syst.,
19(2):14:1–14:23, Mar. 2014. ISSN 1084-4309. doi: 10.1145/
2566668. URL http://doi.acm.org/10.1145/2566668.

M. S. Johnson. The Design of a High-level, Language-independent
Symbolic Debugging System. In Proceedings of the 1977
Annual Conference, ACM ’77, pages 315–322, New York,
NY, USA, 1977. ACM. ISBN 978-1-4503-3921-6. doi: 10.
1145/800179.810221. URL http://doi.acm.org/10.1145/
800179.810221.

A. Kishon, P. Hudak, and C. Consel. Monitoring Semantics:
A Formal Framework for Specifying, Implementing, and Rea-
soning About Execution Monitors. In Proceedings of the
ACM SIGPLAN 1991 Conference on Programming Language
Design and Implementation, PLDI ’91, pages 338–352, New
York, NY, USA, 1991. ACM. ISBN 0-89791-428-7. doi: 10.
1145/113445.113474. URL http://doi.acm.org/10.1145/
113445.113474.

G. H. Koch, W. Rosenstiel, and U. Kebschull. Breakpoints and
Breakpoint Detection in Source-level Emulation. ACM Trans.
Des. Autom. Electron. Syst., 3(2):209–230, Apr. 1998. ISSN
1084-4309. doi: 10.1145/290833.290843. URL http://doi.
acm.org/10.1145/290833.290843.

S. Krishnaswamy, I. L. Markov, and J. P. Hayes. On the Role of
Timing Masking in Reliable Logic Circuit Design. In Proceed-
ings of the 45th Annual Design Automation Conference, DAC
’08, pages 924–929, New York, NY, USA, 2008. ACM. ISBN
978-1-60558-115-6. doi: 10.1145/1391469.1391703. URL
http://doi.acm.org/10.1145/1391469.1391703.

J. C. Lee and R. Lysecky. System-Level Observation Framework
for Non-Intrusive Runtime Monitoring of Embedded Systems.
ACM Trans. Des. Autom. Electron. Syst., 20(3):42:1–42:27, June
2015. ISSN 1084-4309. doi: 10.1145/2717310. URL http:
//doi.acm.org/10.1145/2717310.

P. E. McKechnie, M. Blott, and W. A. Vanderbauwhede. De-
bugging FPGA-based Packet Processing Systems Through
Transaction-level Communication-centric Monitoring. SIG-
PLAN Not., 44(7):129–136, June 2009. ISSN 0362-1340. doi:
10.1145/1543136.1542470. URL http://doi.acm.org/10.
1145/1543136.1542470.

R. Milner, M. Tofte, and R. Harper. The Definition of Standard ML.
MIT Press, 1990.

S. Mittal. A survey of techniques for improving energy efficiency
in embedded computing systems. International Journal of Com-
puter Aided Engineering and Technology, 6(4):440–459, 2014.

P. Mockapetris. Domain names – concepts and facilities, Nov.
1987. https://tools.ietf.org/html/rfc1034.

J. S. Monson and B. L. Hutchings. Using Source-Level Transfor-
mations to Improve High-Level Synthesis Debug and Validation
on FPGAs. In Proceedings of the 2015 ACM/SIGDA Interna-
tional Symposium on Field-Programmable Gate Arrays, FPGA
’15, pages 5–8, New York, NY, USA, 2015. ACM. ISBN 978-
1-4503-3315-3. doi: 10.1145/2684746.2689087. URL http:
//doi.acm.org/10.1145/2684746.2689087.

T. Mytkowicz, P. F. Sweeney, M. Hauswirth, and A. Diwan. Ob-
server Effect and Measurement Bias in Performance Analysis.

http://dx.doi.org/10.1007/978-3-540-69850-0_8
http://dx.doi.org/10.1007/978-3-540-70545-1_3
http://dx.doi.org/10.1007/978-3-540-70545-1_3
http://doi.acm.org/10.1145/2093548.2093564
http://doi.acm.org/10.1145/1375696.1375699
http://doi.acm.org/10.1145/1375696.1375699
http://doi.acm.org/10.1145/238020.238058
http://doi.acm.org/10.1145/238020.238058
http://doi.acm.org/10.1145/2435264.2435272
http://doi.acm.org/10.1145/2435264.2435272
http://doi.acm.org/10.1145/2566668
http://doi.acm.org/10.1145/800179.810221
http://doi.acm.org/10.1145/800179.810221
http://doi.acm.org/10.1145/113445.113474
http://doi.acm.org/10.1145/113445.113474
http://doi.acm.org/10.1145/290833.290843
http://doi.acm.org/10.1145/290833.290843
http://doi.acm.org/10.1145/1391469.1391703
http://doi.acm.org/10.1145/2717310
http://doi.acm.org/10.1145/2717310
http://doi.acm.org/10.1145/1543136.1542470
http://doi.acm.org/10.1145/1543136.1542470
https://tools.ietf.org/html/rfc1034
http://doi.acm.org/10.1145/2684746.2689087
http://doi.acm.org/10.1145/2684746.2689087

Technical Report 1042-08, University of Colorado at Boulder, 6
2008.

G. V. Neville-Neil. Outsourcing Responsibility. Commun. ACM,
57(10):28–29, Sept. 2014. ISSN 0001-0782. doi: 10.1145/
2661051. URL http://doi.acm.org/10.1145/2661051.

Z. Panjkov, A. Wasserbauer, T. Ostermann, and R. Hagelauer. Hy-
brid FPGA debug approach. In 2015 25th International Con-
ference on Field Programmable Logic and Applications (FPL),
pages 1–8, Sept 2015. doi: 10.1109/FPL.2015.7294023.

D. Pauli. ‘Pork Explosion’ flaw splatters Foxconn’s Android
phones. Oct 2016. http://www.theregister.co.uk/2016/
10/14/pork_explosion_foxconn_flaw/.

M. Potkonjak, S. Dey, and K. Wakabayashi. Design-for-debugging
of Application Specific Designs. In Proceedings of the 1995
IEEE/ACM International Conference on Computer-aided De-
sign, ICCAD ’95, pages 295–301, Washington, DC, USA, 1995.
IEEE Computer Society. ISBN 0-8186-7213-7. URL http:
//dl.acm.org/citation.cfm?id=224841.225054.

A. Putnam. Large-Scale Reconfigurable Computing in a Microsoft
Datacenter. In Proceedings of the 26th IEEE HotChips Sympo-
sium on High-Performance Chips (HotChips 2014). IEEE, Au-
gust 2014.

A. Putnam, A. M. Caulfield, E. S. Chung, D. Chiou, K. Constan-
tinides, J. Demme, H. Esmaeilzadeh, J. Fowers, G. P. Gopal,
J. Gray, M. Haselman, S. Hauck, S. Heil, A. Hormati, J. Y. Kim,
S. Lanka, J. Larus, E. Peterson, S. Pope, A. Smith, J. Thong,
P. Y. Xiao, and D. Burger. A reconfigurable fabric for accelerat-
ing large-scale datacenter services. In 2014 ACM/IEEE 41st In-
ternational Symposium on Computer Architecture (ISCA), pages
13–24, June 2014. doi: 10.1109/ISCA.2014.6853195.

N. Ramsey and D. R. Hanson. A Retargetable Debugger. In Pro-
ceedings of the ACM SIGPLAN 1992 Conference on Program-
ming Language Design and Implementation, PLDI ’92, pages
22–31, New York, NY, USA, 1992. ACM. ISBN 0-89791-475-
9. doi: 10.1145/143095.143112. URL http://doi.acm.org/
10.1145/143095.143112.

P. M. Sansom and S. L. Peyton Jones. Formally Based Profil-
ing for Higher-order Functional Languages. ACM Trans. Pro-
gram. Lang. Syst., 19(2):334–385, Mar. 1997. ISSN 0164-0925.
doi: 10.1145/244795.244802. URL http://doi.acm.org/10.
1145/244795.244802.

A. Sari, D. Agiakatsikas, and M. Psarakis. A Soft Error Vulnera-
bility Analysis Framework for Xilinx FPGAs. In Proceedings
of the 2014 ACM/SIGDA International Symposium on Field-
programmable Gate Arrays, FPGA ’14, pages 237–240, New
York, NY, USA, 2014. ACM. ISBN 978-1-4503-2671-1. doi:
10.1145/2554688.2554767. URL http://doi.acm.org/10.
1145/2554688.2554767.

M. Schäfer, T. Ekman, and O. de Moor. Challenge Proposal:
Verification of Refactorings. In Proceedings of the 3rd Workshop
on Programming Languages Meets Program Verification, PLPV
’09, pages 67–72, New York, NY, USA, 2008. ACM. ISBN 978-
1-60558-330-3. doi: 10.1145/1481848.1481859. URL http:
//doi.acm.org/10.1145/1481848.1481859.

J. C. Shepherdson and H. E. Sturgis. Computability of Recursive
Functions. J. ACM, 10(2):217–255, Apr. 1963. ISSN 0004-5411.

doi: 10.1145/321160.321170. URL http://doi.acm.org/10.
1145/321160.321170.

S. Singh and D. J. Greaves. Kiwi: Synthesis of FPGA Circuits from
Parallel Programs. In Field-Programmable Custom Computing
Machines, pages 3–12, 2008.

C. H. Smith and J. van Leeuwen. Microprogrammed Random
Access Stored Program Machines. SIGACT News, 6(3):23–32,
July 1974. ISSN 0163-5700. doi: 10.1145/1008311.1008315.
URL http://doi.acm.org/10.1145/1008311.1008315.

B. So, M. W. Hall, and P. C. Diniz. A Compiler Approach to
Fast Hardware Design Space Exploration in FPGA-based Sys-
tems. In Proceedings of the ACM SIGPLAN 2002 Conference
on Programming Language Design and Implementation, PLDI
’02, pages 165–176, New York, NY, USA, 2002. ACM. ISBN
1-58113-463-0. doi: 10.1145/512529.512550. URL http:
//doi.acm.org/10.1145/512529.512550.

R. Sosič and D. Abramson. Guard: A relative debugger. Software:
Practice and Experience, 27(2):185–206, 1997.

R. Sosič. Dynascope: A Tool for Program Directing. SIGPLAN
Not., 27(7):12–21, July 1992. ISSN 0362-1340. doi: 10.
1145/143103.143110. URL http://doi.acm.org/10.1145/
143103.143110.

R. Sosič. A Procedural Interface for Program Directing. Software:
Practice and Experience, 25(7):767–787, 1995. ISSN 1097-
024X. doi: 10.1002/spe.4380250704. URL http://dx.doi.
org/10.1002/spe.4380250704.

K. Thompson. Reflections on Trusting Trust. Commun. ACM,
27(8):761–763, Aug. 1984. ISSN 0001-0782. doi: 10.
1145/358198.358210. URL http://doi.acm.org/10.1145/
358198.358210.

T. Todman, S. Stilkerich, and W. Luk. In-circuit Temporal Monitors
for Runtime Verification of Reconfigurable Designs. In Proceed-
ings of the 52Nd Annual Design Automation Conference, DAC
’15, pages 50:1–50:6, New York, NY, USA, 2015. ACM. ISBN
978-1-4503-3520-1. doi: 10.1145/2744769.2744856. URL
http://doi.acm.org/10.1145/2744769.2744856.

J. L. Tripp, P. A. Jackson, and B. L. Hutchings. Sea Cucumber:
A Synthesizing Compiler for FPGAs, pages 875–885. Springer
Berlin Heidelberg, Berlin, Heidelberg, 2002. ISBN 978-3-540-
46117-3. doi: 10.1007/3-540-46117-5_90. URL http://dx.
doi.org/10.1007/3-540-46117-5_90.

D. Wang, N. E. Jerger, and J. G. Steffan. DART: A Pro-
grammable Architecture for NoC Simulation on FPGAs. In
Proceedings of the Fifth ACM/IEEE International Symposium
on Networks-on-Chip, NOCS ’11, pages 145–152, New York,
NY, USA, 2011. ACM. ISBN 978-1-4503-0720-8. doi:
10.1145/1999946.1999970. URL http://doi.acm.org/10.
1145/1999946.1999970.

P. Winterbottom. ACID: A Debugger Built From A Language. In
USENIX Winter Conference, pages 211–222, 1994.

M.-Y. Zhu. Formal Specifications of Debuggers. SIGPLAN Not.,
36(9):54–63, Sept. 2001. doi: 10.1145/609769.609778. URL
http://doi.acm.org/10.1145/609769.609778.

N. Zilberman, Y. Audzevich, G. A. Covington, and A. W. Moore.
NetFPGA SUME: Toward 100 Gbps as Research Commodity.
IEEE Micro, 34(5):32–41, 2014.

http://doi.acm.org/10.1145/2661051
http://www.theregister.co.uk/2016/10/14/pork_explosion_foxconn_flaw/
http://www.theregister.co.uk/2016/10/14/pork_explosion_foxconn_flaw/
http://dl.acm.org/citation.cfm?id=224841.225054
http://dl.acm.org/citation.cfm?id=224841.225054
http://doi.acm.org/10.1145/143095.143112
http://doi.acm.org/10.1145/143095.143112
http://doi.acm.org/10.1145/244795.244802
http://doi.acm.org/10.1145/244795.244802
http://doi.acm.org/10.1145/2554688.2554767
http://doi.acm.org/10.1145/2554688.2554767
http://doi.acm.org/10.1145/1481848.1481859
http://doi.acm.org/10.1145/1481848.1481859
http://doi.acm.org/10.1145/321160.321170
http://doi.acm.org/10.1145/321160.321170
http://doi.acm.org/10.1145/1008311.1008315
http://doi.acm.org/10.1145/512529.512550
http://doi.acm.org/10.1145/512529.512550
http://doi.acm.org/10.1145/143103.143110
http://doi.acm.org/10.1145/143103.143110
http://dx.doi.org/10.1002/spe.4380250704
http://dx.doi.org/10.1002/spe.4380250704
http://doi.acm.org/10.1145/358198.358210
http://doi.acm.org/10.1145/358198.358210
http://doi.acm.org/10.1145/2744769.2744856
http://dx.doi.org/10.1007/3-540-46117-5_90
http://dx.doi.org/10.1007/3-540-46117-5_90
http://doi.acm.org/10.1145/1999946.1999970
http://doi.acm.org/10.1145/1999946.1999970
http://doi.acm.org/10.1145/609769.609778

A. More program direction commands
Program-level predicates and functions mentioned in these
definitions are given in §B.

A.1 Tracing
We continue from §3.5.2, where the symbols we use here are
introduced (such as Xi and Xof).

(trace start X 〈B〉 〈$〉) ∈ C

p
trace clear X
@C p

D̆ = {}
C̆ = {}
Dc = λD′. Jtrace clear XK 0;

D′

where

Jtrace clear XK =
Xi := 0;
Xof := 0

Next we add the command to check whether the trace
buffer is full.

(trace start X 〈B〉 〈$〉) ∈ C

p
trace full X
@C p

D̆ = {}
C̆ = {}
Dc = λD′. Jtrace full XK N ;

print(N);
D′

where

Jtrace full XK = Xof

Finally the command to retrieve the contents of the trace
buffer. Here we first find out the current index value for
the trace buffer, then we work back and extract the buffer’s
contents.

(trace start X 〈B〉 〈$〉) ∈ C

p
trace print X
@C p

D̆ = {}
C̆ = {}
Dc = λD′. Xi cur_idx ;

for i = cur_idx to 0:
Xa[i] N ;
print(N);

D′

A.2 Watching
This bears some similarity to the rule to start tracing (in §3.5.2)
since we inspect the variable after it’s updated, and carry out
some action. When tracing, this action consists of writing to
the trace buffer. When watching, it consists of breaking.

X ∈ Varp ∀L ∈ XL. L 6∈ p Positionsp′(XL) = PostUpdatep′(X) p <XL
p′

p
watch X 〈B〉
@C p′

D̆ = {(«w», X, 1)}

C̆ =

{
SP [L 7→ Jwatch X 〈B〉KSP]

for each L ∈ XL

}
Dc = λD′. if («w», X, 1) ∈ D′ then D′

else
for each L ∈ XL:

@L : {Jwatch X 〈B〉KSP} pLq;
(«w», X, 0 7→ 1) :∈ D′

where

Jwatch X 〈B〉KSP = conditional 〈B〉 break

Unwatching a variable follows a pattern we’ve encoun-
tered before, when stopping tracing for instance.

(watch X 〈B〉) ∈ C Positionsp(XL) = PostUpdatep(X)

p
unwatch X
@C p

D̆ = {}
C̆ = {}
Dc = λD′. if («w», X, 0) ∈ D′ then D′

else
for each L ∈ XL:

@L : {Junwatch XKSP} pLq;
(«w», X, 1 7→ 0) :∈ D′

where

Junwatch XKSP = continue

A.3 Profiling
We could profile programs to count the number of writes
and reads of variables, or function calls. We show the rule
for counting the number of writes; counting variable reads
and function calls are similar, differing in the positioning of
labels. That is, to count writes we position labels immedi-
ately after each line that updates that variable–this is similar
to tracing (§3.5.2) and watching (§A.2). To count variable
reads we position after lines in which those variables appear.
To count function calls we position just before the first line
in the function.

X ∈ Varp ∀L ∈ XL. L 6∈ p Positionsp′(XL) = PostUpdatep′(X) p <XL
p′

p
count write start X 〈B〉 〈$〉

@C p′

D̆ = {(«c», X, 1)}

C̆ =

 C [Xcount] = 0,C [Xof] = 0,A[Xa[〈$〉]],
SP [L 7→ Jcount write start X 〈B〉 〈$〉KSP]

for each L ∈ XL

Dc = λD′. if («c», X, 1) ∈ D′ then D′

else
for each L ∈ XL:

@L : {Jcount write start X 〈B〉 〈$〉KSP}
 pLq;

(«c», X, 0 7→ 1) :∈ D′

where

Jcount write start X 〈B〉 〈$〉KSP =
conditional 〈B〉

if Xcount < 〈$〉 then
inc Xcount;
continue

else

inc Xof ;
break

Stopping the count, clearing it, printing the current count,

and checking whether the maximum value has been reached,
is done in a very similar way to the rules for tracing (§3.5.2).

B. Program analyses and transformations
A position of statement s in program p is a vector π ∈ Nd

where 1 < d < ω. Intuitively, the first position of the vector
refers to the function in which the statement is positioned.
The second until the last positions indicate statements (and
substatements, in the case of if-then statements) in which
the statement is positioned, moving from the outermost to
the innermost containing statement. Within the innermost
containing statement, if the statement number is i, then the
last component of the vector is either i+0 or i+1, depending
on whether it points to just before or just after the statement.

Definition B.1 (Positions). Let

p = vdecl fdecl return fname(ē)

Then

Πp
def
=

⋃
0≤i≤n

(
{i} ×Πfdecli

)
where n is |fdecl |, the number of function declarations in p.

Let fdecl = τ fname(x̄){s; return e} and s = s0; . . . ; sn.
Then

Πfdecl
def
=

⋃
0≤i≤n

({i} ×Πsi) ∪ {n+ 1}

Finally,

Πs
def
=

⋃

0≤i≤n ({i} ×Πri) ∪ {n+ 1}
if s = if e then r0; . . . ; rn

∅ otherwise

Next we define a function Posp maps a position π ∈
Πp in p to the corresponding statement s, in symbols:
Posp(π) = s.

Definition B.2 (Statement at a position). Let

p = vdecl fdecl return fname(ē)

Then we define

Posp((i, π))
def
= FPosfdecli(π)

Let fdecl = τ fname(x̄){s; return e} and s = s0; . . . ; sn.
Then

FPosfdecl((i, π))
def
= SPossi(π)

Finally,

SPoss(π)
def
=

SPosri(π

′) if π = (i, π′)

and s = if e then r0; . . . ; rn

s if π = ∅

Definition B.3 (Program p contains label L). We write L ∈
p iff ∃π, S. Posp(π) = extend(S) ∧ L ∈ S.

Note that a label L may only be used at most once in a
program. We expect the following to hold for all programs.
We do not include this as a premise to any of the rules, to
reduce clutter.

∀π1, π2, S1, S2. (Posp(π1) = extend(S1) ∧ L ∈ S1)
∧ (Posp(π2) = extend(S2) ∧ L ∈ S2)
−→ (S1 = S2 ∧ π1 = π2)

We now formalise the predicate that programs p and p′ are
identical save for the addition of L in one of the extension
points.

Definition B.4 (Program identity modulo label L).

p <1
L p
′ def= ∀π, s, S.

(Posp(π) = s −→
((s 6= extend(S) −→ Posp′(π) = s)
∧ (s = extend(S) −→

Posp′(π) = extend(S′) ∧ (S′ = S ∨ S′\S ⊆ {L}))))
∧ (Posp′(π) = s −→

((s 6= extend(S) −→ Posp(π) = s)
∧ (s = extend(S′) −→

Posp(π) = extend(S) ∧ (S′ = S ∨ S′\S ⊆ {L}))))

We define a related predicate that formalises whether
two programs are related by the above predicate through an
‘interpolation’ of labels drawn from a set.

Definition B.5 (Program identity modulo set of labels). Let
S = {L0, . . . , Ln} is a set of labels. Then,

p <S p
′ def= ∃p1, . . . , pn−1. p <1

L0
p1 <

1
L1
p2 <

1
L2
. . . <1

Ln
p′

Definition B.6 (Set of variables in program p). Let p =
vdecl fdecl return fname(ē) and vdecl = vdecl0 . . . vdecln.
Then

Varp
def
=

⋃
0≤i≤n

{Xi | vdecl i = τi Xi}

Definition B.7 (Set of variables in program p).

PostUpdatep(X)
def
= {π + 1 | ∃E. Posp(π) = (X := E)}

where if π = (m0, . . . ,mn) then π+1 = (m0, . . . ,mn+1).

The positions in which a label L occurs. This should be a
singleton set.

Definition B.8 (Positions of label L).

Positionsp(L)
def
= {π | ∃S. Posp(π) = extend(S) ∧ L ∈ S}

We lift this to work on sets of labels and overload the nota-
tion: if SL is a set of labels then

Positionsp(SL)
def
=

⋃
L∈SL

(Positionsp(L))

C. Language semantics
C.1 CASP machines
The specification of CASP machines was given in §3.2.

The machine’s configuration consists of the triple (S, ia, P),
where ia ∈ {◦, •} indicates whether the machine is oper-
ating in batch or interactive modes respectively, and S =
(C,A,SP) indicates the machine’s memory: C ∈ (X ⇀ Z)
are the counters, A ∈ (R ⇀ Z⇀ Z) the arrays, and
SP ∈ (L ⇀ P) the stored procedures.

The machine’s big-step operational semantics are de-
scribed using the notation L ` (S, ia, P) =⇒ (S ′, ia ′, N)
to indicate that the machine operates in the context of a spe-
cific label L to evaluate program P into numeral N , and
possibly updating the other components of its configura-
tion. We use the notation L ` (S, ia, P) ⇓ N to abbreviate
L ` (S, ia, P) =⇒ (S, ia, N) when S and ia are unaffected
by the evaluation.

The semantic rules are given in Figure 6. We use the
notation pLq to denote a total injective map from labels
to numerals. Thus we can identify which label is being
executed. If in interactive mode the director sends “break”
to the controller, the director learns the label that broke.

Note that the “continue” and “break” commands change
the state of the ia component of the configuration, switching
it to batch (resuming the program) and interactive respec-
tively.

Note also that placement (@L : {P}) is only allowed
during interactive mode (i.e., ia = •) since we do not
want the controller to normally run code that updates other
extension points’ code.

C.2 Example language
The syntax for the example language was given in §3.4.1.
In this language we have a valuation function for identi-
fiers R ∈ (X ⇀ Z), and a configuration for the reduc-
tion semantics consists of a triple 〈R, c̄, c̄〉 where c is either
a statement, a ‘return’ statement, or an expression: c ::=
s | return e | e. c̄ denotes a sequence of 1 or more such
c: c0, . . . , cn where n > 0. We define the concatenation op-
erator : such that if d̄ = d0, . . . , dm where m > 0, then
c̄ : d̄ = c0, . . . , cn, d0, . . . , dm.

Intuitively, 〈R, c̄1, c̄2〉 describes a configuration where c̄1
is to be evaluated “now”, and c̄2 is to be executed after c̄1 has
been evaluated. The evaluation rules are given in Figure 7.

To reduce clutter in the rules, we assume two pieces im-
plicit state, that we avoid threading around the configura-
tions. The first is a mapping F from function names to their
bodies, and the second is the state of the CASP machine S ,
which includes the valuationR that models the store for pro-
gram variables.

We use the following evaluation context for syntactic ob-
jects in c (statements, ‘return’ statements, and expressions):

E ::= []
| X := E
| if E then s; s
| fname(N0, . . . , Nn, E, e0 . . . , em)
| E op e
| N op E

op ∈ {+,−,==, <}

We handle ‘extend’ by expanding it to a sequence of
singleton extends, and invoking the rule in Figure 8.

Rules for y model the interactive mode between the di-
rector and the controller. In these semantics we only see
evaluation from the point of view of the program: the pro-
gram’s evaluation −→ yields to the controller =⇒ at exten-
sion points, which either yields back to the program (in case
of continue) or else switches to interactive mode (in case
of break), leading to an interleaving between y (obtaining
a command from the director) and =⇒ (executing it). Note
that the rules for y are side-effecting, and are formalised as
such similar to streams as used by Milner et al. (1990). In
the rules for y, P is a command obtained from the director,
and N is a result sent back to the director.

L ` (S, ia, continue) =⇒ (S, ◦, pLq) L ` (S, ia, break) =⇒ (S, •, pLq)
L ` (S, ia, V) ⇓ N

L ` (S, ia,−V) ⇓ −N

L ` (S, ia, V1) ⇓ N1 L ` (S, ia, V2) ⇓ N2

L ` (S, ia, V1 op V2) =⇒ (S, ia, N)
N =

{
1 (op = (=) ∧N1 = N2) ∨ (op = (<) ∧N1 < N2)

−1 o/w

L ` (S, ia, U) ⇓ N
L ` (S, ia, op U) =⇒ (S[U 7→M], ia,M)

M =

{
N + 1 op = inc

N − 1 op = dec

S(C,X) = N

L ` (S, ia, X) ⇓ N

L ` (S, ia, E) ⇓ N
L ` (S, ia, U := E) =⇒ (S[U 7→ N], ia, N)

L ` (S, ia, I) ⇓ N S(R[A], N) = M

L ` (S, ia, A[I]) ⇓M

L ` (S, ia, E) ⇓ N L ` (S, ia, P) =⇒ (S ′, ia ′,M)

L ` (S, ia, if E then P1 else P2) =⇒ (S ′, ia ′,M)
P =

{
P1 N = 1

P2 N = −1

L ` (S, ia, P1) =⇒ (S ′, ia ′, N) ia 6= ia ′

L ` (S, ia, P1;P2) =⇒ (S ′, ia ′, N)

L ` (S, ia, P1) =⇒ (S ′, ia ′,M) ia = ia ′ L ` (S ′, ia ′, P2) =⇒ (S ′′, ia ′′, N)

L ` (S, ia, P1;P2) =⇒ (S ′′, ia ′′, N)

L ` (S, •,@L′ : {P}) =⇒ (S[SP [L′] 7→ P], •, pL′q) L ` (S, ia, N) ⇓ N

Figure 6. Dynamic semantics for CASP instructions (§3.2)

〈R, skip, s; rest〉 −→ 〈R, s, rest〉 〈R,N, s; rest〉 −→ 〈R, s, rest〉 〈R, s; r̄, rest〉 −→ 〈R, s, r̄ : rest〉

〈R,X := N, rest〉 −→ 〈R[X 7→ N], skip, rest〉 〈R,X, rest〉 −→ 〈R,R(X), rest〉

N ≤ 0

〈R, if N then s̄, rest〉 −→ 〈R, skip, rest〉
N > 0

〈R, if N then s̄, rest〉 −→ 〈R, s̄, rest〉

〈R, e, skip〉 −→ 〈R′, N, skip〉
〈R,E[e], rest〉 −→ 〈R′, E[N], rest〉

〈R,N1 op N2, skip〉 −→ 〈R,M, skip〉 M =

N1 +N2 op = +

N1 −N2 op = −
1 op = (==) ∧N1 = N2

0 op = (==) ∧N1 6= N2

1 op = (<) ∧N1 < N2

0 op = (<) ∧N1 ≥ N2

(fname, s̄; return e) ∈ F 〈R, s̄; return e, skip〉 −→ 〈R′, return N, skip〉
〈R, fname(N̄ , rest〉 −→ 〈R′, N, rest〉

Figure 7. Dynamic semantics for the example language (§3.4.1)

L ` (S, ◦,SP [L]) =⇒ (S ′, ◦, N)

〈R, extend{L}, s; rest〉 −→ 〈R′, skip, rest〉
L ` (S, •) y (S ′, ◦)

L ` (S, ◦, break) =⇒ (S, ◦, continue)

L ` (S, •, P) =⇒ (S ′, •, N) L ` (S ′, •) y (S ′′, ◦)
L ` (S, •) y (S ′′, ◦)

L ` (S, •, P) =⇒ (S ′, ◦, N)

L ` (S, •) y (S ′, ◦)

Figure 8. Linking of the programming language evaluation with that of CASP controller

	Introduction
	FPGA debugging gap
	Debugging(FPGA) != Debugging(CPU)
	Current techniques for FPGA debugging
	High-Level Synthesis (HLS)
	Current research on FPGA debugging
	PhD design features

	A language and model for program directing
	Direction language D
	Controller
	Examples
	Directability ordering
	Program language

	Semantics for D
	Break
	Trace

	Implementation and Evaluation
	Prototype
	Evaluation

	Related work
	Conclusion
	More program direction commands
	Tracing
	Watching
	Profiling

	Program analyses and transformations
	Language semantics
	CASP machines
	Example language

