
Characterizing The Impact Of Network Latency On
Cloud-based Applications’ Performance

Diana Andreea Popescu Noa Zilberman
University of Cambridge

firstname.surname@cl.cam.ac.uk

Andrew W. Moore

ABSTRACT
Businesses and individuals run increasing numbers of ap-
plications in the cloud. The performance of an application
running in the cloud depends on the data center conditions
and upon the resources committed to an application. Small
network delays may lead to a significant performance degra-
dation, which affects both the user’s cost and the service
provider’s resource usage, power consumption and data cen-
ter efficiency. In this work, we quantify the effect of network
latency on several typical cloud workloads, varying in com-
plexity and use cases. Our results show that different appli-
cations are affected by fixed and variable latency to differing
amounts. These insights into the effect of network latency on
different applications have ramifications for workload place-
ment and physical host sharing when trying to reach perfor-
mance targets.

Keywords
data center, network latency, performance

1. INTRODUCTION
Cloud computing has revolutionized the way busi-

nesses use computing infrastructure. Instead of building
their own data centers, companies rent computing re-
sources available from providers like Google Cloud Plat-
form, Amazon EC2, and Microsoft Azure, and deploy
their applications in the cloud. While customers are
able to choose the specifications of the used computing
instances according to their needs, specifying guaran-
tees in terms of network latency for an application is
not yet fully possible.

The fact that latency impacts performance is well
known for wide area networks(WAN) [30, 44, 42, 33,
11], for example as it is implicitly a part of rate com-
putations for TCP, but also for host applications. The
latency studied in these works was in the order of mil-
liseconds to hundreds of milliseconds. However, to-
day much of the communication is within data cen-
ters, meaning that the latency is far below the WAN
scale. Several studies [46, 8, 49, 35] have shown that
network latency variability is common in multi-tenant
data centers. There is a need to quantify the impact

of network latency on an application’s performance as
even small amounts of delay, in the order of tens of
microseconds, may lead to significant drops in appli-
cation performance [54]. While past work has provided
comprehensive performance studies of the effect of CPU
cache and memory, the operating system or virtualiza-
tion upon application performance (e.g. [51, 32, 48,
46]), a significant gap exists in evaluating the impact of
networking resources, particularly network latency and
network latency variation.

In this paper, we study the impact of network la-
tency upon application performance for a set of cloud
applications, ranging from a domain name server (DNS)
to machine learning workloads running on Spark. We
select the workloads so they represent an increasing
scale of complexity, and do not target the same frame-
works. Our work is both measurement and implemen-
tation driven, and is based on an extensive exploration
of latency characteristics.

We describe an experimental methodology developed
to evaluate the relationship between application perfor-
mance and network latency. We do this by artificially
injecting arbitrary network latency into a networked
system. We use a bespoke hardware appliance, NRG ,
we specifically designed for this purpose that affords us
fidelity of per-packet latency control and a precision on
the order of tens of nanoseconds. Our methodology en-
ables testing different latency magnitudes, as well as
different variance magnitudes and distributions. In this
manner, the injected latency may represent delay due to
an increased cabling length (increased propagation de-
lay), delay caused by end-host behaviours, or queueing
within switches due to network congestion.

In order to know how we should represent latency in
the system, we conduct network latency measurements
for multiple cloud-operators across different data cen-
ters around the world. These measurements are used to
inform the magnitude of latency and its variance in our
experiments. In addition, we used well-known synthetic
latency distributions to extend the understanding of la-
tency effects. In our experiments, we use both synthetic
and real workloads for our chosen applications.

1

The principal contributions of this paper are:

• a description of an experimental methodology to
measure application performance under arbitrary
network latency,

• an extensive measurement study of how the per-
formance of a number of cloud-based applications
will change under arbitrary magnitude, variance
and distribution of network latency

The rest of the paper is organized as follows. In
Section 2, we present the results of network latency
measurements performed across six data centers from
three different cloud operators. Section 3 outlines the
cloud-based applications we study in this paper, while
Section 4 describes our experimental setup. Section 5
presents the results of experiments of how network la-
tency impacts application performance. Section 6 dis-
cusses the lessons learned from our study. We give an
overview of related work in Section 7, with conclusions
and future work in Section 8.

2. NETWORK LATENCIES IN DATA CEN-
TERS

If in the past it was common to think about latency
on the scale of milliseconds, today network elements
within the data center are several orders of magnitude
faster than that. In Table 2 we present some exam-
ples of the latency of different network elements. If in
the past it took 640ns to transmit just 64B using 1GE
technology, today it is possible to transmit five 1518B
packets at the same time. Sub-microsecond, high port
count, top of rack (ToR) switches are common and there
is little difference in latency between different 10GE and
100GE from the same manufacturing generation. This
does not preclude higher latency network elements, in
the order of microseconds, from being part of the net-
work, depending on their role (e.g. as a Layer 3 Spine
switch/router). What becomes interesting is that the
latency within a switch is now at the same magnitude
as the latency of traversing 100m one way within the
data center over fiber. All the above means that the
architecture and topology of the network within the
data center, the dominant factor of network latency, can
significantly vary between cloud operators and expose
users to different magnitudes of data center latency and
variation.

To understand the scale and distribution of latency
as experienced by a user in a data center, we mea-
sure the round-trip time (RTT) between multiple vir-
tual machines (VMs) rented from different cloud oper-
ators. Our aim is to calibrate our latency exploration
based upon current data center measurements and fur-
ther use these values as inputs to our controlled latency
environment. This permits us to evaluate the perfor-

mance of an application as it is subject to varying la-
tency values. While this is not a comprehensive study
of latency within data centers, it represents several la-
tency scenarios that might be experienced by a specific
user.

For each of three cloud operators, we chose one data
center from US and one from Europe, and we rented 4
VMs in each data center1. The VM’s type is the de-
fault type recommended by each cloud operator, run-
ning Ubuntu 16.04. Since the VMs’ performance may
be affected by other collocated VMs and the network
traffic within the data centers may be different due to
diurnal and weekly patterns, we ran measurements over
several days, totalling 100 million RTT measurements
between each VM pair. Information regarding the hop
count between our VMs is not available, and traceroute
does not reveal any useful information, however, this
does not affect our later experiments.

One of the VMs, operating as a client, measures the
RTT to the three other VMs (operating as servers). The
client VM sends a UDP packet to the first server VM
and waits for a reply from it, measuring the time be-
tween the sending of the packet and the receipt of the
reply. In one round, the client makes 100, 000 such mea-
surements. Once a round finishes, the client VM waits
10 seconds before moving to the next server VM, and
so on. The measurements are performed sequentially
in a round robin fashion. Taking into account the time
of each measurements round, the latency of each VM-
pair is measured approximately once a minute, for a
thousand consecutive minutes.

The UDP latency measurement methodology and sou-
rce code are based on the tool utilized in [54]; it is in-
tended for accurate low latency measurement, and sends
a single measurement probe at a time (rather than a
train of packets). As a result, the latency measurements
only observe the state of the network and do not con-
gest it. The latency measurements use the CPU’s Time
Stamp Counter (TSC). TSC is a 64-bit register present
on recent Intel ix86 processor. It counts the number
of cycles since reset and provides a useful resolution of
approximately 288ps-per-cycle with tens of cycles res-
olution (due to CPU pipeline effects). Access to TSC
is done using the rdtsc ix86 assembly instruction. The
RTT is measured on the client VM by computing the
difference between two rdtsc reads: one just before the
request is sent, and one as it is received. Using the rdtsc
instruction results in an error within VMs running on
cloud operator C, so we use the less precise clock gettime
function with CLOCK MONOTONIC instead.

The RTT CDFs for cloud operators A, B and C are
presented in Figure 1. We also present in each CDF
an aggregate plot using all the RTTs measured by a
single VM to the three other VMs within the same data

1The number of VMs is cost limited.

2

center. We observe that there are differences between
cloud operators, but on the other hand, the measured
latencies within data centers of the same cloud operator
share the same characteristics.

We further explore the periodicity within a data cen-
ter on the minimum, median and 99thpercentile, per
VM-pair, and find no interesting effects over time (Fig-
ure 2). Provider B maintains consistent latency in all
our measurements, while other providers have noisier
results (order of tens of microseconds), but on a round-
to-round basis rather than for longer periodic patterns.
We notice only one outlier, for the 99thpercentile of op-
erator C.

We ran our measurements between 10 and 13 De-
cember 2016, and then repeated them between 8 and
10 May 2017 (Figure 3). While we observe changes
between our two measurements campaigns, the data
centers maintain their characteristics across operators
in terms of magnitude of median latency and variance,
with one exception only (Provider A US data center).

3. SELECTED CLOUD-BASED
APPLICATIONS

We choose four popular applications whose perfor-
mance can be analysed in our network-latency study
setup (see Section 4). The choice of applications is in-
tended to explore an increasing level of application’s
complexity as well as different distributed operating
models. The choice of applications is not intended to
represent all common data center applications, and we
overtly prefer applications that are likely to be network
intensive.

3.1 Domain Name System (DNS)
This is the most simple application studied, which is

widely used in the cloud. It provides a domain name
lookup service. As a server, we use NSD (Name Server
Daemon)2, which is an open source name server, au-
thoritative only. DNSPerf3 (version 2.1.0.0) is used on
the client side to generate requests. We define as our ap-
plication performance metric as the number of requests
per second that the name server can achieve. DNS fol-
lows a client-server model, and we focus on the server
side and the effect that network latency as observed by
the server has on its overall performance.

3.2 Key-value Store: Memcached
Memcached4 is a popular, in-memory, key-value store

for arbitrary data. In our experiments we use on the
server side, the open-source version of memcached 1.4.25.

We use the Mutilate5 memcached load generator to

2https://www.nlnetlabs.nl/projects/nsd/
3https://nominum.com/measurement-tools/
4http://memcached.org
5https://github.com/leverich/mutilate

evaluate the impact of network latency on memcached’s
application performance, measured in queries per sec-
ond (QPS). The workload generator is based on a closed
system model [40]; that is, each workload-generator waits
for a reply before sending the next request. We use two
workloads generated by the mutilate benchmark: i) a
read-only workload, the requests follow an exponential
distribution; the key size is 30 byte and the value size
is 200 bytes; following [28], the keys are accessed uni-
formly; ii) the Facebook “ETC” workload, taken from [6],
is considered representative of general-purpose key-value
stores. The results for the two workloads are similar,
and we omit for brevity the results for the read-only
workload.

Memcached follows a client-server model, and we fo-
cus on the server side and the effect that network la-
tency as observed by the server has on its overall per-
formance.

3.3 Machine Learning Applications
Machine learning (ML) applications have become very

popular in recent years, representing a common work-
load for data centers. Due to the huge amount of data
that has to be processed, the ML applications are dis-
tributed, using either a data parallel approach (the in-
put data is partitioned across the machines and the ML
model is shared) or a model parallel approach (the ML
model is partitioned across the machines and the input
data is shared). In the data parallel approach, each ma-
chine can read and update all model parameters, while
in the model parallel approach, each machine can access
and update only its model parameter partition.

3.3.1 Distributed Machine Learning: Lasso Regres-
sion

We use the STRADS [27]6 distributed framework for
machine learning algorithms. The framework is tar-
geted for moderate cluster sizes (between 1 and 100
machines).

We evaluate the impact of network latency on the
sparse Lasso (least absolute shrinkage and selection op-
erator) regression [45] application implemented in this
framework. The network communication pattern can be
represented as a star in the case of the Lasso regression
application, with a central coordinator and scheduler
on the master server, while workers communicate only
with this master server. The STRADS framework uses
one coordinator, one scheduler and requires at least two
workers. In our setup, the coordinator and the sched-
uler run on the master server (in Figure 4).

We define as application performance metric the ob-
jective function value versus time (seconds), also referred-
to as convergence time [27]. The input to the applica-
tion is represented by a N -by-M matrix and a N -by-

6https://github.com/petuum/strads.git

3

0 100 200 300 400 500 600 700

Round-Trip Time[µs]

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F

VM-Pair1
VM-Pair2
VM-Pair3
VM-All

(a) Provider A US

0 100 200 300 400 500 600 700

Round-Trip Time[µs]

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F

VM-Pair1
VM-Pair2
VM-Pair3
VM-All

(b) Provider B US

0 100 200 300 400 500 600 700

Round-Trip Time[µs]

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F

VM-Pair1
VM-Pair2
VM-Pair3
VM-All

(c) Provider C US

0 100 200 300 400 500 600 700

Round-Trip Time[µs]

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F

VM-Pair1
VM-Pair2
VM-Pair3
VM-All

(d) Provider A Europe

0 100 200 300 400 500 600 700

Round-Trip Time[µs]

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F

VM-Pair1
VM-Pair2
VM-Pair3
VM-All

(e) Provider B Europe

0 100 200 300 400 500 600 700

Round-Trip Time[µs]

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F

VM-Pair1
VM-Pair2
VM-Pair3
VM-All

(f) Provider C Europe

Figure 1: Measured RTTs within data centers for cloud operators A, B and C in December.

(a) Provider A US (b) Provider B US (c) Provider C US

(d) Provider A Europe (e) Provider B Europe (f) Provider C Europe

Figure 2: Measured RTTs percentiles per VM pair within data centers for cloud operators A, B and C for each
iteration round.

4

0 100 200 300 400 500 600 700

Round-Trip Time[µs]

0.0

0.2

0.4

0.6

0.8

1.0
C

D
F

VM-Pair1
VM-Pair2
VM-Pair3
VM-All

(a) Provider A US

0 100 200 300 400 500 600 700

Round-Trip Time[µs]

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F

VM-Pair1
VM-Pair2
VM-Pair3
VM-All

(b) Provider B US

0 100 200 300 400 500 600 700

Round-Trip Time[µs]

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F

VM-Pair1
VM-Pair2
VM-Pair3
VM-All

(c) Provider C US

0 100 200 300 400 500 600 700

Round-Trip Time[µs]

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F

VM-Pair1
VM-Pair2
VM-Pair3
VM-All

(d) Provider A Europe

0 100 200 300 400 500 600 700

Round-Trip Time[µs]

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F
VM-Pair1
VM-Pair2
VM-Pair3
VM-All

(e) Provider B Europe

0 100 200 300 400 500 600 700

Round-Trip Time[µs]

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F

VM-Pair1
VM-Pair2
VM-Pair3
VM-All

(f) Provider C Europe

Figure 3: Measured RTTs within data centers for cloud operators A, B and C in May.

1 observation vector, while the model parameters are
represented by a M -by-1 coefficient vector. In com-
mon with papers describing the algorithm [27], we use
a synthetic workload that we generated, with a number
of 10K samples and 100K features, and a total of 500M
non-zero values in the matrix, the data size is 9.5GB.

3.3.2 Distributed Machine Learning: Generalized Lin-
ear Regression

We use Spark [1]’s machine learning library (MLlib),
on top of which we run benchmarks from Spark-Perf7.
We run Spark 1.6.3 in standalone mode. We exper-
iment with different numbers of examples (100K, 1M)
and iterations (20, 100), however we notice a similar be-
haviour. Spark follows a master-worker model. Spark
supports broadcast and shuffle, which means that the
workers do not communicate only with the master, but
also between themselves. We define as application per-
formance the training time, e.g. the time taken to train
a model.

3.4 Other applications
On top of the four applications described above, we

also explored the effect of latency on the performance of
other applications, which are omitted from this paper.
In previous work [54] we studied the effect of static la-
tency on Apache Benchmark8 for a single client-server

7https://github.com/databricks/spark-perf
8https://httpd.apache.org/docs/2.4/programs/ab.
html

pair. However, for this use case, Apache easily satu-
rates the link, making network bandwidth the bottle-
neck of the system studied. Under this scenario, even
two clients are competing for network resources, thus
the study of latency effect is tainted by other network
effects. We also studied the effect of latency on TPC-C
MySQL benchmark9, reporting New-Order transactions
per minute (where New-Order is one of the database’s
tables). TPC-C latency sensitivity heavily depends on
its warm-up period and , which hinders the methodolog-
ical reliability of repeated tests. On top of the above, we
also explored a set of applications under the Spark plat-
form, including e.g. KMeans, Gaussian Mixture Mod-
els. We omit those for brevity, as they behave similarly
to other applications using the same platform.

4. EXPERIMENTAL SETUP
While characterising the performance of network la-

tency in the cloud is ideally done within a large-scale
and controlled data center, such access is granted today
only to the single few who work at the world’s leading
data centers. Other may use the data center, but have
no control over it or full visibility into it. Instead, we
propose a methodology that enables characterising the
effect of network latency on applications performance
using a much smaller scale, well controlled environment.
Our ability to control and flexibly change latency within
this environment provides a new venue for studying net-

9https://github.com/Percona-Lab/tpcc-mysql

5

work characteristics in academic environments.
Our methodology is based on the observation that

each host’s experience of the network can be collapsed
to the link connecting it to the Top of Rack switch
(ToR). By modifying the properties of the traffic arriv-
ing through this link, the host can experience different
effects of network latency, as if it was located in different
data centers.

In our experiments, in each scenario one host is se-
lected as the unit under test (UUT). This host can act
as a server (DNS, memcached), master (STRADS Lasso
Regression, Spark Ridge Regression) or client (mem-
cached), depending on the application. While it can
be claimed that for some distributed applications, the
effect of latency on a single host becomes a statistical
combination of the different values, we later show that
even under such a model the latency effect on a single
host is not negligible.

Between the selected host and all other parts of the
setup, we use an appliance that can inject well-controlled
latency into the system. The appliance is an open-
source contributed NetFPGA SUME project [53], orig-
inally included in release 1.4.0. While a detailed eval-
uation of the latency appliance is under independent
preparation [36], it is described below in Section 4.1.
We abstract the network topology as a single queue,
represented by the delays injected by the latency appli-
ance and illustrated in Figure 5. This queue imposes
delay, from the UUT’s perspective, through the point-
to-point link that connects the server to the remaining
network.

The experimental setup, Figure 4, is composed of 10
hosts10. Each host has an Intel Xeon E5-2430L v2 Ivy
Bridge CPU with six cores, running at 2.4GHz with
64GB RAM. CPU-power saving, hyper-threading and
frequency scaling are disabled. The hosts run Ubuntu
Server 16.04, kernel version 4.4.0-75-generic. Each host
is equipped with an Intel X520 NIC with two SFP+
ports. Each host is connected at 10Gbit/s using ian
Arista 7050Q switch. Table 1 describes the settings per
application, and during our tests we run each applica-
tion multiple times for each latency configuration.

4.1 NRG
The Network Research Gadget (NRG) is used in

this work as a latency appliance that implements traffic
control mechanisms in hardware, replicating the func-
tionality of NetEm [21]. The hardware implementation
provides higher resolution and better control over la-
tency than softwareimplemented traffic control such as
NetEm might afford [41, 25, 22].

The latency injection has a resolution of 5ns and can
range from zero to twenty seconds (at low data rates),
supporting up to 1.1ms latency for 64B packet at full

10The methodology is not dependant on the number of hosts

Client/Worker

Client/Worker

Latency
Appliance Server/Master

Client/Worker

Figure 4: Experimental setup to evaluate application
performance under changing network latency

P,dn+2 P,dn+1 P,dn

Figure 5: Each packet is P delayed by a value d chosen
randomly from a certain distribution

10GbE line rate. Traffic control introduces both a con-
stant latency and variable latency to recreate a prede-
fined latency distribution. We refrain from using terms
such as jitter, which implies a difference in latency that
is both above and below a certain value, as latency in-
jected by NRG is always positive within our setup. The
supported latency distributions are: none, user-defined,
uniform, normal, Pareto, and Pareto-normal distribu-
tions. The definitions for the last three distributions
are adapted from NetEm[21]. We refer here on to the
Pareto and Pareto-normal distributions as heavy-tail
distributions 1 and 2 in accordance. The user-defined
distribution allows specification of any distribution, and
is used to recreate the latencies measured in the cloud
(Section 2).

Latencies are imposed independently for each direc-
tion of each port, thus client to server and server to
client added latencies are completely independent ther-
eby replicating the direction-independent latency expe-
rienced by packets due to in-network congestion. There
is no packet reordering within NRG. As illustrated in
Figure 5, a packet P is delayed in a queue inside the
appliance for a given amount of time chosen from a
given delay distribution. The packets delay d within
the queue is independent of the inter packet gap. While
inter packet gap based latency is possibly using NRG,
such latency injection will impose a specific network la-
tency distribution. As we seek to understand the effect
of additive latency within the network, we impose per-
packet latency control.

5. APPLICATION PERFORMANCE
ANALYSIS

We study three aspects of latency effect on perfor-

6

Table 1: Workloads Setup. #Hosts indicates the minimum number of hosts required to saturate the UUT or the
number of hosts for which we determine the best job completion time/training time when no latency is added.

Application UUT’s Role #Hosts Metric Runtime Dataset Dataset
Target Size

DNS Server 1 Queries/sec 10M requests A record 10M requests
Memcached Server 5 Queries/sec 10 seconds FB ETC [6] see [6]
Memcached Client 1 Queries/sec 10 seconds FB ETC [6] see [6]
STRADS Coordinator 6 Convergence time 100K Synthetic 10K samples,
Regression [27] time iterations 100K features
Spark Master 8 Training time 100 Spark-perf 100K samples,
Regression [1] iterations generator 10K features

mance: The scale of latency, latency variance and role
of network latency from the processor perspective. For
the different tests, we use a per-test setup configured
to provide optimal application-performance. All results
are averaged over three runs. The network latency
we introduce using our appliance represents the vari-
ous sources of latencies throughout a networked system:
both static sources, i.e., propagation delay, and variable
sources, e.g., end-host delay, and queuing in switches.
The topology of the network, notably non-uniformity of
latency among client-server paths, is still an unexplored
factor in determining the application behaviour that we
leave for future work at this time.

5.1 Setting the Baseline
Before experimenting with the effect of latency, we

first find the baseline performance of each application.
We set the following goals for the baseline settings:

• Results must be stable. Running the same test
multiple times, using the same seed, needs to pro-
duce similar results.

• Results must be reproducible. Running the same
test on different (comparable) machines should pro-
duce similar results. Results should not vary over
time, and should not be affected by externalities
(e.g. other machines in our experimental data cen-
ter.).

• Results should not be affected by our tools and
methodology. For example, the number of samples
should be sufficient, the latency appliance should
not limit the link bandwidth and any statistics
should be collected outside run time, as not to
affect available computation resources.

• Baseline performance should be the maximum ach-
ievable performance of the UUT. The setup and
application should be configured in a manner that
achieves the maximal performance possible using
the available resources.

• Baseline setup should achieve the maximum UUT
performance using a minimum number of hosts.

The UUT (acting as a server, worker or other)
resources should be saturated, but without over-
loading the host.

To exemplify the last point: lets consider a client-
server application, where the peak performance of the
server is N queries per second. The minimum number
of clients required to achieve this performance is k. Any
number of clients above k can still achieve N queries,
but not more. What we seek is to understand the effect
of performance on such server using k clients, where any
loss of performance will be due to latency rather than
e.g. processing or storage. Had we picked any number
of clients greater than k, it is possible that the host
had maintained a performance of N queries per second,
but the sensitivity to the network would not have been
exposed.

For each of the workloads, we follow the guidelines
above, conducting multiple experiments required to set
the aforementioned baseline. An example of such base-
line analysis is provided in Figure 6 for memcached. We
vary the number of client machines from 1 to 9, and one
of the clients, called the master client, also takes mea-
surements. In this configuration, memcached achieved
a maximum of approximately 1.05M QPS (Figure 6(a))
using five clients machines (180 connections total). From
Figure 6(a), we observe that, as we reach the maxi-
mum compute power of the memcached server, increas-
ing the number of client machines beyond five does not
increase the maximum throughput achieved. However,
using more than five client machines leads to an increase
in the request-response latency per client(Figure 6(b)).
Based on these results, we select the setup that yields
maximum performance under minimal request-response
latency: four client machines to generate load, an addi-
tional client machine that keeps QPS and latency mea-
surements, and a sixth machine - the UUT acting as a
server.

5.2 Analysing the Effect of Static Latency
To consider the effect of latency on the performance

of different applications, we begin by studying the scale

7

0 1 2 3 4 5 6 7 8 9
Number of clients

0.0

0.2

0.4

0.6

0.8

1.0

Q
P

S
x

10
6

(a) QPS

0 200 400 600
Request-response latency [µs]

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F

2 clients
3 clients
4 clients
5 clients
6 clients
7 clients
8 clients
9 clients

(b) Request-response latency

Figure 6: Baseline analysis to determine the maximum QPS that can be achieved by the Memcached server.

of network latency that is enough to have a significant
effect. The goal here is not to find a specific number,
which is very system dependent, rather to understand
what is the scale - ranging from nanoseconds to mil-
liseconds. The scenario that we study here is most no-
tably translated to a placement problem: what is the
maximal distance between processing nodes that will
not affect the performance of an application? As every
100m of fibre translate to 1µs of RTT, this is becoming
an increasing challenge [54]. This scenario bears simi-
larities to the median latency within data centers, and
we explore the effects of those later on.

For each application, a baseline performance is deter-
mined on our setup. Next, NRG is used to introduce a
constant latency between the UUT (or) and the net-
work. A range of constant latencies, from 2µs to 1000µs
is introduced, and the applications’ performance is mea-
sured for each latency value.

To compare the effect of additive latency on each of
the applications, we normalise their performance. The
baseline performance is marked as 1, and the ratio be-
tween the measured performance at each latency point,
and the baseline performance is shown in Figure 7. The
x-axis is the static latency added (in µs, for RTT) while
the y-axis is the normalized performance. We note that
each application has a different performance metric, as
shown in Table 1.

All applications are sensitive to latency, though on
very different scales. For STRADS Lasso Regression, we
observe performance degradation when as little as 20µs
are added to the RTT (10µs in each direction), while
Ridge Regression on Spark is not affected by less than
500µs RTT. We note here that the latency is injected
between the master and slaves, and not also between
the slaves themselves. We also considered a scenario
where we introduced additional latency using NetEm
at the slaves, however we did not see noticeable ef-
fects below 500µs RTT. The memcached sever is also

Network Element Typical
Latency

Propagation Delay, 1m Cable / Fiber 4.3ns-4.9ns
Serialization Delay, 1518B, 100G link 125ns
ToR, L2 Switch, 10G / 100G 300ns-500ns
Propagation Delay on 100m Fiber 490ns
Low Latency NIC, 10G 1µs
Serialization Delay, 1518B over 10G link 1.25µs
Spine, L3 Switch, 10G / 100G 3.5µs-13µs

Table 2: Latency of Different Network Elements - Typ-
ical Examples

very sensitive to latency: 100µs are enough for over
20% performance degradation, and the performance is
halved around twice this number. DNS is also affected
by latency at the scale of hundreds of microseconds, and
its drop in performance is much steeper than STRADS
Lasso Regression. Contrary to the memcached server
case, adding static latency to a single memcached client
has a minimal effect on the overall aggregated perfor-
mance of the 5 clients (measured by the master client),
which is likely due to the design of the benchmark.

This sensitivity to latency demonstrates two orders of
magnitude difference between applications. As previous
work has shown 10µs to be the scale of latency between
two hosts connected back-to-back [54, 15], this certainly
makes memcached and STRADS Lasso Regression very
sensitive to their physical resource allocation.

5.3 Analysing the Effect of Latency Variance
The fact that latency is affecting performance (on dif-

ferent scales) is not new [12, 13]. The effect of latency
variance, on the other hand, is rarely discussed. La-
tency variance changes not just in magnitude, but also
in its distribution.

To study the effect of latency variance, we use NRG
to introduce different variance distributions. In all ex-
periments, we set a single median latency and vary the

8

0.
0

10
.0

20
.0

50
.0

10
0.

0
15

0.
0

20
0.

0

50
0.

0

10
00

.0

Added Delay [µs]

0.0

0.2

0.4

0.6

0.8

1.0

1.2

N
or

m
al

iz
ed

Pe
rfo

rm
an

ce
DNS
Memcached Server
Memcached Client
Lasso Regression
Ridge Regression

Figure 7: The effect of static latency on different applications.

magnitude and distribution of variance around this me-
dian. The value picked as the median is taken from the
cloud latencies we measured, as a representative exam-
ple.

Figures 8 and Figure 9 show the effect of latency vari-
ance on memcached, Lasso Regression and DNS. We
omit the results for Ridge Regression, as it is not af-
fected by latencies at the explored scales, as shown in
Figure 7. Figure 8 uses 200µs as the median RTT la-
tency, similar to the median latency of cloud operator A
in Europe, while Figure 9 uses 50µs as the median RTT
latency, similar to the median latency of cloud operator
B in Europe. The x-axis shows the magnitude of the
variance, while the y-axis is the normalized performance
of the application when this variance is applied. The
baseline for the performance is the same setup with no
variance applied, i.e. the left most point on the graph.
As can be seen, just like static latency, so does latency
variance affect the performance - despite maintaining
the median latency without a change.

As Figure 8(a) shows, even small scale variance, e.g.
20µs variance when the median is 200µs is enough to
lead to up to 5% of performance degradation for Lasso.
160µs variance may cause 25% performance loss. Given
that the variance leads to some packets with lower la-
tency than the median, and some with higher latency -
the effect of variance is even more profound.

As we have shown in Figure 7, DNS is sensitive to
latency in the order of 200µs to 300µs, yet for static
latency with no variance the performance of both la-
tencies is about the same. This is likely to have the
same affect as shown in Figure 8, where the maximum
latency (median and variance) is in the order of 300µs
RTT, therefore the performance is almost not affected
by variance.

One of the results we found quite surprising is that

when using similar values to cloud operator B’s, where
the median latency and the scale of variance are quite
small, we observe non negligible effect of the variance
(Figure 9) on memcached. This result is surprising as at
50µs memcached is not very sensitive to static latency
(e.g. as there it is still bound by other resources).

The effect of each distribution is consistent for all ap-
plications: a normal distribution has the least effect,
while a uniform distribution has the most. This is not
unexpected, as for a normal distribution most of the
packets experience latency that is within one standard
deviation, whereas for a uniform distribution the proba-
bility of a packet experiencing tail latency is the highest.
The heavy tail distributions are in between these two
cases.

6. DISCUSSION

The Impact of Network Latency.
The fact that network latency affects performance is

well known (e.g. [12, 9, 14]), yet our experiments expose
for the first time the extent of sensitivity to latency for
some applications: with 10µs latency in each direction
enough to have a noticeable effect, and 50µs latency in
each direction enough to significantly negatively impact
the performance. Given that only a few years ago this
was the scale of latency within the host alone [39], it
means that much more attention must continue to be
paid to the host. A second aspect is the attention to
the distance between servers: with longest cable length
reaching 900m [18], equivalent to 9µs RTT on the fibre
alone, and expected to grow beyond the kilometre, per-
formance can be noticeably affected. When scaling the
data center comes at the cost of additional hops between
servers, passing the more switches increases latency fur-
ther. This has ramifications for workload placement and

9

0 20 40 60 80 100 120 140 160 180

Variance [µs]

0.75

0.80

0.85

0.90

0.95

1.00

1.05

N
or

m
al

iz
ed

pe
rfo

rm
an

ce

Uniform
Normal
Heavy Tail 1
Heavy Tail 2

(a) STRADS Lasso Regression

0 20 40 60 80 100 120 140 160 180

Variance [µs]

0.75

0.80

0.85

0.90

0.95

1.00

1.05

N
or

m
al

iz
ed

pe
rfo

rm
an

ce

Uniform
Normal
Heavy Tail 1
Heavy Tail 2

(b) Memcached

0 20 40 60 80 100 120 140 160 180

Variance [µs]

0.75

0.80

0.85

0.90

0.95

1.00

1.05

N
or

m
al

iz
ed

pe
rfo

rm
an

ce

Uniform
Normal
Heavy Tail 1
Heavy Tail 2

(c) DNS

Figure 8: Analysis of the effect of latency variance and distribution on STRADS Lasso Regression, memcached and
DNS using the median and variance magnitude of cloud operator A in Europe.

0 5 10 15 20 25 30 35 40 45

Variance [µs]

0.75

0.80

0.85

0.90

0.95

1.00

1.05

N
or

m
al

iz
ed

pe
rfo

rm
an

ce

Uniform
Normal
Heavy Tail 1
Heavy Tail 2

Figure 9: Analysis of the effect of small latency variance
and distribution on memcached, using the median and
variance magnitude of cloud operator B in Europe.

physical host sharing when trying to reach performance
targets.

The Effect of Variable Latency.
Latency variance matters. Even for the same median

latency, the performance is affected by the magnitude
and distribution of variance. Furthermore, heavy tail
distributions worsen the effect of latency on the per-
formance. However, the tail latency or 99thpercentile
are not necessarily an indicator of performance: for the
same application and the similar tail latency, the per-
formance may differ based on the variance distribution.

Modelling Variable Latency.
The modelling of variable latency is a challenging

task, as it encapsulates a large number of traffic-affecting
phenomena, some of them dependent. We take a very
narrow view of the latency: the one of the end host,
as it observes the latency through the single link that
connects it to the rest of the network (typically through
the top of rack switch). The variable latency that we

introduce is consistent with our measurements and with
previous studies [28, 6]. While per-packet added latency
is independent, packets are still queued and reordering
is not possible within a flow. Reordering of packets
from different flows is still possible in our setup, within
the switch, as in a real data center. Still, we assert that
since each client-server pair is independent, the ordering
of packets from different flows while applying a variable
latency, achieves similar results to handling each flow
separately. Scenarios where reordering is possible, e.g.
due to load balancing, are outside the scope of this pa-
per.

Generalizing The Results.
While the impact of latency on performance, eval-

uated in Section 5, is conducted on a specific setup,
the results presented in this paper can be generalized
to other setups and scenarios as well. While there are
differences between platforms, due to their different ca-
pabilities, the results are at the same scale and follow
the same trends.

Validation.
An extensive validation of NRG and the methodology

used in this paper is done prior to our experiments. The
characterization and evaluation of NRG are part of a
different work [36].

Limitations.
In this paper, we have limited ourselves to a study

of application performance and data center network la-
tency. Our methodology may be trivially adapted to
understand the impact of network bandwidth upon ap-
plication performance. This adaptation would only re-
quire a derivative hardware appliance setup to constrain
and control the available network bandwidth between
network end-hosts.

We note that our cloud RTT measurements are not
fully representative of all the cloud data centers latency,
as they are a sample capture over a limited period of
time and space. These measurements represent poten-

10

tial latency scenarios to which an application may be
subjected when running in the cloud.

7. RELATED WORK
Network Latency. Network latency was identified

as a crucial factor for having a good user experience
several decades ago [12]. Latency is more difficult to
control and improve-upon when compared with network
bandwidth [38]. In recent years, tail latency has been
considered an important issue for interactive applica-
tions in data centers [9, 14], because it gets magnified
at scale. Multiple efforts have been proposed in this
space [5, 50, 26].

In this context, it is important to have a complete
breakdown of latency for common end-host systems used
in data centers [54], but also of the current end-to-end
network latencies in cloud data centers. Several previ-
ous works looked into the network conditions in cloud
data centers, noting that network latency within data
centers can vary significantly. Studies were conducted
in EC2 in 2010 [8, 46] and in 2013 [49] to measure net-
work latency, identifying as causes for the observed la-
tency variation queuing in switches, queueing at end-
hosts in the hypervisor or co-scheduling of CPU bound
and latency-sensitive tasks. Mogul et al. [35] performed
latency measurements between two pairs of VMs from
several cloud operators. Pingmesh [20] reports network
latency measurements for two data centers, one used
for distributed storage and MapReduce, and the sec-
ond used for interactive search service, observing simi-
lar ranges as ours. We performed our own cloud latency
measurement study with the aim of obtaining realistic
network latency ranges and distributions to use as in-
puts for our experiments.

The scale of latency contributions within data cen-
ters keeps shrinking: while only five years ago a switch
latency of 10µs and an OS stack latency of 15µs were
considered the norm [39], today’s numbers are an or-
der of magnitude smaller [54, 7]. It is within the con-
text of these scales that we position our contribution.
While previous work (e.g. [16]) considered application
performance with the latency between the user to the
data center to be included, our work focuses on latency
within the data center and thus is focussed upon values
orders of magnitude lower.[43] investigates the causes of
latency inflation in the Internet, since network latency
in the Internet is seen as a concern for user experience.

Several works focused on providing network latency
guarantees by controlling and reducing in-network queue-
ing [19, 23, 52]. They show the impact of network
congestion on different applications’ performance (for
Memcached on request-response latency [19, 23], for
PTPd on the clock offset [19], for Naiad barrier synchro-
nization latency [19]). While their work gives an indi-
cation of the negative impact that network congestion

has on application performance, it does not attempt
to quantify its scale, their focus being on developing a
solution to limit it. We performed a detailed analysis
of network latency impact on application performance,
where the injected network latency encompasses differ-
ent causes, not only network congestion.

A different analysis than ours focuses on understand-
ing networking requirements for data center resource
disaggregation [17], using similar cloud applications. Kay
et al. [37] analyzed Spark using different workloads,
finding that improving network performance can im-
prove job completion time by a median of at most 2%,
results which are in accordance with ours, since Spark
is not a network intensive application.

Memcached. Due to its popularity and extensive
use by companies to provide substrates for their ser-
vices, there is a large body of work that sought to
improve Memcached’s throughput and request latency.
Leverich et al. [28] described techniques to co-locate
latency-sensitive workloads (memcached in particular)
with other workloads, while maintaining good quality-
of-service for the latency-sensitive applications. IX [10],
a dataplane operating system that leverages hardware
virtualization to separate network processing from the
other kernel functions, manages to reduce memcached’s
latencies to approximately half for an unloaded server.
A Memcached over RDMA design has been proposed
by Jose et al.[24], which reduces latency by considerable
factors compared to the traditional design. Chronos [26]
is a framework that provides predictable network la-
tency and reduces tail latency for Memcached and other
data center applications by partitioning requests based
on application-level packet header fields and load bal-
ancing them across threads at the NIC. In our work, we
do not propose techniques to improve the performance
of Memcached. We evaluate the current performance
of Memcached under arbitrary network latency, looking
mainly at an aggregate metric of performance (QPS) as
a measure of the overall work that a Memcached server
can do, not only at individual request-response laten-
cies.

Distributed Machine Learning. There has been
an explosion of distributed machine learning frameworks
and libraries in recent years: Spark MLlib [34], GraphL-
ab [31], parameter servers [29], Bosen [47], STRADS [27].
Companies have also released libraries: Google’s Ten-
sorFlow [4], Microsoft’ Cognitive Toolkit [3] and Dis-
tributed Machine Learning Toolkit [2]. While consid-
erable effort has been put in optimizing network com-
munication and reducing the impact of network condi-
tions on ML applications, an evaluation to understand
the impact of network latency on their performance is
needed in the context of the observed variability of net-
work conditions in the cloud.

11

8. CONCLUSION
In this paper, we studied the effects of network la-

tency on typical cloud applications, raging from DNS
to distributed machine learning applications. We per-
formed extensive measurements by artificially injecting
controlled network latency in our experimental setup,
quantifying the impact of network latency on applica-
tion performance. Our results show that different ap-
plications are affected by fixed and variable latency to
differing amounts. The effect of network latency is not
limited to the median or tail latency, but depend on
the variance distribution. Even small network delays,
in the order of tens of microseconds can impact the ap-
plication performance significantly.

9. ACKNOWLEDGMENTS
This work has received funding from Leverhulme Trust

Early Career Fellowship ECF-2016-289 and the Isaac
Newton Trust, European Union’s Horizon 2020 research
and innovation programme 2014-2018 under ENDEAV-
OUR (grant agreement No. 644960) and EU FP7 Marie
Curie ITN METRICS (grant agreement No. 607728).

10. REFERENCES
[1] Apache Spark MLLib. https://spark.apache.

org/docs/1.2.2/ml-guide.html. [Online;
accessed January 2017].

[2] Distributed Machine Learning Toolkit.
hhttps://www.dmtk.io/. [Online; accessed
January 2017].

[3] Microsoft cognitive toolkit.
https://www.microsoft.com/en-us/research/

product/cognitive-toolkit/. [Online; accessed
January 2017].

[4] TensorFlow. https://www.tensorflow.org/.
[Online; accessed January 2017].

[5] Alizadeh, M., Kabbani, A., Edsall, T.,
Prabhakar, B., Vahdat, A., and Yasuda,
M. Less is more: Trading a little bandwidth for
ultra-low latency in the data center. In
Proceedings of the 9th USENIX Conference on
Networked Systems Design and Implementation
(Berkeley, CA, USA, 2012), NSDI’12, USENIX
Association, pp. 19–19.

[6] Atikoglu, B., Xu, Y., Frachtenberg, E.,
Jiang, S., and Paleczny, M. Workload
analysis of a large-scale key-value store. In
Proceedings of the 12th ACM
SIGMETRICS/PERFORMANCE Joint
International Conference on Measurement and
Modeling of Computer Systems (New York, NY,
USA, 2012), SIGMETRICS ’12, ACM, pp. 53–64.

[7] Attar, M. A., Crowcroft, J., Eggert, L.,
and Wehrle, K. Network Latency Control in

Data Centres (Dagstuhl Seminar 16281). Dagstuhl
Reports 6, 7 (2016), 15–30.

[8] Barker, S. K., and Shenoy, P. Empirical
evaluation of latency-sensitive application
performance in the cloud. In Proceedings of the
First Annual ACM SIGMM Conference on
Multimedia Systems (New York, NY, USA, 2010),
MMSys ’10, ACM, pp. 35–46.

[9] Barroso, L. A. Landheld Computing. In IEEE
International Solid State Circuits Conference
(ISSCC) (2014). Keynote.

[10] Belay, A., Prekas, G., Klimovic, A.,
Grossman, S., Kozyrakis, C., and Bugnion,
E. Ix: A protected dataplane operating system
for high throughput and low latency. In 11th
USENIX Symposium on Operating Systems
Design and Implementation (OSDI 14) (CO,
2014), USENIX Association, pp. 49–65.

[11] Bozkurt, I. N., Aguirre, A.,
Chandrasekaran, B., Godfrey, P. B.,
Laughlin, G., Maggs, B., and Singla, A.
Why Is the Internet so Slow?! Springer
International Publishing, 2017, pp. 173–187.

[12] Cheshire, S. It’s the Latency, Stupid, may 1996.
[Online; accessed July 2016].

[13] Cheshire, S. Bandwidth and latency: It’s the
latency, stupid (part 2). TidBITS (mar 1997).

[14] Dean, J., and Barroso, L. A. The tail at
scale. Commun. ACM 56, 2 (Feb. 2013), 74–80.

[15] Emmerich, P., Raumer, D., Wohlfart, F.,
and Carle, G. A study of network stack latency
for game servers. In 13th Annual Workshop on
Network and Systems Support for Games (Dec
2014), pp. 1–6.

[16] Faisal, A., Petriu, D., and Woodside, M.
Network latency impact on performance of
software deployed across multiple clouds. In
Proceedings of the 2013 Conference of the Center
for Advanced Studies on Collaborative Research
(2013), CASCON ’13, pp. 216–229.

[17] Gao, P. X., Narayan, A., Karandikar, S.,
Carreira, J., Han, S., Agarwal, R.,
Ratnasamy, S., and Shenker, S. Network
requirements for resource disaggregation. In
Proceedings of the 12th USENIX Conference on
Operating Systems Design and Implementation
(Berkeley, CA, USA, 2016), OSDI’16, USENIX
Association, pp. 249–264.

[18] Ghiasi, A., Baca, R., Quantum, G., and
Commscope, L. Overview of largest data
centers. In Proc. 802.3 bs Task Force Interim
meeting (may 2014).

[19] Grosvenor, M. P., Schwarzkopf, M., Gog,
I., Watson, R. N. M., Moore, A. W., Hand,
S., and Crowcroft, J. Queues don’t matter

12

when you can jump them! In Proceedings of the
12th USENIX Conference on Networked Systems
Design and Implementation (Berkeley, CA, USA,
2015), NSDI’15, USENIX Association, pp. 1–14.

[20] Guo, C., Yuan, L., Xiang, D., Dang, Y.,
Huang, R., Maltz, D., Liu, Z., Wang, V.,
Pang, B., Chen, H., Lin, Z.-W., and Kurien,
V. Pingmesh: A large-scale system for data
center network latency measurement and analysis.
In Proceedings of the 2015 ACM Conference on
Special Interest Group on Data Communication
(New York, NY, USA, 2015), SIGCOMM ’15,
ACM, pp. 139–152.

[21] Hemminger, S. NetEm - Network Emulator.
http://man7.org/linux/man-pages/man8/

tc-netem.8.html. [Online; accessed January
2017].

[22] Hofeld, T., and Fiedler, M. The unexpected
qoe killer: When the network emulator misshapes
traffic and qoe. In 2015 Seventh International
Workshop on Quality of Multimedia Experience
(QoMEX) (May 2015), pp. 1–6.

[23] Jang, K., Sherry, J., Ballani, H., and
Moncaster, T. Silo: Predictable message
latency in the cloud. In Proceedings of the 2015
ACM Conference on Special Interest Group on
Data Communication (New York, NY, USA,
2015), SIGCOMM ’15, ACM, pp. 435–448.

[24] Jose, J., Subramoni, H., Luo, M., Zhang,
M., Huang, J., ur Rahman, M. W., Islam,
N. S., Ouyang, X., Wang, H., Sur, S., and
Panda, D. K. Memcached design on high
performance rdma capable interconnects. In 2011
International Conference on Parallel Processing
(Sept 2011), pp. 743–752.

[25] Jurgelionis, A., Laulajainen, J.-P.,
Hirvonen, M., and Wang, A. I. An empirical
study of netem network emulation functionalities.
In Computer Communications and Networks
(ICCCN), 2011 Proceedings of 20th International
Conference on (2011), IEEE, pp. 1–6.

[26] Kapoor, R., Porter, G., Tewari, M.,
Voelker, G. M., and Vahdat, A. Chronos:
Predictable low latency for data center
applications. In Proceedings of the Third ACM
Symposium on Cloud Computing (New York, NY,
USA, 2012), SoCC ’12, ACM, pp. 9:1–9:14.

[27] Kim, J. K., Ho, Q., Lee, S., Zheng, X., Dai,
W., Gibson, G. A., and Xing, E. P. Strads: A
distributed framework for scheduled model
parallel machine learning. In Proceedings of the
Eleventh European Conference on Computer
Systems (New York, NY, USA, 2016), EuroSys
’16, ACM, pp. 5:1–5:16.

[28] Leverich, J., and Kozyrakis, C. Reconciling

high server utilization and sub-millisecond
quality-of-service. In Proceedings of the Ninth
European Conference on Computer Systems (New
York, NY, USA, 2014), EuroSys ’14, ACM,
pp. 4:1–4:14.

[29] Li, M., Andersen, D. G., Park, J. W.,
Smola, A. J., Ahmed, A., Josifovski, V.,
Long, J., Shekita, E. J., and Su, B.-Y.
Scaling distributed machine learning with the
parameter server. In Proceedings of the 11th
USENIX Conference on Operating Systems
Design and Implementation (Berkeley, CA, USA,
2014), OSDI’14, USENIX Association,
pp. 583–598.

[30] Liddle, J. Amazon found every 100ms of latency
cost them 1% in sales., aug 2008.

[31] Low, Y., Bickson, D., Gonzalez, J.,
Guestrin, C., Kyrola, A., and Hellerstein,
J. M. Distributed graphlab: A framework for
machine learning and data mining in the cloud.
Proc. VLDB Endow. 5, 8 (Apr. 2012), 716–727.

[32] Marinos, I., Watson, R. N., and Handley,
M. Network stack specialization for performance.
In Proceedings of the 2014 ACM Conference on
SIGCOMM (2014), SIGCOMM ’14, ACM,
pp. 175–186.

[33] Maynard-Koran, P. Fixing the Internet for
real time applications: Part II, feb 2016.

[34] Meng, X., Bradley, J., Yavuz, B., Sparks,
E., Venkataraman, S., Liu, D., Freeman, J.,
Tsai, D., Amde, M., Owen, S., Xin, D., Xin,
R., Franklin, M. J., Zadeh, R., Zaharia,
M., and Talwalkar, A. Mllib: Machine
learning in apache spark. J. Mach. Learn. Res.
17, 1 (Jan. 2016), 1235–1241.

[35] Mogul, J. C., and Kompella, R. R. Inferring
the network latency requirements of cloud
tenants. In Proceedings of the 15th USENIX
Conference on Hot Topics in Operating Systems
(Berkeley, CA, USA, 2015), HOTOS’15, USENIX
Association, pp. 24–24.

[36] Nikolaou, C., Zilberman, N., and Moore,
A. W. Characterization of network tools for
traffic generation and traffic capture. In
Proceedings of ACM Internet Measurement
Conference (IMC) (2017), ACM.

[37] Ousterhout, K., Rasti, R., Ratnasamy, S.,
Shenker, S., and Chun, B.-G. Making sense of
performance in data analytics frameworks. In
Proceedings of the 12th USENIX Conference on
Networked Systems Design and Implementation
(Berkeley, CA, USA, 2015), NSDI’15, USENIX
Association, pp. 293–307.

[38] Patterson, D. A. Latency lags bandwidth.
Commun. ACM 47, 10 (Oct. 2004).

13

[39] Rumble, S. M., and et al.. It’s time for low
latency. In HotOS’13 (2011), USENIX
Association, pp. 11–11.

[40] Schroeder, B., Wierman, A., and
Harchol-Balter, M. Open versus closed: A
cautionary tale. In Proceedings of the 3rd
Conference on Networked Systems Design &
Implementation - Volume 3 (Berkeley, CA, USA,
2006), NSDI’06, USENIX Association, pp. 18–18.

[41] Shaikh, J., Minhas, T. N., Arlos, P., and
Fiedler, M. Evaluation of delay performance of
traffic shapers. In Security and Communication
Networks (IWSCN), 2010 2nd International
Workshop on (2010), IEEE, pp. 1–8.

[42] Singla, A., Chandrasekaran, B., Godfrey,
P. B., and Maggs, B. The internet at the speed
of light. In Proceedings of the 13th ACM
Workshop on Hot Topics in Networks (2014),
HotNets-XIII, ACM, pp. 1:1–1:7.

[43] Singla, A., Chandrasekaran, B., Godfrey,
P. B., and Maggs, B. The internet at the speed
of light. In Proceedings of the 13th ACM
Workshop on Hot Topics in Networks (New York,
NY, USA, 2014), HotNets-XIII, ACM,
pp. 1:1–1:7.

[44] Su, A. J., Choffnes, D. R., Kuzmanovic, A.,
and Bustamante, F. E. Drafting behind
akamai: Inferring network conditions based on
cdn redirections. IEEE/ACM Transactions on
Networking 17, 6 (Dec 2009), 1752–1765.

[45] Tibshirani, R. Regression shrinkage and
selection via the lasso: a retrospective. Journal of
the Royal Statistical Society: Series B (Statistical
Methodology) 73, 3 (2011), 273–282.

[46] Wang, G., and Ng, T. S. E. The impact of
virtualization on network performance of amazon
ec2 data center. In Proceedings of the 29th
Conference on Information Communications
(Piscataway, NJ, USA, 2010), INFOCOM’10,
IEEE Press, pp. 1163–1171.

[47] Wei, J., Dai, W., Qiao, A., Ho, Q., Cui, H.,
Ganger, G. R., Gibbons, P. B., Gibson,
G. A., and Xing, E. P. Managed
communication and consistency for fast
data-parallel iterative analytics. In Proceedings of
the Sixth ACM Symposium on Cloud Computing
(New York, NY, USA, 2015), SoCC ’15, ACM,
pp. 381–394.

[48] Xu, F., Liu, F., Jin, H., and Vasilakos,
A. V. Managing performance overhead of virtual
machines in cloud computing: A survey, state of
the art, and future directions. Proceedings of the
IEEE 102, 1 (2014), 11–31.

[49] Xu, Y., Musgrave, Z., Noble, B., and
Bailey, M. Bobtail: Avoiding long tails in the

cloud. In Proceedings of the 10th USENIX
Conference on Networked Systems Design and
Implementation (Berkeley, CA, USA, 2013),
nsdi’13, USENIX Association, pp. 329–342.

[50] Zats, D., Das, T., Mohan, P., Borthakur,
D., and Katz, R. Detail: Reducing the flow
completion time tail in datacenter networks.
SIGCOMM Comput. Commun. Rev. 42, 4 (Aug.
2012), 139–150.

[51] Zhang, X., Tune, E., Hagmann, R., Jnagal,
R., Gokhale, V., and Wilkes, J. Cpi2: Cpu
performance isolation for shared compute clusters.
In Proceedings of the 8th ACM European
Conference on Computer Systems (2013),
EuroSys ’13, ACM, pp. 379–391.

[52] Zhu, T., Berger, D. S., and
Harchol-Balter, M. Snc-meister: Admitting
more tenants with tail latency slos. In Proceedings
of the Seventh ACM Symposium on Cloud
Computing (New York, NY, USA, 2016), SoCC
’16, ACM, pp. 374–387.

[53] Zilberman, N., Audzevich, Y., Covington,
G., and Moore, A. W. NetFPGA SUME:
Toward 100 Gbps as Research Commodity. IEEE
Micro 34, 5 (September 2014), 32–41.

[54] Zilberman, N., Grosvenor, M., Popescu,
D. A., Manihatty-Bojan, N., Antichi, G.,
Wojcik, M., and , Moore, A. W. Where has
my time gone? In Proceedings of the 18th
International Conference on Passive and Active
Measurement (2017), PAM 2017.

14

