
Emu: Rapid Prototyping of Networking Services

Nik Sultana†, Salvator Galea†, David Greaves†, Marcin Wójcik†, Jonny Shipton†,
Richard G. Clegg‡, Luo Mai§, Pietro Bressana∗, Robert Soulé∗, Richard Mortier†,

Paolo Costa], Peter Pietzuch§, Jon Crowcroft†, Andrew W. Moore†, Noa Zilberman†

†University of Cambridge, ‡Queen Mary University of London,
§Imperial College London, ∗University of Lugano,]Microsoft Research

Abstract

Due to their performance and flexibility, FPGAs are an
attractive platform for the execution of network func-
tions. It has been a challenge for a long time though
to make FPGA programming accessible to a large audi-
ence of developers. An appealing solution is to compile
code from a general-purpose language to hardware using
high-level synthesis. Unfortunately, current approaches
to implement rich network functionality are insufficient
because they lack: (i) libraries with abstractions for com-
mon network operations and data structures, (ii) bindings
to the underlying “substrate” on the FPGA, and (iii) de-
bugging and profiling support.

This paper describes Emu, a new standard library for
an FPGA hardware compiler that enables developers to
rapidly create and deploy network functionality. Emu al-
lows for high-performance designs without being bound
to particular packet processing paradigms. Furthermore,
it supports running the same programs on CPUs, in
Mininet, and on FPGAs, providing a better develop-
ment environment that includes advanced debugging ca-
pabilities. We demonstrate that network functions im-
plemented using Emu have only negligible resource and
performance overheads compared with natively-written
hardware versions.

1 Introduction
FPGAs are an attractive platform for implementing net-
work functions. They combine the flexibility of software
with the performance and predictability of hardware.
Major cloud service providers, such as Microsoft, Baidu,
and Amazon, already deploy FPGAs in their data centers
to accelerate internal and third-party workloads [36, 40],
and implement custom network services [8, 34].

Consequently, there has been significant interest in de-
veloping tools and techniques to simplify FPGA pro-

gramming and making FPGAs accessible to a larger frac-
tion of developers. A common approach is to use high-
level synthesis (HLS), which allows developers to pro-
gram FPGAs using a general-purpose language (GPL)
such as C, which is then compiled to a hardware descrip-
tion language (HDL), such as Verilog or VHDL.

Unfortunately, while high-level synthesis undoubtedly
simplifies FPGA development, HLS alone is not suffi-
cient to implement rich network functionality. Notably,
developers who wish to target FPGAs lack three key
components. First, they need library support compara-
ble to that in normal software programming, i.e., they
need access to re-usable modules and libraries that pro-
vide abstractions for common functions and data struc-
tures. Second, they require a binding to the underlying
“substrate” on the hardware. Unlike CPUs, on an FPGA,
there are usually no operating system (OS) and drivers
mediating access to hardware. Finally, they need support
for fine-grained debugging capabilities, akin to what is
available to software developers today.

We present Emu, a framework for network functions
on FPGAs. Emu builds on the Kiwi compiler [43] that
allows computational scientists to program FPGAs with
.NET code. The relationship with Emu to .NET/Kiwi
is roughly analogous to that of the stdlib to C/GCC—
Emu provides the implementation for essential network
functionality. Emu and HLS thus result in a powerful
substrate for developers to rapidly implement and deploy
network functions using a high-level language.

Moreover, Emu virtualizes the hardware context of the
network pipeline, allowing developers to write code that
is portable across different heterogeneous targets. Our
current implementation supports CPUs, simulation envi-
ronments, and FPGAs. Using Emu, developers can run
their network functions as normal processes, using vir-
tual or real NICs, and using network simulators, simpli-

fying debugging and testing. Emu also offers debugging
and profiling tools that enable developers to inspect the
behavior of the application at runtime.

While simplifying development is important, most
network operators are not willing to sacrifice perfor-
mance for ease-of-development. With Emu, develop-
ers can have both: Emu supports designs with differ-
ent performance metrics such as bandwidth, latency, or
operations-per-second.

Using Emu, we have created various prototype imple-
mentations of networking services, ranging from an L2
switch to a high-performance Memcached server [17].
Each service is expressed in C#, which can be trans-
formed to host or FPGA instantiations. The FPGA-
centered code, created from the C# compiler output and
transformed into Verilog executes, for our prototype, on
a NetFPGA SUME card [49].

Domain-specific languages such as P4 [5] or
ClickNP [26] are too low-level and are designed to sup-
port only specific tasks, e.g., packet processing. In con-
trast, Emu enables the development of a broader set of
services, leveraging its support for general-purpose pro-
gramming.

We compare the performance of Emu against
software-only and native Verilog implementations (§5).
Our results show that Emu-generated code significantly
outperforms software-only versions in terms of latency,
latency variance, and throughput, while having a negligi-
ble overhead compared to native implementations.

Overall, this paper makes the following contributions:
1. a “standard library” for network services, which

allows hardware network functions that go beyond
header processing to be written in C#. This enables
dynamic, conditional processing for network services
such as DNS and Memcached. The framework can be
customized for different performance metrics, and we
illustrate the tradeoffs involved;

2. an execution environment that supports running a sin-
gle codebase over heterogeneous targets, including
CPUs, network simulators, and FPGAs; and

3. debugging support that translates high-level idioms
for debugging, profiling, and monitoring into a low-
level language for controlling runtime program state.
Emu and all datasets used in this paper are publicly

available [15], and our FPGA designs will be contributed
to the NetFPGA community.

2 Motivation
The goal of Emu is to make it easy for software devel-
opers with no expertise in hardware languages to quickly
develop, test, and deploy network services on an FPGA.

Using Emu, application developers can offload network
logic to hardware with only modest effort.

The main reason for moving network services from
the CPU to FPGAs is increased performance, as demon-
strated by existing applications [24, 46, 47]. Mov-
ing network functions to hardware also saves CPU cy-
cles, which would otherwise be spent in polling the
network interface card (NIC), as typically done in
high-performance packet-processing frameworks such as
DPDK [52] or netmap [37].

Different data center services, however, have different
performance goals. Some applications are throughput-
sensitive, e.g., a streaming service, while for others la-
tency is the primary concern [11]. Further, in some cases,
latency can be an indirect contributor to low application
performance [21]. For example, in Memcached, even
tens of microseconds are sufficient to drop the number
of queries-per-second significantly [50]. By providing
a set of suitable abstractions and APIs, Emu allows de-
velopers to optimize towards their preferred performance
metric such as ease-of-coding, throughput, or latency.

Our approach can be seen as an example of network
paravirtualization: it allows high-level network primi-
tives to be compiled to the paravirtualized hardware (e.g.,
FPGA or CPU) via the Emu framework. This has the po-
tential to foster innovation at the NIC level, with ven-
dors adding custom logic to natively support some of
our high-level APIs. Our library can then be extended
to map API calls such as those communicating packets,
or doing novel data manipulation (e.g., match-action ta-
ble processing such as longest-prefix matching, hash and
checksum computation, and other conditional operations
at line-rate) to custom hardware blocks when available
and to rely on paravirtualization, otherwise.

While many consider the translation from a general-
purpose language to a hardware language to be the main
challenge, there is another important obstacle, namely
providing support for debugging an application. Debug-
ging FPGA programs requires the use of hardware-level
simulators [32, 42] or probing tools [12], and most net-
work service developers are unfamiliar with these tools.
Emu addresses this problem on two levels: (i) it allows
application code to be run in a x86 runtime environment.
This enables developers to verify and debug the func-
tionality of their code, speeding up the development pro-
cess; (ii) it provides debugging, monitoring, and profiling
tools for the application while running on the hardware.
It does this by offering familiar GPL-like abstractions,
fitting application developers’ capabilities.

Previous work tried to address only a subset of these
challenges, as we summarize in Table 1. Past solu-

Solution What is it? Target Processing Language Performance Debug Compiler to
Applications Paradigm Metric Environment1 Verilog

Emu “Standard Networking Any .NET User defined x86, Mininet Kiwi
library” applications (see §3.2) and Emu env.

Kiwi Compiler and Scientific Any .NET Execution x86 Kiwi
libraries applications time/area

Vivado Compiler and Scientific Any C, C++, Throughput C simulation Vivado
HLS libraries applications System C HLS
SDNet Programming Networking Packet PX/P4 Throughput C++ simulation SDNet

environment applications processing
P4 Programming Networking Packet P4 Throughput P4 behavioral P4 compiler, then

language applications processing simulator, Mininet P4FPGA/SDNet.
ClickNP Programming Networking Packet ClickNP Throughput Undefined ClickNP, then

language/model applications processing Altera OpenCL
or Vivado HLS

1Excluding RTL simulators, accessible on the HDL level to all solutions

Table 1: Comparison between different representative solutions for enabling networking services in hardware

tions either focus on packet processing applications ex-
clusively (e.g., P4 [5] and ClickNP [26]) or target sci-
entific applications only without providing abstractions
appropriate for networking (e.g., Kiwi and Vivado HLS).
Emu tackles both challenges, while combining additional
advantages: supporting a heterogeneous debug environ-
ment, as well as user-defined optimizations for perfor-
mance.

Interestingly, while Vivado HLS specifies latency as a
performance metric, this refers to increasing parallelism
within the design, rather than network latency metrics.
An example showing how increasing parallelism adds to
latency is given in §5.3.

3 Emu framework
With Emu, developers can use a general-purpose lan-
guage to implement high-performance network functions
that run on FPGAs. The Emu runtime provides an ab-
stract target environment, and a library of functionality
that can execute on both CPUs and FPGAs, simplifying
debugging and deployment. Moreover, Emu provides an
interface to intellectual property (IP) blocks, i.e., spe-
cialized modules that take advantage of hardware fea-
tures (§3.4). This further abstracts away the details of
hardware development. Next, we present an overview of
the Emu framework, and describe a typical workflow.

3.1 Background

Emu combines and extends several existing components,
including the Kiwi compiler for HLS, and NetFPGA [49]

as a hardware target. Note that Emu is not strictly de-
pendent on these specific components—one could use a
different HLS compiler or network-attached FPGA.

Kiwi. Originally designed to support scientific comput-
ing applications, the Kiwi compiler transforms the target
language of .NET compilers, i.e., the common interme-
diate language (CIL), into a register-transfer level (RTL)
description of hardware in Verilog [43]. The Verilog out-
put can then be used to configure FPGAs. We apply Kiwi
to the domain of network services and extend it to sup-
port networking operations. Emu provides a library to
facilitate the development of network functions, and in-
cludes some improvements to Kiwi as described in §3.2.

NetFPGA SUME [49] is the latest generation in the
NetFPGA family, and provides a low-cost, FPGA-
centered PCIe hardware platform for research and ed-
ucation. Alongside several packet-centered reference
projects (e.g., an IPv4 router, Ethernet switch, and
NIC), NetFPGA has provided the base platform to pro-
totype a variety of high-performance hardware designs
for network-centered applications, the best example be-
ing prototype hardware for OpenFlow SDN [33].

3.2 Kiwi extensions
Emu provides the following functionality on top of Kiwi:
(i) we add support for IP blocks, as defined in §3.4. Al-
though Emu readily generates instances of various com-
ponents, such as RAMs, ALUs and format converters,
we add new support for easily instantiating other IP
blocks; (ii) the second extension is needed to mix hard

Software development workflow

(C#)

(Verilog)

(.NET CIL)A2 Compile

(Bitstream)

B2 Simulate

B3 Synthesis

Hardware development workflow

A2 : Mono
B1 : Kiwi
B3 : Xilinx Vivado

Compiler Legend

A1 Write A3 Run A4 Test

B1 Compile

C1 Run C2 Test

Figure 1: Components of the Emu framework

and soft timing. Kiwi is designed for scientific acceler-
ation, giving it complete freedom over the schedule of
operations, which is especially important for multi-cycle
floating-point ALU operations. To support the hard tim-
ing, cycle-accurate, requirements of network services,
Kiwi’s scheduler is adapted and paused in parts of the
design; (iii) a third extension is the support for casting
a byte or a word array into a struct, so that various bit
fields take on names and types. C# supports this in the
unsafe dialect, but the KiwiC version used by Emu only
accepts the strongly-typed safe subset of C#; (iv) finally,
the largest primitive datatype in C# is the 64-bit word.
To achieve higher performance, we require wider I/O
busses. Emu defines user types for larger words and pro-
vides overloads for all of the arithmetic operators needed.

3.3 Emu overview
Figure 1 shows the main components of the Emu frame-
work, which include: (i) a library tailored to network
functions; (ii) runtime support for running C#-coded net-
work programs on a CPU; and (iii) library support for
developing and debugging programs. Steps A1, A2,
A3 and A4 show the standard C# compilation to byte-
code and running/testing on a CPU. B1 uses Kiwi (and
Emu extensions) to compile from .NET CIL to Verilog.
Steps B2 and B3 (using the NetFPGA framework and the
Xilinx compiler) output a bitstream that can be executed
on NetFPGA, and this is run and tested in hardware in
steps C1 and C2.

Emu extends Kiwi by offering library support cus-
tomized to the networking domain. Kiwi also provides
a “substrate” to support programs that it compiles—the
substrate serves as a runtime library for those programs
and Emu extends this substrate.

Developers describe a network service in terms of
what it does to packets sent and received through net-

1 // If the frame does not contain an IPv4 packet then we do
not set its output port; this implicitly drops the
frame.

2 if (dataplane.tdata.EtherType_Is(EtherTypes.IPv4))
3 {
4 // Configure the metadata such that if we have a hit

then set the appropriate output port in the
metadata, otherwise broadcast.

5 if (dstmac_lut_hit) {
6 NetFPGA.Set_Output_Port(ref dataplane, lut_element_op)

;
7 } else {
8 NetFPGA.Broadcast(ref dataplane);
9 }

10 }
11 Kiwi.Pause();
12

13 // Add source MAC to our LUT if it's not already there,
thus the switch "learns".

14 if (!srcmac_lut_exist)
15 {
16 LUT[free] = srcmac_port;
17 free = (free > (LUT_SIZE - 1)) ? 0 : free++;
18 }

Figure 2: Part of a switch implementation, showing use
of our API for protocols (Line 2) and NetFPGA (Line 6)

work logical ports, which are attached at runtime to net-
work interfaces made available by the OS. The interfaces
may be physical or virtual (e.g., a tap device). Emu pro-
vides a library and runtime support so developers can
quickly test prototypes of network functions written in
high-level languages. Layers of abstraction between the
.NET runtime and the OS provide virtual/physical net-
work interfaces. By using virtual interfaces, developers
can test network functions in a simulator.

3.4 Library features

Basic usage. Emu extends the C# code that can be com-
piled by Kiwi with a library of functions that provide
convenience (e.g., by defining frequently-used protocol
formats) and performance (e.g, by providing access to
carefully crafted IP blocks, see below). Thus any C#
code that can be compiled by Kiwi can be used in Emu.
An example snippet from our implementation of a switch
is provided in Figure 2. Most of the code is standard C#,
except for line 11, which controls Kiwi’s scheduling (see
below), and lines 2 and 6, which use utility functions.

Protocol parsing. Parsers for commonly-used packet
formats are available for reuse. As an example, Figure 3
shows the code to instantiate some of the parsers used in
the NAT implementation (§4.4). All parsers that may be
needed during runtime are instantiated on loading, and,
as the snippet shows, it can handle TCP over IPv4 over
Ethernet, as well as ARP over Ethernet.

Writing new parsers for custom protocols is straight-

1 var eth = new EthernetWrapper(dataplane.tdata);
2 var ip = new IPv4Wrapper(dataplane.tdata);
3 var tcp = new TCPWrapper(dataplane.tdata);
4 var arp = new ARPWrapper(dataplane.tdata);

Figure 3: Parsers for different protocol formats
1 public uint DestinationIPAddress
2 { get { return BitUtil.Get32(ips, 0); }
3 set { BitUtil.Set32(ref ips, 0, value); } }
4

5 public uint SourceIPAddress
6 { get { return BitUtil.Get32(ips, 4); }
7 set { BitUtil.Set32(ref ips, 4, value); } }

Figure 4: Parsing IPv4 headers

forward. Figure 4 shows how two IPv4 fields are manip-
ulated using standard C# programming style as well the
utility functions BitUtil.Get32 and BitUtil.Set32.

Using IP blocks. While C# provides an easy develop-
ment environment, to maximize the performance of a
design, it is sometime recommended to use specialized
IP blocks that take advantage of the hardware capabil-
ities, such content addressable memory (CAM) used in
some of our implementations. These blocks are accessi-
ble through the facilities of Kiwi, as mentioned in §3.2.

An example use of an IP block is a hashing mod-
ule. Figure 5 shows the C# implementation of the pro-
tocol required to seed a value (when the hash is used
in streaming mode). The protocol involves two sig-
nals, init_hash_ready and init_hash_enable, used
for handshaking, and a bundle of eight signals data_in
used for sending a byte to the core. We can implement
the handling of arbitrary protocols in C#, and this enables
us to interface with any IP block.

Multi-threading and scheduling control. Kiwi rein-
terprets concurrency primitives that are used when pro-
gramming software to improve its hardware generation.
It provides a thread-based concurrency library with two
type of semantics: (i) software semantics reduces to con-
currency primitives provided by .NET, while (ii) hard-
ware semantics forms logical circuits in which parallel
threads may be wired into parallel logical sub-circuits.

Using these types of semantics, .NET programs may
be executed on general-purpose x86 CPUs by using the
software semantics, or on FPGAs by using the logical
circuit semantics. In the latter case, Kiwi produces de-
scriptions with much finer parallelism than what is pos-
sible on software platforms, whose parallelism is at most
instruction-level. We take advantage of this and further
refine it to achieve maximal pipelining of projects.

For high performance, developers can also aid Kiwi in
scheduling computations across time using annotations,

1 public static void Seed(byte data_in)
2 {
3 while (init_hash_ready) { Kiwi.Pause(); }
4 PearsonHash.data_in = data_in;
5 init_hash_enable = true;
6 Kiwi.Pause();
7 while (!init_hash_ready) { Kiwi.Pause(); }
8 Kiwi.Pause();
9 init_hash_enable = false;

10 Kiwi.Pause();
11 }

Figure 5: Part of the wrapper for our hashing module
1 // Extract the frame from NetFPGA_Data into a byte array.
2 public static void Get_Frame (NetFPGA_Data src, ref byte[]

dst)
3 ...
4

5 // Move the contents of a byte array into the frame field
in NetFPGA_Data.

6 public static void Set_Frame (byte[] src, ref NetFPGA_Data
dst)

7 ...
8

9 // Read the input port (i.e., port on which we received the
frame).

10 public static uint Read_Input_Port (NetFPGA_Data dataplane)
11 ...
12

13 // Set the output port to a specific value. (i.e., the port
to which we are forwarding the frame.)

14 public static void Set_Output_Port (ref NetFPGA_Data
dataplane, ulong value)

15 ...

Figure 6: Utility functions for interacting with the FPGA
dataplane

as shown in line 11 in Figure 2. This breaks up compu-
tation and allows Kiwi to schedule a suitable amount of
computation in a single clock cycle by providing a cycle-
accurate notion where needed. If Kiwi schedules too lit-
tle computation, it is inefficient; if it schedules too much
computation, the implementation on the target FPGA de-
vice fails. Currently, Kiwi is target oblivious, i.e., it does
not have information about clock rates.

Utility functions. In addition to the purpose-specific
APIs described in previous sections, Emu also includes
general utility functions. These form a library of C#
code and are intended to help abstract unnecessary de-
tails, such as the functions listed in Figure 6 for inter-
acting with the FPGA target. One could have different
sets of such functions for different targets, e.g., without
changing the code for protocol parsing or IP blocks.

3.5 Debug-related features

Emu produces a debug environment by the systematic
extension of programs to interpret direction commands
at runtime to enable debugging, monitoring and profil-

1 if V_trace_idx < max_trace_idx then
2 V_trace_buf[V_trace_idx] := V;
3 inc V_trace_idx;
4 continue
5 else
6 inc V_trace_overflow;
7 break

Figure 7: Code that implements the direction command
“traceX max_trace_idx” (If the buffer is not full, the new
value of X is logged, the index incremented, and control
is returned to the program that hosts this code; otherwise,
it indicates depletion of the associated buffer resource
and break the program’s execution.)

ing. This design came about after we found ourselves
extending our ad hoc debugging and monitoring code to
support additional features. It is inspired by the com-
mands found in profilers and debuggers such as gdb.

Emu uses a language of direction com-
mands [44]. Figure 7 describes one such command,
“traceV max_trace_idx”, and shows how to express this
high-level direction command as a program executable
by a controller, with which Emu programs are extended
(see Figure 8).

Table 2 lists other supported high-level direction com-
mands. Commands are translated into programs that ex-
ecute on a simple controller embedded in the program.
We model the controller as a counters, arrays, and stored
procedures (CASP) machine, which refers to the con-
stituents of the machine’s memory.

Extending a C# program to support direction com-
mands involves inserting (i) named extension points
with runtime-modifiable code in a computationally weak
language (no recursion); and (ii) state used for book-
keeping by that code to implement direction features.

Debugging can also be conducted using direction
packets. Direction packets are network packets in a cus-
tom and simple packet format, whose payload consists
of (i) code to be executed by the controller; or (ii) sta-
tus replies from the controller to the director. It enables
us to remotely direct a running program, similar to gdb’s
“remote serial protocol” [18].

Emu minimizes the overhead that these features intro-
duce at runtime by extending a program (before compi-
lation) to support the precise set of required debugging
or profiling features. This frugality does not come at
the cost of inflexibility, however, because the extension
points at runtime can be reconfigured to perform differ-
ent debugging or profiling functions.

Controller DirectorProgram(Normal interaction
with external world)

Original program behaviour Hosted directability

Figure 8: Controller embedded into the program, acting
as the agent of the director (The director and controller
exchange commands and their outputs.)

3.6 Limitations
The main limitation of Emu when compared to HDLs is
the lack of low-level control over hardware designs, and
here Emu is partly limited by Kiwi’s capabilities. Kiwi
does not yet allow one to internalize instances of an HDL
module, and this forces Emu to interface with such mod-
ules instead of instantiating them.

In addition, Emu currently supports only a limited
number of protocols, but developers can extend the li-
brary to support more protocols (see Figure 4).

Finally, depending on the required performance, de-
velopers must be aware of the hardware that the design
is deployed on, or is interfacing with. For example, for a
given throughput, a wider I/O bus may be required.

4 Use cases
We have implemented different networking services to
demonstrate the benefits of Emu. These include forward-
ing (§4.1), measurement and monitoring (§4.2), perfor-
mance sensitive applications (§4.3), and more complex
applications such as NAT and caching (§4.4). The use
cases cover a range of network services, and can include
bespoke features, e.g., encryption schemes. The use case
implementations are available under an open-source li-
cense [15]. Some of the applications are also available as
contributed projects to the NetFPGA community, start-
ing with NetFPGA SUME release 1.4.0.

4.1 Packet forwarding

Learning switch. We implement a standard layer-2
learning switch, similar in functionality to the NetFPGA
SUME reference switch [45]. Beyond header process-
ing, which is a basic networking function, it provides an
example of how content addressable memory (CAM) is
implemented in Emu, and how a native FPGA IP CAM
block can be used. While the first option does not bur-
den developers with implementation details, the latter
provides better resource usage and timing performance.
A simplified version of our implementation is shown in
Figure 2. The full version is around 150 lines of C#, and
the resulting Verilog is around 500 lines.

Command Behaviour

print X Print the value of variable X from the source program.
break L 〈B〉 Activate a (conditional) breakpoint at the position of label L.
unbreak L Deactivate a breakpoint.
backtrace 〈$〉 Print the “function call stack”.
watch X 〈B〉 Break when X is updated and satisfies a given condition.
unwatch X Cancel the effect of the “watch” command.

count

 reads X 〈B〉 〈$〉
writes X 〈B〉 〈$〉
calls fname 〈B〉 〈$〉

 Count the reads or writes to a variable X , or the calls to a function fname.

trace

start X 〈B〉 〈$〉
stop X
clear X
print X
full X

Trace a variable, subject to a satisfied condition, and up to some length.
Stop tracing a variable.
Clear a variable’s trace buffer.
Print the contents of a variable’s trace buffer.
Check if a variable’s trace buffer is full.

Table 2: Directing commands (Note that count has similar subcommands to those of trace.)

L3–L4 filter. We provide a tool that emulates the
command-line parameter interface of IP tables [35]. In-
stead of modifying a Linux server’s filters, it generates
code that slots into our learning switch. This turns the
switch into a L3 filter over sets of IP addresses or proto-
cols (ICMP, UDP, and TCP), or an L4 filter over ranges
of TCP or UDP ports.

4.2 Measurement and monitoring

ICMP echo. We have implemented an ICMP echo server
to obtain two baselines: (i) a qualitative baseline on the
difficulty of implementing a simple network server, and
(ii) a quantitative baseline on how much time is saved by
avoiding the system bus, CPU, OS, and network stack.

TCP ping. Sometimes the network handles ICMP traf-
fic differently to the protocols used by applications such
as TCP and HTTP. For example, a faulty configuration
of the network may discard packets on some TCP ports
on a machine, but without affecting the reachability of
that machine through ICMP [22]. TCP ping involves a
simple reachability test by using the first two steps of the
three-way connection setup handshake. It is thus a more
complex extension of ICMP echo. Our implementation
is around 700 lines of C#, and the resulting Verilog is
around 1,200 lines.

4.3 Performance-sensitive applications

DNS. We provide a simple DNS server that supports
non-recursive queries. Our prototype supports resolution
queries from names (of length at most 26 bytes) to IPv4

addresses, but these constraints can be relaxed to handle
longer names and IPv6. If the queried name is absent
from the resolution table, the server informs the client
that it cannot resolve the name. Our implementation is
around 700 lines of C#, and the resulting Verilog around
1,200 lines. 1

Memcached [17] is a well-known distributed in-memory
key/value store that caches read results in memory to
quickly respond to queries. Its protocol uses a number
of basic commands such as GET (to retrieve a value asso-
ciated with the provided key), SET (to store a key/value
pair) and DELETE (to remove a key/value pair), and sup-
ports both ASCII and binary protocols.

Memcached is sensitive to latency, and even an extra
20 µs are enough to lose 25% throughput [50]. Our ini-
tial Memcached implementation with Emu focussed on
latency only and therefore supported only a limited ver-
sion of the protocol, allowing only GET/SET/DELETE us-
ing the binary protocol over UDP, with 6-byte keys and
8-byte values. We later experimented with different ex-
tensions of this design, adding support for the ASCII pro-
tocol, larger key/value sizes, and for the use of DRAM
and multiple CPU cores. These features introduce dif-
ferent trade-offs with respect to latency, throughput, and
functionality.

4.4 Other applications

NAT. We provide a network address translation (NAT)
service, supporting both UDP and TCP, which was im-

1It is a coincidence that the code length is the same as for the TCP
ping use case.

1 public class Data {
2 public bool matched = false;
3 public ulong result = 0;
4 }
5 public class LRU {
6 public static Data Lookup(ulong key_in) {
7 Data res = new Data();
8 ulong idx = HashCAM.Read(key_in);
9 if (HashCAM.matched) {

10 res.matched = HashCAM.matched;
11 res.result = NaughtyQ.Read(idx);
12 NaughtyQ.BackOfQ(idx);
13 }
14 return res;
15 }
16 public static void Cache(ulong key_in, ulong value_in) {
17 ulong idx = NaughtyQ.Enlist(value_in);
18 HashCAM.Write(key_in, idx);
19 }
20 }

Figure 9: Least-recently-used (LRU) cache in Emu

plemented by a second-year undergraduate student. The
implementation is written entirely in C#, without the use
of Verilog-based cores, and has less than 1,000 lines.

One of the advantages of Emu is that the same code
can run on multiple platforms, enabling a better develop-
ment cycle. We use the NAT service as a test case, com-
piling it to three different targets: software, Mininet [31],
and hardware.

Caching. One potential application that can benefit
from offloading to hardware is caching. For example,
SwitchKV [27] uses SDN-enabled switches to dynami-
cally route read requests to a cache if content is available.
This idea can be extended to directly implement a cache
in the data plane, reducing load on storage servers. Im-
plementing a cache in a DSL such as P4, however, would
be difficult, because the eviction logic must be managed
by the control plane. In contrast, with Emu, one can eas-
ily implement a look-aside, least-recently-used (LRU)
cache in a few lines, as shown in Figure 9.

5 Evaluation
Our evaluation of Emu has the following aims: (a) pro-
vide evidence that using Emu is beneficial in terms of
resources and performance, compared with other solu-
tions; and (b) explore if Emu can be used to implement
high-performance network services.

5.1 FPGA hardware
At the core of the NetFPGA SUME board is a Xilinx
Virtex-7 690T FPGA device. The memory subsystem
combines both static random access memory (SRAM)
and dynamic random access memory (DRAM). It sup-
ports up to 32 GB of RAM, and can run as a stand

10G Port

10G Port

10G Port

10G Port

PCIe & DMA

Input
Arbiter

Output
Queues

Main Logical Core

10G Port

10G Port

10G Port

10G Port

PCIe & DMA

Figure 10: NetFPGA reference pipeline (The input ar-
biter, logical core, and output queues form the data
plane.)

alone computing unit [23]. NetFPGA SUME’s native
frequency is 200 MHz.

The NetFPGA reference designs share a generic
FPGA architecture, shown in Figure 10, with multiple
physical interfaces surrounding a logical data-path. Emu
capitalizes on this generic NetFPGA design: we target
only the main logical core and build upon all other com-
ponents to be shared between services, thus requiring no
hardware expertise.

5.2 Experimental setup
Our experiments are conducted using a server with a sin-
gle 3.5 GHz Intel Xeon E5-2637 v4 CPU with 64 GB
DDR4 memory and a SuperMicro X10-DRG-Q mother-
board. The machine runs Ubuntu Linux 14.04 LTS with
the kernel version 3.13.0-106-generic. It has a dual port
10 GbE NIC (Intel 82599ES). The machine also includes
a NetFPGA SUME board for the performance compari-
son. We use an Endace DAG 9.2X2 card for accurate la-
tency measurements. All traffic is captured by the DAG
card and used to measure the latency of the device-under-
test (DUT) alone. The latency of the setup itself is mea-
sured first and deducted from all subsequent measure-
ments. For latency measurements, the server runs the
service pinned to a single CPU core with a warm cache.

For our throughput measurements, we use the Open
Source Network Tester (OSNT) [1] as the traffic source.
OSNT replays real traffic traces while modifying traf-
fic rate to find the maximum throughput (e.g. queries
per second). When testing, the server is configured to
achieve maximum throughput (e.g. using multiple CPU
cores), and this configuration changes between tests.

5.3 Comparison against hardware services
Next, we evaluate the immediate overheads of using Emu
and show that the resulting implementations are compa-
rable with native HDL designs.

Emu NetFPGA P4FPGA
reference

Logic resources 3509 2836 24161
Memory resources 118 87 236
Module latency 8 cycles 6 cycles 85 cycles
Throughput (Mpps) 59.52 59.52 53

Table 3: Comparison between Emu switch (C#),
NetFPGA reference switch (Verilog), and P4FPGA
switch (P4), using 64 byte packets

We compare the Emu learning switch, written in C#
and compiled using Kiwi, with the NetFPGA SUME ref-
erence switch written directly in Verilog. We further ex-
tend this comparison to a similar design, written in P4
and compiled to NetFPGA SUME [47]. We do not com-
pare with SDNet [39], as done by Dang et al. [10], be-
cause P4FPGA has better reported performance. As pre-
vious work [47], we use 256-entry tables.

Table 3 shows the resources consumed by the main
logical core in each design. These results confirm that the
resource overhead is minimal, making Emu an attractive
solution. Furthermore, out of the reported resources con-
sumed by Emu core, 85% are used by the CAM, which
is an IP block, and only 15% by the C# generated logic.
We note that, in all our use cases, the FPGA resources
are never exhausted, and consume less than 33% of the
logic resources, including the debug controller.

In terms of latency, Emu has only a minor overhead
over the main logical core in the NetFPGA SUME ref-
erence switch design. In comparison to P4FPGA, Emu
provides much lower latency than the compared design,
mostly because Emu is not bounded by the match/ac-
tion paradigm. In terms of throughput, instead, while
P4FPGA achieves 53 Mpps for 64 byte packets using a
250 MHz clock, and a header parser for every port, Emu
achieves full line rate (59.52 Mpps) using a 200 MHz
clock and a single header parser.

Unfortunately, the authors of ClickNP [26] do not
provide enough information, such as the FPGA clock
rate, which would allow for a fair comparison with Emu.
However, their reported packet-processing rate for simi-
lar applications (e.g., a firewall with 56 Mpps) is on par
with Emu, as is the latency (e.g., 11 cycles for L4 Parser).
In terms of resource usage, ClickNP has a resource uti-
lization of 0.9× compared with the NetFPGA reference
design’s header parser (resp. 3.2× for a multi-threaded
design). Emu’s resource utilization, instead, is 0.7×with
a single-thread design (1.2× with a multi-thread design).

5.4 Comparison against software services

In the previous section, we compared against equiva-
lent implementations running on FPGAs. Now, we ex-
plore the performance of the different use cases from §4
against software-based, Linux native counterparts.

Setup. ICMP Echo and TCP Ping are used to evaluate
the performance of a simple networking operation. We
measure the round-trip time (RTT) required to reply to
a request of the DUT alone. Latency measurements are
performed for 100K packets. We configure NAT as a
gateway to/from the local network, and measure the la-
tency between an input interface from the external net-
work and an output interface to the local one.

The Memcached evaluation uses the memaslap bench-
mark [30], configured to use a mix of 90% GET and
10% SET requests with random keys. The Emu Mem-
cached implementation uses UDP and the ASCII pro-
tocol. We compare against a Linux Memcached server
with 4 threads and 64 MB of memory, also running the
UDP and ASCII protocols.

Results. We show the latency and throughput results
in Table 4. Across all use cases, Emu achieves a re-
duction in latency from one to three orders of magni-
tude. Most importantly, unlike the host-based implemen-
tations, Emu’s services exhibit a very short tail latency.
This is particularly important as in distributed applica-
tions the application performance is often bound by the
tail latency [11]. This means that not only Emu yields
very low latency but it also guarantees predictable per-
formance. In contrast, host-based implementations suf-
fer from unpredictable delays and interrupts across the
stack and exhibit a much higher variability with the tail-
to-average ratio variying from 1.09 to 2.98 (resp. from
1.02 to 1.04 for Emu).

Emu also significantly outperforms host-based solu-
tion in term of throughput with improvements ranging
from a factor of 2.1 up to a factor of 5.2. Interest-
ingly, these results were obtained using a single-threaded
Emu’s configuration and could be further improved by
instantiating multiple Emu cores. For example, in the
Memcached usecase, using four Emu cores (one per port)
further increases by 3.7× when considering a workload
of 90% GET and 10% SET requests. SET requests must
be applied to all instances, thus their relative ratio in per-
formance cannot improve. The downside is that such an
approach requires changes to the main logical core wrap-
per in NetFPGA SUME.

Optimizations. Further extending the above use cases
can be done in different ways. For Memcached, it is pos-
sible to increase the memory available to Emu, using ei-

Network Emu Host
service Average 99th-perc. Throughput Average 99th-perc. Throughput

latency (µs) latency (µs) (million queries/s) latency (µs) latency (µs) (million queries/s)

ICMP Echo 1.09 1.11 3.226 12.28 22.63 1.068
TCP Ping 1.27 1.29 2.105 21.79 65.00 1.012
DNS 1.82 1.86 1.176 126.46 138.33 0.226
NAT 1.32 1.34 2.439 2444.76 6185.27 1.037
Memcached 1.21 1.26 1.932 24.29 28.65 0.876

Table 4: Comparison between services running on a host and Emu-based services (C#)

ther on-board or on-chip memory. On-board memory,
e.g., using the DDR3 DRAM memory modules on NetF-
PGA SUME, has a size advantage, but the disadvantage
of increased and variable latency (e.g., due to DRAM re-
freshes); on-chip memory has the benefit of low, con-
stant latency, but is of smaller size. While NetFPGA
SUME has 51 MB of on-chip memory, devices such as
Xilinx Ultrascale+ have up to 65 Gbit on-chip, providing
a solution at much larger scale. Further scaling can be
achieved by using the Emu-based design as a (large) L1
cache, bounded to a few GBs, where cache misses are
sent to a host [46] and implemented using the NetFPGA.

5.5 Debugging
We extend the DNS and Memcached use cases in two
ways: (i) adding code to check if a received packet is
a direction packet intended for the controller (see Fig-
ure 11), in which case the controller (and not the origi-
nal program) processes the packet; (ii) adding an exten-
sion point in the body of the (DNS or Memcached) main
loop, allowing us to influence and observe the program
from that point onwards. We form an enumerated type
that corresponds to the program variables whose values
the controller may access and change. The code for each
value of the enumerated type refers to the program value,
e.g., instructing the controller to increment it.

We evaluate Emu’s debug environment by carrying out
a quantitative analysis of the impact that the controller
has on the program in which it is embedded. We mea-
sure this impact in terms of utilization of resources on
the FPGA and the performance of the host program.

Table 5 shows the utilization and performance for
DNS and Memcached, respectively, extended with dif-
ferent controller features: reading, writing, and incre-
menting a variable. The impact on utilization and perfor-
mance is small, and dominated by the controller logic,
rather than specific-purpose and runtime-programmable
registers. Utilization improvements are due to the op-

Program
Packet in

Packet out
Controller

Program

Figure 11: Transformation of the program to include a
controller (Normal packets are handled without change,
but direction packet are passed to the controller. Pink
dots represent extension points, one of which is added
within the control flow of the original program.)

timization process during the place-and-route state in
hardware generation; occasionally this results in more
utilization-efficient allocations.

An example of using directed packets is the debug
process of our Memcached implementation. The Mem-
cached service running on hardware replied with an error
message, while no problem was detected in simulation.
Using directed packets, we examined the Memcached
service: directing the packets to report the checksum cal-
culated within Emu revealed a bug in the checksum im-
plementation and simulation environment.

5.6 Summary

Our evaluation demonstrates the advantages of Emu:
(i) hardware resource usage is significantly lower than
that of other approaches, adding only modest overhead
when compared with bespoke HDL-only designs; (ii) the
latency overhead is small compared to HDL designs and
is similar to or better than that of other baselines; (iii) the
overhead from the debug extensions is negligible, mak-
ing Emu an attractive debug environment.

Our results also show an important advantage of Emu
over host-based solutions: while absolute performance
always depends on the CPU cores, memory bandwidth
and frequency, FPGAs enjoy the benefit of predictability.

Artefact Utilization (%) Performance (%)

Logic
Latency Queries-

per-sec

DNS 100.0 100.0 100.0
+R 103.4 100.0 100.0

+W 115.1 99.5 100.0
+I 109.8 99.5 100.0

Memcached 100.0 100.0 100.0
+R 99.2 100.0 100.0

+W 99.8 100.5 100.0
+I 100.6 100.0 100.0

Table 5: Profile of utilization and performance (Read,
Write, and Increment are instructions supported by the
controller. Latency is compared at the 99th percentile.)

The median latency of our designs is both 10× lower
than the median of the host-based solutions, with a small
variance. While the difference between the median and
99th percentile is less than 200 ns for Emu, for host-based
designs the variance is in the order of microseconds to
tens of microseconds. This not only improves RTT and
flow-completion times, but it also enables users to better
schedule resources as they know when a reply is due.

6 Related work

FPGAs are increasingly deployed inside data centers,
and their performance is getting closer to specialized
hardware [51]. Recently there has been a large body
of work on how to offload critical network and applica-
tion services to FPGAs [2, 13, 14, 16, 24, 25, 36, 41, 48].
All of these proposals, however, leverage HDLs, making
them unsuitable for the majority of developers who lack
hardware skills. Emu addresses this issue by removing
most of the challenges related to hardware programming
and making FPGAs accessible to non-hardware experts,
while retaining high performance.

We are not the first to target this goal and in the past
there have been many efforts to make programming FP-
GAs easier, e.g., using a DSL [6, 7, 9, 38, 39], including
network-specific ones [3, 5, 26]. These DSLs typically
have a narrow scope and limit the performance or abil-
ity to implement certain network services. For example,
P4 [5] is a popular DSL for packet processing that sup-
ports compilation to hardware including FPGAs. How-
ever, it is only applicable to tasks that can be processed
by parse-match-action style systems. LINQits [9] pro-
poses a tool chain that compiles an embedded query lan-
guage (LINQ) into various platforms, including FPGAs,
but it is specialized for answering queries and would
require considerable adaptation to perform networking

tasks. In contrast, Emu does not restrict the set of net-
work services that can be implemented and offers a more
general programming environment.

High-level synthesis (HLS) tools [28] generate HDL
from high-level languages such as Scala, or Java (using
Lime [4]), but they do not offer specific support for net-
work programming. One exception is the Maxeler MPC-
N system [29], which provides a “dataflow engine” to
offload network computations to hardware. The engine
runs kernels that are programmed using a subset of Java,
and proprietary tooling. This approach, however, targets
a proprietary hardware platform and lacks the ability to
run seamlessly on both CPU and FPGAs. Conversely,
Emu makes few assumptions about the underlying hard-
ware and can be ported to different FPGAs. In addition,
Emu’s support for executing programs on a CPU and
in simulation, combined with its advanced monitoring
and profiling capabilities, greatly simplifies debugging
of network programs.

The work in this paper is based on Kiwi [20, 43]. In
previous work, Kiwi was used to distribute an application
across network-connected hosts [19], but the network-
related code was simple and had to be written from the
ground up, because it lacked the “standard library” ab-
stractions and debugging support provided by Emu.

7 Conclusion
Although the performance and availability of pro-
grammable network hardware has increased, making ef-
fective use of it remains beyond the reach of most devel-
opers. We have presented Emu, a framework that en-
ables application developers to write network services
in a high-level language (C#) and have them automati-
cally compiled to execute across a number of platforms,
including traditional CPUs (x86), simulation environ-
ments (Mininet), and an FPGA platform (NetFPGA),
without compromising on performance.

We showed that the performance of Emu-based net-
work services exceeds software-based solutions and is on
par with native HDL implementations. Implementations
on Emu permits services to run on different targets, sup-
port better debug capabilities and allow for easier transi-
tion of workloads among targets.

Acknowledgements. We thank Gordon Brebner, Han Wang,
Matthew P. Grosvenor, the anonymous reviewers, and our shep-
herd, Christopher Rossbach. We acknowledge the support from
the UK Engineering and Physical Sciences Research Coun-
cil (EPSRC) (EP/K032968/1, EP/K034723/1, EP/K031724/2,
and an UROP grant), Leverhulme Trust (ECF-2016-289) and
Newton Trust, EU H2020 SSICLOPS (644866), SNF (166132)
and a Google Faculty Research Award.

References
[1] Gianni Antichi, Muhammad Shahbaz, Yilong Geng, Noa

Zilberman, Adam Covington, Marc Bruyere, Nick McKe-
own, Nick Feamster, Bob Felderman, Michaela Blott, An-
drew W. Moore, and Philippe Owezarski. OSNT: Open
source network tester. IEEE Network, 28(5):6–12, 2014.

[2] Shadi Atalla, Andrea Bianco, Robert Birke, and Lucado
Giraudo. NetFPGA-based load balancer for a multi-stage
router architecture. In World Congress on Computer Ap-
plications and Information Systems, pages 1–6. IEEE, Jan
2014.

[3] Michael Attig and Gordon Brebner. 400 Gb/s Pro-
grammable Packet Parsing on a Single FPGA. In Sym-
posium on Architectures for Networking and Communi-
cations Systems, pages 12–23. IEEE Computer Society,
2011.

[4] Joshua Auerbach, David F. Bacon, Perry Cheng, and Ro-
dric Rabbah. Lime: A Java-compatible and Synthesiz-
able Language for Heterogeneous Architectures. In Ob-
ject Oriented Programming Systems Languages and Ap-
plications, pages 89–108. ACM, 2010.

[5] Pat Bosshart, Dan Daly, Glen Gibb, Martin Izzard, Nick
McKeown, Jennifer Rexford, Cole Schlesinger, Dan Ta-
layco, Amin Vahdat, George Varghese, and David Walker.
P4: Programming protocol-independent packet proces-
sors. ACM SIGCOMM Computer Communication Re-
view, 44(3):87–95, 2014.

[6] Gordon Brebner and Weirong Jiang. High-speed packet
processing using reconfigurable computing. IEEE Micro,
34(1):8–18, 2014.

[7] Kevin J Brown, Arvind K Sujeeth, HyoukJoong Lee,
Tiark Rompf, Hassan Chafi, Martin Odersky, and Kunle
Olukotun. A heterogeneous parallel framework for
domain-specific languages. In Parallel Architectures and
Compilation Techniques, pages 89–100. IEEE, Oct 2011.

[8] Adrian Caulfield, Eric Chung, Andrew Putnam, Hari
Angepat, Jeremy Fowers, Michael Haselman, Stephen
Heil, Matt Humphrey, Puneet Kaur, Joo-Young Kim,
Daniel Lo, Todd Massengill, Kalin Ovtcharov, Michael
Papamichael, Lisa Woods, Sitaram Lanka, Derek Chiou,
and Doug Burger. A Cloud-Scale Acceleration Architec-
ture. In International Symposium on Microarchitecture.
IEEE, Oct 2016.

[9] Eric S. Chung, John D. Davis, and Jaewon Lee. Lin-
qits: Big data on little clients. SIGARCH Comput. Archit.
News, 41(3):261–272, June 2013.

[10] Huynh Tu Dang, Pietro Bressana, Han Wang, Ki-Suh
Lee, Hakim Weatherspoon, Marco Canini, Fernando Pe-
done, and Robert Soulé. Network hardware-accelerated
consensus. CoRR, abs/1605.05619, 2016. URL: http:
//arxiv.org/abs/1605.05619.

[11] Jeffrey Dean and Luiz André Barroso. The tail at scale.
Commun. ACM, 56(2):74–80, February 2013.

[12] Vivado Hardware Debug. https://www.xilinx.com/
products/design-tools/vivado/debug.html.

[13] Ken Eguro. Automated Dynamic Reconfiguration for
High-Performance Regular Expression Searching. In In-
ternational Conference on Field-Programmable Technol-
ogy. IEEE, Dec 2009.

[14] Ken Eguro and Ramarathnam Venkatesan. FPGAs for
trusted cloud computing. In International Conference on
Field-Programmable Logic and Applications. IEEE, Aug
2012.

[15] Emu Project. http://www.cl.cam.ac.uk/research/
srg/netos/projects/emu/.

[16] Felix Engelmann, Thomas Lukaseder, Benjamin Erb,
Rens van der Heijden, and Frank Kargl. Dynamic packet-
filtering in high-speed networks using NetFPGAs. In Int.
Conf. on Future Generation Communication Technolo-
gies, pages 55–59. IEEE, Aug 2014.

[17] Brad Fitzpatrick. Distributed caching with memcached.
Linux Journal, 2004(124), 2004.

[18] GDB Remote Serial Protocol. http:
//www.embecosm.com/appnotes/ean4/
embecosm-howto-rsp-server-ean4-issue-2.html.

[19] David Greaves and Satnam Singh. Distributing C# meth-
ods and threads over Ethernet-connected FPGAs using
Kiwi. In International Conference on Formal Methods
and Models for Codesign, pages 1–9. IEEE, July 2011.

[20] David J. Greaves and Satnam Singh. Designing appli-
cation specific circuits with concurrent C# programs. In
Formal Methods and Models for Codesign, pages 21–30.
IEEE, July 2010.

[21] Matthew P Grosvenor, Malte Schwarzkopf, Ionel Gog,
Robert NM Watson, Andrew W Moore, Steven Hand,
and Jon Crowcroft. Queues don’t matter when you can
jump them! In Symposium on Networked Systems Design
and Implementation, pages 1–14. USENIX Association,
2015.

[22] Chuanxiong Guo, Lihua Yuan, Dong Xiang, Yingnong
Dang, Ray Huang, Dave Maltz, Zhaoyi Liu, Vin Wang,
Bin Pang, Hua Chen, Zhi-Wei Lin, and Varugis Kurien.
Pingmesh: A Large-Scale System for Data Center Net-
work Latency Measurement and Analysis. SIGCOMM
Computer Communication Review, 45(4):139–152, Au-
gust 2015.

[23] Jong Hun Han, Noa Zilberman, Bjoern A. Zeeb, An-
dreas Fiessler, and Andrew W. Moore. Prototyping RISC
based, reconfigurable networking applications in open
source. CoRR, abs/1612.05547, 2016. URL: http:
//arxiv.org/abs/1612.05547.

[24] Zsolt István, David Sidler, Gustavo Alonso, and Marko
Vukolic. Consensus in a Box: Inexpensive Coordination
in Hardware. In Symposium on Networked Systems De-
sign and Implementation, pages 425–438. USENIX As-
sociation, 2016.

[25] Antoine Kaufmann, SImon Peter, Naveen Kr. Sharma,
Thomas Anderson, and Arvind Krishnamurthy. High Per-
formance Packet Processing with FlexNIC. In Architec-
tural Support for Programming Languages and Operat-
ing Systems, pages 67–81. ACM, 2016.

[26] Bojie Li, Kun Tan, Layong (Larry) Luo, Yanqing Peng,
Renqian Luo, Ningyi Xu, Yongqiang Xiong, Peng Cheng,
and Enhong Chen. ClickNP: Highly Flexible and High
Performance Network Processing with Reconfigurable
Hardware. In SIGCOMM, pages 1–14. ACM, 2016.

[27] Xiaozhou Li, Raghav Sethi, Michael Kaminsky, David G.
Andersen, and Michael J. Freedman. Be fast, cheap and in
control with switchkv. In Symposium on Networked Sys-
tems Design and Implementation, pages 31–44. USENIX
Association, March 2016.

[28] Grant Martin and Gary Smith. High-Level Synthesis:
Past, Present, and Future. IEEE Design Test of Comput-
ers, 26(4):18–25, July 2009.

[29] Maxeler MPC-N Series. https://www.maxeler.com/
products/mpc-nseries/.

[30] memaslap - Load testing and benchmarking a server.
http://docs.libmemcached.org/bin/memaslap.
html.

[31] Mininet. http://mininet.org/.

[32] ModelSim. https://www.mentor.com/products/fv/
modelsim/.

[33] Jad Naous, David Erickson, Adam Covington, Guido Ap-
penzeller, and Nick McKeown. Implementing an Open-
Flow switch on the NetFPGA platform. In Symposium on
Networked Systems Design and Implementation, pages 1–
9. ACM, 2008.

[34] Jian Ouyang, Shiding Lin, Wei Qi, Yong Wang, Bo Yu,
and Song Jiang. SDA: Software-defined accelerator for
large-scale DNN systems. In Hot Chips Symposium,
pages 1–23. IEEE, Aug 2014.

[35] Gregor N Purdy. Linux iptables Pocket Reference.
O’Reilly Media, 2004.

[36] Andrew Putnam, Adrian M Caulfield, Eric S Chung,
Derek Chiou, Kypros Constantinides, John Demme, Hadi
Esmaeilzadeh, Jeremy Fowers, Gopi Prashanth Gopal,
Jan Gray, et al. A reconfigurable fabric for accelerating
large-scale datacenter services. In Int. Symp. on Com-
puter Architecture, pages 13–24. IEEE, Jun 2014.

[37] Luigi Rizzo. Netmap: A Novel Framework for Fast
Packet I/O. In USENIX Annual Technical Conference.
USENIX Association, 2012.

[38] Christopher J. Rossbach, Yuan Yu, Jon Currey, Jean-
Philippe Martin, and Dennis Fetterly. Dandelion: a Com-
piler and Runtime for Heterogeneous Systems. In Sym-
posium on Operating Systems Principles. ACM, 2013.

[39] SDNet. https://www.xilinx.com/products/
design-tools/software-zone/sdnet.html.

[40] Amazon Web Services. EC2 Instances (F1) with Pro-
grammable Hardware. https://goo.gl/fmEQPK.

[41] David Sidler, Gustavo Alonso, Michaela Blott, Kimon
Karras, Kees Vissers, and Raymond Carley. Scal-
able 10Gbps TCP/IP stack architecture for reconfigurable
hardware. In Annual International Symposium on Field-
Programmable Custom Computing Machines, pages 36–
43. IEEE, 2015.

[42] Vivado Simulator. https://www.xilinx.com/
products/design-tools/vivado/simulator.html.

[43] Satnam Singh and David J. Greaves. Kiwi: Synthe-
sis of FPGA Circuits from Parallel Programs. In Field-
Programmable Custom Computing Machines, pages 3–
12. IEEE, April 2008.

[44] Nik Sultana, Salvator Galea, David Greaves, Marcin Wój-
cik, Noa Zilberman, Richard Clegg, Luo Mai, Richard
Mortier, Peter Pietzuch, Jon Crowcroft, and Andrew W.
Moore. Extending programs with debug-related fea-
tures, with application to hardware development. CoRR,
abs/1705.09902, 2017. URL: http://arxiv.org/abs/
1705.09902.

[45] NetFPGA SUME Reference Switch. https:
//github.com/NetFPGA/NetFPGA-SUME-public/
wiki/NetFPGA-SUME-Reference-Learning-Switch.

[46] Yuta Tokusashi and Hiroki Matsutani. A Multilevel
NOSQL Cache Design Combining In-NIC and In-Kernel
Caches. In Symposium on High-Performance Intercon-
nects, pages 60–67. IEEE, Aug 2016.

[47] Han Wang, Robert Soulé, Huynh Tu Dang, Ki Suh Lee,
Vishal Shrivastav, Nate Foster, and Hakim Weatherspoon.
P4FPGA : A Rapid Prototyping Framework for P4. In
Proceedings of the Symposium on SDN Research, pages
122–135. ACM, April 2017.

[48] Louis Woods, Jens Teubner, and Gustavo Alonso. Com-
plex Event Detection at Wire Speed with FPGAs. VLDB
Endow., 3(1-2):660–669, September 2010.

[49] Noa Zilberman, Yury Audzevich, G. Adam Covington,
and Andrew W. Moore. NetFPGA SUME: Toward 100
Gbps as Research Commodity. IEEE Micro, 34(5):32–
41, Sept 2014.

[50] Noa Zilberman, Matthew P Grosvenor, Diana Popescu,
Neelakandan Manihatty-Bojan, Gianni Antichi, Marcin
Wójcik, and Andrew W Moore. Where has my time
gone? In Passive and Active Measurement, pages 201–
214. Springer, March 2017.

[51] Noa Zilberman, Philip M. Watts, Charalampos Rotsos,
and Andrew W. Moore. Reconfigurable Network Sys-
tems and Software-Defined Networking. Proceedings of
the IEEE, 103(7):1102–1124, July 2015.

[52] Data Plane Development Kit. http://dpdk.org/.

