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Abstract

Inferring PoP level maps is gaining interest due to its importance to many areas,
e.g., for tracking the Internet evolution and studying its properties. In this
paper we introduce a novel structural approach to automatically generate large
scale PoP level maps using traceroute measurement from multiple locations.
The PoPs are first identified based on their structure, and are then assigned
a location using information from several geo-location databases. We discuss
the tradeoffs in this approach and provide extensive validation details. The
generated maps can be widely used for research, and we provide some possible
directions.
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1. Introduction

Mapping the Internet and studying its evolution has become an important
research topic. Internet maps are presented in several levels of aggregation:
From the AS level, which is the most coarse, to the finest level of routers, each
level of abstraction is suitable for studying different aspects of the network. The
Autonomous Systems (AS) level is most commonly used to draw Internet maps,
as it is relatively small (tens of thousands of ASes) and therefore relatively easy
to handle. The disadvantage of using AS information for Internet evolution
study is that AS sizes may differ by orders of magnitude. While a large AS can
span an entire continent, a small one can serve a small community. Obviously,
it is hard to correlate large ASes to geographic location due to their span,
but network evolution is triggered by economic factors that may be restricted
to much smaller areas than those spanned by large ISPs. Router level maps
represent the other extreme: they contain too many details to suit practical
purposes, and the large number of entities makes them very hard to handle.

Service providers tend to place multiple routers in a single location called
a Point of Presence (PoP), which serves a certain area. Thus for studying
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the Internet evolution and for many other tasks, PoP maps give a better level
of aggregation than router level maps with minimal loss of information. PoP
level graphs provide the ability to examine the size of each AS network by the
number of physical co-locations and their connectivity instead of by the number
of its routers and IP links, which is an important contribution. The points of
presence are not only counted, but also provided with a geographical location
and information about the size of the PoP. Using PoP level graphs one can
detect important nodes of the network, understand network dynamics, examine
types of relationships between service providers as well as routing policies and
more.

This paper focuses on PoP level map generation, based on an algorithm
described in Section 3. The traceroute measurements used in this work were
generated by DIMES, a highly-distributed Internet measurements infrastruc-
ture [1]. DIMES achieves high distribution of vantage points by employing a
community based distribution methodology that uses Internet users’ PCs for
measurements.

2. Related Work

While aggregating IPs to AS is a fairly simple task, PoP level maps are more
difficult to create. Andersen et al. [2] used BGP messages for clustering IPs and
validated their PoP extraction based on DNS. Rocketfuel’s [3] generated PoP
maps using tracers and DNS names. The iPlane project also generates PoP level
maps [4] by first clustering router interfaces into routers by resolving aliases, and
then clustering routers into PoPs by probing each router from a large number
of vantage points and using the TTL value to estimate the length of the reverse
path, with the assumption that reverse path length of routers in the same PoP
will be similar.

Assigning a location to an IP address, let alone a PoP, is a complicated
task. The most common way to do so is using a geolocation service. Geoloca-
tion services range from free services to services that cost tens of thousands of
dollar a year. The most basic services use DNS resolution as the basis for the
database [3], while others use proprietary means such as random forest classi-
fier rules, hand-labeled hostnames [5], user’s information provided by partners
[6] and more. IP2Geo [7] was one of the first to suggest a measurement-based
approach to approximate the geographical distance of network hosts. A more
mature approach is constraint based geolocation [8], using several delay con-
straints to infer the location of a network host by a triangulation-like method.
Later works, such as Octant [9] used a geometric approach to localize nodes
within a 22 miles radius. Katz-Bassett et al. [10] suggested topology based ge-
olocation using link delay to improve the location of nodes. Yoshida et al. [11]
used end-to-end communication delay measurements to infer PoP level topology
between thirteen cities in Japan. Laki et al. [12] increased geolocation accuracy
by decomposing the overall path-wise packet delay to link-wise components and
were thus able to approximate the overall propagation delay along the measure-
ment path. Eriksson et al. [13] applied a learning based approach to improve
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geolocation. They reduced IP geolocation to a machine learning classification
problem and used Naive Bayes framework to increase geolocation accuracy.

In this paper we present a structural approach for creating large scale PoP
maps with geographic information. We study the effect of the volume and
quality of the data on the algorithm and provide detailed validation of the
algorithm and its results.

3. PoP Discovery

3.1. PoP Extraction Algorithm

We define a PoP as a group of routers which belong to a single AS and are
physically located at the same building or campus. In most cases [14, 15] the
PoP consists of two or more backbone/core routers and a number of client/access
routers. The client/access routers are connected redundantly to more than one
core router, while the core routers are connected to the core network of the ISP.
Figure 1(a) shows a simple interconnection of four routers with a small number
of interfaces. Assuming that during traceroute measurements ICMP replies are
received from the incoming interfaces of the routers, the graph shown in Figure
1(b) is obtained. For example a traceroute measurement that enters our network
through interface A on router a and leaves the network from interface L on
router b will create an A → I path on the graph. In a similar way a measurement
that enters the network from interface L on router b and leaves it from interface
W on router c will create a L → C → Y path on the graph. At the core of the
Interface graph, which results from performing many traceroute measurements
through a PoP, there is clearly a bi-partite graph. We look for this specific
structure when trying to discover PoPs. Alon et al. [16] showed that many
complex networks have repetitive patterns of interconnections, called ‘network
motifs’, which became a standard term in the networks analysis community.
Their work showed that real-world networks outside the communication field are
not purely random, but have a higher than (or lower than) expected number of
specific motifs. We have used their mfinder [17] package to search for motifs in
graphs obtained by the DIMES measurements. In order to show the significance
of a specific motif, the software uses the Z-score measure, which is calculated
according to equation 1.

Z =
X − μ

σ
(1)

Where X is a number of a motif occurrences in a specific network, and μ and σ
are the mean and standard deviation of the motif occurrences within a certain
random network. The number of motif appearances in a random network is
a stochastic function with mean and variance. The Z-score reveals how many
units of the standard deviation a specific count of a motif is above or below the
mean. Unsurprisingly, we have found a number of motifs with a high Z-score
across all AS networks in the graph; partial results displayed in table 1 show
the clear dominance of the ‘bi-fan’ motif (number 204) in three large providers,
Global Crossing, France Telecom and Broadwing (now Level3). Note that motif
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Table 1: Common network motifs in IP interconnections networks of three ASes.
Z-Score

AS Number
AS6395 377 - 9.51 43.84 148.39
AS5111 329.29 36.42 - 74.63 73.57
AS3549 154.8 5.38 37.87 19.51 -

(a) Typical Router interconnection. (b) Equivalent Graph representation

Figure 1: Typical Network Connection

460 is bi-fan with one additional measurement in the reverse direction and motif
206 is a bi-fan with an additional measurement.

Although mfinder [17] is a very useful tool for identification of important
motifs, it is not designed to be used for network clustering. In our work we do
not look for a specific motif in the network, but for highly connected clusters as
described in the previous chapter. However, we do search for ‘bi-fan’s (id204)
repetitions under certain weight constrains as cores of the PoPs. The cores are
extended with other close by interfaces. The following steps, introduced in [18],
are used to reduce the IP level graph G(V,E) to a PoP level network:

Initial Partition. Remove all edges with a delay higher than PDmax th,
the PoP maximal diameter threshold, and edges with number of measurements
below PMmin th, the PoP’s edges measurements threshold. PMmin th is in-
troduced in order to consider only links with a highly reliable delay estimation
to avoid false indication of PoPs. As a result, a non-connected graph G′ is ob-
tained. Then, for each connected component of G′ an induced sub graph is built
by adding back all the edges that connect nodes of the connected component.
Each connected group is a candidate to become one or more PoPs.
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Figure 2: Parent-Child classification: blue nodes (left) - parent pair , red nodes (right) - child,
blue and red nodes (middle) - both parent and child, gray stripes nodes (right) - not classified

There are two reasons for a connected group to include more than a single
PoP. First and most obvious is geographically adjacent PoPs, e.g., New York,
NY and Newark , NJ. Second is wrong delay estimation of a small number of
links. For instance a single incorrectly estimated link between Los Angeles, CA
and Dallas, TX might unify the groups obtained by such a naive method.

Refined Partition.
(a) Parent-Child classification. The next stage in the algorithm uses a clas-

sification to parent pairs and child pairs .

Definition 3.1. A pair of nodes is marked as parent pair if both of them point
to two or more nodes.

Definition 3.2. A pair of nodes are marked as child pair if both of them are
pointed to by at least two nodes.

All parent pair nodes are assigned to groups by pairwise unifying parent pair
nodes. For example in figure 3, nodes {1,2}, {2,5} and {3,4} are defined as parent
pair , thus we obtain two parent pair groups {1,2,5} and {3,4}. The groups of
child pair nodes are created according to the same process as defined for parent
pair groups. Some nodes might belong to both categories and it is allowable
for a node to belong to one parent pair group and to one child pair group.
By definition, if a node belongs to two or more groups of the same kind, these
groups are unified. Figure 2 shows an example of parent/child classification.

The PoP algorithm checks for each connected group extracted in the initial
partitioning of the algorithm, if it contains more than one possible PoP. Note
that each candidate partition looks like a collection of highly connected bipartite
graphs with rich connectivity between them. The considered partition of parents
and children is then divided according to the measurement direction in the
bipartite graph(each node or a group of nodes simultaneously can be a parent
of one bipartite and a child of another). In this operation the weights of the
edges are ignored. The minimal size of each group is two nodes.
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(b) localization. Dividing the parents and children groups into physical col-
locations using the high connectivity of the bipartite graph. The input for the
localization stage algorithm is a highly connected bipartite graph G(V,E) with
a weight function W : E → R representing the estimated physical link delay, as
shown in Fig. 3. The other input to the algorithm is a partition of the graph
to the parent/child groups as previously described. The localization algorithm
checks whether nodes of the same type (parent/child ) belong to the same phys-
ical collocation. For this task the algorithm takes advantage of the topological
structure of the group. For instance, if we check the parent group P we note
that each child node of the group is pointed to by at least two parent nodes.
Comparing the delays from the child pair nodes we can partition nodes of the
parent pair group to one or more geographic collocations.

Formally, we represent each member of a group of two or more nodes (either
parent pair or child pair group) in a coordinate space of the nodes that points
to them using the weight of the edges. Next, we check the distance between
each pair of nodes in that coordinate space. We assume that the link delay
estimation errors in [19] are caused mainly by an impulse noise, i.e., most of the
measurements are fairly precise or have only small noise, while a small portion
of the measurements may have large errors. Therefore, unlike the Gaussian
noise case, where Euclidean distance is used as a representation of the distance
between nodes, we compare the similarity over the coordinates.

An example of the difficulties in determining geographic co-location is shown
in Figure 3. By looking at the delay spread, one can easily determine that
nodes 6-8 (darken) are not co-located with nodes 9-11. Looking at the distance
between nodes 1-3 and nodes 9-11 it becomes clear that the former are also
co-located. However deciding whether node 5 is also collocated with nodes 1-3
is not straightforward. Examining the delay spread between nodes 5 and 1-3 to
nodes 9 and 11, gives a positive answer for collocation, while the measurement to
node 10 that puts node 5 away from nodes 1-3 might be discarded as noise. The
existence of yet another group of measurements to node 6, which is indecisive
in its results, complicates the picture, and shows the difficulties in automating
these decisions.

We propose the following deterministic algorithm to classify the locations of
nodes in the bipartite graph. For each pair of parent nodes (u, v) ∈ P, u �= v,
we define the ‘common children’ group, CC by

CC(u, v) =
{
w ∈ G|(u,w) ∈ E

⋂
(v, w) ∈ E

}
(2)

We denote the members of CC(u, v) as {cc1, cc2, . . . , ccm}. Then using the
weights of the edges from the pair of parent nodes to the ‘common children’,
W (u, cci) and W (v, cci), we calculate the ‘Error Ratio’ vector, ER:

ER(u, v) =

[
W (u, cc1)

W (v, cc1)
,
W (u, cc2)

W (v, cc2)
, . . . ,

W (u, ccm)

W (v, ccm)

]
(3)

The selection between (u, v) and (v, u) for a numerator and a denominator
results in identical results when observing | log(ER(u, v))| due to the proper-
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Figure 3: Bipartite graph example, on the right side dark and bright nodes belongs to different
collocation

ties of logarithms. Another important property of | log(ER(u, v))| is that for
coordinates with a small relative error, the values of the elements in ER(u, v)
will be rather small, and will increase with a loss of the accuracy. Therefore
comparing er(u, v) = median(| log(ER(u, v))|) to a certain threshold gives a
proper indication of the accuracy in the majority of measurements.

We use the er values for the parents, to partition parents groups into smaller
parent groups which are geographically collocated. To this end, we produce a
weighted clique of all the parent nodes in a group, where the weight of the
edge (u, v) is er(u, v). We remove all the links with a weight above a certain
small threshold. Each connected component in the remaining graph becomes a
parent group for the next step. To summarize, we partitioned the parent group
to several parent groups that are geographically co-located.

The same process is repeated for child groups, where the error vectors are
calculated by the distances to the common parents.

This kind of localization helps us to overcome a relatively large number of
errors. However, if more than half of the measurements to a certain node are
incorrect, the algorithm may fail to determine its location. Otherwise, there is
no impact on the overall performance. Those ‘badly’ measured nodes might not
became a part of the correct PoP, but the PoP map will be formed correctly in
spite of them, i.e., no new PoPs will be created.

(c) Unification. Unifying parent/child group to the same PoP. If a parent
pair and a child pair groups are connected, then the weighted distance between
the groups is calculated (if they are connected, by definition more than one edge
connects the two groups); if it is smaller than a certain threshold, PPCmax th,
the pair of groups is declared as part of the same PoP.

Final Refinements.
Unification of loosely connected components. In some cases, e.g., due to
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insufficient measurements, different parts of a PoP are only loosely connected in
a way that does not form even a 2x2 bi-partite; in the extreme case only a single
link connects two parts of a PoP. This will not allow the unification process, just
described above, to identify the parts as belonging to the same PoP. Thus, the
algorithm looks for connected components (PoP candidates) that are connected
by links whose median distance is very short (below PDmax th). Note that at
this point, due to the unification process, the graph has shrunk considerably,
and thus the search for ’close’ components is inexpensive.

(b) Singleton Treatment At the end of the process, the ISP graph has evolved
through the multiple node unifications described above into a graph that is
comprised of several multi-nodes (the PoPs) and a larger number of nodes (IP
interfaces) that were not assigned to any PoP. Typically, these nodes have only
one or two links connecting them to the rest of the graph, and the path from
a node to the closest PoP is in most cases one hop and sometimes two. This
final step assigns many of these nodes to existing PoPs. The assignment is
conducted by running a Dijkstra shortest path algorithm from a node to all
PoPs, and connecting a singleton to the closest PoP, providing the distance (in
mSec) is below a given threshold PDmax th.

While this step has some advantages, it typically degrades the algorithm
accuracy and does not add to the number of discovered PoPs. Therefore, unless
noted differently, it is eliminated in most presented results. We discuss the effect
of Singletons in Section 3.2.

3.2. PoP Extraction Validation and Results

Following, we present our validation tests and the results of a full implemen-
tation. The validation is then extended to discuss tradeoffs in the algorithm’s
implementation and their effect on result’s accuracy.

Two collected datasets for PoP extraction are taken from DIMES [20]. One
is from 2009, with a focus on weeks 27 to 30 for specific examples, and the other
taken from weeks 42 to 43 of 2010. The database from weeks 27 to 30, 2009
includes 56 million traceroute measurements, collected by 1415 agents. The
2010 database, from weeks 42 to 43, has a total 33 million measurements, an
average of 2.35 million measurements a day. The measurements were collected
by 1308 agents, which were located in 49 countries around the world.

First, we examine the best time period length for collecting measurements
for PoPs, and select it to be two weeks. DIMES produces five to six million
daily measurements, both traceroute and ping, meaning thirty to forty million
measurements per week, which typically result in 5.5M to 6.5M distinct IP edges
being discovered. The selection of a two weeks time period balances between two
delicate tradeoffs: the number of distinct edges used for the PoP construction
and the sensitivity to changes in the network. A time frame of a single week is
too short, with considerably fewer distinct edges than those from two weeks. A
month, on the other hand, does add many more edges, but it is insensitive to
changes in the network, which we would like to track. In addition, the algorithm
runs considerably slower on such large data sets. Table 2 shows the changes in
PoP maps between different time frames. The first row in the table shows the
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Compared Time Frame #PoPs #IPs in PoPs #Distinct Edges

1 Week to 1 Week < 1% < 1% ±20%

1 Week to 2 Weeks +58% +79% +43%

2 Weeks to 4 Weeks +10% +15% +59%

Table 2: Changes in PoP maps between different time frames

difference in PoP maps between two consecutive weeks. The second row refers to
a one week period compared to two weeks, and the last row compares two to four
weeks measurements collection periods. The columns ”#PoPs” and ”#IPs in
PoPs” refer to the change in number of discovered PoPs and IPs included in these
discovered PoPs over the compared periods. ”#Distinct Edges” refers to the
change in distinct IP edges measured by DIMES. This number is independent
of the PoP algorithm.

We set PMmin th, the minimal number of node’s measurements, to be 5.
This threshold was found to be optimal over many heuristic test cases, clean-
ing noisy measurements while filtering out only a small number of edges. We
then ran the median algorithm described in [19] to find the delay between two
adjacent nodes.

The resulting IP address to PoP mapping table typically consists of over
50,000 IP addresses, in about 4000 different PoPs. The average size of a PoP is
16 IP addresses, with a median of 6. The largest PoP size observed was 2500.
The size of the discovered PoPs depend both on our measurement method and
the ISP’s policies. When a PoP is measured from many different agents or there
are many paths between the source and destination nodes, the size of the PoP
will be larger. However, measuring from one direction or if there is a relatively
small number of alternative routes, the size of the discovered PoP will be small.
The policies of the ISP can cause nodes inside the PoP to not answer traceroute
messages and become anonymous or transparent e.g., due to use of MPLS.

On a single day, DIMES may run several experiments in parallel, however,
the vast majority of the measurements performed over a week belong to the
DIMES default experiment where a set of roughly 2.5 million target IP ad-
dresses, selected to cover all the allocated IP address prefixes, are cyclically
sent to the agents. To test whether the target set limits us from discovering
more PoPs, 2.5 million IP addresses were added to this basic experiment, iden-
tified by the iPlane project [4] as belonging to PoPs. The addition of the iPlane
IP addresses increased the number of PoPs discovered by less than 20%, yet did
not reach the numbers in iPlane. We believe that the immense number of IPs
grouped by iPlane into PoPs partly represent IPs which are not part of the PoP.

The number of PoPs found in an AS network correlates with its measured
size. Figure 4 shows that the number of PoPs discovered per AS depends
logarithmically on the number of IP edges measured. Figure 5, showing the
number of IPs included in PoPs compared to the number of IPs edges mea-
sured, demonstrates even better the logarithmic relation between the number
of measurements and the discovered PoPs. As the number of IP edges reflects
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Figure 4: Number of Discovered PoPs vs. Num-
ber of measured IP Edges
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Figure 5: Number of IPs in PoPs vs. Number
of measured IP Edges

measurements through unique IPs and not PoPs, this is an expected outcome.
Figures 6 to 9 explore the PoP extraction algorithm’s sensitivity to its two

parameters PDmax th and PMmin th. In each figure five ISPs are explored:
Level 3, ATT, Comcast, MCI, and Deutsche Telekom. In Figure 6 the number
of discovered PoPs is compared with PDmax th, the maximal delay threshold.
Figure 7 presents the number of IPs included in these PoPs under these con-
ditions. Neither the number of discovered PoPs nor the number of IPs within
the PoPs are sensitive to the delay threshold, as long as the threshold is 3mS
or above. PDmax th was therefore selected to be 3mS, as it presents a good
tradeoff between delay measurement error and location accuracy. Figures 8 and
9 show the effect of PMmin th, the minimal number of measurements threshold,
on the number of discovered PoPs and the number of IPs included in them.
The number of IPs included in PoPs clearly decreases as the minimal number of
required measurements increases, as can be expected. The number of discovered
PoPs shows a mixed behavior as the reduction of IP level links may have two
conflicting outcomes; An increase is caused by a loss of connectivity inside a
PoP which in turn causes it to split to several PoPs located at the same place,
while a decrease is caused by the loss of the ability to identify a PoP. In our
experiments, PMmin th was selected to be 5.

Additional validation tests repeatedly targeted previously identified PoP IP
addresses within several large ASes, such as Level3, ATT and MCI, from agents
within the AS. They did not increase the number of discovered PoPs, but proved
that discovered PoPs are stable. To show that the PoP algorithm succeeds
when enough measurements are provided, two ASes were taken as an example:
GEANT, the pan-European academic network, and Proxad, a French ISP. Both
were selected since their PoP topology is public and since DIMES did not have
many measurements in them by default. Comparing the amount of PoPs and
IPs within PoPs discovered based on default DIMES measurements and directed
measurement tests, the number of discovered PoPs more than doubled and
the number of IPs within PoPs grew by a factor of ten. In both cases, the



11

1 2 3 4 5 6 7 8 9 10
0

50

100

150

PD
MAX_TH

 [mSec]

N
um

be
r 

of
 P

oP
s

 

 
Level 3
ATT
MCI
Comcast
Deutsche Telekom

Figure 6: Number of PoPs vs. Maximal De-
lay

1 2 3 4 5 6 7 8 9 10
0

500

1000

1500

2000

2500

3000

3500

4000

PD
MAX_TH

 [mSec]

N
um

be
r 

of
 In

te
rn

al
 P

oP
 IP

s

 

 
Level 3
ATT
MCI
Comcast
Deutsche Telekom

Figure 7: Number of IPs in PoPs vs. Maxi-
mal Delay

3 4 5 6 7 8 9 10
0

50

100

150

PM
MIN_TH

N
um

be
r 

of
 P

oP
s

 

 
Level 3
ATT
MCI
Comcast
Deutsche Telekom

Figure 8: Number of PoPs vs. Minimal Num-
ber of Measurements

3 4 5 6 7 8 9 10
0

500

1000

1500

2000

2500

3000

3500

4000

PM
MIN_TH

N
um

be
r 

of
 In

te
rn

al
 P

oP
 IP

s

 

 
Level 3
ATT
MCI
Comcast
Deutsche Telekom

Figure 9: Number of IPs in PoPs vs. Minimal
Number of Measurements



12

directed tests doubled the number of distinct measured edges within the AS,
thus increasing the connectivity required to discover PoPs. We conclude that
increasing the number of measurements improves the algorithm’s performance.

Other stability tests examined the IP addresses identified as part of PoPs and
found 85% similarity between consecutive fortnights. The difference between
PoPs was due to lack of measurements through the PoP connecting nodes, rather
than the PoP extraction algorithm. In addition, not all the traceroutes are
identical every week, due to the community based nature of DIMES. Additional
validation actions taken are detailed in Section 4. Validation of PoP maps was
always an issue in related work, e.g., in iPlane [4] or RocketFuel [3], and we
find that the level of validation introduced in this work is at least at the level
of previous efforts.

4. PoP GeoLocation Methods

Automatically assigning every discovered PoP to a geographical location is
the second contribution of this work. We use geolocation services in order to
find the PoP’s geographic coordinates. Geolocation services provide location
information regrading a given IP address, including country, city, longitude and
latitude.

In the past, as Katz-Bassett et al. [10] indicated, geolocation databases were
not highly reliable: They were combined from multiple sources, such as DNS
hostname parsing rules, whois registration and DNS LOC records. Due to the
sources of information, many of them were outdated as well. In recent years
geolocation services have been widely used to countermeasure Internet frauds,
for marketing, publicity and conditional access. This led to an immense effort
to improve the database quality, yet not resulted in a great deal of accuracy.
While some location services do not reveal their level of accuracy, country-level
assignment is typically over 99% accurate, as the IP assignments to ASes are
in most cases bounded within a single country. MaxMind GeoIP service [21]
provides with its database accuracy information on city level, within a radius of
25 miles of true location, which ranges from 40%-44% (Nigeria, Tunisia) to 94%-
95% (Georgia, Singapore). The United states, for example, has 83% accuracy at
the city level. A further assessment of the geolocation information is therefore
required. We present such an evaluation in [22], based on PoP and IP level
analysis.

We use several geolocation services to maximize the accuracy of our PoP
location. The initial results from 2009 used MaxMind GeoIP [21], IPligence
[23], and Hostip.info [24]. The results from 2010 were extended to use also
IP2Location DB5 [25] and GeoBytes [26]. Information from Netacuity [6] and
Spotter [27] was used to some extent as well.

To identify the geographical location of a PoP, we use the geographic location
of each of the IPs included in it. As all the PoP IP addresses should be located
within the same campus, or within its vicinity if singletons are considered, the
location confidence of a PoP is significantly higher than the confidence that can
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Figure 10: Mismatch Between Databases - UUNET

be gained from locating each of its IP addresses separately. The algorithm,
introduced in [28], operates as follows:

Initial Location Each of the geolocation databases used is queried for the
location (longitude, latitude) of each IP included in the PoP. Next, the center
of weight of the PoP location is found by calculating the median of all PoP’s IP
locations. Unlike average calculation, where a single wrong IP can significantly
deflect a location, the median provides a better suited starting point, but does
not guarantee good results if there is complete disagreement between geolocation
databases. For example, Figure 10 shows a single PoP in the UUNET network,
which is located by different geolocation databases in six locations spread in 4
countries and two continents. However, since geolocation databases are typically
reliable in country-level assignment, such examples are rare.

Location Error Range Every PoP location is assigned a range of conver-
gence, representing the expected location error range based on the information
received from the geolocation databases. For every IP address in a PoP and for
every geolocation database we collect the geographic coordinates. Thus if there
are N IP addresses and M databases, for each of the IP addresses we get at
most (if all are resolved)N×M location votes. The algorithm finds the smallest
radius which has at least 50% of the votes, with 1km granularity. If the radius
is above a given threshold, typically 100km or 500km, the algorithm outputs
the threshold radius and the percentage of location votes within it. If one of
the geolocation databases lacks information on an IP address, this IP element
is not counted in the majority vote.

Location Refinement After a range of convergence is found, the PoP
location accuracy is further improved. The new PoP location is set to the
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median of the location votes inside the range of convergence. This ensures that
deviations in the PoP location caused by a small number of IP elements outside
the range of convergence are discarded, and the PoP is centered based only on
credible IP addresses locations.

To summarize, the PoP geolocation algorithm provides per PoP longitude,
latitude, range of convergence and the percentage of location votes within its
convergence range.

4.1. Geolocation Results

The geolocation algorithm has two interesting outcomes. First, it validates
the PoP extraction algorithm by showing that PoPs are indeed scattered geo-
graphically, and locates points of presence around the globe. Second, it examines
the quality of the geolocation services and finds their faults.

The algorithm converges successfully based on its validation’s results. 70%
percent of the PoPs have a range of convergence of ten kilometer or less. Al-
though 89% of the PoPs have more than the minimal requirement of 50% of
the IP location votes within the convergence range, for only 9.1% of the PoPs
have over 90% of the location votes within the convergence range, indicating
inaccuracies in some of them. To strengthen this point, when requiring the PoP
location to be agreed upon by any three geolocation databases instead of five,
over 90% of the PoPs converge within ten kilometers range, which comes to
show that the disagreement between the geolocation database is the cause to
the above.

Figure 11 shows the discovered PoPs located on a world map. Clearly, the
US and Europe have very good coverage. In East Asia many PoPs are discovered
as well, but only a few are found in South America and Africa.

We then proceed and generate a PoP location map per Internet service
provider. The maps display the PoPs of all the ASes residing under the same
provider (sibling ASes), to provide a full picture of the vendor’s network. The
provider maps also show the connectivity between the different PoPs, as mea-
sured by DIMES. Figure 12 shows as an example provider map of Qwest with
its internal network connectivity.

To validate our generated maps we compare them against the PoP maps
published by the ISP, such as Sprint [29], Qwest [30], Global Crossing [31],
British Telecom [32], ATT [33] and others. The PoP algorithm detects most of
the large points of presence, but it detects very few small, local PoPs. There are
several explanations for this behavior. First, we measure mainly to and through
nodes that pass a lot of traffic, and filter out edges that were hardly measured,
in order to filter out noise. Even when we add the PoP IPs discovered by
iPlane, most of these small PoPs are still not found. This leads us to the second
reason some PoPs are not discovered: due to security reasons, many routers do
not answer traceroute ICMP packets, which reduces the algorithm’s ability to
discover the PoP structure. Last, some of the vendors employ encapsulating
protocols such as MPLS, which may hide most of the routing path. Luckily, as
our results show, these protocols are not deployed widely enough to harm our
measurements.
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Figure 11: PoPs World Map

Figure 12: QWEST US PoP Map
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As another method of validation, fifty PoPs that belong to universities
around the globe were selected, and the location given to them by the algo-
rithm was compared against the institute’s actual location. For 49 out of 50
universities, the location was accurate within a 10 kilometers radius. The last
PoP, belonging to The University of Pisa, was located by the algorithm in Rome
instead (330km away), due to an inaccuracy in the MaxMind and IPligence
databases. Only Hostip.info provided the right coordinates for this PoP. Each
PoP location was also validated against its DNS name, yet many interfaces had
no DNS name assigned to them.

We compare our PoP geolocation also for GARR, the Italian research net-
work. In weeks 42-43, 2010 we found eight PoPs in GARR, containing 99 IP
addresses. GARR has a total of fifty eight PoPs in Italy; however in several
cases a few PoPs are located in a small area. For example, there are eight PoPs
in Milan’s area, and six in Florence’s vicinity. Our extraction algorithm thus
merges such PoPs into a single entity. Checking the assignment of PoPs to
locations, based on DNS, information provided on GARR’s website [34] and in-
formation from users, we successfully geolocate five of the PoPs in their correct
location based on 100% of the IP locations. In two PoPs, the PoP is located
correctly, however it seems to include a single IP address which is supposed to
reside in a different location. In both cases we observe that the edge delay to
other IP addresses included in this PoP is less than 2mS. For the last PoP, the
PoP is located correctly in Milan, however it includes several IP addresses that
are supposedly part of different PoPs. We note that the geolocation databases
are also missing information for many of these IP addresses - only 55% of the
IPs which are part of the PoP have location information, and the agreement
level that we assign for the PoP is low as well: 66%.

For less than 10% of the PoPs we fail to find the location with high confi-
dence using five geolocation databases. In almost all these PoPs the cause is lack
of location information in the databases, mostly in HostIP.Info, GeoBytes and
MaxMind (MaxMind provides country level information). When a majority is
requested only amongst three databases, more than 99% of the PoPs are located
with high confidence. When IP location information is available, the main cause
of PoP location failure is due to disagreement between the location services. To
summarize, while in some cases the disagreement is a result of incorrectly esti-
mated links, as suggested in 3.1, the majority is caused by geolocation database
inaccuracies.

5. Discussion

5.1. Issues in PoPs Discovery

The extraction of PoPs and assignment to geolocation based on active mea-
surements requires careful data filtering. Previous [3, 4, 11] PoP discovery algo-
rithms were based on methods such as RTT measurements, Interface aliasing,
and DNS entries; all three are known to inflict errors. In particular, the delay
measurement inaccuracy is a known problem [10, 35], and clustering by the de-
lay from a limited number of vantage points is prone to errors in distinguishing
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Figure 13: CDF of Best and Average Edge
Delays, One Million Measurements
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Figure 14: CDF of Best and Average Edge
Delays, Different ISPs

short distances. Internet aliasing to routers was shown to be problematic, as
well as the use of DNS [36].

Our PoPs extraction algorithm takes several precautions. First, at least
PMmin th measurements are required per IP level edge in order for it to be con-
sidered by the PoP extraction algorithm, and a median algorithm [19] is applied
in order to reduce the delay measurement error. Second, the distribution of the
DIMES vantage points results in the measurement of an IP edge being made by
different agents from different locations, thus reducing the inherited measure-
ment error of a specific path. Last, when DIMES measures a certain path, it
sends four consequent traceroutes per destination. We considered the median
of both, the average of two middle delay results time measured and minimum
delay, across all edges and studied the tradeoffs between the two. Figure 13
shows a CDF of median edge delay, based on best (least) and average tracer-
oute measurements, over one million edges. As can be seen, both graphs follow
the same trend, with about 1mS shift between the two plots at the small delay
values (e.g., the probability of getting 2mS delay using average delay measure-
ments equals the probability to get 1mS delay using best delay measurements).
Looking at an edge delay of 3mS, the value set for the PDmax th threshold in
our evaluation, the best (least) delay CDF probability is 0.43, while the average
delay CDF probability is close to 0.36. As there may be a variance between
networks, we compare the edge delay of five service providers: ATT, Sprint,
Cogent, Level3 and France Telecom. Figure 14 shows for each of the providers
the CDF of best (least) and average edge delay. As can be seen, the best edge
delay curves (top) overlap for all ISPs, and the same applies for the average
edge delay (bottom). We thus take the best time per quartet of measurements
for our edge delay calculations.

5.2. Geo-Location Results

Validating the geolocation results is problematic [22] due to the need for
ground truth which is hard to obtain. Our validation is based on two methods.
First we point to coherence in the data from multiple databases. If the radius
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of convergence between five different databases for a large majority of the PoPs
is small, it is strong evidence for the validity of the results. The advantage
of our geolocation method is that the returned location comes with a radius
of convergence which serves as a confidence measure. In the future, we plan
to use an iterative algorithm that will start by locating the PoPs with the
highest confidence values and then based on triangulation (using the PoP to
PoP delay estimations) will continue to locate PoPs with decreasing confidence.
The second validation we used is by comparing our results to data available on
the Web by service providers. Some ISPs provided feedback on the PoP maps as
well. Overall, we believe our validation shows a high confidence in the results,
but of course we do not claim of 100% accuracy.

5.3. Leveraging PoPs For Network Properties Study

PoP-level maps can be used in diverse ways to study the Internet. Beyond
providing geographical information on service providers’ equipment spread, ad-
ditional information can be obtained on the connectivity within the AS network,
and more importantly, the connectivity between service providers. While most
of the studies until today focused on types of relationships (ToR) between ser-
vice providers on the AS level, a study of ToR on the PoP level can provide
much more information, such as how ToR between a pair of ISP changes between
locations over the globe. This will help us understand routing in the Internet.

Analyzing PoP level maps from geographic and demographic standpoints
can be leveraged to design an evolution model of the network. An advance
modeling framework may also take into account the combined PoP/AS level
to create evolutionary models coupling various socio-economic datasets to the
growth of the Internet capability.

Another application of PoP-level maps is evaluation of geolocation databases.
The fact that a PoP groups IPs with a locality property allows to check consis-
tency within the database. Another option is to check the spread radius of IPs
within the same PoP according to a single database and to compare different
databases’ range of convergence. By placing PoPs on a map according to differ-
ent geolocation databases, it is also possible to find anomalies in the database.
We discuss this topic thoroughly in [22].

The PoP level maps, as well as source measurements and derived tables are
all available for the research community from the DIMES Web site at
www.netDimes.org.

6. Conclusion

In this paper we presented a novel structural approach to automatically
generate world-wide PoP maps using the DIMES project infrastructure. The
extraction algorithm is based on detection of a network motif, and we discuss
at length the theoretical background supporting this scheme. The generated
PoP maps have location information for each PoP, deduced from geolocation
databases and using a geolocation algorithm which increases the PoP location
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accuracy. An extensive validation of both PoPs extraction and geolocation al-
gorithms is provided, studying different aspects of the approach. We recognize
that many PoPs, mainly small ones, are not discovered due to insufficient mea-
surements. To make the map richer we believe one should improve DIMES’s
spread, adding more vantage points and increasing the number of measure-
ments. The generated PoP maps can be used for purposes such as the study of
type of relationships (ToR) between service providers on PoP level, geolocation
databases evaluation [22], distance estimation, and more.

References

[1] Y. Shavitt, E. Shir, DIMES: Let the Internet measure itself., in: ACM
SIGCOMM Computer Communication Review, Vol. 35, 2005.

[2] D. G. Andersen, N. Feamster, S. Bauer, H. Balakrishnan, Topology infer-
ence from BGP routing dynamics, in: Internet Measurement Workshop,
2002, pp. 243–248.

[3] N. Spring, R. Mahajan, D. Wetherall, Measuring ISP topologies with Rock-
etfuel, in: ACM SIGCOMM, 2002, pp. 133–145.

[4] H. V. Madhyastha, T. Anderson, A. Krishnamurthy, N. Spring,
A. Venkataramani, A structural approach to latency prediction, in:
IMC’06: Proceedings of the 6th ACM SIGCOMM conference on Internet
measurement, 2006, pp. 99–104.

[5] Quova, http://www.quova.com (2010).

[6] Digital Envoy, NetAcuity Edge, http : //www.digital −
element.com/our technology/edge.html (2010).

[7] V. N. Padmanabhan, L. Subramanian, An investigation of geographic map-
ping techniques for Internet hosts, in: SIGCOMM ’01: Proceedings of the
2001 conference on Applications, technologies, architectures, and protocols
for computer communications, 2001, pp. 173–185.

[8] B. Gueye, A. Ziviani, M. Crovella, S. Fdida, Constraint-based geolocation
of Internet hosts, IEEE/ACM Trans. Netw. 14 (6)(2006) .

[9] B. Wong, I. Stoyanov, E. G. Sirer, Octant: A comprehensive framework for
the geolocalization of Internet hosts, in: NSDI, 2007.

[10] E. Katz-Bassett, J. P. John, A. Krishnamurthy, D. Wetherall, T. Anderson,
Y. Chawathe, Towards IP geolocation using delay and topology measure-
ments, in: The 6th ACM SIGCOMM conference on Internet measurement
(IMC’06), 2006, pp. 71–84.

[11] K. Yoshida, Y. Kikuchi, M. Yamamoto, Y. Fujii, K. Nagami, I. Nakagawa,
H. Esaki, Inferring PoP-level ISP topology through end-to-end delay mea-
surement., in: PAM, Vol. 5448, 2009, pp. 35–44.



20
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