Superficially Substructural Types

Neelakantan R. Krishnaswami Aaron Turon Derek Dreyer Deepak Garg
MPI-SWS Northeastern University MPI-SWS MPI-SWS
neelk@mpi-sws.org turon@ccs.neu.edu dreyer@mpi-sws.org dg@mpi-sws.org
Abstract Hoare types [27]—but one thing they all have in common is that

ol-they give programmers the ability to reason locally about the ef-
tJfects of their code on the state of shared resources.

The essence of this local reasoning is captured by the “frame”
property: if an operatiorf consumes a resource satisfying the type
or assertiond and produces one satisfyirfg, then f can also be
seen to transforml @ C to B® C, whereC' is an arbitrary “frame”
representing assumptions about the greater ambient environment in
which f is executed. Th& here denotes multiplicative (or “sep-
tarating”) conjunction, which ensures that the resource satisfying
A ® C can be split into disjoint pieces satisfying and C, re-
spectively; sincef only consumes the resource satisfyidgit is
In this paper, inspired by recent work on “fictional disjointness” 9uaranteed to leave the resource satisfyihgntouched.

As this discussion suggests, a central element in substructural

in separation logic, we propose a simple and flexible way of en- ¢ ¢ < th i f Il as the ability to split
abling any module in a program to create its own custom type of YPE SySIEMS IS (N€ notion orésourceas well as the ability to Spit
a resource intalisjoint pieces. A resource, in essence, describes

splittable resource (represented as a commutative monoid), thus 1) thek ledaahat th f that h bout th
providing fine-grained control over how the module’s private state (1) theknowledgehat the consumer of that resource has about the

is shared with its clients. This functionality can be incorporated into Machine state, and (2) whaghts they have to change the state.

an otherwise standard substructural type system by means of a new WO resources are then considered disjoint if they doimtetfere
typing rule we callthe sharing rule whose soundness we prove with each other, that is: any operation permitted by the rights of one

semantically via a novel resource-oriented Kripke logical relation, "€Source should not violate the knowledge of the other.
In some substructural type systems, such as those based on sep-

Categories and Subject Descriptors D.3.1 [Programming Lan- aration logic, resources take the form of entities—such as heaps—
guage§ Formal Definitions and Theory; D.3.3Pfogramming that enjoy an immediat@hysical interpretation of disjointness.
Languagef Language Constructs and Features—Abstract data When an operation consumes a héapt has full access té as
types; F.3.1 l[Logics and Meanings of PrografsSpecifying a physical object: it knows whdt is and has the right to mod-
and Verifying and Reasoning about Programs; F.Bd&jcs and ify it as it pleases. In other systems, resources take the form of
Meanings of ProgranjsStudies of Program Constructs “permissions” or “capabilities”, which are strictlpgical descrip-
tions of the knowledge and rights concerning some shared state. In
particular, two logical resources may be considered disjoint even

Keywords Substructural type systems, separation logic, sharing if they govern thesamepiece of state. F(_)r instance, “fractiona_l”
rule, commutative monoids, fictional disjointness, ADTs, hidden Permissions [7] enable the “full” permission to a memory location

Many substructural type systems have been proposed for contr
ling access to shared state in higher-order languages. Central
these systems is the notion ofesource which may be split into
disjoint pieces that different parts of a program can manipulate in-
dependently without worrying about interfering with one another.
Some systems supportagical notion of resource (such as permis-
sions), under which two resources may be considered disjoint even
if they govern thesamepiece of state. However, in nearly all ex-
isting systems, the notions of resource and disjointness are fixed a
the outset, baked into the model of the language, and fairly coarse-
grained in the kinds of sharing they enable.

General Terms Languages, Design, Theory, Verification

state, dependent types, capabilities, Kripke logical relations (z — wv)—which gives its consumer the knowledge thatur-
rently points tov and the right to update’s contents—to be split
1. Introduction into two “half” permissions D v S v)—which provide

) their respective consumers with the knowledge thabints tov
Over the past decade, masybstructuratype systems—based pri- byt not the right to update it. These half permissions are logically
marily on variants ofinear logic [20] andseparation logiq34]— disjoint because they ensure that neither consumer can violate the
have been proposed as a means of verifying critical semantic prop-qther's knowledge that points tov.
erties of higher-order stateful programs, ranging from basic mem- However, in nearly all existing systems, the notions of resource
ory safety to full functional correctness. These type systems and gnq disjointness are fixed at the outset, baked into the model of
their key substructural elements go by a variety of nameg= the language, and fairly coarse-grained in the kinds of sharing they
typestate [38, 11], uniqueness [8], regions [39], capabilities [42], enaple. This is unfortunate: ideally, we would like to have a way of
defining more fine-grainedustomlogical notions of resource and
disjointness on a per-module or per-library basis.

Permission to make digital or hard copies of all or part of this work for personal 11 MOtivating Example: A Memory Manager

classroom use is granted without fee provided that copies are not made outbstrib To take a concrete examp|e consider a moMl'&anementing an
for profit or commercial advantage and that copies bear this notice and the fubiritati lici v ! ill of . | d

on the first page. To copy otherwise, to republish, to post on servers or ttritedes explicit memory manage_ V_V' 0 CO_UI‘SE ma_lnta_ln some private .
to lists, requires prior specific permission and/or a fee. data structure representing its free list, and it will expect a certain
ICFP’12, September 9—15, 2012, Copenhagen, Denmark. invariant A of that data structure to hold whenever its methods

Copyright© 2012 ACM 978-1-4503-1054-3/12/09. . . $10.00 are invoked. IfM is simple enough that this invariant is tbaly

constraint needed on its methods, we can give it an interface like: 1.2 Commutative Monoids to the Rescue!

malloc : A-—o3X:Loc.ptrXQcapX 1@ A The goal of this paper is to show that the above example is but one
free : VX :Loc.ptrX ®capX1®A—oA instance of a simple and general pattern, and that there is a simple
))))) and general way of supporting such custom resource management
Here,ptr X is a singleton type inhabited only by the poinférand within an otherwise standard substructural type system.
cap X 1 represents the knowledge thitpoints to a value of unit The basic idea behind our approach is inspired by some very
type1, along with the full capability to modify it. The invariant recent work on separation logic, specifically Jensen and Birkedal's
is threaded through the pre- and post-conditions of the operations.fictional separation logi¢21], Dinsdale-Younggt al’s views[12],
but in some type systems it could even be hidden entirely [32]. and Ley-Wild and Nanevski'subjective concurrent separation
However, the above interface woutdt work for a more real- |ogic [25]. Although these developments are all motivated by dif-

istic memory manager that required the client to free only memory ferent concerns (to be described in Section 5), a common thread
previously allocated through the manager. For instance, in the Ver- rynning through them is the idea of accounting for various custom
sion 7 Unix memory manager—verified (and debugged) recently notions of splittable resource—along with their attendant notions
by Wickersoret al.[43]—the implementation internally maintains of knowledgeandrights—in terms ofcommutative monoids

a chain of pointers to the cells preceding contiguous blocks of A commutative monoid is a sétequipped with a commutative,
memory, both free and allocated. In order to preserve its invariant associativecompositionoperator(-) : S x S — S, and aunit

that the blocks it maintains are contiguous, the manager must only glementc € S such thatvz € S. = - € = z. If one can cast one’s
permit its client to free a block that the manager “knows about” notion of custom resource as a commutative monoid, then one can
(has marked as allocated in its internal chain). The type ofrdee yjew the global, shared state as the composition rx of one’s
operation must therefore make the set of allocated blocks explicit, |ocal resourcer,, with the resource r of one'sframe(i.e., one’s

so that it can require the freed location to belong to that set. We can environment Owning the localr;, gives one theknowledgethat

achieve this by parameterizing the manager’s invariwver the the global state must be some “extension’gf(i.e., it must equal
set of allocated locations, and revising its interface as follows: r1 - rr for some frame resoureer). It also gives one theght to
malloc VL : LocSet. A(L) —o update the_global state however one likes, so long as the new global
3X : Loc. ptr X @ cap X 1® A(L W {X}) state satisfies;, - v for somer’, . In other words, one may change
free : VI : LocSet. VX : Loc. one’s local resource to an arbitrary, so long as the change is
ptr X @ cap X 1 ® A(LW {X}) — A(L) frame-respecting.e., it leaves the frame resoureg alone.

The notion of logical resource that we suggested for the memory
Unfortunately, this latter interface is problematic if the memory manager module in Section 1.1 is expressible very naturally as a
manager is used by multiple client modules that one would like commutative monoid: sets of locations, with composition defined
to typecheck/verify independently. Each client module only really as disjoint union) ande = (). Furthermore, thenalloc and
cares about the locations thiitallocates/frees, but because the free operations are both frame-respecting, due to their universal
“global” state of the memory managei-e:, the full set of allocated guantification over the framing location skt
locationsL—is made explicit in the typel(L), each client will in But many other notions of splittable resource are instances of
fact be sensitive to interference from other clients. Consequently, commutative monoids as well. In their work on fictional separation
each client will need to pollute its own interface with explicit logic (FSL) [21], Jensen and Birkedal thus propose a way of al-
information about how it affects this global state, thereby leaking lowing different modules in a program to specify their interfaces in
implementation details in the process. terms of assertions—such d¢L) in Section 1.1—about different,
Ideally, we would like a way of giving each client its owacal module-specific notions of resource, encoded as different commu-
view of the global state. A simple way to provide such a local view tative monoids. This ability to encode module-specific protocols
would be to allow the memory allocator’s invariant to somehow be governing shared state was in fact already present to a large extent
split up into (and reconstituted from) logically disjoint pieces: in earlier work ondeny-guarantee reasonirj@5] and concurrent
. abstract predicate§l 3]; the main selling point of FSL in compar-
split : VL1, Ly : LocSet. A(L; W L) — A(L1) ® A(Ly) ison is thgt it adop% 61 simpler and more abstract monoidal view of
join : VLi, Ly : LocSet. A(L1) ® A(L2) — A(L1 ¥ L2) resource that is not bound up with concurrency-related concerns.

In particular, givenA(L) for some initial L, we could useplit to (For a more detailed analysis, see Section 5.) _
generate any number of copies 4f(), each of which could be In this paper, we show how to lift the ideas of FSL and its
passed to a separate client, thus rendering each client Comp|ete|)predecessors from the first-order setting of separation logic to the
oblivious to the existence of the others. higher-order setting of a substructural type system.

Intuitively, the splitting provided by theplit operation is per-
fectly safe becausk; andL- are disjoint sets, and so the omight

granted to the owner ol (L,)—namely, the right to free the loca- 1.3 Contributions

tions in L;—cannot possibly violate thkenowledgeof the owner We make two main contributions: one syntactic, the other semantic.
of A(L2)—namely, that the locations ih, are allocated. Clearly, Our syntactic contribution is to propose a new typing rule,
though, if we can support sushlit andjoin operations, ther (L) which we callthe sharing rule that gives the author of a module

no longer means what it did previously: rather than asserting’that fine-grained control over how the module’s private linear resources
is the global set of allocated locations, it now asserts merelylthat (e.g.,the full capability to access its internal data structures) are
is somesubsebf them that the owner ofl(L) has the right to free. shared with its clients. In particular, as witnessed in our motivating
In other words, we are treating sets of locations as a kind of split- example, the sharing rule allows the capabilities to access this
table resource, and we are using this custom resource to control theshared state to be split (%) into pieces that are logically disjoint
knowledge and rights that any one client module has concerning according to a custom commutative monoid of one’s choosing.
the global, shared state of the memory manager. This means that our type system is ostyperficially substructural

The question is: how can we put this intuition on a sound and under the hood, thel and B in A ® B may both be capabilities
flexible formal footing, thus enabling any module to develop its to read and writéhe very samehared state, albeit in ways that are
own custom notion of splittable resource in a safe, principled way? guaranteed not to interfere with each other.

We present the sharing rule in the context of a fairly standard
affine type system (Section 2), supporting a combination of features
from Dependent ML [45] and.? [5]. While this language is not
as expressive as, say, Hoare Type Theory [27]—which we would
eventually like to target as well—it is nevertheless rich enough to
encode interesting examples (Section 3), while simple enough to
focus our attention on the sharing rule itself.

Sorts

Index Terms ¢

Propositions P,Q :

N|1|]oxo]|2]|Lloc|o—o
oL | seqo | Po) | Q] ...

X | n|tt|ff] ...
T|I|PAQ | PDOQ| L|PVQ
VX:0.P | 3X:0. P
t=u | t>u | ...

Compared with the support for custom monoids in FSL, our Kinds K =o|o—=k
sharing rule is more flexible because it enables types indexed by Types A = 1|A®B| A—-B| A
different commutative monoids to be freely intermingled using the | ptrt | capt A
language’s general-purpose type. In contrast, FSL's “indirect Va:k A | Ja:k. A
Hoare triples” must be indexed explicitly by a particular monoid, VX:0uP.A|3X:0uP A |
and composing specifications that are indexed by different monoids bool ¢ | natt | [A]
requires additional, somewhat inconvenient, machinery. if(t,A,B) | a | AX:0. A | At

However, in the face of arbitrary higher-order programs, our Terms e =z | {) | {(ee) | let{z,y)=eine
implementation of the sharing rule necessarily carries a dynamic Mx.e | ee | v | letlz=ecine
cost, namely the use of a lock to protect updates to the shared new(e) | gety e | e:=qn €
state from unsafe re-entrancy. We do not believe this imposes a te | ff | if(e,e1,e2)
serious practical restriction on the use of the sharing rule in our n | case(e,0 = e1,5 — e2)
sequential setting, but it is clear that a better approach is needed | fix f(z)- e | share(e,vi) | o
if we wish to scale to the concurrent setting. For special cases Eval E u=[]] (Ee | (vE) |
of the rule—e.g., where the primitive operations on the shared Contexts | let(z,y)=FEine | Ee | vE
state do not invoke unknown functions—it is possible to show | B |E'et = EE'” ¢ 5.
that locking is not needed, but we leave a thorough examination } Ze_"i(/)E| |gzt?_E L,g‘rtﬁ(”E ‘e e,j*e' ¢
of suqh optimizations to future work. We discuss a.mother., more ‘ case(eE,O Selsa—en) | 7sf;are(E,v7)
complicated but potentially more scalable approach in Section 5. ,

Our semantic contribution is a novel step-indexed Kripke Values v =0 | () | de.e| v
logical-relations model of shared state, which facilitates a clean |l fxfla).e | n |t | fl] e]a
semantic proof of the soundness of our sharing rule (Section 4). Heaps N = | bt
The structure of our Kripke model directly reflects the intuition -~ exts
behind the sharing rule. In particular, its “possible worldg™—
which encode representation invariants on shared state—take the Index/Type % = | Sa:k | £, X:0
form of tuples of commutative monoids (think: one monoid for Proposition II = - | I, P
each application of the sharing rule). Associated with each monoid Unrestricted T’ = | Lz A
is a resource predicate that says how to interpret an element of the Affine A = | Az A
monoid as an invariant on some underlying resourcess our Combined 2 == HILIGA
motivating example, how the full set of allocated locatidnsaps
to an invariant on the memory manager’s internal state. Crucially, Figure 1. Syntax
this resource predicate may describe invariants not only on the

hysical heap, but also dogical resources (expressed as a tuple .
gf ()-:‘/Iements opf all the mono?ds i), thus ena(blir?g applications oa ThEArk Well-kindedness
the sharing rule to be soundly layered on top of one another. tp>tio Well-sortedness .

We conclude the paper with a detailed comparison to related > = £ © Prop Well-formedness of propositions

work (Section 5) and a discussion of future work (Section 6). 2 - IT ok Well-formedness of proposmpnal context
YT ok Well-formedness of hypothetical context
1O+ P Logical entailment

2. The Core Language Y;IIF A= B:x Type constructor equality

Our core calculus is an implicitly-typed version of affifie, ex- QFe:A Well-typedness

tended with domains that index types. We call these donsairts

and their elements index terms. With a sufficiently rich language
of index terms, and propositions and type-level quantification over
them, we retain much of the flexibility of dependent types for giv-

Figure 2. Judgments

ing rich type-based specifications for programs, without requiring metavariablée. Sorts are interpreted as plain mathematical sets and

the index terms to coincide with program terms, thus avoiding the new sorts can be added if needed. For precise specification of prop-

problematic issue of affine variable occurrences in types. erties of index terms, we allow propositions of first-order logic over
Figure 1 lists the syntactic forms of the language, including the index domains to appear in our types. The standard judgment

sorts, index terms, propositions over index terms, kinds, types, X;I1 = P means thaf’ can be inferred from the assumptions in

terms, contexts (for the static semantics) and heaps (for the dy-TI, for all instances of the free variablesih

namic semantics). Judgments for checking well-formedness of)

kinds, index terms, propositions and contexts, as well as logical TYPes and Terms We use a standard affine type system, whose

inference, type equality and typing are listed in Figure 2, but we rules are shown in Figures 4 and 5. The natural presentation of

elide the standard rules for inferring these judgments. typing has four contexts; to increase the legibility of the rules, we
abbreviate these with a single symi§al and define notations for

Sorts, Index Terms, and Propositions Sorts, ranged over by adding hypotheses and merging contexts in Figure 3.
the metavariabler, include mathematical domains such as natu- As expected, the unit terf) : 1 types in a context with any
ral numbers, tuples, functions, locations and sets, denoted by theset of resources\; the typing rule for{ei, e2) : A ® B splits its

Qa:kFv:B
QFv:Va:k. B

0, X:0,PFv: A

QFv:VX:0: P A

QFe:VX:0:P. A

Q=%;ILT;A Yp>tio I F [t/ X]P
QFe:[t/X]A

QFe:Va:k. B Q=%1LT;A YHA:k
QFe:[A/a]lB
QFe:[t/X]A

Q=%;ILT;A Yp>tio I F [t/ X]P

QFe:3X :0::P. A

QFv:3X 0=

Q. X:0,Pz:AkFe:C

P A
X,z ¢ FV(C)

Qr:A = XSILD;Axz:A if Q=X1ILT;A
Qxa A = XILDz: AA 0 Q=%51LT;A
Qa:k = X a: n,H,F,A if Q=3;IT;A
0, X:0 = 2, X:oILI;A if Q=XILT;A
Q,P - SI,PT;A if Q=XILT;A
Q1,82 = NILGT; A1, A 0f 0 Qp =515 T; Ay
Qo =511 T As
Figure 3. Context Manipulation Operations
rz:Ael r:AeA
S I ARz A S I ARz A QF(:1
QFv: A Qi ket A Qo bkes: B
QFe:[A] Q1,Q F (e1,e2) : A® B
MtFe:A® B Q2,2:A,y:BFe : C

Q1,00 Flet (z,y) =eine’ : C

Qxr:ArFe: B
QFXz.e: A— B

QM kFe:A—oB Qobe: A
Q1,QFee : B

I - Fo: A
I AR 1A

Q1 Fe:lA Qo,z: A€ : C
Q1, Qo Fletlz=eine : C

QFe: A
QFnew(e):3X :Loc:: T.lptr X ® cap X A
QFe:ptrt Q' Fe :captA

Q,0 Fget,ye: A®captl

Qi Fe:ptrt Qzl—e/:A
91702,93 Fe =t e/

Q3 e’
icapt A

ccaptl

5, ILT,f:A—-Bjz:AFe: B
SIL T - fix f(z).e: A— B

Q F tt: bool tt Q) + ff : bool ff QFn:natn

QFe:boolt Qt=ttke : C Qt=ffrey:C

Q,Q if(e,er,e2) : C

QFe:natt
Q' t=0Fe :C QX :Nt=sX,z:nat X Fes:C

Q,Q F case(e,0 — e1,s —> e2) : C

Figure 4. Typing Rules

resource contexA into two disjoint parts for checking subterms
ande; and, to type the affine functioke. e : A — B, we add the
hypothesise : A to the affine context to check the boey

The exponential A is subject to avalue restriction— we can
type termslv at type! A only whenw is a value. The intuition for
this restriction is that (following the standard affine interpretation)
aterm of typd A is duplicable, so the value it evaluates to must not
depend on affine resourcesvlivere not a value, then its evaluation

could create new affine resources on which its result depended (e.g.

the evaluation might allocate fresh memory and return it).
The base typelsool ¢t andnat u aresingletontypes, indexed by
the Boolean sor2 and the natural number sa¥t respectively. So,

Q,Q F [v/zle: C

Q=;1T;A
Y,a:kFB:o
QFe:3a:k. B

SFA:k e:[A/a]B

QFv:3a:k. B Q. a:k2z:BFe:C

Q0+ [v/zle: C

a g FV(C)

Q=5ILT;A QkFe: A

QFe: B

;IIFA=B:o

Q=%;1;T; A
Q. PFe: A
QFe: A

S IOEPVQ QQFe: A

Q=%1LT5A
Q,X:0,PFe: A
QkFe: A

X;IIF3dX to. P YHA:o

Q=%ILT;A ;I E L

QFe: A

YFA:o

Figure 5. Typing Rules, Continued

for example, the only value of tygsol tt is tt and the only value
of typenat 17is 17.

For access to shared memory, we introduce the singleton type
ptr £. A term of typeptr ¢ evaluates to the locatioh Additionally,
we have a capability typeap ¢ A, which represents thgermission
to dereference the pointéand obtain a value of typd. Intuitively,
¢ . ptr £ is a freely duplicable pointer, which can be shared, but
the capability to use the pointer, of typep ¢ A, is affine, and
can be shared only in a controlled manner using our sharing rule.
Sincecap ¢ A only represents a capability, the actual value of type
cap ¢ A is computationally irrelevantand we write it a9.

The two typesptr ¢ andcap t A are tied to each other by
the typing rules for reading and writing memory. For example,
the get,, e operation (see Figure 4) dereferences a poiatef
type ptr t, but it requires the capability’ of type cap t A. It
returns a pair of typécap t 1) ® A. The operational semantics of
get, ¢ (Figure 6), removes the current value from the store,
and replaces it with the valug. (It cannot also leave the contents
of the pointer in place since doing so would violate any affine
constraints on the contents. However, such behaviour is encodable
for references containing BA, which is duplicable.) The write

(h;let (z1,22) = (vi,v2) ine) — (h;[vi/z1,v2/z2]E)
(h; (Az. €) v) = (h;[v/x]e)
(h;letlz =lvine) — (h;[v/z]e)

(h; new(v)) — (hW[l:v]; (!, e))
(h[0: v]; gety £) = (AW [l: ()]; (v, 8)
(hLﬂ_[E:()];@::. v) — <hErJ_[f:v},o>

(h; (fix f(). €) v) = (h;[fix f(2). e/f,v/z]e)
(h;if(tt, e, e’)) — (hse

(h;if(ff,e,e’)) — (h;e’)

(h;case(0,0 —» e,sz —¢e')) < (hje)

(h;case(sv,0 > e, sz —€')) < (h;[v/z]e’)

(h; share(v,v7)) — (hW [ff];

(e, lop;, Isplit, ljoin, Ipromote))
Az. let (flag, -) = getq £ in
let .= {:=4 ttin

if flag then (fix f(z). f =) ()

where op; =

SEA:0—o0
E; I+ I‘IlOIlOida(€v ())

3515, T A F share(e, 757) :
Ja: o — o. [a t] ® Ispec; ® !splitT ® ljoinT & !promoteT

ST ARe: [At
Vi. 3;IL T - vy 0 [A/a)spec;

where
spec;, = VX :0.YY :0): P Bi® o (t- X)] —o
3Z 0l Q. Cs @ [a (t, - X)]
whereX, o ¢FV(P¢,Q¢,B¢,C¢,t¢,t;)
splitT = VX, Y:o. [a(X Y)] —-[aX]|®[aY]
joinT = VX, YV:c. [aX]|®[aY]—[a (X Y)]
promoteT = VX:0:X =X X.[aX]—o![aX]

VX:0.e- X=XNAN
VX, Y:0. X Y=Y - XA
VX, Y,Z:0.(X-Y) Z=X-(Y-2)

monoids (¢, (1)) =

else lety =v; zin

let - =¢:=¢ ffiny Figure 7. The Sharing Rule

split = Az. (e, e) join = Az. e promote = Az.le
resembling that oL [5]. The primary novelty in our language is
encapsulated in theharing rule which lets us put user-defined log-
ical resources on a first-class footing. We describe this rule and its

applications in the following section.

(hye) = (h';e")
(h; Ble]) — (h'; E[¢])

Figure 6. Operational Semantics
3. The Sharing Rule

operation? :=, v’ takes a pointef of type ptr ¢, new contents A purely affine type discipline is too restrictive for most programs.
v, and a capability of typecap X 1. _ In this section, we describe thgharing rule our method for in-

We generalize the idea of computational irrelevance by intro- troducing controlled aliasing into an affine language. The intuition
ducing the irrelevant typ@A], which is inhabited by the dummy pehind this rule is that if a library has a particular programmer-
valuee if there issomevalue inhabitingA (see the typing rule for defined notion of resource, and if all the operations the programmer
[A] in Figure 4). The typdA] is employed gainfully in our shar- exposes in the interface respect the frame property for that resourc
ing rule (Section 3). Our semantic model validates several equiv- then we can treat the library’s concept of resource separation as an
alances on irrelevant types, includifigp ¢ A] = cap ¢ A and instance of our ambient notion of separation: the tensor product.
[A® B] = [B ® A], which we use freely in our examples. Concretely, suppose that we have a type o — o, repre-

Propositions over index domains are embedded in the type sys-senting an affine capability indexed by a moneidalong with an
tem at quantified typesX : o :: P. Aand3X :o :: P. A.In- operationf : VX : 0. A(Y: - X) — A(Ya - X). The type off as-
tuitively, e : VX : o :: P. A means that for all terms of sort serts that it can take the (logical) resouiiGeto Y-, and that in so
o satisfying the propositio”, e has the typdt/X]A. The type doing, it preserves the framg. If we knew thatf were the only
3X : 0 :: P. Ahas the dual meaning. We also include an incon- operation transforming capabilities of the forfiit), then it would
sistency rule (the last rule in Figure 5): if the propositional context follow that we could split a capabilityl(X - Y) into two parts
IL is inconsistent (derives false), then any term is well-typeHin A(X)® A(Y), and manipulate them independently, since the only
(The two prior rules give the rules for existentials and disjunctions.) operation transforming capabilities of the fortft) is f, andf is

) In addition, we also lnclu_de t_ype-level Co_mp_utatlon with |n_dlces parametric in the frame. By taking a value of ty‘an) and using
with theif (¢, A, B) type, which is equal tol if ¢ is true, andB if it to construct a new abstract type, on whiatly frame-respecting
t is false. There are no explicit introduction or elimination forms operations are allowed, we can safely share an affine capability.
for this type; we simply make use of the equality judgment. To The sharing rule, given in Figure 7, formalizes this idea. We
assist in this, the typing for the term-level if-then-else construct assert the existence of a type constructor: ¢ — o, where
adds the appropriate equality hypotheses about its index argument; is a commutative monoid, and an initial resouece [A t],
in the branches of the conditional. (Similar rules apply for the other together with a family of frame-respecting, state-passing operations
index domains, but we suppress them for space reasons.) v;, which take in an argument of typB; and a state of type

Kinds, «, in our language have the forms (affine types) [A(t; - X)], and return a result of typ€; and a stat@A(¢; - X)].}
ando — & (dependent types). We include type-level lambda- The full type ofv; includes additional index quantifications, which
abstractiol\X : 0. A, type-level applicatioi ¢ and the universal are useful for asserting propositions that connect the input and
and existential polymorphic type&x : . A and3a : k. A. We jnitial state or output and final state; in our examples, we suppress
could also include type constructor polymorphism, but we omit it ynused elements of this general type whenever we do not use
for simplicity. We need a value restriction for all quantified types them. The sharing operator returns a new existential type, exporting
because quantifiers are implicitly introduced and eliminated, and the v, operations together with split, join and promote operations.
do not delay evaluation (unlike in explicit System F). Splitting and joining allow treating the monoidal composition as
~ Our choice of maximal implicitness naturally makes typecheck- 3 tensor product. The promote operator takes any resource value
ing undecidable. It should be routine to add enough type and proof
annotations to make typechecking decidable, and we chose the im+ Note that all the types of the form(¢) are in proof-irrelevance brackets—

plicit style both to make our _examples more readable, and 10 re- yis ensures that represents a logical capability with no dynamic content,
duce the number of clauses in the term syntax. On the whole, our which turns out to be useful in the proof of soundness (Seatip That

language is a relatively conservative integration of the ideas of De- said, it is possible to lift this restriction at the cost of am@omplex
pendent ML [45, 18] into an affine language with a type structure implementation of the sharing rule. See footnote 4 in Section 4

indexed by an idempotent valuee(, where X = X - X), and MLref : VX : Loc. Iptr X ® [cap X !A] — (1 - 14) @ I(!1A — 1)
returns a freely duplicable value. MLref (!l,c) =
The type constraints on the operatiansstatically ensure that let (g, !get, !set, ., _, Ipromote) = share_ref({!l,c})) in

3X : 0. A(X) holds as an invariant at the beginning and ending let I = promote(q) in))
of each call. However, if an operatian is passedtself as an let deref =1(A(). let (v,) = get(r) in v) in

: S : P let setref = !(Aa. let _ = set(a,r)in ()) in
argument, whether directly or indirectly, it may endagiling itself (deref, setref)
when its internal state does not satisfy the invariant; this is the ’
well-known problem ofre-entrant calls[29, 44] in higher-order ~ Monotonic Counters Next, we show how to construct shared
imperative programs. One way to address this issue, embodied inmonotonic counters that can be freely incremented by all clients.
Pottier'santi-frame rulg[32], is to statically check that the invariant ~ Since clients can only increment the counter, the local knowledge
holds continuously, but this solution is often too restrictive [29]. Of each client provideslawer boundon the counter’s actual value.
We follow Pilkiewicz and Pottier [29] in preventing reentrancy SUPPOSe our counter is stored at a location Loc. We start by

dynamically using a lock. Thus, the operational semantics of the ggfg‘riggn?esri]?"glg g‘irr‘]? éfg?”t‘;g;d' :)rlfr%?“:rr‘]tdf%”ggmpa’%iI}R/agﬁ;%se
sharing rule, given in Figure 6, is not a pure no-op, and shows ca | : .

.9 . . - p X !(nat n), increments the counter, and returns- 1 and a
how we rely on acombinationof static and dynamic checking to capabilit(y of ty)pecap X I(nat (n + 1)). (We assume here that

enforce type safety. Sharing creates a flag variable (the lock), andis a primitive operation taking unrestricted values of typem,
wraps each operator with code to test the lock and to diverge if it is andnat m2 and returning an expression of typet (m1 + mz2).)
already held. £ (.6 — let (1 — et i

The remainder of this section gives a series of examples using "¢ (4¢) = ot g'ﬁ’ 2 B B in (n+1,0)
our sharing rule to introduce custom notions of resource, culminat- . . vy, Iptr X ®;ap .X_!C(nat n) ’
ing with an idealized memory allocator. —olnat (n+ 1) ® cap X !(nat (n + 1))

Weak References Sharing enables us to model ML-style weak We wish to share the counter by passing the functiett as the
references of typéA that can be aliased. Suppose we have a second argument of thehare(_,) operator. To do that, we must

location X : Loc, a duplicable pointer of typéptr X and an massage the type aéxt into a compatible form, capturing the fact

affine capability of typecap X !4, and we wish to definéreely that, once the counter is aliased, its local knowledge only provides
« L1, . . . def

duplicablefunctions to dereference and assign the locafignvith a lower bound on its value. We define the mondid= (N, e =

types!(1 — !A) and!(!A — 1) respectively. The key ideaistouse 0, (-) £ max), the typeC'(n) £ cap X !(nat n) (to correspond to
theshare operator to allow these duplicable functions to close over the typeA in Figure 7) and observe thaéxt can also be given the

the affine capability. First, we wrap the built-in operatges, [and following weakertype:

[:=. vinthe following functionget, andset, whose return types next : nextType(C)

resemble those of the second argument of the constiaet(_,). nextType(a) = VY, Z:N. Iptr X ® [a(Z - Y)]

Typing these functions requires the equivaleficey X !A] = —~ U :N2:U>Z. nat U ® [a(U -Y)]

X A, which our semantic model validates. . o
cap The weaker typeyext Type(C'), only asserts that if the initial value

gety: VX : Loc. Iptr X —o !([cap X !A] —o A ® [cap X !A]) of the counter isnax(Z, Y'), then its value after theext operation

getg = All. e let (v, ¢) = get, Linlet c = (I :=¢ v) in {lv,) ismax(U,Y"), forsomel/ > Z. Intuitively, Z is the local context's
initial lower bound on the countek] is the frame’s lower bound

setg : VX : Loc. Iptr X —o !(!A ® [cap X !A] —o [cap X !A4]) on the counter, and is the local context's lower bound on the

seto = Al I\ (v, c) . let ({dummy, c) = get, Linl:=lv counter after the increment operation. This weaker type is exactly

in the form of the second argumentgbfare(_, _), so we can define
For any expressior : !ptr X, get, e andseto e have types a counter sharing function that creates an abstract, shared counter
([cap X 1A] — A ® [cap X !A]) and!(!A ® [cap X 4] — from a given capability toX : Loc and thenext function.
[cap X !A4]), which essentially match the structure of the types
spec, in the definition of the sharing rule. Next, we define the
monoid that encodes the logical state of the weak reference we ar

mkCnt ¢ = share(c, next)
e mkCnt:V X : Loc,Y : N. [cap X [(nat Y)] —o

defining. Since the resource invariant for a weak referentires Ja:N—o. , .
and just states that the reference points to something ol #/pee [a Y]® InextType(a) © IsplitT @ ljoinT @ !promoteT
choose the unit monoid/ = (1, = (), (-) £ A(z,).()), and Sincemax(z, r) = z, every element of our monoid is idempotent,
we interpret it by instantiating the capability operatbin Figure 7 so we can take any counter and make it freely duplicable using
with C' () S cap X !A. With these preliminaries, we can apply the resulting function of typeromoteT (as in the previous exam-
the sharing rule as follows: ple). This permits multiple clients to make use of the same counter.
share_ref (I1,¢) = let (Ig,1s) = (geto !l, sety !I) in share(c, g, 5) Each client knows that its own use of the counter will yield mono-
share_ref : VX : Loc. Iptr X ® [cap X A] —o tonically increasing elements, and does not have to worry about
Ja:1—o. interference with other clients of the counter.
[()] ® lgetType ® IsetType
® IsplitT ® ljoinT @ !promoteT Fractional Permissions We provide an encoding of fractional
permissions that is parametric in the underlying affine resource that
where we wish to share. Let be an index sort, and let : ¢ — o be
getType & VX :1 [0 X] <14A® o X] the type of an affine resource on top of which we want to layer
setType &YX 1. 14A® [a X] —o (o X] a fragtioinal permissions algebra. For example, to model fractional
promoteT % VX :1: X = X-X. [a X] —o ! X] permissions over ref cells of typé4, we could choose = Loc

anda X = cap X A. We define a sort of fractional (rational)

Finally, the unit monoid is idempotent by definition, so we can numbers, calledrac, and a sort of fractional permissions over
apply the promote operator to any value of tyjee t] (for any calledFPerm(c):

t : 1). This allows us to construct the following function that,
given a duplicable pointer and an affine capability to it, returns two Frac {a€eQ | 0<a<1}

duplicable functions to read and write to it: FPerm(c) & {e, L, Empty} U{(a,m) | a € S[Frac],m € S[o]}

def

A fractional permission is eithet (essentially a) permission), Memory Allocator We now give a stylized memory allocator with

L (for an invalid permission)Empty (denoting that there is no & non-monotonic resource invariant, inspired by (but much simpler

resource currently in place to be fractionally shared){@rm) than) Wickersoret al.s [43] proof of the Unix malloc function,

(denoting fractional permission to the resource represented by ~2and show how the allocator can be shared safely. The basic idea is
m). Here S[o] denotes the set of elements in the sorEractional that the memory allocator’s free list is represented by an array, each

- ; W with unit d fi defined entry of which contains a pair of a boolean flag and a location; the
permissions form a monoid/ with unite and operatiorf-) define flag’is true when the location is free, and false when it has been

on non-unit elements as follows: allocated to a client. For free locations, the allocator also owns a
., (a+d',m) 0<a+da <1, m=m' capability to access the memory of that location. For the allocated
(@,m)-(a',m) = ¢ otherwise locations, it does not. To formalize this idea, we first assume a
family of types for affine arrays:
Empty - o . Empty z=c¢
Py oL otherwise arrg :Locx Nx (N— o) = o
Lz = 1 alength, : VX : Loc,n: N, f: N = 0.
Next, we define the affine type famifracTy,, which we actually Iptr X @ [arra (X, n, f)] — Inat n @ [arra (X, n, f)]
share (this type family is called in Figure 7). As required by the aswapy VX :Loc,n:N,f:N—= o, i:Nz:0:i<n.
sharing rule, the type is indexed by the monbierm(c). Here, Iptr X® nat i ® A(x) ® [arr 4 (X, n, f)]
void denotes the empty tygeX : N :: L. 1. — A(f3) ® [arra(X,n, Aj. if (i = 7,2, £(5)))]
def . def . def areadyq : VX :Loc,n: N, f:N—= ot :Nz:0o:i<n.
FracTy, € £ void FracTy, L £ void FracTy, Empty £ Iptr X Inat i @ (A(f §) —o B® A(f 7))
gt Jam whena = 1 ® [arra(X,n, f)] — B® [arra(X,n, f)]

FracTya (@m) = 4 L oid whena # 1

Here, A is ac-indexed type constructor, and the index informa-
tion for the array of typarra (X, n, f) consists of its locatiorX,
its lengthn and a functionf, such that for each < n, thei-th ele-
ment of the array contains a value of tyféf i). So f serves as a

Notice that this type family is uninhabitable except at the extremes.
This is important because, concretely, either the whole resource
will be available to the fractional permissions module as hidden

state, or nothing will be, even though the fractional permissions . .)
superficially represent partial ownership. representation function for the array. To modify the array, we make

We now show how to represent fractional permissions over the US€ Of @ swapping operatiaswap,,, which takes an array pointer,
affine typea: whena supports only one fractionally-shareable op- a@n index, a value, and a memory capability for the array, and uses
eration,readonlyop, that mapsxy M to o M, possibly with aux- it to replace the contents of that index. In the process, it also up-
iliary inputs and outputs (our construction generalizes very easily dates the representation functipnTo read the array, we make use
when there is more than one operation). Let this only operation, of a reading functioraread 4, which takes an array pointer, an in-

readonlyop, have typeReadOnlyOp defined by: dex, an array capability, and an observer function, which takes a
ReadOnlyOp value at @he given location and returns the array capability plus an
VX : FPerm(o). VY : ¢’ X Frac :: P. obs_,l_ervatlor] (I)f ty[::ﬁ_?. to th llocator ADT d ibed
B (m(Y)) @ [FracTy.. ((ma(¥). M) - X)] —o o0 specialize this to the memory allocator we describe

briefly above, we choose = 2 x Loc, where2 = {tt,ff} and
320" Q. y Z® [FracTy, ((ma(Y), M) - X)) A= contents, which is defined below: e)
This type has been constructed specifically to match the “spec” type
for the sharing rule, and thereby provide maximal generality. We contents : (2 x Loc) — o
quantify over an arbitrary fraction as the second componeht.of contents(tt, X') = lbool tt ® Iptr X ® [cap X 1]
We can directly apply thehare(_,) operator with this opera- contents(ff, X) = !bool ff @ Iptr X ® 1
tion as the second argument to obtain a shareable abstraat'type freelist : Loc x N x (N — (2 x Loc)) = o
but, to make the fractional permissions useful, we would also like freenst('x n, f) = 3. inj(m2 0 f). [arrcontents(X; 7, f)]
to provide two operations that allow clients to exchange “full” re-
sources for “full” fractional permissions and vice versa. These tWo e define the typéreelist (the type of the free list of our memory
operations should have types defined below: allocator) as an array @bntents, with the invariant that the second
def projection of the representation functighbe injective {.e., the

ToFrac = VX:0. |a X]®[a Empty] — [/ (1,X)] -
FromFrac & VX : 0. [o (1, X)] — [o X] ® [/ Empty] array has at most one entry for each Igcatlon). The type operator
’ contents takes a booleah and a locationX, whereb reflects
Accordingly, we would like to pass &hare(_, -) two additional op- whetherX is free. The capability to access is held in the array
erations of typeJoFrac[FracTy, /o] andFromFrac[FracTy, /o], contents only for free cells.
respectively. Fortunately, given our definition BfacTy , these Next, we use the functioaswap to define functionsnalloc_at
operations can be trivially defined aéz, ()). = andAz. (z, ()). andfree_at to allocate and free locations at a particular index in the

Tying everything together, we now define the following term free list, respectively. The functiomalloc_at takes an index in
mkFrac, a generic (polymorphic) module for layering fractional the free list, which maps to locatidri, a proof that the location is
permissions over a resourae The module provides an empty frac- free (f(i) = (tt,Y")) and returns the capability of tyjeap Y 1]
tional permission at the outset, which can then be transferred to astored in the location, swapping it with a unit valieee_at does
full permission usingloFrac and back usingromFrac. (The type the opposite.

FracOp is defined afkeadOnlyOp with o in place ofFracTy,,.)
flag_loc : Vb : 2,1 : Loc.

zt:z:::z : M f.share((), f, Mz, (). =, Az. (z,())) contents(b,l) — (!bool b ® !ptr) ® contents(b,)
: flag_l 1b,! = ({1b,11), {!b,!
Va:o0—o0.VB:0' = 0. Vy:0"” —o. ag-loc (1b,1,m) = ({16, 11), 16, L, m))
!ReadOnI/yOp malloc_at :
— Ja’ : FPerm(o) — o. VX,Y :Loc,n: N, f:N— (2% Loc),i: Nu:i<nA f(i) = (tt,Y).
[@/ Empty] ® IFracOp ® !ToFrac ® !FromFrac ® Iptr X® !nat i ® freelist(X, n, f)

'splitT ® ljoinT ® 'promoteT —o Iptr Y @ [cap Y 1] ® freelist(X, n, Aj. if i = j, (fF,Y), f(5)))

malloc : VS : P(Loc) | , X : Loc.
Iptr X ® [C(S)]
— 3Y : Loc. IptrY @ [cap Y 1] ® [C'(S - {Y'})]
malloc(la, m) =
let (In,m) = alength(la,m) in
let rec loop(m, i) =
if ¢ < n then
let ((!b,11), m) = aread(la, !4, flag_loc, m) in
if (b, malloc_at(!a, 14, m), loop(m,i + 1))
else
(fix f(2). f 2) ¢
in loop(m,'0)

free : VS : P(Loc) |, X : Loc,Y : Loc.
Iptr X @lptrY @ [cap Y 1] ® [C(S - {Y})] — [C(9)]
free (la,!l,c,m) =
let (In,m) = alength(la,m) in
let rec loop(c, m, 7)) =
let ((!b,!"), m) = aread(la, !4, flag_loc,m) in
if(l = U, free.at(la, !4, c,m), loop(c, m,i + 1))
in loop(c,m,0)

Figure 8. The Memory Allocator

malloc_at(la, i,m) =
let ({!b, 1), m) = aread(!a, 7, flag_loc, m) in
let ({!b,!l,c), m) = aswap(la, i, (ff, 1L, ()) ,m) in ({,c,m)

free_at :
VX,Y :Loc,n:N,f:N— (2x Loc),i: Nui <nA f(i) = (ff,Y).
Iptr X ® lnat ¢ ® [cap Y 1] ® freelist(X, n, f)
—o freelist(X, n, \j. if (i = j, (tt,Y), £(5)))
free_at(la,li,c,m) =
let ({!b, 1), m) = aread(!a, 7, flag_loc, m) in

let ({!b,!,()), m) = aswap(la, 4, (!tt,!l,c) ,m) inm

Next, we consider the monoiB(Loc) , , whose elements are sets
of locations. The unit is the empty set= (), and concatenation
is defined by disjoint unio, with non-disjoint sets going td..
We use this monoid to define the typ&.S) for a given locationX
pointing to the head of the free list:

C(L) = void
C(S)=3n:N,f:N— (2xLoc):S={l | Fi<n. f(i)=(ff,1)}.
freelist(X, n, f)
Intuitively, for S # L, C(S) is a free list whose allocated pointers
coincide exactly withS.

Using C(S), we can define operationsalloc and free (Fig-
ure 8). Themalloc operation traverses the free array until it finds

k<n,3jwe Islandi"'1

w[0] = HIslandy

(M, -, €) comm. monoid

I € M — ResPred,,

HeapJJ &J, wa

Ah{(W,e) | W € World,,, h # L}

YW/ JIJW. (W ,r) €
= (W/,r)eep

W eWorld,, Vi.a; € W.wli].M,

r=(ao,...,am—1),m = |[Wuw|

YW I W. (W, (r,v)) €V

=V’ (W, (r-r,v) eV

| 3n. (W,r) € ResAtomy,

def

World,, W = (k,w) ’

Island,, gef

{
{
* (
{
{
{

S~

L= (M7 56 I) ’
HIsland,,

ResPred,, = < ¢ C ResAtom,,

ResAtom,, = 4§ (W,r) ’

ValPred = <V C ValAtom

e) — —

ValAtom & {(W, (r,v))

def

= (k, |w]k)
= (Leadr o Lendr)

def

>(k+1,w)
_(le cee 7"”)Jk

(M, e,)] = (M, ¢,xa.[1(a)]k)
Lol € {(W,r) € ¢ | Wik <k}
(sl)3 (1,5 tn) &>, Vi<n =1
(K,w') 2j (k,w) Lk =k—j, o J|w
(s,7): W &f S=80"... Sm—1, m= |Ww|,

Vi€ 0.m—1. (5W,s;) € WewlilI((s -)[i])

Figure 9. Possible Worlds and Related Definitions

correctness, no client cares what allocations or deallocations other
clients perform:

mkAllocator : VX, n, f,S = S ={l | Fi <n. f(i) = (ff,[)}.
freelist(X, n, f)
—o Ja: P(Loc) | — o.
[@(S)] ® !mallocType ® !freeType
IsplitT ® !joinT ® !promoteT
mkAllocator m = share(m, malloc, free)

The memory manager’s state can be split up and shared among
many different clients. The key is to observe that for any statee

know thata(S) = a(Sw0). Thus we can pass each client a copy of
a((), which it can use to allocate and free locally-owned memory
without knowledge of the allocation behavior of other clients.

4. The Semantic Model

an unallocated element, updates the flag, and returns that eledn this section, we justify the soundness of our type system. The

ment. If the free list is fully allocated, then we go into an infi-

main challenge, of course, is validating the sharing rule. We gain

nite loop — more realistic implementations would signal an er- traction by characterizing the behavior of well-typed terms through

ror or resize the free list. Théee operation also iterates over

a step-indexed Kripke logical relation (SKLR). While SKLRs have

the array until it finds the element it was passed as an argument,been used previously to give clean semantic soundness proofs of
but it doesnot have to perform a bounds check as it iterates: the related substructural calculi [5], ours is novel in its treatment of

type C(S - {Y'}) guarantees that the locatidr will be found
in the free list, and hence thatis always in bounds. Note that
the type of the location comparison operatienused infree is
VX,Y : Loc. ptr X ® ptr Y —o bool (X =Y).

resources. We therefore begin by laying down some conceptual
groundwork and terminology concerning resources.

Physical vs. Logical Resources and the Global Store In the be-

More sophisticated versions of this pattern arise frequently in 9inning, there is the heap: it is a primitivehysicalnotion of split-
the implementation of free lists, connection pools, and other re- table resource, and in the absence of sharing there is little more to

source managers. The critical feature of our invariant is that we can S&- The affine heap capabilitap ¢ A gives its "owner’'—.e.,

only free a piece of memory if it originally came frothis mem-

the term that consumes it—full control over the locatioand its

ory allocator in the first place. Furthermore, it is a non-monotonic contents, and the lack of sharing means that no other parts of the
invariant, since the same piece of memory can go in and out of the Program may contain any knowledge abéuwr its contents at all.

free list, which means that the size of the free list in the predicate

can grow and shrink as the program executes.

Each application of the sharing rule, however, introduces a new
logical notion of splittable resource, represented as a commutative

However, we can nevertheless share the memory allocator, sincemonoid (17, -, €), which governs access to a piece of shared state.
the frame conditions on the specifications express the constraintControl over resources of typk/ becomes a new type of affine
that interference between different clients is benign—up to partial capability (written[c ¢] in the sharing rule in Figure 7), which

may be consumed by or transferred between different parts of the
program just as heap capabilities Gddnlike the heap, which has a
direct physical interpretatiory/ must be given an interpretation in
terms of what invariants it imposes on the underlying shared state.
Specifically, the capabilityA ¢] in Figure 7 describes the invariant
that holds of the shared state when thebal storeof M (i.e.,the
monoidal composition of all resources of typ£ that are currently

in existence) i$. For those readers with a Hoare-logic background,
it may be helpful to think of this global store @ff as a kind of
“ghost state” [22] that instruments the physical heap state with extra
logical information.

Atomic vs. Composite Resources As a program executes, a new
logical resource is created each time the sharing rule is executed
extending the resource set (which begins life with only the lone
physical resouce of the heap). We will say that a resource belonging
to any one of these types is atomicresource.

Of course, a term may naturally own many different atomic
resources, as a result of being composed from multiple different
subterms. For example, it may own the heap capahility ¢ 1 to
control location?, as well as the logical capabilify ¢] (wherea

is the abstract type constructor created by some application of the

sharing rule). In this case, the term owns a physical heap resourc
([¢ : ()]), as well as a logical resourcs pf the monoidal resource
type that was created along with

In general, a term may own resources of every type currently
in existence (and later, when new types of resource are created,
can be implicitly viewed as owning the unit element of those re-
sources). We call such a combination of resources of all the differ-
ent atomic types aompositeesource. Given that each atomic re-
source is a commutative monoid, observe that composite resource
form a commutative monoid via the obvious product construction.
For convenience, we overloadnd writer; - r, to denote the com-
ponentwise composition of two composite resourngeandrs.

Composite resources are the fundamental currency of our
model. Not only are they what terms consume and produce, but
furthermore, when we apply the sharing rule to make some un-

derlying (affine) resource shareable, that underlying resource is a

composite resource, and the invariant that governs it takes the form
of a predicate on composite resources.

Worlds and Islands Being a Kripke logical relation, our model
(presented below) is indexed hyossible worlds In previous
Kripke models of ML-like languages, these worlds have been used

€

The first island (island)) is fixed to be the built-in island
for physical heapsHIsland). Its monoid is the standard partial
commutative monoid on heaps, with disjoint union as composition
and the empty heap as unit, completed to a total monoid with a
bottom elementL. Its representation invariaft(h) is trivial—it
asserts no ownership of any underlying shared resource because
there is none, but is only satisfiedlifis a heap and nat..

In the other islands, the representation invariaig more in-
teresting. First and foremost, it iorld-indexed For those read-
ers familiar with recent SKLRs [16, 3], which employ similarly
world-indexedheapinvariants, the reason for this world-indexing
will likely be self-explanatory: it's needed to account for the pres-
ence of higher-order state. For most other readers, it may appear

'completely mysterious, but it is also a technical point that the reader

may safely gloss over (by skipping the next paragraph).

Briefly, the reason for the world-indexing of the resource pred-
icates is as follows: in proving the sharing rule (see the end of this
section), we extend the world with a new island, and we want to de-
fine itsI(t) to require (roughly) that the underlying shared resource
of the island must justify the capabilifyl ¢], whereA is the capa-
bility constructor in the first premise of the sharing rule (Figure 7).
But for arbitrary A, the question of whether some (composite) re-
sourcer justifies the capabilityA ¢] depends on what the “current”
world W is when the question is asked, which might be at some
point in the future when new invariants have been imposefliby
tureislands. Such a situation would arise, for instance, were we to

itapply the sharing rule to create a “weak reference” (Section 3) to a

value of function type, which is (not coincidentally) the canonical
example of higher-order state. The solution is thus to parameterize
the resource predicafét) overW, knowing that théV parameter

Swill always be instantiated (in the definition of “world satisfaction”

below) with the “current” world.

This parameterization trick is by now a very standard move in
the SKLR playbook for building models of higher-order state [3,
17]. However, it is also a prime example of Wheeler's adage that
“all problems in computer science can be solved by another level of
indirection, but that usually will create another problem.” Indeed,
an unfortunate consequence is that it causes a “bad” circularity in
the construction of worlds that cannot be solved directly in sets. The
step-indexedpproach of Ahmeet al.[1, 2, 3] handles this prob-
lem by stratifying the construction of worlds by € N bounding
the number of execution steps for which we observe the program,
with n going down byl in the world parameter of the resource

to encode invariants on the physical heap. Here, since we supportPredicate. The details of this construction are entirely standard, as

logical as well as physical resources, we generalize worlds to en-
code (1) the knowledge of what types of logical resources have
been created by applications of the sharing rule, and (2) how to
interpret those logical resources as invariants on shared state.

As defined in Figure 9, worlds are tuplesisfands with each
island describing a different type of resoufcégnore the “step
indices”k andn for now; we explain them below.) An island com-
prises a commutative mono{d/, -, €), as well as aepresentation
invariant I that interprets elements @i into assumptions (com-
posite resource predicates) on the underlying shared state. Specifi
cally, I(¢) denotes the invariant that holds on the shared state when
the global store of the island’s resourde) is ¢.

2Note: even if the sharing rule is instantiated twice with $aenemonoid,

it nevertheless generates twlistinct types of logical resources. The dis-
tinction is enforced syntactically by the fact that eachlaggion of the
sharing rule creates a fresh, existentially-quantifiecabdjy constructor
«; even if two suchy's (say,a; andaz) are indexed by the same monoid,
instantiationgay ¢] and[az ¢] will not be confused with each other.
3Throughout, we use dot notation 1iké”.k and W.w to project named

components from structures, and indexing notation dikg to project the
ith component from a tuple.

are the world approximation {|) and later) operators in Fig-
ure 9, and interested readers are referred to the literature [3, 17].
In any case, the resource predicates in the rangecd# required
to bemonotonic adding new islands to a world cannot invalidate
the invariants of previous islands (see the definitioiRefPred).
Finally, when using a composite resourcewith j atomic sub-
resources in the context of a future world witht+ & islands, we
silently assume the atomic sub-resources of thellésands are:.

Local vs. Shared Resources and World Satisfaction In reality, a
terme executes under a global heapin our model, we think of

e as executing, logically, under tiggobal composite storewvhich
comprises all the resources currently in existence: specifically, it
combines the global store of every atomic resource in existence, in-
cluding the heap (which is theth island’s resource). Some portion

r of that global composite store is directly known to (and owned
by) e itself—we call thise’s local resource—while the remaining
portion s constitutes thehared resourceThe shared resource is so
named because it is required to contain all the underlying shared
resources needed to satisfy the representation invariants of all the
islands in the world. (Thdocal vs. sharedterminology is bor-

Klol & ValPred K[o — #] £ S[o] - K[x] Env[] = 0

def

VIB Y = {(r,Z[t],)} for B € {bool, nat, ptr} Env[Z,a: k] € {p,a =V | peEnv[Z], V € K[x]}

V[cap t AJW = {(r-[Z[t], :v],®) | (r,0) € V[A]V} Env[S, X o] £ {p,X —d | p€Ev[Z], d € S[o]}
vy £ {0} ULy £ o

V[A1 @ Aol £ {(r1 7, (v1,02)) | (ri,vi) € V[AJT) U,z : A]V < {’y,x — (1, v)

yeUlr)y, (rv) € V[[A]]z‘/,}

|
o YW’ I W. (+,0') € V[A]Y' rErer
V[A — B]W & {0, o, qw g
[1 {(r v) — (r-1,v ') € E[B]Y ﬁ“g ~ 0 " .
VALY £ {(r-r W) | (ro) €VIALY, r=r-r} L[z Al - {02~ (rv) | 6 € LIALLY, (rv) € VIALL}
V[VX:o:: P.A]W o N3IviAwY pX —d EP m(v) = Ofr | € dom(v), y(z) = (r,v)}
4 p[X—d] def
VX0 P A UVIAY, Ly | AX s dEP m(é) = (?f{" | @ € dom(d), §(z) = (r,0)}
VIVa: k. AV =0 VIAY, 0 | V eKIA] I Ale: A £ VW, p € Env[S],y € U]V, 6 € c[[A]],V,‘;.
V[3a: k. A]Y | V[[A]]Z[[/QHV] V e K[H] p EIL= (m(v) - 7(8),0(v(e))) € E[A],
def
Vla]y A Figure 11. Semantics of Open Terms
V[[[A]]]ZV d:ef {(r, o) ! Ju. (r,v) € V[[A]}XV}
VIif(t,A,B)]}Y = if Z[t], = tethenV[A]} elseV[B]}" pend on certain islands and resources being presenipbon cer-
VIAX s 0. AIY & M € S[o]. VIA]Y tain islands or resources being absent.
V[A W def VIAIY)(Z,) The definition of the value predicate is essentially standard—in
p 4 P particular, it is essentially an affine version of the modeL.df[5]
5[[A1]XV def (rye) | Vi< Wik, (s,r-rp): W. outfitted with our monoidal worlds. One difference is our interpre-
if h=(s-r-rp)0], (h;e) =, (h';¢€ tation of the exponentidl4, which is inhabited byv only when
()01, (hse) —; (h'5e)) !
then IW’ J; W, (s',v" -rp): W’ v can be supported by sondempotenportion of the resources—
with b/ = (s’ - 7' -7rg)[0], (r,€¢) € V[[A}]ZV' } that is, some part of the resources that permits the structural rule of
contraction. (I3, the heap is the only resource, so only the empty
Figure 10. Kripke Logical Relation heap is idempotent.) Also, since universal and existential types are

introduced implicitly, they are given intersection and union seman-
rowed from Vafeiadis’s work on concurrent separation logics [41], tics, respectively. The remaining differences are to do with indexed

in which a closely analogous distinction arises.) types—e.g, the parameter indexing the base typesl, nat, and
Formally, the relationship between the local and shared re- ptr must reflect the particular value inhabiting the type—and the
sources is codified by theorld satisfaction relation(s,r) : W, computational irrelevance typel], whose interpretation records
defined in Figure 9, which asserts thatan be split intan com- the resources needed to justiybut not the value that inhabits it.
posite resources; (one for each island dfV’) such thats; satisfies The term predicat€[A]}" captures the crucial property sup-
islandi’s representation invariaf’.w[i].I. Note that the argument ~ porting sharing: namely, that computations are frame-respecting.
passed td is (s - r)[¢]: this is correct becauss argument is sup- Suppose that a termowns (composite) resource To showe is
posed to represent the global store of #h island, which is pre- well-behaved, we quantify over an arbitrary frame resoutceep-
cisely thei-th projection of the global composite stose, r. Note resenting the resource efs evaluation context. Togethet,- rr

also that the world parameter of each island’s resource predicateconstitute théocal resourcei.e.,the portion of the global compos-
is instantiated with-177, the “current” worldIW approximated one ite store that the program being executed owns. We also quantify
step-index level down. over someshared resource such thaf(s, r - rr) : W. If e reduces

])]))) to an irreducible terma’—starting from the global heap that is the
Krlpke_ Loglcz_zll Rela_ltlon Logical relations c_hf_;\racterlze program (-th projection ofs - r - rr—in j steps, wherg is less than the
behavior by induction over type structure, lifting properties about \orld's step-indexiV.k, then it must (1) leave the heap in a state
basetype computations to propertiesait types: a term ata com- gescribed by a new global composite stefer’ - rg, such that (2)
pound type is “well-behaved” if every way of eliminating it yields a (s',7" - rr) : W' for some future world¥’ of W (whose step-
“well-behaved” term at some simpler typéripke logical relations index isW.k — j), and (3) the final terna’ is in fact a value that,
index logical relations by a worl®l”, which places constraints on supported by the resoureé, obeys the value predicaleﬂA]]W'
the machine states under which terms are required to behave well\5te however. that the frame resoufgemust remain uncha/;lgéd
Although logical relations are oftehinary relationsfor proving The logical predicates defined in Figure 10 only describe well-
program equivalences [30], it suffices in our case to defmery behavectlosedterms. In Figure 11, we lift these to predicates on
predicatessince we are merely trying to prove safety [6]. openterms in the standard way: namely, we consietr be well-

Flgure 10 presents our Kripke logical relation. We assume a se- yapaved at the typd under context?, w,ritten QlFe: A ifit
mantics of sontsS[o], index termsZ[¢], (wherefv(t) C dom(p)) is well-behaved (according [A]) for all well-behaved closing
and propositiong = P (wherefv(P) C dom(p)), all standard jqianiations of its free variables. These closing instantiations in-
from multisorted first-order logic. From the semantics of sorts, we clude both values and the resources supporting thenm; tperator
can easily build a semantics of kinds[x]. The value predicate en mytiplies together all the resources supporting a closing in-
V[A]," isindexed by both a worlél” and a semantic environment giantiation. Note that the resources accompanying the instantiations
p, and is satisfied by pairg-, v) of valuesv and their supporting ot the unrestricted variables inare required to be idempotent, so
(composite) resources Because the type system is affine, the re- ¢ they may be safely duplicated within the proof of soundness.
sourcer may contain some part that is irrelevantte-and in gen-
eral, if (r,v) € V[A],” andW’ J W then(r - ', v) € V[A]]XV/, Soundness of the Type System The main technical result of the
an assumption codified in the definition GhlPred. This mono- paper is summed up in the following theorems:
tonicity property means that the good behavior of a term can de-

Theorem 1 (Fundamental Theorem of Logical Relations)
fQkFe: A thenQl-e: A

Theorem 2 (Adequacy)
If0IFe: Aand(D;e) <. (h;e') +, thene’ is a value.

Corollary 3 (Soundness of the Type System)
If)Fe: Aand(D;e) <. (h;e') &, thene’ is a value.

The proof of Adequacy is almost trivial. The proof of the Fun-

damental Theorem essentially proceeds by showing that each rul

in our type system isemanticallysound,i.e., that it holds if all
the syntacti¢-'s are replaced by semantic¢s. The proofs for most

rules follow previous developments using SKLRs [3, 17, 16]. The
most interesting new case, of course, is that of the sharing rule. The

proof is quite involved, so here we will just offer a rough idea of

how the proof goes, focusing on the most interesting technical con-

structions. (For the full details, see the technical appendix [24].)
As described above, the intuition behind our worldfsis that

each island i/ corresponds to an application of the sharing rule.
Indeed, the proof that the sharing rule is semantically sound is the

only part of our proof that involves extending a given input world
W with a new island to form a future worlt’’ (as permitted in
the definition of the logical term predicate). Supposifigalready
hadn islands (..n — 1), the new island will have index.

At first glance, it would seem we want to define this new island

to be (S[o], -, €, Limpie), Where (S[o], -, €) is the monoid with

which the sharing rule was instantiated, and the representation

invariant Isimpie is defined in terms of thel in the first premise of
the rule (and whateverwe are given to interpret its free variables):

Limpte() = {(W,r) | 3v. (r,0) € V[A], ()}

This invariant stipulates that the shared resource of istardtis-
fies the capability A z] when the island’s global store is

However, we must also take account of the Iddkat the dy-
namic semantics afhare creates in order to protect against reen-
trancy. Intuitively, when the locK is released, the representation
invariant of islandn should be much like the abovgimpi.. But
when the lock is held, it means we are in the middle of a call to
one of the operations returned &hare, during which the represen-
tation invariant might not hold at all. The monoid of islananust
therefore reflect these two possibilities.

We define islandh as(M, +, U (e), I), where (in ML notation)

type M = U of S[o] | Lof So] x S[o] | L,
the composition operatorH) is the commutative closure of

U(z) +Ul(y) Uz -y) L()+ L(-) 1
L(z,y) + U(z) L(z,y-2) 1+ 1,

and the representation invariahis defined as

IU(x) = {(W,r-[¢:ff]) | Jo. (r,0) € V[A]} ()}
I(L(z,y)) = {(W[l:tt]) | z =y}
I(L) = .

The idea here is to distinguish betweanlockedstatesU (z),
where the lockl is released, antbcked statesL(z, y), where/
is held. In the former casd,asserts that points toff and that the
rest of the island’s shared resourcean satisfy{A z], as required
for invoking any of the shared operatichdn the latter case/]
asserts thaf points tott and thatr = y (we explain about that

4Note that if the sharing rule did not requirk to represent @apability
(i.e.,to appear in proof-irrelevant brackets), then invoking afithe shared
operations would require us to cough up the actual valuénessingA x
(whereas herey is 3-quantified). This could be achieved by changing the
implementation of the sharing rule so that it maintains a peivaterence
cell ¢ storing the current witness and then updating to also own[¢ : v].

e

in a moment). Finally, we give the following interpretation for the
abstract capability constructar(returned by thehare operation):

[a] = Az € S[o]. {(W7 (r,e)) ’ r[n] = r+ U(ac)}

This essentially says that the owner [of =] has control over a
U (x) piece of the resource on island

The two parameters td are a technical trick we use to show
that the shared operations of the ADT are “frame-preserving”.
Specifically, the monoid we have defined has the property that if
we controlL(y, €) of the resource, then the only possible resource
r that the rest of the program could have on islandsuch that
I(L(y, €) + r) is satisfiable, id/(y). To see how this is exploited
in the soundness proof, suppose that a client ojung (i.e., she
controls al/(t) piece of islandn’s resource), and invokes one of
the shared operations, whose tygc (see Figure 7) promises
to transform|a ¢] into [« #] for somet’. (For simplicity, we'll
ignore the frameX in the type of the operation. It does not add
any fundamental complication.) If the lock is held, the operation
will diverge and there is nothing to show. If the lock is released, the
definition of I guarantees that the rest of the global store on island
n must be of the fornt/ (y) for somey, and that the island’s shared
resourcer satisfies/A (t - y)]. Here,U(y) represents the control
the rest of the program has over the shared state of isiaadd we
must show that the operation we are about to execute respects it.

Now, before invoking the underlying operation, we acquire the
lock, we remove- from the shared resource so that we can transfer
ownership of it to the operation, and—this is the key point—we
replace the client’s local (¢) resource with the resourde(y, ¢),
thus updating the global store of islamdto L(y,y). When we
invoke the underlying operation, we place they, ¢) in its frame
which (by definition of the logical term predicate) it must preserve.
Thus, when we get back control from the operation (which must be
in a state such thdtis satisfiable), the global store of islandnust
still be L(y, y), of which the client control<.(y, €) and the rest of
the program controlé/(y). Also, the frame-preserving nature of
the underlying operation’s type tells us that it must have returned
us a resource’ satisfying the capability4 (¢’ - y)]. We can then
release the lock, replace the clienfgy, ¢) resource withU (¢')
(which is what the client expects to control when the operation is
completed), and transfer ownershipr6back to the island’s shared
resource, which now satisfidsat the new global stord/(¢' - y).
But crucially, despite/because of all these shenanigans, the resource
U (y) belonging to the rest of the program has been left untouched!

5. Related Work

Dealing with Reentrancy: Locking vs. the Anti-Frame Rule As
explained in Section 3, our sharing rule uses a lock to protect
against unsafe reentrancy, which can arise in our language due its
support forshared, higher-ordestate. Most prior separation logics
have not had to deal with such a hard problem because they are
done in a first-order setting, where the possibility of reentrancy
is syntactically evident; and most prior substructural type systems
(e.g.,L [5]) have not had to deal with it because they don’t support
sharing/hiding of state.

One exception is Pottier’s work on thanti-frame rule[32],
which doesaccount for reentrancy in the presence of shared,
higher-order state. The anti-frame rule permits a group of func-
tions to operate on a piece of hidden state described by an in-
variantC. Externally to the anti-frame rule, those functions may
have type!(A — B), but internally they have roughly the form
(A® C — B ® C) (but not quite, as we explain below). In a
substructural setting, the rule therefore gives a way to expajt,
an affine reference with a set of operations, without treating the
operations themselves as affine or forcing the client to thread the
the affine reference capability through its code. The restriction to a

simple invariant has been subsequently relaxed to support hiddention logic (SCSL) [25] is geared toward compositional reasoning
monotonic invariants [35], as well as monotonic “observations” about ghost state.
about hidden state [29] (although to our knowledge the last exten- The three frameworks also share a shortcoming: the separating
sion has not yet been proven sound). conjunctionx of the assertion language is tied to a single, specific
Pottier's approach provides a more general solution to the reen-monoid. With views and SCSL, this monoid is fixed at the outset,
trancy problem (of which our use of locks would constitute one when the framework is instantiated. FSL, in contrast, is based
mode of use), but this comes at the cost of significant additional on indirect Hoare triplesparameterized by aimterpretation map
complexity in the typing rule for hidingi.€., the anti-frame rule) which explicitly records a monoid together with its interpretation
itself. In particular, thex operator that Pottier employs in the type as a predicate on underlying resources. An interpretation map is
I(A® C — B ® () above is not a simple tensor, but rather a akin to an island in our model (Section 4), which means that the
tensoring operation, which propagates undeandref types and assertions within an indirect Hoare triple must all be given in terms
comes equipped with a non-standard equational theory. Soundnes®f a single abstract resource. While FSL enables interpretation
proofs of the anti-frame rule using traditional syntactic techniques maps to be stacked in layers or combined as a product (resembling
have consequently required years of heroic effort [33]. That, said our worlds), such structure must be explicitly managed within both
significantly simpler semantic proofs of the anti-frame rule have assertions and proofs.
also been given using Kripke logical relations [35]. Based on this Our sharing rule also employs commutative monoids for fic-
experience, we chose to use a semantic model in our work, andtional separation, but it associatedifierentmonoid with each ab-
have been very satisfied with its simplicity. stract data type itintroduces. Consequently, our tensor product con-
In this paper, we decided to isolate concerns by focusing on structor® implicitly mediates between all resources “currently” in
sharing and leaving an improved handling of reentrancy to future existence, both the physical resources and a dynamically-growing
work. One possibility would be to consider synthesizing our shar- set of user-defined logical resources.
ing rule with the anti-frame rule, since they are complementary.
The anti-frame rule offers a more general treatment of reentrancy,
while the sharing rule offers a more general treatment of sharing.
As demonstrated in our weak references example, simple invari-
ants may be encoded via the sharing rule using the unit monoid,
and subsequently hidden. More novel, however, is our support for
a variety of interesting uses of sharing involving both monotonic
state anchon-monotonicstate €.g.,the memory manager exam-
ple). Furthermore, our use of monoids lets clients divide, transfer,
and recombine resources as they need, without restricting to a one
way increase in information as the anti-frame rule does.

Temporarily Structural Types Most substructural type systems
are nottompletelysubstructural: they permit, by a variety of means,
linear or affine types to coexist with unrestricted types. Keeping
a strict distinction between the two kinds of types is crucial for
ensuring the soundness efg. strong updates, but it is also im-
practical for large programs with complex data structures. There
have been numerous proposals for safely allowing the rules to be
bent [37, 36], a well known example beinglindrich and DeLine’s
‘adoption and focufl9]. At the root of these designs for “temporar-

ily structural types” is the ability toevokeaccess to previously
aliased data, providing a freshly linear view of that data. When un-
Fictions of Separation From the outset, substructural reasoning restricted access is later restored, however, there must be some way
about state has relied on the notion of disjointly supported asser- of ensuring that the aliases still have an appropriate type, and the
tions for local reasoning, but only gradually has the flexibility of simplest way of doing that is to keep the type fixed.

that notion become clear. Early models of logically (but not phys- Our sharing rule, on the other hand, does not commit to a par-
ically) separable resources like fractional permissions [7, 10] and ticular aliasing discipline. The abstract resources supported by a
trees [9] treat those resources as primitive, either baking them into shared underlying resource can be created and aliased to whatever
the operational semantics or, in simple cases, relying on a fixed in- extent their governing monoid allows, and can be strongly updated
terpretation into an underlying heap. To handle higher-level notions at any time without risk of invalidating non-local assertions. It re-
of separation, Krishnaswaret al.[23] embedded “domain-specific ~ mains to be seen whether our monoidal approach is flexible enough
separation logics” into higher-order separation logic, and Dinsdale- to recover the sophisticated rule-bending of the “temporarily struc-
Young, Gardner, and Wheelhouse named the general phenomenotural” typing disciplines mentioned above.

“fictional disjointness” and justified its support of local reasoning
by employing data refinement and axiomatic semantics [14].

Contemporaneouslgpncurrent abstract predicaté€AP, [13])
combined fictional disjointness with several other important ideas—
the two most relevant being abstract predicates [28] and rights-as-
resources [15]. CAP allows the specification of each module to
include abstract predicates which, like the abstract data types in-
troduced by our sharing rule, represent local knowledge and rights
about a shared underlying resource. Hence, just as the tenisor
the all-purpose notion of separation for us, so separating conjunc-
tion x is for CAP. On the other hand, CAP is built on more specific
and complex forms of knowledge and rights, inherited from deny-
guarantee [15] and intended for reasoning about concurrency.

In very recent work, several groups of researchers have si-
multaneously proposed variants of commutative monoids as an
abstract way to capture fictional separation. Their original goals
were quite distinct: Jensen and Birkedal's fictional separation
logic (FSL) [21] is explicitly intended as a simple axiomatiza-
tion of fictional disjointness within separation logic; Dinsdale- KripkeLogical Relations Kripke logical relations have long been
Younget al’s views [12] are intended as a more abstract account used to reason about state in higher-order, ML-like languages [31].
of CAP (and compositional reasoning about concurrency in gen- ~ Ahmed et al. [5, 4] have given Kripke logical relations for
eral); and Ley-Wild and Nanevski's subjective concurrent separa- linear languages with state, using a simple notion of possible world

Per-Module Notions of Resources Two recent languages—Tov's
Alms[40] and Mazurak and Zdancewicls® [26]—have been pro-
posed for general-purpose, practical programming with substruc-
tural types. The generality of these languages stems from their abil-
ity to performsubstructural sealingthey can seal an unrestricted
value with an abstract type at a substructural kind, thereby prevent-
ing clients from freely aliasing the value. Substructural sealing, like
our sharing construct, provides a way to introduce per-module no-
tions of resource. But substructural sealing is used to impos@a
restrictive interface on kessrestrictive value, while sharing goes
the other way around, allowing aliasing of affine resources. This
difference is apparent in the work done by a typechecker in both
cases: for substructural sealing, there is little to check, because itis
always safe to tighten the interface to a value; for sharing, the ex-
ported operations must be shown to respect their frame. Ultimately,
these two forms of resource introduction seem complementary, and
indeed, the language we have presented supports both.

corresponding to strict heap separation. The structure of our logical [14] T. Dinsdale-Young, P. Gardner, and M. Wheelhouse. Algsion and

relation is quite similar to this earlier work, but the structure of
our worlds is significantly different, since we must account for
interaction between an unbounded number of abstract resource

types, each of which is governed by a distinct monoid.
More recently, Ahmecet al. [3] and Dreyeret al. [16] have

given models for higher-ordetructuralstate based on the concept

refinement for local reasoning. WSTTE 2010.

[15] M. Dodds, X. Feng, M. J. Parkinson, and V. Vafeiadis. ipen
guarantee reasoning. ESOP 2009.

[16] D. Dreyer, G. Neis, and L. Birkedal. The impact of higleeder state
and control effects on local relational reasoningl@iP, 2010.

[17] D. Dreyer, G. Neis, A. Rossberg, and L. Birkedal. A rilal modal

of transition systemswhich facilitate the modeling of protocol- logic for higher-order stateful ADTs. IROPL, 2010.

based uses of state, as well as the “well-bracketed” state changeg[18] J. Dunfield. A Unified System of Type Refinemen®hD thesis,

possible in languages without control. Since transition systems can Carnegie Mellon University, 2007.

be modeled as monoids, our current model fully supports transition [19] M. Fahndrich and R. DeLine. Adoption and focus: Practical linea

systems as a mode of use. With a small extension (whose proof is types for imperative programming. RLDI, 2002.

in the appendix [24]), we can also model Dreggral’s “public” [20] J.-Y. Girard. Linear logicTCS 50(1):1-102, 1987.

vs. “private” transitions for reasoning about well-bracketed state [21) j. Jensen and L. Birkedal. Fictional separation lolicESOP 2012.

change_s, although proofs based on their techn.'ques are arguably[22] C. B. Jones. The role of auxiliary variables in the formevelopment

more direct than ours. (We plan to report on this in future work.) of concurrent programs. IReflections on the work of C.A.R. Hoare

. pages 167-188. Springer, 2010.

6. Conclusion and Future Work [23] N. R. Krishnaswami, L. Birkedal, and J. Aldrich. Verihg event-

In this paper, we have shown how to put programmer-defined re- driven programs using ramified frame propertiesTLDI, 2010.

source abstractions on the same footing as built-in resources such[24] N. R. Krishnaswami, A. Turon, D. Dreyer, and D. Garg. Stip&lly

as the heap, yielding a type system that permits the flexible use of substructural types (Technical appendix), 2012.

aliased data while retaining the simple intuitions of substructural URL: http://www.mpi-sws.org/~dreyer/papers/supsub/.

logic. To do so, we combined exciting new ideas from separation [25] R. Ley-Wild and A. Nanevski. Subjective concurrentaegion logic,

logic with classical type-theoretic techniques such as refinement ~ 2012- Submitted for publication.

types and data abstraction. [26] K. Mazurak, J. Zhao, and S. Zdancewic. Lightweight éing/pes in
An immediate direction for future work is to study how to System F. In TLDI, 2010.

optimize the sharing rule, both via the modek(proving that [27] A. Nanevski, G. Morrisett, and L. Birkedal. Hoare Typ&ebry,

locks are not needed for specific implementations), and via type- polymorphism and separatiodEP, 18(5&6):865-911, Sept. 2008.

theoretic extensions that we could use to avoid lockiag.(via [28] M. J. Parkinson and G. M. Bierman. Separation logic arsfrabtion.

formalizing the concept of “first-order data” as a modality, or via In P_OF"L ?005' ' '
a sharing modality [36]). Another natural direction for future work [29] éélplllk'ewmz and F. Pottier. The essence of monotoratestinTLDI,

is to examine if our methods extend to full-blown value-dependent
types €.g.,as in HTT [27]). This poses interesting questions, since [30] A. Pitts. Typed operational reasoning. In B. C. Piereditor,
methods based on step-indexing have historically had challenges Qﬁ%‘gﬁ TZOOPCI)%S in Types and Programming Languaghapter 7.
dealing with semantic equalities (as opposed to approximation), ')

: : ; [31] A. Pitts and |. Stark. Operational reasoning for fuang with local
and our sharing rule deeply connects existential types and state. state. INHHOOTS 1998.

[32] F. Pottier. Hiding local state in direct style: a higleder anti-frame
rule. InLICS, 2008.

[33] F. Pottier. Syntactic soundness proof of a type-anukbdity system
with hidden state, 2011. Submitted for publication.

[34] J. C. Reynolds. Separation logic: A logic for shared rhlgadata
structures. IrLICS, 2002.

[35] J. Schwinghammer, L. Birkedal, F. Pottier, B. Reus, Kv8tmy, and
H. Yang. A step-indexed Kripke model of hidden std#athematical
Structures in Computer Scien@912. To appear.

[36] R. Shi, D. Zhu, , and H. Xi. A modality for safe resource ishg and
code reentrancy. IICTAC, 2010.

[37] F. Smith, D. Walker, and G. Morrisett. Alias types.EBSOR 2000.

[38] R. E. Strom and S. Yemini. Typestate: A programming languag
concept for enhancing software reliabilitlEEE Transactions on
Software Engineeringl2(1):157-171, 1986.

[39] M. Tofte and J.-P. Talpin. Region-based memory managenaot-
mation and Computatiqri32(2):109-176, 1997.

[40] J. Tov. Practical Programming with Substructural TypehD thesis,
Northeastern University, 2012.

[41] V. Vafeiadis. Modular fine-grained concurrency verificationPhD
thesis, University of Cambridge, 2008.

[42] D. Walker, K. Crary, and G. Morrisett. Typed memory manageime
via static capabilitiesTOPLAS 22:701-771, 2000.

[43] J. Wickerson, M. Dodds, and M. Parkinson. Explicit siahtion for
modular rely-guarantee reasoning.H8OR 2010.

[44] N. Wolverson.Game semantics for an object-oriented langu&@jeD
thesis, University of Edinburgh, 2008.

[45] H. Xi and F. Pfenning. Dependent types in practical pangming. In
POPL, 1999.

References

[1] A. Ahmed. Semantics of Types for Mutable Statd”hD thesis,
Princeton University, 2004.

[2] A. Ahmed. Step-indexed syntactic logical relations fecursive and
quantified types. IiESOR 2006.

[3] A. Ahmed, D. Dreyer, and A. Rossberg. State-dependemesemta-
tion independence. IROPL, 2009.

[4] A. Ahmed, M. Fluet, and G. Morrisett.
substructural state. fCFP, 2005.

[5] A. Ahmed, M. Fluet, and G. MorrisettL?: A linear language with
locations.Fundamenta Informatica&7:397-449, 2007.

[6] A. Appel, P.-A. Mellies, C. Richards, and J. Vouillon. A very modal
model of a modern, major, general type systemPO@PL, 2007.

[7] J. Boyland. Checking interference with fractional pessions. In
SAS2003.

[8] T. Brus, M. C. J. D. van Eekelen, M. van Leer, M. J. Plasmegad

H. P. Barendregt. Clean: A language for functional graptritéwg.
In FPCA 1987.

[9] C. Calcagno, P. Gardner, and U. Zarfaty. Context logid &ee
update. INPOPL, 2005.

[10] C. Calcagno, P. W. O’'Hearn, and H. Yang. Local action absitract
separation logic. 1hICS 2007.

[11] R. DeLine and M. Bhndrich. Enforcing high-level protocols in low-
level software. IrPLDI, 2001.

[12] T. Dinsdale-Young, L. Birkedal, P. Gardner, M. Parkins and
H. Yang. Views: Compositional reasoning for concurrencyl20
Submitted for publication.

[13] T. Dinsdale-Young, M. Dodds, P. Gardner, M. Parkinsord V. Vafeiadis.
Concurrent abstract predicates.HEGOOR, 2010.

A step-indexed modél o

