
Adding Equations to System F Types

Neelakantan R. Krishnaswami1 and Nick Benton2

1 Max Planck Institute for Software Systems <neelk@mpi-sws.org>
2 Microsoft Research <nick@microsoft.com>

Abstract. We present an extension of System F with types for term-
level equations. This internalization of the rich equational theory of the
polymorphic lambda calculus yields an expressive core language, suitable
for formalizing features such as Haskell’s rewriting rules mechanism or
Extended ML signatures.

1 Introduction

Abstraction, modularity and information hiding are fundamental principles of
software engineering and language design. Yet programming against an interface
is often difficult, as conventional type systems can express only the most basic
of the many assumptions and guarantees made by a module. The problem is
that too much information is hidden, or only present in informal, ambiguous
documentation. Dependent types allow much richer interfaces but come with
their own costs, including a significant increase in the complexity of the language.
Hoare-style program logics also allow much more expressive interfaces, but as
well as being highly complex are arguably too decoupled from the underlying
programming language; logics have their own syntax and typing cannot exploit
logical specifications.

Compilers face problems similar to those of developers. If an optimizing com-
piler respects the modular structure of a program, it loses vital information that
it could use to generate better code. But looking through abstractions to im-
plementations is expensive and non-modular. Some compilers produce enriched
interfaces for compiled modules that summarize the results of static analyses
but the connection between this metadata and the program is often somewhat
ad hoc, making it hard to soundly exploit the extra information in non-trivial
transformations of client code.

In this paper, we address the question of how to incorporate more precise
module specifications into a language via an extension of System F, the paradig-
matic calculus for studying data abstraction. We restrict attention to specifica-
tions of a particular form, viz. equations between terms, understood as contex-
tual equivalences. Equations are made part of the type system, making precise
how they may be scoped, passed around and exploited. In this regard, our sys-
tem resembles a restricted form of dependent types. However, equations are not
actually proved within the language. A denotational model makes precise what
semantic conditions must be verified in order to establish equalities; various tech-
niques, from automatic analyses to interactive manual proofs, could be soundly

used to check the conditions. This aspect resembles the treatment of entailment
checking as a delegated semantic side-condition in Hoare-style program logics.
The contributions of the paper may be summarized as follows:

– We extend the type system of F with a type of term-level equations.
– We illustrate how expressive this language is by encoding some of patterns

of programming with dependent types and GADTs.
– We give a very simple parametric [20, 22] relational semantics to our extended

language.
– We prove that our extended language is type-safe and terminating.
– We illustrate how the addition of equations enables useful new reasoning pat-

terns in parametricity proofs, such as proofs of the equivalence of existential
ML-style module interfaces with Church-style datatype encodings.

2 Informal Overview

This section describes our language, F=, semi-formally, and gives examples of its
use. The grammar is shown in Figure 1. The types of F= are the usual ones of
System F, extended with a new type former e ≡A e′, which asserts the equality
of e and e′ at type A. Since types now contain terms, and in particular term-level
variables, we change the syntax of the function type from A→ B to (x : A)→ B,
so that function arguments of type A can be referenced within B. This resembles
the dependent product of dependent type theory, and ensures that the argument
of a function can be mentioned in any returned equality types.

The terms of the language include those of System F, including variables
x; type abstractions Λα. e and type applications e [A]; and term abstractions
λx. e and term application e e′. We defer giving the precise typing rules until
Section 3, but they very closely resemble their counterparts in System F.

There are also two new term-level constants: • and abort. The term • is the
sole inhabitant of the equality type e ≡A e′ when the equation holds (the type is
uninhabited otherwise). We remark that • does not provide any intrinsic evidence
of the equality — the right to introduce a • arises as a semantic side-condition.
The absence of evidence keeps the term language very simple, since the • is
merely a placeholder for the reflection of a fact in the semantic model back into
the language’s type system. The abort constant allows equational information to
influence typing: it has arbitrary type, but only if the context is (semantically)
inconsistent. One can thus do deep semantic proofs to justify complicated equa-
tions, inject those into the types, and then use simple syntactic means to handle
the plumbing which pushes facts around to other parts of the program.

Figure 2 presents the notational abbreviations that we use in the remainder
of the paper. These are mostly well-known Church encodings, but note particu-
larly the weak sum type ∃x : A. B. We’ll also assume standard syntactic sugar
(e.g. projections, case analysis) associated with these abbreviations in examples.
(The model we present in Section 3 can be used to show that these suggestive
abbreviations actually have the intended semantics.)

Types A ::= α | ∀α. A | (x : A)→ B | e ≡A e′

Terms e ::= Λα. e | e [A] | λx. e | e e′ | • | abort | x
Values v ::= Λα. e | λx. e | •
Contexts Γ ::= · | Γ, α | Γ, x : A

Fig. 1. Syntax

A→ B = (x : A)→ B, when x 6∈ FV(B)
∀x : A. B = (x : A)→ B
∀x1 : A1, . . . , xn : An. B = ∀x1 : A1. . . . ∀xn : An. B
A×B = ∀α. (A→ B → α)→ α
1 = ∀α. α→ α
∃x : A. B = ∀α. ((x : A)→ B → α)→ α
∃x1 : A1, . . . , xn : An. B = ∃x1 : A1. . . . ∃xn : An. B
∃α. A = ∀β. (∀α. A→ β)→ β
A+B = ∀α. (A→ α)→ (B → α)→ α
⊥ = ∀α. α
¬A = A→ ⊥

Fig. 2. Type Abbreviations

2.1 Examples

Refined Typings Equations allow extra constraints to be imposed on argu-
ments and extra guarantees to be given for results. For example, a function that
should only be called with commutative binary operations on a type A might be
given a type like

(f : A→ A→ A)→ (∀a : A, a′ : A.f a a′ ≡A f a′ a)→ A

For producing values together with assertions of their equational properties, one
makes use of existential packages. For example, a function yielding idempotent
unary operations on A from arguments of type B could be typed as

B → (∃f : A→ A.∀a : A.f (f a) ≡A f a)

Clients can project both the underlying value and the equational information
from such packages and use them to justify their own equations.

Datatype Encodings More useful examples of F= involve enriching the signa-
tures of modules, encoded using second-order existential types in the standard
way [17, 21]. We now give a few examples of how one can type abstract datatypes
in F=, encapsulating types, operations on those types and algebraic properties
satisfied by those operations.

Booleans We begin by giving an F= encoding of an interface to the Booleans.

1 ∃bool,
2 true : bool,
3 false : bool,
4 if : ∀α. bool→ α→ α→ α.
5 ∀α, a : α, a′ : α. if [α] true a a′ ≡α a ×
6 ∀α, a : α, a′ : α. if [α] false a a′ ≡α a′

The signature exposes constructors and eliminators for the boolean type, to-
gether with their β-theory as equational properties. A natural question is how
this module type relates to the traditional Church encoding of booleans. One
can certainly give an implementation of the abstract datatype in terms of that
encoding, in which bool is instantiated with ∀α. α→ α→ α. More surpisingly
perhaps, as we will show more formally in Section 4, the extended module type
uniquely characterizes the booleans, and F= allows clients to exploit the conse-
quences of this semantic fact. Note that the interface does not explicitly state any
of the properties which ordinarily characterize datatypes, such as the disjointness
of true and false, or that they are the only constructors for the boolean type.
However, the presence of the eliminator and its equational theory, plus para-
metricity, are sufficient to derive these properties: parametricity ensures that
true and false are the only way to construct the booleans, and furthermore,
they must be disjoint, or else we could use the equational theory of if to derive
a contradiction.

Natural Numbers As an example of a non-finite type, we can give an interface
for the type of natural numbers:

1 ∃nat,
2 z : nat,
3 s : nat→ nat,
4 iter : ∀α. α→ (α→ α)→ nat→ α.
5 ∀α, i, f. iter [α] i f z ≡α i ×
6 ∀α, i, f, x. iter [α] i f (s x) ≡α f(iter [α] i f x)

This interface says that we have an abstract type nat, with constructors z and
s. We have an eliminator iter , and two equations explaining how to eliminate
zero and successor.

This signature does not expose the representation of nat, nor does it specify
the implementation of iter . We are free to implement the natural numbers in
any way we like – for example, with a binary (rather than unary) representation.
Furthermore, in Section 4 we will prove that this signature is isomorphic to the
Church encoding of the natural numbers, which means that any implementation
of this type actually is an implementation of the natural numbers.

Lists Here is a possible interface for the type of lists of booleans.

1 ∃Listbool,
2 nil : Listbool,

3 cons : bool→ Listbool → Listbool,
4 map : (bool→ bool)→ Listbool → Listbool,
5 fold : ∀α. α→ (bool→ α→ α)→ Listbool → α,
6 map idbool ≡Listbool idListbool ×
7 ∀f. map f nil ≡Listbool nil ×
8 ∀f, b, bs. map f (cons b bs) ≡Listbool cons (f b) (map f bs) ×
9 ∀f, g : bool→ bool. (map f) ◦ (map g) ≡Listbool map (f ◦ g) ×
10 ∀α, a, f. fold [α] a f nil ≡α a ×
11 ∀α, a, f, b, bs. fold [α] a f (cons b bs) ≡α f b (fold [α] a f bs)

This example illustrates that the interface does not have to precisely match
the constructors of the Church encoding for lists — in this interface, we include
the map operation. However, since the interface tells us what the behavior of
map is, we can still prove that all values of list type can be built up just from
nil and cons.

This lets us greatly extend the interface to a module, without having to give
up natural reasoning principles for it. For example, suppose we extend lists with
a left fold operator, characterized by the following signature:

12 foldl : ∀α. α→ (bool→ α→ α)→ Listbool → α
13 ∀α, i, f. foldl [α] i f nil ≡α i
14 ∀α, i, f, b, bs. foldl [α] i f (cons b bs) ≡α foldl [α] (f b i) f bs

With this definition in hand, clients can establish things like the fact that if
a function is associative and commutative, then the left and right folds coincide
— a fact which we can encode in types:

15 assocA(f) , ∀a1, a2, a3. f (f a1 a2) a3 ≡A f a1(f a2 a3)

16 commA(f) , ∀a1, a2. f a1 a2 ≡A f a2 a1

17 ∀α, f, i, bs. assocα(f)→ commα(i)→ fold f i bs ≡α foldl f i bs

Here we exploit the usual Curry-Howard pun, using the function type to
do the duty of a logical implication. The proof of the equation above goes by
induction on the nil/cons structure of lists, which is only possible because we
can prove that this structure exists via parametricity.

2.2 Applications

Deforestation of Higher-Order Programs Consider the following sequence
of equational rewrites.

(map not) ◦ (map not) = map (not ◦ not)
= map idbool

= idListbool

This is a standard example of deforestation [15], in which two intermediate
data structures (a negated list and a double-negated list) are not generated, in

order to save memory usage. Deforestation offers many interesting examples,
since it appeals to equational properties which go well beyond simple inlining
and other forms of compile-time β-reduction.

However, now consider the following expression h:

h , λmap. (map not) ◦ (map not)

The question is, can the body of h be simplified? In general, the answer will
be no — unless we can prove that only map functionals satisfying the right
equational properties flow into the lambda, we are not justified in rewriting this
expression. Hence we are in the somewhat ironic position that deforestation —
an optimization invented to make higher-order programming more efficient — is
often inapplicable in client programs which make use of higher-order functions.

One way around this difficulty would be if we could prove the soundness
of these transformations in open contexts, where we don’t know exactly which
lambda-terms might flow into a higher-order program. By adding the necessary
information as type data to the programming language, we can rely on the
necessary equational properties to hold without having to make the concrete
bindings of terms like map and not visible.

So by rewriting h to pass in the desired properties, we can ensure that a
rewriting is performable in an open context :

h : ((map : bool→ bool)→ Listbool → Listbool)
→ map idbool ≡Listbool→Listbool idListbool
→ ∀f, g : bool→ bool. (map f) ◦ (map g) ≡Listbool→Listbool map (f ◦ g)
→ Listbool → Listbool

h , λmap. λpf. λpf ′. (map not) ◦ (map not)

Here, we do not need to know what the actual implementation of map is,
since we have stipulated that the function h must be called only with functions
which have the equational properties we need them to satisfy, and hence we can
conclude that h is equivalent to id.

GADT-style Encodings and Making Unsafe Operations Safe General-
ized algebraic data types [11] extend ordinary algebraic datatypes with index
information permitting static types to contain information about the specific
data constructors used to build them. This lets programmers use dynamic run-
time tests to gain additional information about the static type of terms. Since
our type system lets us directly place information about terms into types, many
of these encodings can be fit into our framework.

Concretely, consider the following specification of an option type.

1 ∃optionA,
2 none : optionA,
3 some : A→ optionA,
4 case : ∀α. optionA → α→ (A→ α)→ α.

5 ∀α. (v : α)→ (f : A→ α)→ case [α] none v f ≡α v ×
6 ∀α. (a : A)→ (v : α)→ (f : A→ α)→ case [α] (some a) v f ≡α f a

This specification follows the pattern of the boolean and list types earlier,
containing the none and some constructors as well as the case eliminator for
them, plus equations describing the β-theory of case.

We can use this specification to write refined case programs which return
type-level evidence of equalities. First, we define a variant case function that
returns not only a value, but also a proof that the returned value is equal to the
input.

case ′ : (x : optionA)→ (x ≡optionA none) + (∃a : A. x ≡optionA some a)

case ′ , λx. case [. . .] (inl •) (λa. inr (a, •))

As can be seen from the type, case ′ takes an option and returns a sum type.
If the argument is none, it returns the left branch containing the static fact that
the argument is none, and if the argument is a some, then it returns a value a
such that some a is equal to the argument of case. All of the equality type terms
are witnessed by • terms.

valOf : (x : optionA)→ ¬(x ≡optionA none)→ A

valOf , λx. λpf. case [A] abort (λa. a)

This operator takes an option and a proof that it is not equal to none. This
lets us pass abort as an argument in the untaken branch, since we know the case
can only be reduced when it has a proof that its argument is not none.

As before, these operations are provably correct only when injectivity and
disjointness hold, and again, these properties are provable from the interface
specification. As a result, we can define these apparently-unsafe operators outside
the body of the module, since our program valOf only relies on the equational
properties specified in the interface, and not on the specifics of the implementa-
tion.

3 Syntax and Semantics

Before proceeding to the metatheory, we give a high-level overview of the struc-
ture of this section.

1. We give the syntax of terms and types, and an untyped operational semantics
for our programming language. This language contains an abort construct
which can get stuck.

2. We define a “pre-typing” relation, which judges whether terms and types are
syntactically well-formed. Unlike a true type system, our pretyping system
is (by design) unsound: there are no restrictions on the use of the abort
connective.

3. However, the pretyping relation offers enough structure that we can define
a binary logical relation giving semantics to each of the type constructors,
by structural induction on the pretyping relation.

v ⇓ v
e0 ⇓ λx. e′0 [e1/x]e′0 ⇓ v

e0 e1 ⇓ v
e0 ⇓ Λα. e′0 [A/α]e0 ⇓ v

e0 [A] ⇓ v

Fig. 3. Operational Semantics

Γ B ok Γ BA Γ B e : A

·B ok

Γ B ok

Γ, αB ok

Γ B ok Γ BA

Γ, x : AB ok

Γ B ok α ∈ Γ
Γ B α

Γ, αBA

Γ B ∀α. A
Γ BA Γ, x : ABB

Γ B (x : A)→ B

Γ BA Γ B e : A Γ B e′ : A

Γ B e ≡A e′

Γ, x : AB e : B

Γ B λx. e : (x : A)→ B

Γ B e : (x : A)→ B Γ B e′ : A

Γ B e e′ : [e/x]B

Γ,αB e : A

Γ B Λα. e : ∀α. A
Γ B e : ∀α. B Γ BA

Γ B e [A] : [A/α]B

Γ B ok x : A ∈ Γ
Γ B x : A

Γ B e ≡A e′

Γ B • : e ≡A e′
(Danger1)

Γ BA

Γ B abort : A
(Danger2)

Fig. 4. Pretyping Relation

4. Then, we give the true typing relation, which refines the pretyping relation to
include semantic side-conditions on equality formation and the use of abort.

5. Finally, we prove the identity extension lemma for the true typing relation.

Readers familiar with PER models for System F (e.g., [6]) will find this
proof structure quite familiar. We begin with an untyped model of computation
as a universe, and then define a semantics of types as relations on the universe
by induction on the derivation of the pretyping relation. The main technical
novelty in our approach is that our types may contain terms, and we thus need
to interpret types in a context containing interpretations of the terms.

The operational semantics for our programming language is given in Figure 3,
and is a standard call-by-name semantics. There is no evaluation rule for the
constant •, since it has no explicit elimination form. There is no reduction rule
for abort — this term creates a stuck computation, since it indicates unreachable
code.

In Figure 4, we give the pretyping rules. We have three judgements:

– The Γ B ok judgement judges whether a context is well-formed, and
– the Γ B A judgement judges whether a type A is well-formed in context Γ ,

and
– the Γ Be : A judgement judges whether a term e is well-formed with respect

to pretype A in context Γ .

All three of these judgements are mutually-recursive, since the equality type
e ≡A e′ contains terms, and its well-formedness rule asserts that e and e′ must
have pretype A. The rules mostly resemble F’s rules, with the variation that
both term and type applications need to perform a substitution (rather than
solely type application, as in ordinary System F).

The two surprising rules of the system are Danger1 and Danger2, which
are the rules for introducing the equality type and the abort keyword. As a result,
the pretype system is obviously unsound, since we can freely introduce the stuck
term abort wherever we like.

Of course, we will eventually refine these two rules so that equalities can
only be used to introduce true equalities, and abort can only be used in contexts
under which we can prove that evaluation can never reach that point. Do note,
however, that in this setting, it is the existence of abort which gives the equality
type its force. There are no elimination rules for equality types, and so the only
way that programs can make use of equalities is to exploit the equations in
context to write abort at certain places.

Now, we state the basic syntactic substitution properties of the calculus.

Theorem 1. (Syntactic Substitution) Suppose Γ BA and Γ B e : B. Then

– If Γ, α, Γ ′ B ok then Γ, [A/α]Γ ′ B ok.
– If Γ, α, Γ ′ BB then Γ, [A/α]Γ ′ B [A/α]B.
– If Γ, α, Γ ′ B e′ : C then Γ, [A/α]Γ ′ B [A/α]e′ : [A/α]C.
– If Γ, x : A,Γ ′ B ok then Γ, [e/x]Γ ′ B ok.
– If Γ, x : A,Γ ′ BB then Γ, [e/x]Γ ′ B [e/x]B.
– If Γ, x : A,Γ ′ B e′ : C then Γ, [e/x]Γ ′ B [e/x]e′ : [e/x]C.

The proofs of these theorems are a routine structural induction.
To add semantic side-conditions to the Danger1 and Danger2 rules, we

need to give a relational semantics of types, since we need to be able to compare
terms for equality. In Figure 6, we give the logical relation defining the relational
interpretation of types, as a structural recursion over the pretyping derivations
Γ BA. For each type constructor, we give the relation defining equality at that
type. Furthermore, since we are defining our relations by induction on the struc-
ture of the pretyping derivation Γ B A, we also parameterize this relation by a
grounding substitution γ.

The two key judgements in this relation begin with Env(Γ B ok), which
defines the set of well-formed grounding substitutions for the environment Γ . As
a context consists of a sequence of type variables α and term variables x : A,
the grounding substitutions consist of sequences of triples (A,A′, R) of closed
types and the relations between the terms of those types, which ground the type

(·)0 = ·
(γ, (e, e′)/x)0 = γ0, (e/x)
(γ, (A,A′, R)/α)0 = γ0, (A/α)

(·)1 = ·
(γ, (e, e′)/x)1 = γ1, (e

′/x)
(γ, (A,A′, R)/α)1 = γ1, (A

′/α)

γ(e) = (γ0(e), γ1(e))
γ(A) = (γ0(e), γ1(A))

Fig. 5. Operations on Relational Substitutions

variables α, and pairs of expressions (e, e′) which lie in the relation for A to
ground each term variable.

As γ is a relational substitution, we also need operations to extract ordinary
substitutions from it. These operations are defined in Figure 5. Given γ, the sub-
stitution γ0 takes the left components of the relational substitution, and γ1 takes
the right components. We write γ(e) as shorthand for the pair (γ0(e), γ1(e)), and
similarly we write γ(A) for (γ0(A), γ1(A)).

The environment relation is used mutually-recursively to define the relation
Val(Γ B A)(γ), which relates pairs of closed values of type A in the context Γ
closed by the substitution γ. This definition follows the usual pattern of logical
relations: type variables α look up the appropriate relation in the context γ, and
the value relation for function space (x : A) → B relates two functions f and g
if they take related arguments to related results.

The interpretation of the universal quantifier ∀α. B says that two terms are
related if for all value relations between pretypes A and A′ the type application
preserves the relation. By quantifying over relations between arbitrary values,
we avoid recursively mentioning the definition of the logical relation, and thereby
avoid circularity. This is a syntactic version of the techniques used in PER models
of polymorphism: fixing a universe ahead of time lets us consider the intersection
of all relations on that universe, without running afoul of the apparent circularity
of impredicative quantification.

Finally, we define the value relation for equality types Val(Γ B e ≡A e′)(γ)
as the pair (•, •), but only if the pair (γ0(e), γ1(e′)) is in the relation for A.
Otherwise the relation is empty. This gives the semantic sense in which the
equality type is an equality type: it is a type containing a single unit value when
the equality is true, and is the empty type when it is not.

We also include the definition Exp(Γ BA)(γ), which are pairs of expressions
reducing to values related by Val(Γ B A)(γ). This is an auxiliary definition
simplifying the definitions of values and environments.

Having fixed the semantics of types, we give the true typing rules in Figure 7.
As before, we have three mutually-recursive judgements, Γ ` ok, for well-formed
contexts, Γ ` A, for well-formed types, and Γ ` e : A for well-typing. All of

the typing rules precisely mirror the pretyping rules, with the exception of the
equality and abort rules.

Val(Γ B α)(γ) = let (A,B,R) = γ(α) in R
Val(Γ B (x : A)→ B)(γ) =〈λx. e, λx. e′〉

∣∣∣∣∣∣∣∣
·B λx. e : γ0((x : A)→ B) and
·B λx. e′ : γ1((x : A)→ B) and
∀e0, e′0 ∈ Exp(Γ BA)(γ).
〈[e0/x]e, [e′0/x]e′〉 ∈ Exp(Γ, x : ABB)(γ, 〈e0, e′0〉 /x)

Val(Γ B ∀α. B)(γ) =

〈Λα. e, Λα′. e′〉

∣∣∣∣∣∣∣∣∣∣∣∣

·B Λα. e : γ0(∀α. B) and
·B Λα. e′ : γ1(∀α. B) and
∀A,A′, R.
·BA and ·BA′ and
R ⊆ {〈v, v′〉 | ·B v : A and ·B v′ : A′} and
〈[A/α]e, [A′/α′]e′〉 ∈ Exp(Γ, αBB)(γ, (A,A′, R)/α)

Val(Γ B e0 ≡A e1)(γ) = {〈•, •〉 | 〈γ0(e0), γ1(e1)〉 ∈ Exp(Γ BA)(γ)}

Exp(Γ BA)(γ) =〈e0, e1〉
∣∣∣∣∣∣
·B e0 : γ0(A) and ·B e1 : γ1(A) and

∃v0, v1.
γ0(e0) ⇓ v0 and γ1(e1) ⇓ v1 and
〈v0, v1〉 ∈ Val(Γ BA)(γ)

Env(·B ok) = {〈〉}
Env(Γ, x : AB ok) = {(γ, 〈e, e′〉 /x) | γ ∈ Env(Γ B ok) and (e, e′) ∈ Exp(Γ BA)(γ)}
Env(Γ, αB ok) ={

(γ, (A,A′, R)/α)

∣∣∣∣ γ ∈ Env(Γ B ok) and ·BA and ·BA′ and
R ⊆ {〈v, v′〉 | ·B v : A and ·B v′ : A′}

}

Fig. 6. Relational Semantics

Each of these has a semantic side-condition controlling when they can be
used. These side-conditions mean that the type-checking problem is not decid-
able, since potentially arbitrary mathematical reasoning may be needed to show
that the rule applies. However, the soundness theorem for the language ensures
that once the side-conditions are discharged, then evaluation cannot alter the
typability of of the program under reduction.

The premise of the equality rule contains the non-syntactic premise that
Γ |= e = e′ : A. This means that in all semantic environments γ ∈ Env(Γ B ok),
the pair (γ0(e), γ1(e′)) must lie in the expression relation for the type A. This
means that the two expressions must be equivalent to introduce an equality type.

Similarly, the premise of the abort rule is that Γ |= ⊥ must hold, which means
that there are no environments in Env(Γ B ok). This means that the context Γ
is a contradictory one, with no environments that can satisfy it.

Now, we can prove a semantic version of the substitution theorem.

Theorem 2. (Semantic Substitution)

– Suppose Γ BA and (γ, γ(A)/α, γ′) ∈ Env(Γ, α, Γ ′ B ok). Then
• (γ, γ′) ∈ Env(Γ, [A/α]Γ ′ B ok)
• If (v, v′) ∈ Val(Γ, α, Γ ′ B e)(B)(γ, γ(A)/α, γ′), then

(v, v′) ∈ Val(Γ, [A/α]Γ ′ B [A/α]B)(γ, γ′).
• If (e, e′) ∈ Exp(Γ, α, Γ ′ B e)(B)(γ, γ(A)/α, γ′), then

(e, e′) ∈ Exp(Γ, [A/α]Γ ′ B [A/α]B)(γ, γ′).
– Suppose Γ B e : A and (γ, γ(e)/x, γ′) ∈ Env(Γ, x : A,Γ ′ B ok). Then
• (γ, γ) ∈ Env(Γ, [e/x]Γ ′ B ok).
• If (v, v′) ∈ Val(Γ, x : A,Γ ′ B e)(A)(γ, γ(e)/x, γ′),
then (v, v′) ∈ Val(Γ, [e/x]Γ ′ B [e/x]A)(γ, γ′).

• If (e, e′) ∈ Exp(Γ, x : A,Γ ′ B e)(A)(γ, γ(e)/x, γ′),
then (e, e′) ∈ Exp(Γ, [e/x]Γ ′ B [e/x]A)(γ, γ′).

These theorems follow from induction on the context and type pre-well-
formedness judgements. We can use these theorems to prove Reynolds’ abstrac-
tion theorem for our language.

Theorem 3. (Abstraction Theorem) If Γ ` e : A, then Γ |= e = e : A.

This theorem follows from a structural induction on the typing derivation,
making use of the semantic substitution principles. Normalization and type-
preservation follow immediately.

Corollary 1. (Normalization) If · ` e : A, then ∃v such that e ⇓ v.

Corollary 2. (Type Preservation) If · ` e : A and e ⇓ v, then · ` v : A.

It is worth noting that the type preservation lemma is exact — the type
of the result is exactly the same as the type of the original. We do not need
any notion of type equality beyond the same syntactic equality (modulo α) that
System F needed.

4 Existential Representations of Inductive Datatypes

A surprising feature of the examples in Section 2 is that we gave an apparently
existential encoding of inductive datatypes such as the booleans. This is a little
surprising, since the Church encodings of these types in System F are universal.

As a concrete example, recall the Church encoding of the boolean type.

– The type of Church booleans cbool = ∀α. α→ α→ α.
– Truth is defined as Λα. λa. λa′. a.
– Falsity is defined as Λα. λa. λa′. a′.
– The conditional is if : cbool→ ∀α. α→ α→ α , λb. b.

Contrast this with the interface we gave for the boolean type:

Γ |= e = e′ : A Γ |= ⊥

Γ |= e0 = e1 : A ⇐⇒ ∀γ ∈ Env(Γ B ok). (γ0(e0), γ1(e1)) ∈ Exp(Γ BA)(γ)
Γ |= ⊥ ⇐⇒ Env(Γ B ok) = ∅

Γ ` ok Γ ` A Γ ` e : A

· ` ok

Γ ` ok

Γ, α ` ok

Γ ` ok Γ ` A
Γ, x : A ` ok

Γ ` ok α ∈ Γ
Γ ` α

Γ, α ` A
Γ ` ∀α. A

Γ ` A Γ, x : A ` B
Γ ` (x : A)→ B

Γ ` A Γ ` e : A Γ ` e′ : A

Γ ` e ≡A e′

Γ, x : A ` e : B

Γ ` λx. e : (x : A)→ B

Γ ` e : (x : A)→ B Γ ` e′ : A

Γ ` e e′ : [e/x]B

Γ,α ` e : A

Γ ` Λα. e : ∀α. A

Γ ` e : ∀α. B Γ ` A
Γ ` e [A] : [A/α]B

Γ ` e ≡A e′ Γ |= e = e′ : A

Γ ` • : e ≡A e′
Γ ` A Γ |= ⊥
Γ ` abort : A

Γ ` ok x : A ∈ Γ
Γ ` x : A

Fig. 7. Typing

1 B ≡
2 ∃bool
3 true : bool,
4 false : bool,
5 if : ∀α. bool→ α→ α→ α.
6 ∀α, a : α, a′ : α. if [α] true a a′ ≡α a ×
7 ∀α, a : α, a′ : α. if [α] false a a′ ≡α a′

Unlike the Church encoding, the interface completely conceals the represen-
tation type of the booleans, as well as the implementations of truth, falsity
and if-then-else. The only constraint we place in the interface is to require the
β-theory of the booleans to hold.

Now we will show that these two implementations of the booleans are actually
the same. To do this, first note that we somehow need to compare an arbitrary
element of the existential type to a particular set of elements of the Church
type. Luckily, we have precisely the tools we need with the equality types of our
calculus. The Church booleans can be represented as elements of the type

1 B′≡
2 ∃ true : cbool,
3 false : cbool,
4 true ≡cbool Λα. λa. λa

′. a ×
5 false ≡cbool Λα. λa. λa

′. a′

By using equality types, we ensure that we have a tuple whose first element
is Church truth and whose second element is Church falsity.

This gives us the material we need to prove the following theorem:

Theorem 4. (Equivalence of Boolean Types) We have an isomorphism between
the types B and B′.

Proof. To show this holds, we wil give explicit maps i : B → B′ and j : B′ → B.
Then we will show that · |= i ◦ j = id : B′ and that · |= j ◦ i = id : B. We give
the definitions below, using the syntax for tuples and existentials for clarity.

i : B → B′ , λb. 〈Λα. λa. λa′. a, Λα. λa. λa′. a′, •, •〉

j : B′ → B , λb′.

let t = Λα. λa. λa′. a in
let f = Λα. λa. λa′. a′ in
let if = Λα. λx. λy. λb. b [α] x y in
pack 〈cbool, t, f, if , •, •〉

The B → B′ direction ignores its argument, and simply returns the obvious
tuple inhabiting B′. The B′ → B direction also ignores its argument, and returns
an instance of the existential representation which uses the Church booleans as
the representation type.

Therefore, each composition is a constant function, and so showing that it
is equivalent to the identity function means showing that all elements of B are
equivalent, and similarly forB′. The case forB′ is easy, and the interesting case fo
B reduces to the problem of showing that any element of the existential boolean
type is equivalent to element using the Church booleans as its representation
type.

This follows from unwinding the definitions. To do this, we introduce a rela-
tion that (unsurprisingly) relates Church truth to the true value of the hidden
existential type, and Church falsity to the false value of the hidden existential
type. Then, the equations for the hidden existential implementation of B can be
used to show that the hidden implementation of if is equivalent to the Church
implementation.

Similarly, we can relate (an extended version of) the existential natural
number interface given in Section 2 with the Church encoding churchnat =
∀α. α→ (α→ α)→ α.

1 N ≡
2 ∃nat
3 z : nat,

4 s : nat→ nat,
5 pred : nat→ optionnat,
6 iter : ∀α. nat→ α→ (α→ α)→ α.
7 pred z ≡optionnat none ×
8 ∀n. pred (s n) ≡optionnat some n ×
9 ∀α, i, f. iter [α] z i f ≡α i ×
10 ∀n, α, i, f. iter [α] (s n) i f ≡α f (iter [α] n i f)

1 N ′≡
2 ∃z : churchnat,
3 s : churchnat→ churchnat,
4 − : z ≡, Λα. λi. λf. i
5 − : s ≡churchnat→churchnat λn. Λα. λi. λf. f (n α i f)

We can then prove the equivalence of these two types.

Theorem 5. (Equivalence of Natural Number Types) There exists an isomor-
phism between N and N ′.

Proof. The proof of this theorem follows exactly the same pattern as for the
booleans. Ultimately we will end up showing that arbitrary elements of N are
equivalent to the representation using the Church natural numbers. To do this,
we will also need to define the predecessor function pred on the Church naturals,
which is a linear time operation.

The most interesting thing about this theorem is not the proof, which is
standard, but rather the fact that we extended the natural number interface
with the predecessor pred . The fact that the representation of natural numbers
is completely hidden in the existential style means that we can (for example)
use a representation of the natural numbers in which the predecessor is cheap
to compute. This contrasts with the explicit unary representation of the Church
encoding, in which the predecessor is necessarily linear time. As a result, we can
relate this slow implementation to fast ones without any difficulties.

This all relies critically on the equations. In the absence of equations specify-
ing the behavior of the predecessor, there is no way to have this constructor while
ensuring that the type really does represent the natural numbers object, since
there could be many implementations which are type-correct (in F) but lack the
necessary equational properties. However, with equations we can add operations
for efficiency without ruining the reasoning properties of the datatype, by cut-
ting down the set of reasonable implementations until only ones equivalent to
the intended datatype are possible. (We made extensive use of this in our list
example in Section 2.)

This is why we have not proven a general representation theorem for all
polynomial datatypes. While a representation theorem does not seem hard to
come by in the case where the constructors and fold-style eliminators constitute
the interface, it seems that we should consider a representation theorems in the
more interesting case in which the interfaces are augmented with extra opera-
tions that improve the computational efficiency of implementation. However, it
remains unclear to us what such interfaces should be, in general.

5 Related Work

5.1 System R and Plotkin-Abadi Logic

The two most prominent systems for reasoning about parametricity are System
R [1, 4] and Plotkin-Abadi logic [19]. These logics can be viewed as program
logics a la Hoare logic, in that they fix a programming logic (System F), and
then give a logical system for reasoning about terms in that language.

Our language can be understood as an attempt to take a small fragment
of these logics, and then reflect them back into the types of F. This naturally
suggests two directions. First, might it be worthwhile to add more of these logics
to the type system of F=? In this first paper, we wished to illustrate just how
much is achievable with a very modest addition to the type theory of System F,
but the extension is a very natural question.

In particular, all of the semantic side-conditions have been discharged by
working directly with the relational semantics. By building a logic for para-
metricity, we could potentially use it to give a proof system for equalities and
aborts. However, the presence of abort in our language means that such a logic
could not be a simple replay of the developments of [1] or [19], though.

5.2 Dependent Types

The appearance of terms in types in our calculus is rather reminiscent of sys-
tems of dependent types, such as Martin-Löf type theory [16] or the calculus
of constructions [10]. Indeed, the realizability semantics we use for F= is quite
similar to the semantics of extensional type theories such as Nuprl [9]. Further-
more, we share with extensional type theory the property that typechecking is
not syntax-directed: our proof term for equality, •, does not contain the evidence
of equality. This is similar to the equality reflection property of extensional type
theory, in which proof terms for introducing equalities may depend on proposi-
tional equality proofs not evident in the proof term.

However, the semantics of our equality type is a bit different from the equality
of dependent type theory. In type theory the elimination form for the equality
type e ≡A e′ is used to cast terms of type B[e] into ones of type B[e′]. As
a result, actually deriving a contradiction (i.e., a terms of type ⊥) from an
impossible equality (e.g., a proof of 0 ≡N 1) requires using a large elimination to
turn contradictions into proofs of falsity.

In our setting, we instead admit the use of the abort keyword in any incon-
sistent context, which allows us to make use of contradictions without having to
explicitly support large eliminations.

5.3 The Haskell Rules Mechanism

The Glasgow Haskell compiler contains a mechanism called rules [12], which al-
low programmers to specify equational rewrite rules (such as (map f)◦(map g) 7→

map (f ◦ g)) as part of library interfaces. However, these rewrite rules are re-
stricted to referring to top-level module identifiers, and rewriting cannot be
applied to an expression unless the term in question refers to exactly the same
variables as the rules definition referred to. This restriction means that rules —
which were a feature whose purpose is to lower the cost of good higher-order style
— are much less effective when applied to higher-order code (where operators
such as map may flow in as arguments to functions).

Our type theory illustrates that it is possible to integrate Haskell-style rules
into a simple type theory treating rewrite rules as first-class types. One partic-
ularly interesting direction to investigate is adding rules to type classes, which
would permit stating the equational assumptions about polymorphic terms. E.g.,
Haskell’s Functor typeclass has a method with type

fmap : Functor F ⇒ (α→ β)→ F α→ F β

It is intended that fmap is functorial — that is, that fmap id = id , and that
(fmap f) ◦ (fmap g) = fmap (f ◦ g). By placing these equations into the Functor
interface and verifying the typeclass instances, they could even be used to drive
optimizations of client code.

5.4 Extended ML

One of the earliest serious attempts to extend a functional language with equa-
tional specifications was the Extended ML [13] project. In this work, SML mod-
ule signatures were extended with algebraic signatures stating the intended equa-
tional properties of the abstract datatypes.

This work was quite ambitious, and it involved a rather large fragment of ML
including features such as exceptions and non-termination. Furthermore, the con-
cept of algebraic signature was generalized well beyond equational properties to
include full logical predicates. However, the technical ambition of this approach
meant that its semantics were never fully settled (the question of polymorphism
was especially vexing, as was the specification of imperative ML code).

In this paper, we have avoided effects to maximize the force of parametric-
ity. This lets us specify quite sophisticated properties (e.g., initiality) with a
bare minimum of additional syntactic and semantic machinery. One especially
nice feature of our work is that the presence of equation makes it very natural
to connect Church-style datatype encodings with the existential style of data
abstraction more common in ML (and exploited by EML).

These days, there are quite well-developed semantic frameworks in place to
model polymorphic languages with features like nontermination, recursive types,
and higher order state [18, 7]. However, in spite of this machinery, it is simply
an unavoidable fact that fewer equations hold when effects are present. To what
extent the reduced of validity equational reasoning limits the use of equality
types is unclear. One approach to this problem may be to encapsulate effects
in a monadic type, and then use other techniques (such as Hoare logic [14]) to
reason about the monadic code.

6 Future Work

There are two strands of future work. First, there is the theoretical strand.
The first question is whether our termination result can be strengthened into
a strong normalization result, which would require a more sophisticated logical
relation [2].

Second, it may be possible to give a logic for this calculus along the lines of
Plotkin-Abadi logic, and then use the rules of that calculus to give proof terms
for the equality type. This would make typechecking decidable, and might make
an interesting basis for a dependent type theory with parametricity, along the
lines of [5]. While this is a challenging problem, the extreme simplicity of our
semantics offers reasonable grounds for hope.

ML-style modules support the “strong” dot-notation elimination form [8],
whereas our existential encoding uses F-style existentials with a“weak” let-
binding eliminator. Recently, Rossberg, Russo and Dreyer have shown [21] how
to translate ML-style modules into System F, and it would be interesting to
study if a similar translation could take ML signatures extended with equations
and translate into F=.

On a practical note, how can equation types be profitably employed in opti-
mizations? Connecting equations to optimizations is an intriguing problem.

Finally, our type system emits proof obligations at each introduction of an
equality or use of an abort. It would be useful to ship these proof obligations off
to a theorem prover such as Coq. Doing so will require a certain amount of care,
since parametricity is essential to the arguments we make, and we will need to
make use of recent work [3] on representing the semantics of polymorphism in
type theory.

References

1. Mart́ın Abadi, Luca Cardelli, and Pierre-Louis Curien. Formal parametric poly-
morphism. In Principles of Programming Languages, pages 157–170, 1993.

2. Andreas Abel. Weak beta-theta-normalization and normalization by evaluation
for system f. In Iliano Cervesato, Helmut Veith, and Andrei Voronkov, editors,
Logic for Programming, Artificial Intelligence, and Reasoning, 15th International
Conference, volume 5330 of Lecture Notes in Computer Science, pages 497–511.
Springer, 2008.

3. Robert Atkey. Syntax for free: Representing syntax with binding using parametric-
ity. In Pierre-Louis Curien, editor, TLCA, volume 5608 of Lecture Notes in Com-
puter Science, pages 35–49. Springer, 2009.

4. Roberto Bellucci, Mart́ın Abadi, and Pierre-Louis Curien. A model for formal
parametric polymorphism: A PER interpretation for system R. In Mariangiola
Dezani-Ciancaglini and Gordon D. Plotkin, editors, Second International Confer-
ence on Typed Lambda Calculi and Applications, volume 902 of Lecture Notes in
Computer Science, pages 32–46. Springer, 1995.

5. Jean-Philippe Bernardy, Patrik Jansson, and Ross Paterson. Parametricity and
dependent types. In Paul Hudak and Stephanie Weirich, editors, Proceeding of the
15th ACM SIGPLAN international conference on Functional programming, ICFP
2010, pages 345–356. ACM, 2010.

6. Lars Birkedal, Rasmus Ejlers Møgelberg, and Rasmus Lerchedahl Petersen.
Domain-theoretical models of parametric polymorphism. Theoretical Computer
Science, 388(1-3):152–172, 2007.

7. Lars Birkedal, Kristian Støvring, and Jacob Thamsborg. Realisability semantics
of parametric polymorphism, general references and recursive types. Mathematical
Structures in Computer Science, 20(4):655–703, 2010.

8. Luca Cardelli and Xavier Leroy. Abstract types and the dot notation. In M. Broy
and C. B. Jones, editors, Proceedings IFIP TC2 working conference on program-
ming concepts and methods, pages 479–504. North-Holland, 1990.

9. Robert L. Constable, Stuart F. Allen, Mark Bromley, Rance Cleaveland, J. F. Cre-
mer, R. W. Harper, Douglas J. Howe, Todd B. Knoblock, N. P. Mendler, Prakash
Panangaden, James T. Sasaki, and Scott F. Smith. Implementing mathematics
with the Nuprl proof development system. Prentice Hall, 1986.

10. Thierry Coquand and Gérard P. Huet. The calculus of constructions. Inf. Comput.,
76(2/3):95–120, 1988.

11. Simon L. Peyton Jones, Dimitrios Vytiniotis, Stephanie Weirich, and Geoffrey
Washburn. Simple unification-based type inference for GADTs. In John H.
Reppy and Julia L. Lawall, editors, Proceedings of the 11th ACM SIGPLAN Inter-
national Conference on Functional Programming, ICFP 2006, Portland, Oregon,
USA, September 16-21, 2006, pages 50–61. ACM, 2006.

12. Simon Peyton Jones, Andrew Tolmach, and Tony Hoare;. Playing by the rules:
rewriting as a practical optimisation technique in GHC. In Haskell Workshop,
2001.

13. Stefan Kahrs, Donald Sannella, and Andrzej Tarlecki. The definition of Extended
ML: A gentle introduction. Theoretical Computer Science, 173(2):445–484, 1997.

14. Neelakantan R. Krishnaswami. Verifying Higher-Order Imperative Programs with
Higher-Order Separation Logic. PhD thesis, Carnegie Mellon University, 2011.

15. Simon Marlow and Philip Wadler. Deforestation for higher-order functions. In John
Launchbury and Patrick M. Sansom, editors, Functional Programming, Workshops
in Computing, pages 154–165. Springer, 1992.

16. Per Martin-Löf. Intuitionistic Type Theory. Bibliopolis, 1984.
17. John C. Mitchell and Gordon D. Plotkin. Abstract types have existential type.

ACM Trans. Program. Lang. Syst., 10:470–502, 1988.
18. Georg Neis, Derek Dreyer, and Andreas Rossberg. Non-parametric parametricity.

In Graham Hutton and Andrew P. Tolmach, editors, Proceeding of the 14th ACM
SIGPLAN international conference on Functional programming, pages 135–148.
ACM, 2009.

19. Gordon D. Plotkin and Mart́ın Abadi. A logic for parametric polymorphism. In
Marc Bezem and Jan Friso Groote, editors, International Conference on Typed
Lambda Calculi and Applications, volume 664 of Lecture Notes in Computer Sci-
ence, pages 361–375. Springer, 1993.

20. John C. Reynolds. Types, abstraction and parametric polymorphism. In IFIP
Congress, pages 513–523, 1983.

21. Andreas Rossberg, Claudio V. Russo, and Derek Dreyer. F-ing modules. In Pro-
ceedings of the 5th ACM SIGPLAN workshop on Types in language design and
implementation, TLDI ’10. ACM, 2010.

22. Philip Wadler. The Girard-Reynolds isomorphism (second edition). Theoretical
Computer Science, 375(1-3):201–226, 2007.

